* Whatis the role of hidden layers in Out-of-Distribution learning?

* Where is the change of representation taking place in OOD?
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How to measure the difficulty

of examples?
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Measuring the difficulty of examples

* Previously

— A statistical view

* The probability of predicting the ground truth label for an example omitted
from the training set

— A learning view

* The difficulty of learning an example, parameterized by the earliest training
iteration after which the model (e.g. NN) predicts the ground truth class for
that example in all subsequent iterations

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34.
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Measuring the difficulty of examples

* A new proposition

— The notion of “prediction depth”

— And three distinct difficulty types:

* Does this example look mislabeled?
* |s classifying this example only easy if the label is given?

* |s this example ambiguous both with and without its label?

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34.
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== Prediction depth
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Prediction depth

 The number of hidden layers after which the network’s final

prediction is already determined
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=2 Prediction depth

 The number of hidden layers after which the network’s final

prediction is already determined
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Prediction depth

 The number of hidden layers after which the network’s final

prediction is already determined
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Reflects the intuitive ranking from the
easier to the more difficult
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How to measure the prediction depth?

* k-NN classifier probes (with k = 30)

— Compare the hidden embedding of an input
to those of the training set

(what is the class of the k nearest neighbors in the embedding considered)

A prediction is defined to be made at a depth L=/ if

— The k-NN classification after layer L =/ —1 is different from the network’s

final classification,

— but the classification of k-NN probes after every layer L >/ are all equal to

the final classification of the network
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What they claim to show

The prediction depth is larger for examples that visually appear to be more
difficult

— And this is consistent between NN’s architectures and random seeds

Predictions are on average more accurate for validation points
with small prediction depths

Final predictions for data points that converge earlier during training
are typically determined in earlier layers

Both the adversarial input margin and output margin are larger for examples with
smaller prediction depths

— Intervention to reduce the output margin leads to predictions being made
only in the latest hidden layers
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What they claim to show

Early layers generalize while later layers memorize

Networks converge from input layers towards output layers

Easy examples are learned first

Networks present simpler functions earlier in the training
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What they claim to show

 The prediction depth is larger for examples that visually appear to be more

difficult
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What they claim to show

10!

10°

10!

Y0 2 4 6 8 10
Prediction Depth

250 ResNet18 were trained on CIFAR100 (90:10%
random train:validation splits). Comparison of the
average prediction depth of a point to the consensus-
consistency of the corresponding prediction.

Consensus-consistency: the fraction of NNs that
predict the ensemble’s consensus class
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For each dataset, 250 ResNet18 were trained on
CIFAR100 (90:10% random train:validation splits).
Each time a point appears in the validation split, its
prediction depth and whether the prediction was

correct was recorded.
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What they claim to show

* Predictions are on average more accurate for validation points

with small prediction depths
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250 ResNet18 were trained on CIFAR100 (90:10%
random train:validation splits). Comparison of the
average prediction depth of a point to the consensus-
consistency of the corresponding prediction.

Consensus-consistency: the fraction of NNs that
predict the ensemble’s consensus class
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For each dataset, 250 ResNet18 were trained on
CIFAR100 (90:10% random train:validation splits).
Each time a point appears in the validation split, its
prediction depth and whether the prediction was

correct was recorded.
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What they claim to show

— Measure the difficulty of learning an example by the speed at which the model’s prediction converges

for that input during training

— Iteration learned. A data point is said to be learned by a classifier at training iterationt =1

if the predicted class at iteration t =t — 1 is different from the final prediction of the converged NN

and the predictions at all iterations t > T are equal to the final prediction of the converged NN.
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Each time an input appears in the
validation split, the prediction depth
and the iteration learned are recorded

Positive correlation between the
prediction depth and the iteration learned
appears for all datasets
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What they claim to show

Final predictions for data points that converge earlier during training

are typically determined in earlier layers

— Measure the difficulty of learning an example by the speed at which the model’s prediction converges

for that input during training

— Iteration learned. A data point is said to be learned by a classifier at training iterationt =1

if the predicted class at iteration t =t — 1 is different from the final prediction of the converged NN

and the predictions at all iterations t > T are equal to the final prediction of the converged NN.
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Each time an input appears in the
validation split, the prediction depth
and the iteration learned are recorded

Positive correlation between the
prediction depth and the iteration learned
appears for all datasets
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What they claim to show

Output margin: difference between the largest and second-largest output of the NN (logits)

— Adversarial input margin: the smallest norm required for an adversarial perturbation in the

input to change the NN’s class prediction
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Shows that data points with smaller prediction depths have both larger input and output margins on average,

and that variances of the input and output margins decrease as the prediction depth increases 19 / 95



What they claim to show

Both the adversarial input margin and output margin are larger

for examples with smaller prediction depths

Output margin: difference between the largest and second-largest output of the NN (logits)

— Adversarial input margin: the smallest norm required for an adversarial perturbation in the

input to change the NN’s class prediction
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Shows that data points with smaller prediction depths have both larger input and output margins on average,

and that variances of the input and output margins decrease as the prediction depth increases 20 / 95



What they claim to show

Different forms of example difficulty

* Validation: points with low prediction depth are “clear”
and “ambiguous” otherwise

* Training :idem

— [Easy examples (Low PD,,, and low PD;,,;,)

— Look like a different class (LOW PDvaI and hlgh PDtrain)' (difficult to train, seemingly easy to classify)

* E.g. mislabeled examples

— Ambiguous unless the label is given (High PD,,, and low PD;..;,)-

* E.g. resemble both their own class and another class
Likely to be misclassified

— Ambiguous (High PD,,, and high PD,,.;,).

* Examples that may be corrupted or of a rare sub-class.
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What they claim to show

— Consensus # Ground Truth Consensus = Ground Truth
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These examples are difficult to connect to their predicted class in the validation split but easy to
connect to their ground truth class during training. These points may, for example, visually
resemble both their own class and another class. They are likely to be misclassified. 29 / 95



Conclusion

Introduces a notion of example difficulty called the prediction depth

* which uses the processing of data inside the network

to score the difficulty of an example
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Conclusion

* Easy examples are learned and recognized early in the network
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Continual learning of new tasks

O TN W ————— -

Training new tasks

from scratch
Model 2

Continual learning

Model 1 Model 2 Model 3

Chen, J., Nguyen, T., Gorur, D., & Chaudhry, A. (2023).
Is forgetting less a good inductive bias for forward transfer?
ICLR-2023. 26 /95



Continual learning of new tasks

Continuously updating the model on new tasks results in severely degraded performance on old tasks

Accuracy of model 1:

Accuracy of model 2:

Accuracy of model 3: 10% 40% 0%
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Catastrophic forgetting

precision (none)
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arXiv preprint arXiv:2112.14146. Iterations
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Catastrophic forgetting

* ANNSs have the tendency to completely and abruptly forget

previous learned information upon learning new information

— Therefore ANNs are unable to learn multiple tasks sequentially

— Lifelong or continual learning would not be possible for ANNs

— In humans, catastrophic forgetting does not happen

* Learning to drive a car does not result in not knowing anymore

how to ride a bike
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Catastrophic forgetting: how to avoid it

Classical approach

* Training for ImageNet typically involves
— to break the training dataset into M distinct batches,

— for ImageNet each batch typically has about 100,000 instances
from 100 classes that are not seen in later batches,

— and then the algorithm sequentially loops over each batch many times.

* Not efficient

* Not biologically plausible
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Reasons for catastrophic forgetting

* Interferences in the hidden layers

— Training on task B modifies a lot the weights learnt for task A

* No guarantee that the representation of deeper layers learned for task A

will be sufficient to losslessly encode novel information, for task B

 The major issue is balancing
— the stability of existing representations

— with the plasticity required to efficiently learn new ones
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Catastrophic forgetting

Questions

— What happens to the internal representations of neural networks

as they undergo catastrophic forgetting?

— Does the degree to which a network forgets depend on

the semantic similarity between the successive tasks?
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* What do we expect?
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Catastrophic forgetting and hidden representations

 What role hidden layers play in forgetting?

/" Scenario 1: Split CIFAR10 N\

Task 1 Task 2

ER-RE

Ship Truck Plane Car

/" Scenario 2: CIFAR100 Distribution shift

Task 1 Task 2

. .
Peoplz Vehicles People Vehicles
(Woman) (Bicycle) (Man) (Bus)

Head 2

\Task-speciﬁc readout layers

4

On CIFAR-10:
task 1 (5 classes) then task 2 (5 # classes)

(see paper) /

\ No task-specific components

On CIFAR-100:
task 1 (examples of 5 subsets of 5 superclasses)
then task 2 (examples of 5 # subsets of same 5

superclasses)

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of
catastrophic forgetting: Hidden representations and task semantics. /CLR-2021. 3t /95



Catastrophic forgetting and hidden representations

 What role hidden layers play in forgetting?

— Tested on 3 different Deep Neural Networks

Aeenmion: Split CIFAR10 N /" Scenario 2: CIFAR100 Distribution shift
Task 1 Task 2 Task 1 Task 2
=EBE-TE i
People Vehicles People Vehicles
Ship Truck Plane Car (Woman) (Bicycle) (Man) (Bus)
[ Head 2 | . (see paper)
\Task-speciﬁc readout layers / \ s e e j

VGG ResNet DenseNet
ks« s RO I K =
) convokson + Rety - R ﬁﬁ
Simonyan & Zisserman, 2015 He et al., 2015 Huang et al., 2015

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of
catastrophic forgetting: Hidden representations and task semantics. /CLR-2021. 3¢ /95



Catastrophic forgetting and hidden representations

* Manifestation of catastrophic forgetting?

/Scenario 2: CIFAR100 Distribution shift\

ms W
o o 5 = What do we expect?
(see paper) /

\ No task-specific components

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden
representations and task semantics. /CLR-2021.
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Catastrophic forgetting and hidden representations

* Manifestation of catastrophic forgetting?

Vi iR axio PN s L aNLD

/”Scenario 1: Split CIFAR10 N\

Task 1 Task 2

EB-RL
Ship Truck Plane Car

Head 2 | )

KTask-speciﬁc readout layers

o . _
Starts at ~20% recognition rate: normal Significant drop of performance on

task 1 when learning task 2

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden representationg8 / 95
and task semantics. /CLR-2021.



Catastrophic forgetting and hidden representations

 What role hidden layers play in forgetting?
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RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden
representations and task semantics. /CLR-2021.
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Higher layers are disproportionately responsible for catastrophic forgetting
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Results: what to think of them?

All layers but the first are retrained

NN (8 layers) trained
from scratch

All layers but the first two are retrained

/ / All layers but ... are retrained
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Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural networks? In
Advances in Neural Information Processing Systems 27 (NIPS *14), NIPS Foundation, 2014.
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Interpretation

12?
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Interpretation

Retrain on all layers (fine-tuning) on domain B after transfer from domain A

0.66— \
N\

Transfer + fine-tuning improves generalization
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Catastrophic forgetting and hidden representations

 What role hidden layers play in forgetting?

— Measure how similar is each hidden layer before and after learning task 2

* Use Centered Kernel Alignment (CKA)

Specifically, letting X € R™*P and Y € R™*P be (centered) layer activation matrices of (the same)
n datapoints and p neurons, CKA computes

HSIC(XXT, YYT) 0
V/HSIC(XXT XXT)/HSIC(YYT, YYT)
for HSIC Hilbert-Schmidt Independence Criterion (Gretton et al., 2005). We use linear-kernel CKA.

CKA(X,Y) =

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden
representations and task semantics. /CLR-2021. 43 / 95



Catastrophic forgetting and hidden representations

 What role hidden layers play in forgetting?

— Measure how similar is each hidden layer before and after learning task 2

* Use Centered Kernel Alignment (CKA)
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RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden /
44 / 95
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Catastrophic forgetting and hidden representations

 What role hidden layers play in forgetting?

— Measure how similar is each hidden layer before and after learning task 2

* Use Centered Kernel Alignment (CKA)
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e Again, the effect of learning task 2 is biggest on higher hidden layers

For all tasks and all NNs

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden
representations and task semantics. /CLR-2021.
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Catastrophic forgetting and hidden representations

 What role hidden layers play in forgetting?

— Measure how similar is each subspace (PCA of activations) of the hidden
layers before and after learning task 2

Letting X € R™*P be the (centered) layer activation matrix of n examples
by p neurons, we compute the PCA decomposition of X, i.e. the eigenvectors
(v1,v2,...) and eigenvalues (A1, A\a,...) of X' X. Letting V; be the matrix
formed from the top k principal directions, vq,...,v; as columns, and U the
corresponding matrix for a different activation matric Y, we compute

SubspaceSim, (X,Y) = £ ||V, Ukl|%

This measures the overlap in the subspaces spanned by (v1,...,v;) and
(u1, ..., ux). Concretely, if X and Y correspond to layer activation matrices for
two different tasks, SubspaceSim,(X,Y) measures how similarly the top &

representations for those tasks are stored in the network.
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Catastrophic forgetting and hidden representations

What role hidden layers play in forgetting?

— Measure how similar is each subspace (PCA of activations) of the hidden

layers before and after learning task 2
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* (Task 1, task 2): low similarity for higher hidden layers
* (Task 1, and again on task 1 after training on task 2): much has been lost

e (Task 2, task 1 after training on task 1 then task 2): higher hidden layers are

more similar to task 2 than to task 1! 47 / 95



Catastrophic forgetting and hidden representations

* During sequential training,

— effective feature reuse happens in the lower layers,

— but in the higher layers, after Task 2 training, Task 1 representations are mapped into the

same subspace as Task 2.

Specifically, Task 2 training causes subspace erasure of Task 1 in the higher layers.
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Catastrophic forgetting and hidden representations

* During sequential training,

— effective feature reuse happens in the lower layers,

— but in the higher layers, after Task 2 training, Task 1 representations are mapped into the

same subspace as Task 2.

Specifically, Task 2 training causes subspace erasure of Task 1 in the higher layers.

- DO popularly used mitigation methods act to stabilize higher layers?
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and hidden representations

Types of mitigation strategies

— Regularization-based approaches

— Replay-based approaches

 What are their impact? Are they successful?

* How do they act on the hidden layers?
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- Regularization approaches

o Low eror for task B == EWC

== Low error for task A = L2
== NO penalty

Kirkpatrick, J., Pascanu, R., >
Rabinowitz, N., Veness, J., 9 <3
Desjardins, G., Rusu, A. A,, A

... & Hadsell, R. (2017).

Overcoming catastrophic

forgetting in neural

networks.

Proceedings of the

national academy of While learning task B, EWC protects the
sciences, 114(13), 3521-

3526. performance in task A by constraining the

parameters to stay in a region of low error
for task A centered around GA*
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- Regularization approaches

2 Low error for task B == E\WC
== Low error for task A = L2

' == NO penalty

Fig. 1. EWC ensures task A is remembered while training on task B. Train-
ing trajectories are illustrated in a schematic parameter space, with param-
eter regions leading to good performance on task A (gray) and on task B
(cream color). After learning the first task, the parameters are at 6,. If we
take gradient steps according to task B alone (blue arrow), we will minimize
the loss of task B but destroy what we have learned for task A. On the other
hand, if we constrain each weight with the same coefficient (green arrow),
the restriction imposed is too severe and we can remember task A only at
the expense of not learning task B. EWC, conversely, finds a solution for
task B without incurring a significant loss on task A (red arrow) by explicitly
computing how important weights are for task A.
52 /95



- Regularization approaches

* “Elastic Weight consolidation” (EWC)

— EWC works by slowing learning of the network weights which are most
relevant for solving previously encountered tasks

Hyperparameter indicating
the relative importance of
previously encountered
tasks compared to new
ones

6’)+ HZ—QAZ)

Parameters important for

Parameters of the network )
solving task A

Loss for task B

Fisher inf ti tri
isher information matrix 53 /95



- Regularization approaches

e Elastic Weight consolidation (EWC)

— the Fisher information matrix is used to give an estimation of
the importance of weights for solving tasks

* The importance weighting is proportional to the diagonal of the
Fisher information metric over the old parameters for the
previous task

L(0)=Lp(0)+ Z ng ('97; — 92,2-)2

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. Para_meters important for
A., ... & Hadsell, R. (2017). solving task A
Overcoming catastrophic forgetting in neural networks.

Proceedings of the national academy of sciences, 114(13), 3521-3526. /
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- Regularization approaches
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1.0 - ; : EWC v St —e—e o .,
< ! 1
< K—‘x\_\ L2 ] EWC
4 : : SGD &
= 0.8 - ! | o
. : £ 0.9
n 1.0 - . : S
x : m— — c
8 :l | 2
0.8 - | i ©
I : L
(@) 1.0 T : : 0.8 .
% ' TE ff f
S : : SGD+dropout
0-8 ! 1 T T T T T T T T T (

2 3 4 5 6 7 8 9 10

Frac. correct Training time Number of tasks

e (A) Training curves for three random permutations A, B, and C, using EWC (red), L,
regularization (green), and plain SGD (blue).
Note that only EWC is capable of maintaining a high performance on old tasks, while
retaining the ability to learn new tasks.

e (B) Average performance across all tasks, using EWC (red) or SGD with dropout
regularization (blue). The dashed line shows the performance on a single task only.
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— Replay-based approaches

* Deep generative replay

— A generative model is used to generate representative data from
previous tasks

— From which a sample is selected and interspersed with the dataset
of the new task

— Example: REMIND (Replay using Memory Indexing)

* Replays a compressed representation of previously encountered
training data

* Using hidden layers (e.g. a feature map)

Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M., & Kanan, C. (2020, August).

Remind your neural network to prevent catastrophic forgetting. In European

Conference on Computer Vision (pp. 466-483). Springer, Cham. 56 /95
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Plastic Layers (F)

— ‘ - Output

Frozen Layers (G)

ol e

Memory
Indexing, Storage
and
Reconstruction

New
Input (X)

First, train the complete network: G + F layers on the training set
Froze (G) and store sort of prototype features of the training examples

Later, during training of new tasks, use the stored prototype features to
generate training instances before (F) related to the previous tasks together

with new training examples and train only (F)
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REMIND

Performances when learning additional classes of ImageNet

—®— Fine-Tune -&— SLDA —&— Unified —&— REMIND [Ours]
~p— iCaRL —d— BiC =X+ Offline

—— ExStream

Top-5 Accuracy [%]
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-
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Now the analysis
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R Swilawy

and hidden representations

CKA analysis
— Measures how similar a pair of hidden layer representations are
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* Compute CKA between layer representations of Task 1 before
and after Task 2 training

e With varying amounts and types of mitigation.

Mitigation methods stabilize the higher layer representations
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Mitigation strategies and hidden representations

But what about subspace similarity?
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e (Task 2, Task 1 post-Task 2 training) similarity is lower in replay compared

to EWC and Sl regularization-based methods

* Asis (Taskl, task 2) 62 /95
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Mitigation strategies and hidden representations

But what about subspace similarity?
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and hidden representations

 But what about subspace similarity?

— With varying degree of mitigation
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Again (Task 2, Task 1 post-Task 2 training) is much lower in replay
compared to no mitigation

When EWC and SI maintain similar subspaces for (Task2, Task 1 post Task
2 training)
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Outline

How to measure the difficulty of a training example

What is catastrophic forgetting

Catastrophic forgetting and hidden representations

Catastrophic forgetting and the semantic similarity between tasks

Can forgetting be useful for transfer learning?

Is “forgetting less” useful for transfer learning?
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Catastrophic forgetting

e (Questions

— Does the degree to which a network forgets depend on

the semantic similarity between the successive tasks?
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Catastrophic forgetting and semantic similarity between tasks

Task 2 Setup 1: Task 1 - ship, truck
Task 2 - cat, horse or plane, car
1.0 = —
0.9 + + + +
Task 1 -
o > |
S m
Ship vs. Truck Task 2 :
Task 2
\ ‘lli ' 08 | e cat, horse
(a) ~ plane, car
0.5 ‘I="====ﬁ — 1 —
Plane vs. Car 0 25 50 75 100 125 150 175
Epoch
Green = vehicles

Purple = animals

In this scenario: More similar tasks cause less forgetting
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Catastrophic forgetting and semantic similarity between tasks

e But...

Task 1

2>

Lo
Ship vs.

Truck

Task 2

Setup 2: Task 1 - deer, dog, ship, truck
Task 2 - plane, car

< on

Plane vs. Car

1.0 .
0.9 4
8
€ 08 -
s
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g 0.6 | 4 4
= Task 1 classes
0.5 deer = ship
4(1;) — dog | == truck
o‘ = L) L) T L}

0 25 S50 75 100 125 150 175
Epoch

In this scenario: similar categories are forgotten more
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Catastrophic forgetting and semantic similarity between tasks

e A contradiction?

Setup 1: Task 1 - ship, truck
Task 2 - cat, horse or plane, car

Task 2
| == cat, horse
(a) ~plane, car

0.5'|ﬁ==i='= - -
T T T T
0 25 50 75 100 125 150 175
Epoch

Similar tasks cause less forgetting

True positive rate

Setup 2: Task 1 - deer, dog, ship, truck
Task 2 - plane, car
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e
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Similar categories are forgotten more
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Catastrophic forgetting and semantic similarity between tasks

* Alignment of subspaces

Near-orthogonal tasks Near-parallel tasks
AX /! AX I,’ P
’ /. ’ /. ,’.
’ ’,/ "/
_— . [
\‘\~ =
> >
®
/ . xl xl
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// 2% \’\ - ’._.l,,'
3 e Task1data P ™8 o Task 1data
{ e Task 2 data o e Task 2 data
Minimal forgetting Minimal forgetting (if labels
are similar)
Near orthogonal model representations Near equal model representations
 » /
Little forgetting 70 /95



Catastrophic forgetting and semantic similarity between tasks

Task 1

Task 2

=
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Maximal forgetting is observed for intermediate similarity between the tasks
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Conclusions

* Higher layers are disproportionately responsible for catastrophic forgetting

e Different methods for mitigating forgetting exist

— all stabilize higher layer representations,

* But some methods encourage greater feature reuse in higher layers, (e.g. EWC and SI)

* Others store task representations as orthogonal subspaces, preventing interference
(e.g. REPLAY)

* Semantic similarity between subsequent tasks consistently controls
the degree of forgetting

— forgetting is most severe for tasks with intermediate similarity
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Can forgetting be useful in transfer learning?

Zhou, H., Vani, A., Larochelle, H., & Courville, A. (2022).
Fortuitous forgetting in connectionist networks.

ICLR-2022.
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Can forgetting be in transfer learning?

 “Forgetting” Noise

PlAcc(f(Ny,U)) < Ace(Ny) |Ace(N) > C| =1

Adding noise decreases the accuracy, given that the accuracy
was better than random

I(f(N,U),D) >0

Adding noise equates to a partial removal of information (still
“aligned”)

Zhou, H., Vani, A, Larochelle, H., & Courville, A. (2022). Fortuitous forgetting in connectionist
networks. ICLR-2022.
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Can forgetting be in transfer learning?

 The forget-and-relearn hypothesis

— Given an appropriate forgetting operation, iterative re-training AFTER
forgetting will amplify unforgotten features that are consistently useful

under different learning conditions induced by the forgetting step.

— A forgetting operation that favors the preservation of desirable features
can thus be used to steer the model towards those desirable

characteristics.

Many existing algorithms which have successfully demonstrated improved
generalization have a forgetting step that disproportionately affects undesirable
information for the given task.
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Can forgetting be in transfer learning?

* Easy vs. Hard examples

— Use the output margin between the largest and second-largest logits

(outputs) for each example

l
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Later-Layer Forgetting (LLF)

Targeted forgetting

— Reinitialization of later layers at each learning iteration

Method Flower CUB Aircraft MIT Dog
Smth (N1) 51.02 +0.09 58.92 +0.24 57.16 +0.91 56.04 +0.39 63.64 +0.16
Smth long (N3) 59.51 +0.17  66.03 +0.13 62.55 +0.25 59.53 +0.60 65.39 +0.55
Smth + KE (N3) 57.95 +0.65 63.49 +0.39 60.56 +0.36 58.78 +0.54 64.23 +0.05
Smth + LLF (N3) (Ours) 63.52 +0.13 70.76 +0.24 68.88 +0.11 63.28 +0.69 67.54 +0.12

* Importance of having variable conditions for refining first layers

* Keeps and amplifies the useful features of the first layers
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Lesson

* Forgetting is useful

— If it promotes the amplification of useful features in the first layers
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Is “forgetting less” good for forward transfer?

Training new tasks

from scratch
Model 2

Forward transfer

learning

Model 1 Model 2 Model 3

Chen, J., Nguyen, T., Gorur, D., & Chaudhry, A. (2023).
Is forgetting less a good inductive bias for forward transfer?
ICLR-2023. 81/95



Is “forgetting less” for forward transfer?

e Claim that

— many continual learning approaches alleviate catastrophic

forgetting at the expense of forward transfer

Chen, J., Nguyen, T., Gorur, D., & Chaudhry, A. (2023). Is forgetting less a good inductive bias for

forward transfer? ICLR-2023.
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Is “forgetting less” for forward transfer?

e Claim that

— many continual learning approaches alleviate catastrophic

forgetting at the expense of forward transfer

In which situation is it necessary to forget?
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Is “forgetting less” for forward transfer?

They measure forward transfer in terms of how easy it is to learn a new task given continually
trained representations

The easiness is measured by learning a linear classifier on top of the fixed representations using a small
subset of the data of the new task
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Is “forgetting less” for forward transfer?

They measure forward transfer in terms of how easy it is to learn a new task given continually
trained representations

The easiness is measured by learning a linear classifier on top of the fixed representations using a small
subset of the data of the new task

Remark: they say that this appropriate when considering foundation models
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Is “forgetting less” for forward transfer?

They measure forward transfer in terms of how easy it is to learn a new task given continually
trained representations

The easiness is measured by learning a linear classifier on top of the fixed representations using a small
subset of the data of the new task

Remark: they say that this appropriate when considering foundation models

Because we finetune them in order to address new tasks
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Is “forgetting less” for forward transfer?

They measure forward transfer in terms of how easy it is to learn a new task given continually trained
representations

The easiness is measured by learning a linear classifier on top of the fixed representations using a small
subset of the data of the new task

Linear
Probing
al

Fixed
K-shot Evaluate
Samples Accuracy

Oy Classificatioh

Head

Linear classifier

Feature
Extractor

Task
Sequence

K Continual Learning j

Figure 2: Tllustration of continual learning and k-shot evaluation process. We continuously train the feature
extractor and the classification head on a task sequence 11, . .., Tnv. ©;0®; is the model obtained after training
on 7. To evaluate the forward transfer of ®;, we use linear probing on k-shot samples from the next task 7’1

to learn a classifier © and then evaluate the accuracy of © o ® ; on the test set D% ; from the task T}1.
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Is “forgetting less” good for forward transfer?

YES!
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(b) Average Forward Transfer (T better)

Less forgetting leads to better transfer learning

Less forgetful models result in more diverse and easily separable representations
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Is “forgetting less” for forward transfer?

 Measure how diverse and easily separable are the features

learned in CDJ-

Cj
FDiv; = log|aW U +I| = ) log|a; ¥§ U5 +1]
c=1
where | - | is a matrix determinant operator, a = D/(me?), a; = D/(m;e?),

e = 0.5, and C; denotes the number of classes for task .
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Is “forgetting less” for forward transfer?

 Measure how diverse and easily separable are the features

learned in CI)J-

Cj
FDiv; = log|aW U +I| = ) log|a; ¥§ U5 +1]
c=1
where | - | is a matrix determinant operator, a = D/(me?), a; = D/(m;e?),

e = 0.5, and C; denotes the number of classes for task .

Hypothesis: less forgetful representations maintain more diversity and
discrimination in the features making it easy to learn a classifier head on

top leading to better forward transfer
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Is “forgetting less”

Average forgetting

for forward transfer?

Average diversity

\
& Random Init x Pre-trained
Dataset Method AvgFgt 1 AvgFDiv 1 AvgFgt 1 AvgFDiv 1
FT -28.18 £2.97 35,59 4+10.52 | -29.01 £7.97 60.18 4 36.35
LP-FT - - -3.39+1.06 171.41 £ 1341
Split ER (m=50) -9.18+1.50 37334+ 14.66 | -7.15 £ 1.97 60.18 £ 35.74
CIFAR-10 AGEM (m=50) | -13.77 +2.38 3579 £16.34 | -19.26 = 5.01 60.77 £+ 41.80
MT -3.88 +5.86 3688 4+ 13.21 -4.83 +556  86.88 +21.82
FOMAML -0.75 + 1.39 45.52 + 7.82 -1.40 + 0.61 65.26 + 10.36
FT 2583 1243 224777 £3.63 | -24.33 £4.19  263.31 £ 27.46
LP-FT - - 446 £ 046  332.10 +2.97
Split ER (m=20) 944 +1.11 225.95 +£2.38 o199 =028 281 3T =359
CIFAR-100 | AGEM (m=20) | -18.70 = 1.00 224.46 293 | -20.05 +£3.12 260.01 £ 20.32
MT 0354406 27533 + 467 -7.93 +£4.04  277.14 £ 8.31
FOMAML -3.05 + 0.98 225.87 £5.31 -4.404+£0.20  271.56 £7.45
FT -14.45+1.02 458.73 £12.99 | -13.51 £ 0.56 599.29 + 13.65
LP-FT - - -2.66 4+ 0.53 702.43 + 4.10
CIFAR-100 | ER (m=5) -11.33 £1.79 463.78 = 7.86 | -T1.36 &£ I.4F 0U0U0.23 = 23.30
Superclasses| AGEM (m=5) | -12.28 +0.84 459.65 + 14.52 | -12.11 £0.76  594.70 + 27.51
MT —30-==4-02—465-47=784—| -5.50 £ 3.65 601.38 £ 16.92
FOMAML 1.99 + 0.76 470.27 + 5.17 -1.24 +£0.44  620.66 + 10.34

Less forgetting generally leads to representations that have higher AvgFDiv score, both

for randomly initialized and for pre-trained models
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Is “forgetting less” for forward transfer?

* Here, no difference is made between layers

* But it emphasizes the beneficial role of diversity in the features

learned in each learning task
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Conclusions

e Better transfer

— |If the tasks are orthogonal or similar (as measured by PCA on the

subspaces)

— |If the learnt features (in the first layers) are diverse and useful

in general (for different tasks)

- Devise algorithms that promote that
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