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• What is the role of hidden layers in Out-of-Distribution learning?

• Where is the change of representation taking place in OOD? 
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Outline

1. How to measure the difficulty of a training example

2. What is catastrophic forgetting

3. Catastrophic forgetting and hidden representations

4. Catastrophic forgetting and the semantic similarity between tasks

5. Can forgetting be useful for transfer learning?

6. Is “forgetting less” useful for transfer learning?

7. Conclusions
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How to measure the difficulty

of examples?
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Measuring the difficulty of examples

• Previously

– A statistical view

• The probability of predicting the ground truth label for an example omitted 
from the training set

– A learning view

• The difficulty of learning an example, parameterized by the earliest training 
iteration after which the model (e.g. NN) predicts the ground truth class for 
that example in all subsequent iterations

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of 
example difficulty. Advances in Neural Information Processing Systems, 34.
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Measuring the difficulty of examples

• A new proposition 

– The notion of  “prediction depth”

– And three distinct difficulty types:

• Does this example look mislabeled?

• Is classifying this example only easy if the label is given?

• Is this example ambiguous both with and without its label?

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of 
example difficulty. Advances in Neural Information Processing Systems, 34.
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Prediction depth

...
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Prediction depth

• The number of hidden layers after which the network’s final 
prediction is already determined
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Prediction depth

• The number of hidden layers after which the network’s final 
prediction is already determined

Input

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the last layer

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the first layer

Figure 1: Deep models use fewer layers to (effectively) determine the prediction for easy examples and more layers

for hard examples. Left: A cartoon illustrating the definition of prediction depth (given in Section 2.1). Also shown
are training examples from CIFAR100 (“Clock”) and SVHN (“Digit 8”). The examples shown are predicted at the
input (first layer) or softmax (last layer) of ResNet18. The examples predicted in the input are visually typical
(“easy”), while those predicted in the softmax are mislabeled and/or visually confusing (“hard” examples). To find the
prediction depth, we build k-NN classifiers from the embeddings of the training set in different layers of the model.
The prediction depth corresponds to the earliest layer at which the predictions of all subsequent k-NN classifiers
converge to a fixed label. Right: Probability of prediction depth in ResNet18 models for four datasets (training split).
We see that the four distributions have different characteristic prediction depths. Ranking the mean prediction depths
of these datasets in ascending order, we observe: Fashion MNIST (smallest), SVHN (second), CIFAR10 (third), and
CIFAR100 (largest). This order aligns with how one might intuitively rank the difficulties of these classification tasks.

existing notions of example difficulty (E.g. Carlini et al. (2019)) provide a one-dimensional view of difficulty
which can not distinguish between examples that are difficult for different reasons.

In this paper, we take a significant step towards resolving the above shortcomings. To take the processing
of the data into account we propose a new measure of example difficulty, the prediction depth, which is
determined from the hidden embeddings. To escape the one-dimensional view of difficulty, we introduce three
distinct difficulty types by relating the hidden embeddings for an input to high-level concepts about example
difficulty: “Does this example look mislabeled?”; “Is classifying this example only easy if the label is given?”;
“Is this example ambiguous both with and without its label?”. Furthermore, we show how this enhanced
notion of example difficulty can unify our understanding of several seemingly unrelated phenomena in deep
learning. We hope that the results presented in this work will aid the development of models that capture
heteroscedastic uncertainty, our understanding of how deep networks respond to distributional shift, and
the advancement of curriculum learning approaches and machine learning fairness. These connections are
discussed in Section 5.

Contributions Our main contributions are as follows:

• We introduce a measure of computational example difficulty : the prediction depth (PD). The prediction
depth, illustrated in Figure 1, represents the number of hidden layers after which the network’s final
prediction is already (effectively) determined (Section 2).

• We show that the prediction depth is larger for examples that visually appear to be more difficult, and
that prediction depth is consistent between architectures and random seeds (Section 2.2).

• Our empirical investigation reveals that prediction depth appears to establish a linear lower bound on
the consistency of a prediction. We further show that predictions are on average more accurate for
validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training are typically
determined in earlier layers which establishes a correspondence between the training history of the
network and the processing of data in the hidden layers (Section 3.2).

2
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notion of example difficulty can unify our understanding of several seemingly unrelated phenomena in deep
learning. We hope that the results presented in this work will aid the development of models that capture
heteroscedastic uncertainty, our understanding of how deep networks respond to distributional shift, and
the advancement of curriculum learning approaches and machine learning fairness. These connections are
discussed in Section 5.

Contributions Our main contributions are as follows:

• We introduce a measure of computational example difficulty : the prediction depth (PD). The prediction
depth, illustrated in Figure 1, represents the number of hidden layers after which the network’s final
prediction is already (effectively) determined (Section 2).

• We show that the prediction depth is larger for examples that visually appear to be more difficult, and
that prediction depth is consistent between architectures and random seeds (Section 2.2).

• Our empirical investigation reveals that prediction depth appears to establish a linear lower bound on
the consistency of a prediction. We further show that predictions are on average more accurate for
validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training are typically
determined in earlier layers which establishes a correspondence between the training history of the
network and the processing of data in the hidden layers (Section 3.2).

2

Reflects the intuitive ranking from the 
easier to the more difficult
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How to measure the prediction depth?

• k-NN classifier probes  (with k = 30)

– Compare the hidden embedding of an input
to   those of the training set

(what is the class of the k nearest neighbors in the embedding considered)

• A prediction is defined to be made at a depth L = l if

– The k-NN classification after layer L = l – 1 is different from the network’s 
final classification, 

– but the classification of k-NN probes after every layer L ≥ l are all equal to 
the final classification of the network
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What they claim to show

• The prediction depth is larger for examples that visually appear to be more 
difficult

– And this is consistent between NN’s architectures and random seeds

• Predictions are on average more accurate for validation points 
with small prediction depths

• Final predictions for data points that converge earlier during training 
are typically determined in earlier layers

• Both the adversarial input margin and output margin are larger for examples with 
smaller prediction depths

– Intervention to reduce the output margin leads to predictions being made 
only in the latest hidden layers
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What they claim to show

1. Early layers generalize while later layers memorize

2. Networks converge from input layers towards output layers

3. Easy examples are learned first 

4. Networks present simpler functions earlier in the training
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What they claim to show

• The prediction depth is larger for examples that visually appear to be more 

difficult

Input

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the last layer

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the first layer

Figure 1: Deep models use fewer layers to (effectively) determine the prediction for easy examples and more layers

for hard examples. Left: A cartoon illustrating the definition of prediction depth (given in Section 2.1). Also shown
are training examples from CIFAR100 (“Clock”) and SVHN (“Digit 8”). The examples shown are predicted at the
input (first layer) or softmax (last layer) of ResNet18. The examples predicted in the input are visually typical
(“easy”), while those predicted in the softmax are mislabeled and/or visually confusing (“hard” examples). To find the
prediction depth, we build k-NN classifiers from the embeddings of the training set in different layers of the model.
The prediction depth corresponds to the earliest layer at which the predictions of all subsequent k-NN classifiers
converge to a fixed label. Right: Probability of prediction depth in ResNet18 models for four datasets (training split).
We see that the four distributions have different characteristic prediction depths. Ranking the mean prediction depths
of these datasets in ascending order, we observe: Fashion MNIST (smallest), SVHN (second), CIFAR10 (third), and
CIFAR100 (largest). This order aligns with how one might intuitively rank the difficulties of these classification tasks.

existing notions of example difficulty (E.g. Carlini et al. (2019)) provide a one-dimensional view of difficulty
which can not distinguish between examples that are difficult for different reasons.

In this paper, we take a significant step towards resolving the above shortcomings. To take the processing
of the data into account we propose a new measure of example difficulty, the prediction depth, which is
determined from the hidden embeddings. To escape the one-dimensional view of difficulty, we introduce three
distinct difficulty types by relating the hidden embeddings for an input to high-level concepts about example
difficulty: “Does this example look mislabeled?”; “Is classifying this example only easy if the label is given?”;
“Is this example ambiguous both with and without its label?”. Furthermore, we show how this enhanced
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depth, illustrated in Figure 1, represents the number of hidden layers after which the network’s final
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• We show that the prediction depth is larger for examples that visually appear to be more difficult, and
that prediction depth is consistent between architectures and random seeds (Section 2.2).

• Our empirical investigation reveals that prediction depth appears to establish a linear lower bound on
the consistency of a prediction. We further show that predictions are on average more accurate for
validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training are typically
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network and the processing of data in the hidden layers (Section 3.2).
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What they claim to show

250 ResNet18 were trained on CIFAR100 (90:10% 
random train:validation splits). Comparison of the 
average prediction depth of a point to the consensus-
consistency of the corresponding prediction.

For each dataset, 250 ResNet18 were trained on 
CIFAR100 (90:10% random train:validation splits). 
Each time a point appears in the validation split, its 
prediction depth and whether the prediction was 
correct was recorded.

Consensus-consistency: the fraction of NNs that 
predict the ensemble’s consensus class 

…
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What they claim to show

• Predictions are on average more accurate for validation points 
with small prediction depths

250 ResNet18 were trained on CIFAR100 (90:10% 
random train:validation splits). Comparison of the 
average prediction depth of a point to the consensus-
consistency of the corresponding prediction.

For each dataset, 250 ResNet18 were trained on 
CIFAR100 (90:10% random train:validation splits). 
Each time a point appears in the validation split, its 
prediction depth and whether the prediction was 
correct was recorded.

Consensus-consistency: the fraction of NNs that 
predict the ensemble’s consensus class 
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What they claim to show

• Final predictions for data points that converge earlier during training 

are typically determined in earlier layers

– Measure the difficulty of learning an example by the speed at which the model’s prediction converges

for that input during training

– Iteration learned. A data point is said to be learned by a classifier at training iteration t = t

if the predicted class at iteration t = t – 1 is different from the final prediction of the converged NN

and the predictions at all iterations t ≥ t are equal to the final prediction of the converged NN.

Each time an input appears in the 
validation split, the prediction depth

and the iteration learned are recorded

Positive correlation between the 
prediction depth and the iteration learned

appears for all datasets
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What they claim to show

• Both the adversarial input margin and output margin are larger

for examples with smaller prediction depths

– Output margin: difference between the largest and second-largest output of the NN (logits)

– Adversarial input margin: the smallest norm required for an adversarial perturbation in the 

input to change the NN’s class prediction

Figure 6: Left and Middle: Test examples with smaller prediction depths, on average, have larger output and input

margins. We train 25 VGG16 models with different random seeds on CIFAR10 (see Appendix A for details) and
compare the mean prediction depth of each test point in these 25 runs to its mean output and input margins (log
scales). Correlation coefficients are �0.70 (output margin) and �0.69 (input margin). Although the prediction depth
could be at most 14, no data point has an average prediction depth greater than 12. Right: An intervention that

does not encourage large output margin (“0-Hinge”) results, as predicted, in models where the predictions are effectively

determined in higher layers in the network compared to the standard training (“CE”).

mislabeled training data; the original labels of the mislabeled training data and the test split. In Figure 5
(middle and right plots) we see that many of the important features of the training learning curve are indeed
present in the inference learning curve. During training (middle), mislabeled data are initially processed as
though they are a member of their original class (before they were mislabeled) (Liu et al., 2020a). After an
initial period of learning, the network begins to learn the new (random) labels that have been assigned to
those data points, so the orange curve moves upwards, and the green curve downwards. At this point, a
maximum is observed in the training accuracy (Arpit et al., 2017). In the right plot we see that these same
phenomena occur in the inference learning curve.

3.3 Deep models exhibit larger margins for inputs with lower prediction depth

It is reported in the literature that deep networks learn functions of increasing complexity during training (Hu
et al., 2020; Kalimeris et al., 2019). We frame this observation differently: the learned function is “locally
simpler” in the vicinity of data points with smaller prediction depths, and these points are typically learned
earlier in training (Section 3.2).

Two known measures of the simplicity of a learned function are the output margin (the difference between
the largest and second-largest logits) and the adversarial input margin (the smallest norm required for an
adversarial perturbation in the input to change the model’s class prediction). We estimate the adversarial
input margin, �, with a linear approximation (Jiang et al., 2018): for an input x with predicted class i,
� ' minj 6=i

|zi�zj |
|rx(zi�zj)|

where zj is the logit returned by the network for class j. Figure 6 (left and middle

plots) show that data points with smaller prediction depths have both larger input and output margins on
average and that variances of the input and output margins decrease as the prediction depth increases.

To illustrate the strength of the relationship between the prediction depth and output margin, we
demonstrate that reducing the output margin of the learned function results in a model that clusters the
data only in the latest layers: such a solution has a very high average prediction depth. We do not minimize
the output margin directly but rather use a loss and an optimizer that do not encourage high output margin.
Naturally there are many unknowns that may contribute to this effect. We simply report the intervention
and the outcome.

The intervention is performed as follows: we construct a loss function that does not promote confidence: a
zero-margin hinge loss (“0-Hinge”), and optimize the network using full-batch gradient descent with momentum
and very small learning rate. For an input x with label i the 0-Hinge loss is given by l(x) =

P
j 6=i max(0, zi�zj)

where zj represents the logit for class j. The form of this intervention is justified in Appendix A.7. As a
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Shows that data points with smaller prediction depths have both larger input and output margins on average, 
and that variances of the input and output margins decrease as the prediction depth increases
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What they claim to show

• Both the adversarial input margin and output margin are larger

for examples with smaller prediction depths

– Output margin: difference between the largest and second-largest output of the NN (logits)

– Adversarial input margin: the smallest norm required for an adversarial perturbation in the 

input to change the NN’s class prediction
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8

Shows that data points with smaller prediction depths have both larger input and output margins on average, 
and that variances of the input and output margins decrease as the prediction depth increases
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What they claim to show

• Different forms of example difficulty
• Validation: points with low prediction depth are “clear” 

and “ambiguous” otherwise
• Training    : idem

– Easy examples (Low PDval and low PDtrain)

– Look like a different class (Low PDval and high PDtrain). (difficult to train, seemingly easy to classify)

• E.g. mislabeled examples

– Ambiguous unless the label is given (High PDval and low PDtrain). 
• E.g. resemble both their own class and another class 

Likely to be misclassified

– Ambiguous (High PDval and high PDtrain). 
• Examples that may be corrupted or of a rare sub-class.
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What they claim to show

These examples are difficult to connect to their predicted class in the validation split but easy to 
connect to their ground truth class during training. These points may, for example, visually 
resemble both their own class and another class. They are likely to be misclassified. 

Looks like a different classEasy AmbiguousAmbiguous w/o its label

C
la

ss
: B

ird

Figure 7: The prediction depth can be the same, or very different for the same input when it occurs in the train and

validation splits. Corners of this plot correspond to different forms of example difficulty. (See Section 4 for discussion.)
We train 250 ResNet18 models on CIFAR10 with random 90:10% train:validation splits as described in Appendix A.
These histograms compare average prediction depth for each data point when it occurs in the validation split vs the
training split. This behavior is consistently reproduced for all datasets and architectures in Appendix C.5. Below we
show extreme (not hand-chosen) images of “Birds” that appear closest to the corners of this plot. The consensus class
is given above each image (tiebreaks favor the class “Bird”.).

control, we additionally train a model in the standard fashion using the cross-entropy loss and SGD with
momentum and large initial learning rate. Since full-batch gradients are computationally expensive, we
train on a subset of CIFAR10 (see Appendix A.7, where we also give the hyperparameters and learning
curves.). The output margin obtained with the intervention is 5 orders of magnitude smaller than in the
control experiment: 2.0⇥ 10�4 ± 2.0⇥ 10�4 for the 0-Hinge loss and 1.6⇥ 101 ± 0.50⇥ 101 for cross-entropy
loss. Figure 6 (right) compares the accuracies of the k-NN probes resulting from these training approaches.
The 0-Hinge loss training achieves only a marginal improvement in accuracy (red) over an untrained network
(purple), and the training split is accurately clustered only in the latest layers. This confirms the predicted
behavior: the intervention leads to a model that exhibits both very small average output margins and very
late clustering of the data. Very late clustering of the data implies high prediction depths since the k-NN
probe classifications change in the latest layers for many data points.

4 Beyond a One-Dimensional Picture of Example Difficulty
In this section we transcend the one-dimensional picture of example difficulty by identifying different underlying
reasons behind the difficulty of an example, in a way that is general to different architectures and datasets.

Figure 7 shows that the prediction depth can be different when an input occurs in the training split vs.
the validation split. Thus, there are two axes of example difficulty:

1. Difficulty of making a prediction when an input is in the validation set
2. Difficulty of finding commonalities during training with other examples of the same ground truth class

Both axes have a range from “clear” to “ambiguous”. In Section 3.1 we show that predictions made
for validation points with later prediction depths are often inconsistent, with low consensus-consistency.
Conversely, a low prediction depth typically indicates an input with high consensus-consistency. For Axis
1 we will identify validation points with low prediction depths as “clear” and those with high prediction
depths as “ambiguous”. We will additionally identify a low or high prediction depth in the training split
with examples that are respectively “clear” and “ambiguous” on Axis 2. By making combinations of low/high
values of (PDVal.,PDTrain) we obtain four extremes of example difficulty:

9

Mislabeled Misclassified Corrupted
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Conclusion

Introduces a notion of example difficulty called the prediction depth

• which uses the processing of data inside the network

to score the difficulty of an example
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Conclusion

• Easy examples are learned and recognized early in the network
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Outline

1. How to measure the difficulty of a training example

2. What is catastrophic forgetting

3. Catastrophic forgetting and hidden representations

4. Catastrophic forgetting and the semantic similarity between tasks

5. Can forgetting be useful for transfer learning?

6. Is “forgetting less” useful for transfer learning?

7. Conclusions
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Continual learning of new tasks

Training new tasks 
from scratch

Continual learning

Chen, J., Nguyen, T., Gorur, D., & Chaudhry, A. (2023). 
Is forgetting less a good inductive bias for forward transfer? 
ICLR-2023.
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Continual learning of new tasks

Continuously updating the model on new tasks results in severely degraded performance on old tasks
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Catastrophic forgetting

McCaffary, D. (2021).
Towards continual task learning in 
artificial neural networks: current 
approaches and insights from 
neuroscience.
arXiv preprint arXiv:2112.14146.

Figure 3: Sub-panels A and B demonstrate the efficacy of deep generative replay in alleviating catastrophic
forgetting. A) When a neural network is trained on sequential tasks (in this instance, from the permuted
MNIST dataset) with vanilla gradient descent, catastrophic forgetting of previous task performance occurs
due to overwriting of the weights associated with these prior tasks (https://github.com/kuc2477/
pytorch-deep-generative-replay). As multiple tasks in sequence are encountered, performance on
previous tasks can decrease dramatically, as the network weights optimised for these prior tasks are ‘catastroph-
ically forgotten’. B) Conversely, when the network is trained with deep generative replay, continual learning
across tasks is much improved. By sampling training data from previous tasks and interleaving this with the
current task, this method enables multiple tasks to be learned in sequence with the same network, without
catastrophic forgetting of earlier task performance (adapted from the PyTorch implementation of deep gen-
erative replay found at https://github.com/kuc2477/pytorch-deep-generative-replay).
C) Schematic of the REMIND model (Hayes et al., 2020), which proposes the replay of compressed data rep-
resentations in a more biologically plausible framework. REMIND takes an input image (denoted X in the
schematic), and compresses this into low-dimensional tensor representations of that training data by passing it
through the neural network layers labelled G. These compressed representations can then be efficiently stored
in memory (as shown by the lower box in the schematic), and indexed for replay as required. The compressed
tensor representations can be reconstructed by the neural network layers labelled F , and interleaved with cur-
rent training data.

REPLAY IN BRAINS AND NEURAL NETWORKS

From the perspective of neuroscience, several mechanistic features underpinning human contin-
ual learning have been dissected, such as memory replay (perhaps as a means of transferring learned
knowledge from short-term to long-term storage), curriculum and transfer learning paradigms, struc-
tural plasticity, and the integration of multiple sensory modalities to provide rich sensory context for
memories (Parisi et al., 2019).

7
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Catastrophic forgetting

• ANNs have the tendency to completely and abruptly forget
previous learned information upon learning new information

– Therefore ANNs are unable to learn multiple tasks sequentially

– Lifelong or continual learning would not be possible for ANNs

– In humans, catastrophic forgetting does not happen

• Learning to drive a car does not result in not knowing anymore
how to ride a bike
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Catastrophic forgetting: how to avoid it

Classical approach

• Training for ImageNet typically involves 

– to break the training dataset into M distinct batches, 

– for ImageNet each batch typically has about 100,000 instances
from 100 classes that are not seen in later batches, 

– and then the algorithm sequentially loops over each batch many times.

• Not efficient

• Not biologically plausible
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Reasons for catastrophic forgetting

• Interferences in the hidden layers 

– Training on task B modifies a lot the weights learnt for task A

• No guarantee that the representation of deeper layers learned for task A

will be sufficient to losslessly encode novel information, for task B

• The major issue is balancing

– the stability of existing representations 

– with the plasticity required to efficiently learn new ones
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Outline

1. How to measure the difficulty of a training example

2. What is catastrophic forgetting

3. Catastrophic forgetting and hidden representations

4. Catastrophic forgetting and the semantic similarity between tasks

5. Can forgetting be useful for transfer learning?

6. Is “forgetting less” useful for transfer learning?

7. Conclusions
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Catastrophic forgetting

• Questions

– What happens to the internal representations of neural networks 

as they undergo catastrophic forgetting?

– Does the degree to which a network forgets depend on 

the semantic similarity between the successive tasks?
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• What do we expect? 
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Catastrophic forgetting and hidden representations

• What role hidden layers play in forgetting?

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of 
catastrophic forgetting: Hidden representations and task semantics. ICLR-2021.

On CIFAR-10: 
task 1 (5 classes) then task 2 (5 ≠ classes)

On CIFAR-100: 
task 1 (examples of 5 subsets of 5 superclasses)
then task 2 (examples of 5 ≠ subsets of same 5 
superclasses)
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Catastrophic forgetting and hidden representations

• What role hidden layers play in forgetting?

– Tested on 3 different Deep Neural Networks

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of 
catastrophic forgetting: Hidden representations and task semantics. ICLR-2021.
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Catastrophic forgetting and hidden representations

• Manifestation of catastrophic forgetting?

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden 
representations and task semantics. ICLR-2021.

What do we expect?
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Catastrophic forgetting and hidden representations

• Manifestation of catastrophic forgetting?

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden representations 
and task semantics. ICLR-2021.

Starts at ~20% recognition rate: normal Significant drop of performance on 
task 1 when learning task 2
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Catastrophic forgetting and hidden representations

• What role hidden layers play in forgetting?

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden 
representations and task semantics. ICLR-2021.

Published as a conference paper at ICLR 2021

Figure 2: Freezing lower layer representations after Task 1 training has little impact on Task 2 accuracy.

We freeze the parameters of a contiguous block of layers (starting from the lowest layer) after Task 1 training, and
only train the remainder on Task 2, finding that freezing the lowest layers has little impact on Task 2 accuracy.

4 CATASTROPHIC FORGETTING AND HIDDEN LAYER REPRESENTATIONS

We begin by investigating how catastrophic forgetting manifests in the hidden representations of
the neural network. Do all parameters (and layers) forget equally? Or are specific components
of the network particularly responsible for the drop in accuracy in sequential training? Through a
combination of layer freezing experiments, and representational analysis, we find that higher layers
(layers closest to output) are disproportionately responsible for catastrophic forgetting, with lower
layers (layers closest to input) remaining representationally stable through sequential training. Further
analysis of the representational subspaces of Task 1, Task 1 (post Task 2 training) and Task 2, provide
insights on both feature reuse and interference.

4.1 FREEZING LAYER REPRESENTATIONS

To study the effect of individual layers on forgetting, we measure the effect of freezing layer
representations on Task 2 accuracy (Figure 2). Specifically, we freeze a contiguous block of layers
(starting from the lowest layer) after training on Task 1, and only train the remaining layers on Task 2.
Across different architectures and tasks, we observe that lower layers can be reliably frozen with very
little impact on Task 2 accuracy. This suggests the possibility of lower layer features being reused
between both tasks, with higher layers being the main contributor to catastrophic forgetting.

4.2 REPRESENTATIONAL SIMILARITY THROUGH SEQUENTIAL TRAINING

The results of Figure 2 illustrate that lower layer representations on Task 1 can be reused for
good performance on Task 2. To determine if this is what actually occurs during the training
process, we turn to Centered Kernel Alignment (CKA) (Kornblith et al., 2019), a neural network
representation similarity measure. CKA and other related algorithms (Raghu et al., 2017; Morcos
et al., 2018) provide a scalar score (between 0 and 1) determining how similar a pair of (hidden) layer
representations are, and have been used to study many properties of deep neural networks (Gotmare
et al., 2018; Kudugunta et al., 2019; Wu et al., 2019a).

Specifically, letting X 2 Rn⇥p and Y 2 Rn⇥p be (centered) layer activation matrices of (the same)
n datapoints and p neurons, CKA computes

CKA(X,Y) =
HSIC(XX

T,YYT
)p

HSIC(XXT,XXT)
p

HSIC(YYT,YYT)
(1)

for HSIC Hilbert-Schmidt Independence Criterion (Gretton et al., 2005). We use linear-kernel CKA.

In Figure 3, we plot the results of computing CKA on Task 1 layer representations before and after Task
2 training. Across architectures and tasks, we observe that the lower layers have high representation
similarity, suggesting that lower layer Task 1 features are reused in Task 2. The higher layers
however show significant decreases in representation similarity, suggesting they disproportionately
contribute to catastrophic forgetting. These conclusions are further supported by additional layer
reset experiments in Appendix Figure 12, which shows that rewinding higher layer parameters from
post-Task 2 training to their pre-Task 2 training values significantly improves Task 1 performance.

4.3 FEATURE REUSE AND SUBSPACE ERASURE

Further insights on how the representations of lower and higher layers evolve during sequential
training is given through a subspace similarity analysis. Letting X 2 Rn⇥p be the (centered) layer
activation matrix of n examples by p neurons, we compute the PCA decomposition of X , i.e. the

3

• Freezing the earliest hidden layers after learning task 1 
has little impact on the performance of task 2

• Higher layers are disproportionately responsible for catastrophic forgetting 

Stages = hidden layers starting from the earliest ones



40 / 95

Results: what to think of them?

All layers but the first are retrained
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Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

All layers but the first two are retrained

All layers but …  are retrained

NN (8 layers) trained 
from scratch

Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural networks? In 
Advances in Neural Information Processing Systems 27 (NIPS ’14), NIPS Foundation, 2014. 
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Interpretation

...

!!??

Fragile
co-adaptation

Representation
specificityThe first layers have 

captured general features

The features tend to be 
specific to domain A + 
fragile co-adaptation
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Interpretation

...

Retrain on all layers (fine-tuning) on domain B after transfer from domain A

Transfer + fine-tuning improves generalization

A surprising finding since there is already a 
large training dataset for the target task
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Catastrophic forgetting and hidden representations

• What role hidden layers play in forgetting?

– Measure how similar is each hidden layer before and after learning task 2

• Use Centered Kernel Alignment (CKA)

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden 
representations and task semantics. ICLR-2021.

Published as a conference paper at ICLR 2021

Figure 2: Freezing lower layer representations after Task 1 training has little impact on Task 2 accuracy.

We freeze the parameters of a contiguous block of layers (starting from the lowest layer) after Task 1 training, and
only train the remainder on Task 2, finding that freezing the lowest layers has little impact on Task 2 accuracy.

4 CATASTROPHIC FORGETTING AND HIDDEN LAYER REPRESENTATIONS

We begin by investigating how catastrophic forgetting manifests in the hidden representations of
the neural network. Do all parameters (and layers) forget equally? Or are specific components
of the network particularly responsible for the drop in accuracy in sequential training? Through a
combination of layer freezing experiments, and representational analysis, we find that higher layers
(layers closest to output) are disproportionately responsible for catastrophic forgetting, with lower
layers (layers closest to input) remaining representationally stable through sequential training. Further
analysis of the representational subspaces of Task 1, Task 1 (post Task 2 training) and Task 2, provide
insights on both feature reuse and interference.

4.1 FREEZING LAYER REPRESENTATIONS

To study the effect of individual layers on forgetting, we measure the effect of freezing layer
representations on Task 2 accuracy (Figure 2). Specifically, we freeze a contiguous block of layers
(starting from the lowest layer) after training on Task 1, and only train the remaining layers on Task 2.
Across different architectures and tasks, we observe that lower layers can be reliably frozen with very
little impact on Task 2 accuracy. This suggests the possibility of lower layer features being reused
between both tasks, with higher layers being the main contributor to catastrophic forgetting.

4.2 REPRESENTATIONAL SIMILARITY THROUGH SEQUENTIAL TRAINING

The results of Figure 2 illustrate that lower layer representations on Task 1 can be reused for
good performance on Task 2. To determine if this is what actually occurs during the training
process, we turn to Centered Kernel Alignment (CKA) (Kornblith et al., 2019), a neural network
representation similarity measure. CKA and other related algorithms (Raghu et al., 2017; Morcos
et al., 2018) provide a scalar score (between 0 and 1) determining how similar a pair of (hidden) layer
representations are, and have been used to study many properties of deep neural networks (Gotmare
et al., 2018; Kudugunta et al., 2019; Wu et al., 2019a).

Specifically, letting X 2 Rn⇥p and Y 2 Rn⇥p be (centered) layer activation matrices of (the same)
n datapoints and p neurons, CKA computes

CKA(X,Y) =
HSIC(XX

T,YY
T
)p

HSIC(XXT,XXT)
p

HSIC(YYT,YYT)
(1)

for HSIC Hilbert-Schmidt Independence Criterion (Gretton et al., 2005). We use linear-kernel CKA.

In Figure 3, we plot the results of computing CKA on Task 1 layer representations before and after Task
2 training. Across architectures and tasks, we observe that the lower layers have high representation
similarity, suggesting that lower layer Task 1 features are reused in Task 2. The higher layers
however show significant decreases in representation similarity, suggesting they disproportionately
contribute to catastrophic forgetting. These conclusions are further supported by additional layer
reset experiments in Appendix Figure 12, which shows that rewinding higher layer parameters from
post-Task 2 training to their pre-Task 2 training values significantly improves Task 1 performance.

4.3 FEATURE REUSE AND SUBSPACE ERASURE

Further insights on how the representations of lower and higher layers evolve during sequential
training is given through a subspace similarity analysis. Letting X 2 Rn⇥p be the (centered) layer
activation matrix of n examples by p neurons, we compute the PCA decomposition of X , i.e. the

3
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Catastrophic forgetting and hidden representations

• What role hidden layers play in forgetting?

– Measure how similar is each hidden layer before and after learning task 2

• Use Centered Kernel Alignment (CKA)

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden 
representations and task semantics. ICLR-2021.
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Catastrophic forgetting and hidden representations

• What role hidden layers play in forgetting?

– Measure how similar is each hidden layer before and after learning task 2

• Use Centered Kernel Alignment (CKA)

RAMASESH, Vinay V., DYER, Ethan, et RAGHU, Maithra (2021). Anatomy of catastrophic forgetting: Hidden 
representations and task semantics. ICLR-2021.

• Again, the effect of learning task 2 is biggest on higher hidden layers

For all tasks and all NNs
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Catastrophic forgetting and hidden representations

• What role hidden layers play in forgetting?

– Measure how similar is each subspace (PCA of activations) of the hidden 
layers before and after learning task 2

<latexit sha1_base64="elRO2dVYH+GZCHfACopy6GRJ8s8="></latexit>

Letting X 2 Rn⇥p be the (centered) layer activation matrix of n examples

by p neurons, we compute the PCA decomposition of X, i.e. the eigenvectors

(v1, v2, . . .) and eigenvalues (�1,�2, . . .) of X>X. Letting Vk be the matrix

formed from the top k principal directions, v1, . . . , vk as columns, and Uk the

corresponding matrix for a di↵erent activation matric Y , we compute

<latexit sha1_base64="3c2HQlikExkahSB2wgfSRmuEGmk="></latexit>

SubspaceSimk(X,Y ) = 1
k ||V >

k Uk||2F
<latexit sha1_base64="ke38BUDZYMb+S5/aK11GT85mCRc="></latexit>

This measures the overlap in the subspaces spanned by (v1, ..., vk) and

(u1, ..., uk). Concretely, if X and Y correspond to layer activation matrices for

two di↵erent tasks, SubspaceSimk(X,Y ) measures how similarly the top k

representations for those tasks are stored in the network.
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Catastrophic forgetting and hidden representations

• What role hidden layers play in forgetting?

– Measure how similar is each subspace (PCA of activations) of the hidden 
layers before and after learning task 2

• (Task 1, task 2): low similarity for higher hidden layers

• (Task 1, and again on task 1 after training on task 2): much has been lost

• (Task 2, task 1 after training on task 1 then task 2): higher hidden layers are 
more similar to task 2 than to task 1! 
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• During sequential training, 

– effective feature reuse happens in the lower layers, 

– but in the higher layers, after Task 2 training, Task 1 representations are mapped into the 

same subspace as Task 2. 

Specifically, Task 2 training causes subspace erasure of Task 1 in the higher layers. 

Catastrophic forgetting and hidden representations
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• During sequential training, 

– effective feature reuse happens in the lower layers, 

– but in the higher layers, after Task 2 training, Task 1 representations are mapped into the 

same subspace as Task 2. 

Specifically, Task 2 training causes subspace erasure of Task 1 in the higher layers. 

Catastrophic forgetting and hidden representations

Do popularly used mitigation methods act to stabilize higher layers? 
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Mitigation strategies and hidden representations

Types of mitigation strategies

– Regularization-based approaches

– Replay-based approaches

• What are their impact? Are they successful?

• How do they act on the hidden layers?
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Mitigation strategies - Regularization approaches

Kirkpatrick, J., Pascanu, R., 
Rabinowitz, N., Veness, J., 
Desjardins, G., Rusu, A. A., 
... & Hadsell, R. (2017).
Overcoming catastrophic 
forgetting in neural 
networks.
Proceedings of the 
national academy of 
sciences, 114(13), 3521-
3526. 

...

Results
EWC. In brains, synaptic consolidation might enable continual
learning by reducing the plasticity of synapses that are vital to
previously learned tasks. We implement an algorithm that per-
forms a similar operation in artificial neural networks by con-
straining important parameters to stay close to their old values.
In this section, we explain why we expect to find a solution to a
new task in the neighborhood of an older one, how we implement
the constraint, and finally how we determine which parameters
are important.

A deep neural network consists of multiple layers of lin-
ear projection followed by element-wise nonlinearities. Learn-
ing a task consists of adjusting the set of weights and biases ✓
of the linear projections, to optimize performance. Many con-
figurations of ✓ will result in the same performance (17, 18);
this overparameterization makes it likely that there is a solu-
tion for task B, ✓⇤B , that is close to the previously found solu-
tion for task A, ✓⇤A. While learning task B, EWC therefore
protects the performance in task A by constraining the param-
eters to stay in a region of low error for task A centered around
✓⇤A, as shown schematically in Fig. 1. This constraint is imple-
mented as a quadratic penalty and can therefore be imagined
as a spring anchoring the parameters to the previous solution,
hence having the name elastic. Importantly, the stiffness of this
spring should not be the same for all parameters; rather, it
should be greater for parameters that most affect performance in
task A.

To justify this choice of constraint and to define which weights
are most important for a task, it is useful to consider neural net-
work training from a probabilistic perspective. From this point
of view, optimizing the parameters is tantamount to finding their
most probable values given some data D. We can compute this
conditional probability p(✓|D) from the prior probability of the
parameters p(✓) and the probability of the data p(D|✓) by using
Bayes’ rule:

log p(✓|D) = log p(D|✓) + log p(✓)� log p(D). [1]

Note that the log probability of the data given the parame-
ters log p(D|✓) is simply the negative of the loss function for the
problem at hand �L(✓). Assume that the data are split into two

Fig. 1. EWC ensures task A is remembered while training on task B. Train-
ing trajectories are illustrated in a schematic parameter space, with param-
eter regions leading to good performance on task A (gray) and on task B
(cream color). After learning the first task, the parameters are at ✓⇤

A . If we
take gradient steps according to task B alone (blue arrow), we will minimize
the loss of task B but destroy what we have learned for task A. On the other
hand, if we constrain each weight with the same coefficient (green arrow),
the restriction imposed is too severe and we can remember task A only at
the expense of not learning task B. EWC, conversely, finds a solution for
task B without incurring a significant loss on task A (red arrow) by explicitly
computing how important weights are for task A.

independent parts, one defining task A (DA) and the other defin-
ing task B (DB ). Then, we can rearrange Eq. 1:

log p(✓|D) = log p(DB |✓) + log p(✓|DA)� log p(DB ). [2]

Note that the left-hand side is still describing the posterior
probability of the parameters given the entire dataset, whereas
the right-hand side depends only on the loss function for task
B, log p(DB |✓). All of the information about task A must there-
fore have been absorbed into the posterior distribution p(✓|DA).
This posterior probability must contain information about which
parameters were important to task A and is therefore the key to
implementing EWC. The true posterior probability is intractable,
so, following the work on the Laplace approximation by Mackay
(19), we approximate the posterior as a Gaussian distribution
with mean given by the parameters ✓⇤A and a diagonal precision
given by the diagonal of the Fisher information matrix F . F has
three key properties (20): (i) It is equivalent to the second deriva-
tive of the loss near a minimum, (ii) it can be computed from
first-order derivatives alone and is thus easy to calculate even for
large models, and (iii) it is guaranteed to be positive semidefi-
nite. Note that this approach is similar to expectation propaga-
tion where each subtask is seen as a factor of the posterior (21).
Given this approximation, the function L that we minimize in
EWC is

L(✓) = LB (✓) +
X

i

�
2
Fi(✓i � ✓⇤A,i)

2, [3]

where LB (✓) is the loss for task B only, � sets how important
the old task is compared with the new one, and i labels each
parameter.

When moving to a third task, task C, EWC will try to keep
the network parameters close to the learned parameters of both
tasks A and B. This can be enforced either with two separate
penalties or as one by noting that the sum of two quadratic penal-
ties is itself a quadratic penalty.

EWC Extends Memory Lifetime for Random Patterns. As an initial
demonstration, we trained a linear network to associate random
(i.e., uncorrelated) binary patterns to binary outcomes. Whereas
this problem differs in important ways from more realistic set-
tings that we examine later, this scenario admits analytical solu-
tions and thus provides insights into key differences between
EWC and plain gradient descent. In this case, the diagonal of
the total Fisher information matrix is proportional to the num-
ber of patterns observed; thus in the case of EWC the learning
rate lowers as more patterns are observed. Following ref. 15, we
define a memory as retained if its signal-to-noise ratio (SNR)
exceeds a certain threshold. Fig. 2, Top shows the SNR obtained
using gradient descent (blue lines) and EWC (red lines) for the
first pattern observed. At first, the SNR in the two cases is very
similar, following a power-law decay with a slope of �0.5. As
the number of patterns observed approaches the capacity of the
network, the SNR for gradient descent starts decaying exponen-
tially, whereas EWC maintains a power-law decay. The exponen-
tial decay observed with gradient descent is due to new patterns
interfering with old ones; EWC protects from such interference
and increases the fraction of memories retained (Fig. 2, Bottom).
In the next sections we show that in more realistic cases, where
input patterns have more complex statistics, interference occurs
more easily with consequently more striking benefits for EWC
over gradient descent.

EWC Allows Continual Learning in a Supervised Learning Context.
We next addressed the problem of whether EWC could allow
deep neural networks to learn a set of more complex tasks with-
out catastrophic forgetting. In particular, we trained a fully con-
nected multilayer neural network on several supervised learning
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Results
EWC. In brains, synaptic consolidation might enable continual
learning by reducing the plasticity of synapses that are vital to
previously learned tasks. We implement an algorithm that per-
forms a similar operation in artificial neural networks by con-
straining important parameters to stay close to their old values.
In this section, we explain why we expect to find a solution to a
new task in the neighborhood of an older one, how we implement
the constraint, and finally how we determine which parameters
are important.

A deep neural network consists of multiple layers of lin-
ear projection followed by element-wise nonlinearities. Learn-
ing a task consists of adjusting the set of weights and biases ✓
of the linear projections, to optimize performance. Many con-
figurations of ✓ will result in the same performance (17, 18);
this overparameterization makes it likely that there is a solu-
tion for task B, ✓⇤B , that is close to the previously found solu-
tion for task A, ✓⇤A. While learning task B, EWC therefore
protects the performance in task A by constraining the param-
eters to stay in a region of low error for task A centered around
✓⇤A, as shown schematically in Fig. 1. This constraint is imple-
mented as a quadratic penalty and can therefore be imagined
as a spring anchoring the parameters to the previous solution,
hence having the name elastic. Importantly, the stiffness of this
spring should not be the same for all parameters; rather, it
should be greater for parameters that most affect performance in
task A.

To justify this choice of constraint and to define which weights
are most important for a task, it is useful to consider neural net-
work training from a probabilistic perspective. From this point
of view, optimizing the parameters is tantamount to finding their
most probable values given some data D. We can compute this
conditional probability p(✓|D) from the prior probability of the
parameters p(✓) and the probability of the data p(D|✓) by using
Bayes’ rule:

log p(✓|D) = log p(D|✓) + log p(✓)� log p(D). [1]

Note that the log probability of the data given the parame-
ters log p(D|✓) is simply the negative of the loss function for the
problem at hand �L(✓). Assume that the data are split into two

Fig. 1. EWC ensures task A is remembered while training on task B. Train-
ing trajectories are illustrated in a schematic parameter space, with param-
eter regions leading to good performance on task A (gray) and on task B
(cream color). After learning the first task, the parameters are at ✓⇤

A . If we
take gradient steps according to task B alone (blue arrow), we will minimize
the loss of task B but destroy what we have learned for task A. On the other
hand, if we constrain each weight with the same coefficient (green arrow),
the restriction imposed is too severe and we can remember task A only at
the expense of not learning task B. EWC, conversely, finds a solution for
task B without incurring a significant loss on task A (red arrow) by explicitly
computing how important weights are for task A.

independent parts, one defining task A (DA) and the other defin-
ing task B (DB ). Then, we can rearrange Eq. 1:

log p(✓|D) = log p(DB |✓) + log p(✓|DA)� log p(DB ). [2]

Note that the left-hand side is still describing the posterior
probability of the parameters given the entire dataset, whereas
the right-hand side depends only on the loss function for task
B, log p(DB |✓). All of the information about task A must there-
fore have been absorbed into the posterior distribution p(✓|DA).
This posterior probability must contain information about which
parameters were important to task A and is therefore the key to
implementing EWC. The true posterior probability is intractable,
so, following the work on the Laplace approximation by Mackay
(19), we approximate the posterior as a Gaussian distribution
with mean given by the parameters ✓⇤A and a diagonal precision
given by the diagonal of the Fisher information matrix F . F has
three key properties (20): (i) It is equivalent to the second deriva-
tive of the loss near a minimum, (ii) it can be computed from
first-order derivatives alone and is thus easy to calculate even for
large models, and (iii) it is guaranteed to be positive semidefi-
nite. Note that this approach is similar to expectation propaga-
tion where each subtask is seen as a factor of the posterior (21).
Given this approximation, the function L that we minimize in
EWC is

L(✓) = LB (✓) +
X

i

�
2
Fi(✓i � ✓⇤A,i)

2, [3]

where LB (✓) is the loss for task B only, � sets how important
the old task is compared with the new one, and i labels each
parameter.

When moving to a third task, task C, EWC will try to keep
the network parameters close to the learned parameters of both
tasks A and B. This can be enforced either with two separate
penalties or as one by noting that the sum of two quadratic penal-
ties is itself a quadratic penalty.

EWC Extends Memory Lifetime for Random Patterns. As an initial
demonstration, we trained a linear network to associate random
(i.e., uncorrelated) binary patterns to binary outcomes. Whereas
this problem differs in important ways from more realistic set-
tings that we examine later, this scenario admits analytical solu-
tions and thus provides insights into key differences between
EWC and plain gradient descent. In this case, the diagonal of
the total Fisher information matrix is proportional to the num-
ber of patterns observed; thus in the case of EWC the learning
rate lowers as more patterns are observed. Following ref. 15, we
define a memory as retained if its signal-to-noise ratio (SNR)
exceeds a certain threshold. Fig. 2, Top shows the SNR obtained
using gradient descent (blue lines) and EWC (red lines) for the
first pattern observed. At first, the SNR in the two cases is very
similar, following a power-law decay with a slope of �0.5. As
the number of patterns observed approaches the capacity of the
network, the SNR for gradient descent starts decaying exponen-
tially, whereas EWC maintains a power-law decay. The exponen-
tial decay observed with gradient descent is due to new patterns
interfering with old ones; EWC protects from such interference
and increases the fraction of memories retained (Fig. 2, Bottom).
In the next sections we show that in more realistic cases, where
input patterns have more complex statistics, interference occurs
more easily with consequently more striking benefits for EWC
over gradient descent.

EWC Allows Continual Learning in a Supervised Learning Context.
We next addressed the problem of whether EWC could allow
deep neural networks to learn a set of more complex tasks with-
out catastrophic forgetting. In particular, we trained a fully con-
nected multilayer neural network on several supervised learning
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Mitigation strategies - Regularization approaches

• “Elastic Weight consolidation” (EWC)

– EWC works by slowing learning of the network weights which are most 
relevant for solving previously encountered tasks

An alternative method has been advanced by Cortes et al. (2017), in which no network architecture
is explicitly encoded. Instead, the proposed AdaNet algorithm adaptively selects both the optimal
network architecture and weights for the given task. When tested on binary classification tasks
drawn from the popular CIFAR-10 image recognition dataset, this approach performed well, with
the algorithm automatically learning appropriate network architectures for the given task. Although
AdaNet has not been tested exhaustively in the context of continual learning, it represents an ap-
pealing method of dynamically reconfiguring the network to mitigate catastrophic forgetting with
subsequent tasks. Overall, some combination of these approaches – a dynamic network architecture
and an algorithm for automatically inferring the optimal architecture for newly encountered tasks –
might offer novel solutions to the continual learning problem.

REGULARISATION

Imposing constraints on the neural network weight updates is another major area of continual learn-
ing research (Goodfellow et al., 2013). Such regularisation approaches have proved popular in recent
years, and many derive inspiration from models of memory consolidation in theoretical neuroscience
(Fusi et al., 2005; Losonczy et al., 2008).

LEARNING WITHOUT FORGETTING

Learning without forgetting (LwF) is one such proposed regularisation method for continual learn-
ing (Li & Hoiem, 2017) and draws on knowledge distillation (Hinton et al., 2015). Proposed by
Hinton and colleagues, knowledge distillation is a technique in which the learned knowledge from
a large, regularised model (or ensemble of models) is distilled into a model with many fewer pa-
rameters (the details of this technique, however, are beyond the scope of this work). This concept
was subsequently employed in the LwF algorithm to provide a form of functional regularisation,
whereby the weights of the network trained on previous tasks or training data are enforced to remain
similar to the weights of the new network trained on novel tasks. Informally, LwF aims to effectively
take a representation of the network before training on new tasks. In Li & Hoiem (2017), this was
implemented as a convolutional neural network, in which only novel task data was used to train the
network, while the ‘snapshot’ of the prior network weights preserved good performance on previous
tasks. This approach has garnered significant attention in recent years, and offers a novel perspec-
tive on the use of knowledge distillation techniques in alleviating catastrophic forgetting. However,
Learning without Forgetting has some notable limitations. Firstly, it is highly influenced by task
history, and is thus susceptible to forming sub-optimal representations for novel tasks. Indeed, bal-
ancing stability of existing representations with the plasticity required to efficiently learn new ones
is a major unresolved topic of research in continual learning. A further limitation of LwF is that,
due to the nature of the distillation protocol, training time for each subsequent task increases lin-
early with the number of tasks previously learned. For broad applicability, this practically limits the
capacity of this technique to handle pipelines of training data for which novel tasks are encountered
regularly.

ELASTIC WEIGHT CONSOLIDATION

In recent years, one of the most prominent regularisation approaches to prevent catastrophic forget-
ting is that of elastic weight consolidation (EWC) (Kirkpatrick et al., 2017). EWC, which is suitable
for supervised and reinforcement learning paradigms, takes direct inspiration from neuroscience,
where synaptic consolidation is thought to preserve sequential task performance by consolidating
the most important features of previously encountered tasks (Yang et al., 2009). Intuitively, EWC
works by slowing learning of the network weights which are most relevant for solving previously
encountered tasks. This is achieved by applying a quadratic penalty to the difference between the
parameters of the prior and current network weights, with the objective of preserving or consoli-
dating the most task-relevant weights. It is this quadratic penalty, with its ‘elastic’ preservation of
existing network weights, which takes inspiration from synaptic consolidation in neuroscience, and
is schematically represented in Figure 2A. More formally, the loss function of EWC, L(✓), is given
by:

L(✓) = LB(✓) +
X

i

�

2
Fi

�
✓i � ✓⇤A,i

�2

3Parameters of the network
Loss for task B

Hyperparameter indicating
the relative importance of
previously encountered
tasks compared to new
ones

Fisher information matrix

Parameters important for 
solving task A
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Mitigation strategies - Regularization approaches

• Elastic Weight consolidation (EWC)

– the Fisher information matrix is used to give an estimation of 
the importance of weights for solving tasks

• The importance weighting is proportional to the diagonal of the 
Fisher information metric over the old parameters for the 
previous task

An alternative method has been advanced by Cortes et al. (2017), in which no network architecture
is explicitly encoded. Instead, the proposed AdaNet algorithm adaptively selects both the optimal
network architecture and weights for the given task. When tested on binary classification tasks
drawn from the popular CIFAR-10 image recognition dataset, this approach performed well, with
the algorithm automatically learning appropriate network architectures for the given task. Although
AdaNet has not been tested exhaustively in the context of continual learning, it represents an ap-
pealing method of dynamically reconfiguring the network to mitigate catastrophic forgetting with
subsequent tasks. Overall, some combination of these approaches – a dynamic network architecture
and an algorithm for automatically inferring the optimal architecture for newly encountered tasks –
might offer novel solutions to the continual learning problem.

REGULARISATION

Imposing constraints on the neural network weight updates is another major area of continual learn-
ing research (Goodfellow et al., 2013). Such regularisation approaches have proved popular in recent
years, and many derive inspiration from models of memory consolidation in theoretical neuroscience
(Fusi et al., 2005; Losonczy et al., 2008).

LEARNING WITHOUT FORGETTING

Learning without forgetting (LwF) is one such proposed regularisation method for continual learn-
ing (Li & Hoiem, 2017) and draws on knowledge distillation (Hinton et al., 2015). Proposed by
Hinton and colleagues, knowledge distillation is a technique in which the learned knowledge from
a large, regularised model (or ensemble of models) is distilled into a model with many fewer pa-
rameters (the details of this technique, however, are beyond the scope of this work). This concept
was subsequently employed in the LwF algorithm to provide a form of functional regularisation,
whereby the weights of the network trained on previous tasks or training data are enforced to remain
similar to the weights of the new network trained on novel tasks. Informally, LwF aims to effectively
take a representation of the network before training on new tasks. In Li & Hoiem (2017), this was
implemented as a convolutional neural network, in which only novel task data was used to train the
network, while the ‘snapshot’ of the prior network weights preserved good performance on previous
tasks. This approach has garnered significant attention in recent years, and offers a novel perspec-
tive on the use of knowledge distillation techniques in alleviating catastrophic forgetting. However,
Learning without Forgetting has some notable limitations. Firstly, it is highly influenced by task
history, and is thus susceptible to forming sub-optimal representations for novel tasks. Indeed, bal-
ancing stability of existing representations with the plasticity required to efficiently learn new ones
is a major unresolved topic of research in continual learning. A further limitation of LwF is that,
due to the nature of the distillation protocol, training time for each subsequent task increases lin-
early with the number of tasks previously learned. For broad applicability, this practically limits the
capacity of this technique to handle pipelines of training data for which novel tasks are encountered
regularly.

ELASTIC WEIGHT CONSOLIDATION

In recent years, one of the most prominent regularisation approaches to prevent catastrophic forget-
ting is that of elastic weight consolidation (EWC) (Kirkpatrick et al., 2017). EWC, which is suitable
for supervised and reinforcement learning paradigms, takes direct inspiration from neuroscience,
where synaptic consolidation is thought to preserve sequential task performance by consolidating
the most important features of previously encountered tasks (Yang et al., 2009). Intuitively, EWC
works by slowing learning of the network weights which are most relevant for solving previously
encountered tasks. This is achieved by applying a quadratic penalty to the difference between the
parameters of the prior and current network weights, with the objective of preserving or consoli-
dating the most task-relevant weights. It is this quadratic penalty, with its ‘elastic’ preservation of
existing network weights, which takes inspiration from synaptic consolidation in neuroscience, and
is schematically represented in Figure 2A. More formally, the loss function of EWC, L(✓), is given
by:

L(✓) = LB(✓) +
X

i

�

2
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�
✓i � ✓⇤A,i
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3
Parameters important for 
solving task A

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. 
A., ... & Hadsell, R. (2017).
Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13), 3521-3526. 
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• (A) Training curves for three random permutations A, B, and C, using EWC (red), L2 

regularization (green), and plain SGD (blue). 
Note that only EWC is capable of maintaining a high performance on old tasks, while 
retaining the ability to learn new tasks.

• (B) Average performance across all tasks, using EWC (red) or SGD with dropout 
regularization (blue). The dashed line shows the performance on a single task only. 

A B C

Fig. 3. Results on the permuted MNIST task. (A) Training curves for three random permutations A, B, and C, using EWC (red), L2 regularization (green), and
plain SGD (blue). Note that only EWC is capable of maintaining a high performance on old tasks, while retaining the ability to learn new tasks. (B) Average
performance across all tasks, using EWC (red) or SGD with dropout regularization (blue). The dashed line shows the performance on a single task only.
(C) Similarity between the Fisher information matrices as a function of network depth for two different amounts of permutation. Either a small square of
8 ⇥ 8 pixels in the middle of the image is permuted (gray) or a large square of 26 ⇥ 26 pixels is permuted (black). Note how the more different the tasks
are, the smaller the overlap in Fisher information matrices in early layers.

and is based on the forget-me-not (FMN) process (34) (see
Materials and Methods for more details). We also allowed the
DQN agents to maintain separate short-term memory buffers for
each inferred task. These allow action values for each task to be
learned off-policy, using an experience replay mechanism (25).
As such, the overall system has memory on two timescales: Over
short timescales, the experience replay mechanism allows learn-
ing in the DQN to be based on the interleaved and uncorrelated
experiences (25). At longer timescales, know-how across tasks is
consolidated by using EWC. Finally, we allowed a small num-
ber of network parameters to be game specific. In particular, we
allowed each layer of the network to have biases and per-element
multiplicative gains that were specific to each game.

We compare the performance of agents that use EWC (red)
with ones that do not (blue) over sets of 10 games in Fig. 4. We
measure the performance as the total human-normalized score
across all 10 games; the score on each game is clipped to 1 such
that the total maximum score is 10 (at least at human level on
all games) and 0 means the agent is as good as a random agent.
If we rely on plain gradient descent methods as in ref. 25, the
agent never learns to play more than one game and the harm
inflicted by forgetting the old games means that the total human-
normalized score remains below one. By using EWC, however,
the agents do indeed learn to play multiple games. As a con-
trol, we also considered the benefit to the agent if we explic-
itly provided the agent with the true task label (Fig. 4B, brown),
rather than relying on the learned task recognition through the
FMN algorithm (Fig. 4B, red). The improvement here was only
modest.

Whereas augmenting the DQN agent with EWC allows it to
learn many games in sequence without suffering from catas-
trophic forgetting, it does not reach the score that would have
been obtained by training 10 separate DQNs (Fig. S3). One pos-
sible reason for this is that we consolidated weights for each game
based on a tractable approximation of parameter uncertainty, the
Fisher information. We therefore sought to test the quality of
our estimates empirically. To do so, we trained an agent on a sin-
gle game and measured how perturbing the network parameters
affected the agent’s score. Regardless of which game the agent
was trained on, we observed the same patterns, shown in Fig. 4C.
First, the agent was always more robust to parameter perturba-
tions shaped by the inverse of the diagonal of the Fisher informa-
tion (blue), as opposed to uniform perturbations (black). This
validates that the diagonal of the Fisher information is a good
estimate of how important a parameter is. Within our approx-
imation, perturbing in the null space should have no effect on
performance. Empirically, however, we observe that perturbing

in this space (orange) has the same effect as perturbing in
the inverse Fisher space. This suggests that we are overconfi-
dent about certain parameters being unimportant: It is therefore
likely that the chief limitation of the current implementation is
that it underestimates parameter uncertainty.

Discussion
We present an algorithm, EWC, that allows knowledge of pre-
vious tasks to be protected during new learning, thereby avoid-
ing catastrophic forgetting. It does so by selectively decreas-
ing the plasticity of weights and thus has certain parallels with
neurobiological models of synaptic consolidation (15, 16). We
implement EWC as a soft, quadratic constraint whereby each
weight is pulled back toward its old values by an amount
proportional to its importance for performance on previously
learned tasks. In analytically tractable settings, we demonstrate
that EWC can protect network weights from interference and
thus increase the fraction of memories retained over plain
gradient descent. To the extent that tasks share structure, net-
works trained with EWC reuse shared components of the net-
work. We further show that EWC can be effectively com-
bined with deep neural networks to support continual learning
in challenging reinforcement learning scenarios, such as Atari
2600 games.

The EWC algorithm can be grounded in Bayesian approaches
to learning. Formally, when there is a new task to be learned, the
network parameters are tempered by a prior which is the poste-
rior distribution on the parameters given data from the previous
task(s). This enables fast learning rates on parameters that are
poorly constrained by the previous tasks and slow learning rates
for those that are crucial.

There has been previous work (35, 36) using a quadratic
penalty to approximate old parts of the dataset, but these appli-
cations have been limited to small models. Specifically, ref. 35
used random inputs to compute a quadratic approximation to the
energy surface. Their approach is slow, as it requires recomput-
ing the curvature at each sample. The ELLA algorithm described
in ref. 36 requires computing and inverting matrices with a
dimensionality equal to the number of parameters being opti-
mized; therefore it has been mainly applied to linear and logis-
tic regressions. In contrast, EWC has a run time that is linear
in both the number of parameters and the number of training
examples. We could achieve this low computational complexity
only by using a crude Laplace approximation to the true the
posterior distribution of the parameters. Despite its low com-
putational cost and empirical successes—even in the setting of
challenging RL domains—our use of a point estimate of the
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Mitigation strategies – Replay-based approaches

• Deep generative replay

– A generative model is used to generate representative data from 
previous tasks

– From which a sample is selected and interspersed with the dataset 
of the new task

– Example: REMIND (Replay using Memory Indexing)
• Replays a compressed representation of previously encountered 

training data
• Using hidden layers (e.g. a feature map)

Hayes, T. L., Kafle, K., Shrestha, R., Acharya, M., & Kanan, C. (2020, August). 
Remind your neural network to prevent catastrophic forgetting. In European 
Conference on Computer Vision (pp. 466-483). Springer, Cham.
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...

REMIND Your Neural Network to Prevent Catastrophic Forgetting 5

Memory Indexing, Storage and Reconstruction
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Fig. 2. REMIND takes in an input image and passes it through frozen layers of the
network (G) to obtain tensor representations (feature maps). It then quantizes the
tensors via product quantization and stores the indices in memory for future replay.
The decoder reconstructs tensors from the stored indices to train the plastic layers (F )
of the network before a final prediction is made.

default memory budget of 20K examples for ImageNet, but REMIND can store
over 1M compressed instances using the same budget. This more closely resem-
bles how replay occurs in the brain, with high-level visual representations being
sent to the hippocampus for storage and re-activation, rather than early visual
representations [29]. REMIND does not have an explicit sleep phase, with replay
more closely resembling that during waking hours [41,74].

Formally, our CNN yi = F (G (Xi)) is trained in a streaming paradigm, where
Xi is the input image and yi is the predicted output category. The network is
composed of two nested functions: G (·), parameterized by ✓G, consists of the
first J layers of the CNN and F (·), parameterized by ✓F , consists of the last L
layers. REMIND keeps ✓G fixed since early layers of CNNs have been shown to
be highly transferable [80]. The later layers, F (·), are trained in the streaming
paradigm using REMIND. We discuss how G (·) is initialized in Sec. 4.2.

The output of G (Xi) is a tensor Zi 2 Rm⇥m⇥d, where m is the dimension
of the feature map and d is the number of channels. Using the outputs of G (·),
we train a vector quantization model for the Zi tensors. As training examples
are observed, the quantization model is used to store the Zi features and their
labels in a replay bu↵er as an m ⇥m ⇥ s array of integers using as few bits as
necessary, where s is the number of indices that will be stored. For replay, we
uniformly select r instances from the replay bu↵er, which was shown to work
well in [14], and reconstruct them. Each of the reconstructed instances, Ẑi, are
mixed with the current input, and then ✓F is updated using backpropagation
on this set of r + 1 instances. Other selection strategies are discussed in Sec. 8.
During inference, we pass an image through G (·), and then the output, Zi, is
quantized and reconstructed before being passed to F (·).

Our main version of REMIND uses PQ [30] to compress and store Zi. For
high-dimensional data, PQ tends to have much lower reconstruction error than
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• First, train the complete network: G + F layers on the training set

• Froze (G) and store sort of prototype features of the training examples

• Later, during training of new tasks, use the stored prototype features to 
generate training instances before (F) related to the previous tasks together 
with new training examples and train only (F)
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Fig. 2. REMIND takes in an input image and passes it through frozen layers of the
network (G) to obtain tensor representations (feature maps). It then quantizes the
tensors via product quantization and stores the indices in memory for future replay.
The decoder reconstructs tensors from the stored indices to train the plastic layers (F )
of the network before a final prediction is made.

default memory budget of 20K examples for ImageNet, but REMIND can store
over 1M compressed instances using the same budget. This more closely resem-
bles how replay occurs in the brain, with high-level visual representations being
sent to the hippocampus for storage and re-activation, rather than early visual
representations [29]. REMIND does not have an explicit sleep phase, with replay
more closely resembling that during waking hours [41,74].

Formally, our CNN yi = F (G (Xi)) is trained in a streaming paradigm, where
Xi is the input image and yi is the predicted output category. The network is
composed of two nested functions: G (·), parameterized by ✓G, consists of the
first J layers of the CNN and F (·), parameterized by ✓F , consists of the last L
layers. REMIND keeps ✓G fixed since early layers of CNNs have been shown to
be highly transferable [80]. The later layers, F (·), are trained in the streaming
paradigm using REMIND. We discuss how G (·) is initialized in Sec. 4.2.

The output of G (Xi) is a tensor Zi 2 Rm⇥m⇥d, where m is the dimension
of the feature map and d is the number of channels. Using the outputs of G (·),
we train a vector quantization model for the Zi tensors. As training examples
are observed, the quantization model is used to store the Zi features and their
labels in a replay bu↵er as an m ⇥m ⇥ s array of integers using as few bits as
necessary, where s is the number of indices that will be stored. For replay, we
uniformly select r instances from the replay bu↵er, which was shown to work
well in [14], and reconstruct them. Each of the reconstructed instances, Ẑi, are
mixed with the current input, and then ✓F is updated using backpropagation
on this set of r + 1 instances. Other selection strategies are discussed in Sec. 8.
During inference, we pass an image through G (·), and then the output, Zi, is
quantized and reconstructed before being passed to F (·).

Our main version of REMIND uses PQ [30] to compress and store Zi. For
high-dimensional data, PQ tends to have much lower reconstruction error than
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REMIND 

• Performances when learning additional classes of ImageNet

REMIND Your Neural Network to Prevent Catastrophic Forgetting 9

random classes, which are not contained within any other batch. We study class
incremental (class iid) learning with ImageNet.

CORe50 [52] contains sequences of video frames, with one object in each
frame. It has 10 classes, and each sequence is acquired with varied environmental
conditions. CORe50 is ideal for evaluating streaming learners since it is naturally
non-iid and requires agents to learn from temporally correlated video streams.
For CORe50, we follow [22] and sample at 1 frame per second, obtaining 600
training images and 225 test images per class. We use the bounding box crops
and splits from [52]. Following [22], we use four training orderings to test the
robustness of each algorithm under di↵erent conditions: 1) iid, where each batch
has a random subset of training images, 2) class iid, where each batch has all of
the images from two classes, which are randomly shu✏ed, 3) instance, where each
batch has temporally ordered images from 80 unique object instances, and 4)
class instance, where each batch has all of the temporally ordered instances from
two classes. All batches have 1200 images across all orderings. Since CORe50 is
small, CNNs are first initialized with pre-trained ImageNet weights and then
fine-tuned on a subset of 1200 samples for base initialization.

We use the⌦all metric [22,24,45] for evaluation, which normalizes incremental

learning performance by o✏ine performance: ⌦all =
1
T

PT
t=1

↵t
↵offline,t

, where T is

the total number of testing events, ↵t is the accuracy of the model for test t, and
↵o✏ine,t is the accuracy of the optimized o✏ine learner for test t. If ⌦all = 1, then
the incremental learner’s performance matched the o✏ine model. We use top-5
and top-1 accuracies for ImageNet and CORe50, respectively. Average accuracy
results are in supplemental materials (Table S2-S3).

5.4 Results: ImageNet

Fig. 3. Performance of streaming
ImageNet models.

For ImageNet, we use the pre-trained PyTorch
o✏ine model with 89.08% top-5 accuracy to
normalize ⌦all. We allow the iCaRL, Unified,
and BiC models to store 10,000 (224⇥224
uint8) raw pixel image prototypes in a replay
bu↵er, which is equivalent to 1.51 GB in mem-
ory. This allows REMIND to store indices for
959665 examples in its replay bu↵er. We set
r = 50 samples. We study additional bu↵er
sizes in Sec. 7. Results for incremental class
learning on ImageNet are shown in Table 1
and a learning curve for all models is shown in
Fig. 3. REMIND outperforms all other com-
parison models, with SLDA achieving the second best performance. This is re-
markable since REMIND only updates ✓F , whereas iCaRL, Unified, and BiC all
update ✓F and ✓G.

REMIND is intended to be used for online streaming learning; however, we
also created a variant suitable for incremental batch learning which is described

REMIND



60 / 95

Now the analysis
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Mitigation strategies and hidden representations

• CKA analysis

– Measures how similar a pair of hidden layer representations are

Mitigation methods stabilize the higher layer representations

• Compute CKA between layer representations of Task 1 before
and after Task 2 training

• With varying amounts and types of mitigation.
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Mitigation strategies and hidden representations

• But what about subspace similarity? 

• (Task 2, Task 1 post-Task 2 training) similarity is lower in replay compared 
to EWC and SI regularization-based methods

• As is (Task1, task 2)
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Mitigation strategies and hidden representations

• But what about subspace similarity? 

• Replay stores Task 1 and Task 2 representations in orthogonal subspaces

• EWC and SI promote feature reuse in the higher layers
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Mitigation strategies and hidden representations

• But what about subspace similarity? 

– With varying degree of mitigation

• Again (Task 2, Task 1 post-Task 2 training) is much lower in replay
compared to no mitigation

• When EWC and SI maintain similar subspaces for (Task2, Task 1 post Task 
2 training)
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Outline

1. How to measure the difficulty of a training example

2. What is catastrophic forgetting

3. Catastrophic forgetting and hidden representations

4. Catastrophic forgetting and the semantic similarity between tasks

5. Can forgetting be useful for transfer learning?

6. Is “forgetting less” useful for transfer learning?

7. Conclusions
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Catastrophic forgetting

• Questions

– What happens to the internal representations of neural networks 

as they undergo catastrophic forgetting?

– Does the degree to which a network forgets depend on 

the semantic similarity between the successive tasks?
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Catastrophic forgetting and semantic similarity between tasks

…
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Catastrophic forgetting and semantic similarity between tasks

• But …
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Catastrophic forgetting and semantic similarity between tasks

• A contradiction?
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Catastrophic forgetting and semantic similarity between tasks

• Alignment of subspaces

Near orthogonal model representations Near equal model representations

Little forgetting
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Catastrophic forgetting and semantic similarity between tasks

• …
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Conclusions

• Higher layers are disproportionately responsible for catastrophic forgetting 

• Different methods for mitigating forgetting exist

– all stabilize higher layer representations, 

• But some methods encourage greater feature reuse in higher layers, (e.g. EWC and SI)

• Others store task representations as orthogonal subspaces, preventing interference
(e.g. REPLAY) 

• Semantic similarity between subsequent tasks consistently controls
the degree of forgetting 

– forgetting is most severe for tasks with intermediate similarity 
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Outline

1. How to measure the difficulty of a training example

2. What is catastrophic forgetting

3. Catastrophic forgetting and hidden representations

4. Catastrophic forgetting and the semantic similarity between tasks

5. Can forgetting be useful for transfer learning?

6. Is “forgetting less” useful for transfer learning?

7. Conclusions
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Can forgetting be useful in transfer learning?

…

Zhou, H., Vani, A., Larochelle, H., & Courville, A. (2022). 
Fortuitous forgetting in connectionist networks.
ICLR-2022.
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Can forgetting be useful in transfer learning?

• “Forgetting”

Zhou, H., Vani, A., Larochelle, H., & Courville, A. (2022). Fortuitous forgetting in connectionist 
networks. ICLR-2022.
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Noise

Adding noise decreases the accuracy, given that the accuracy 
was better than random

Adding noise equates to a partial removal of information (still 
“aligned”)
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Can forgetting be useful in transfer learning?

• The forget-and-relearn hypothesis

– Given an appropriate forgetting operation, iterative re-training AFTER

forgetting will amplify unforgotten features that are consistently useful

under different learning conditions induced by the forgetting step.

– A forgetting operation that favors the preservation of desirable features

can thus be used to steer the model towards those desirable

characteristics.

Many existing algorithms which have successfully demonstrated improved
generalization have a forgetting step that disproportionately affects undesirable
information for the given task.
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Can forgetting be useful in transfer learning?

• Easy vs. Hard examples

– Use the output margin between the largest and second-largest logits 
(outputs) for each example

Hard examples are more 
adversely affected than easy

ones by weight perturbations

Normal training Training with weight 
perturbations at 

each iteration
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Targeted forgetting

• Later-Layer Forgetting (LLF)

– Reinitialization of later layers at each learning iteration

Published as a conference paper at ICLR 2022

Table 1: Comparing KE and Later Layer Forgetting for ResNet18. Results are mean and standard
error over 3 runs and reported for hyperparameter settings with best validation performance. KE
experiments use KELS split with a split rate of 0.8. LLF uses L 2 {10, 14}, corresponding to block
3 and 4 in ResNet18. N3, N8, N10 indicate the additional number of training generations on top of
the baseline model. LLF consistently outperforms all other methods.

Method Flower CUB Aircraft MIT Dog
Smth (N1) 51.02 ±0.09 58.92 ±0.24 57.16 ±0.91 56.04 ±0.39 63.64 ±0.16

Smth long (N3) 59.51 ±0.17 66.03 ±0.13 62.55 ±0.25 59.53 ±0.60 65.39 ±0.55

Smth + KE (N3) 57.95 ±0.65 63.49 ±0.39 60.56 ±0.36 58.78 ±0.54 64.23 ±0.05

Smth + LLF (N3) (Ours) 63.52 ±0.13 70.76 ±0.24 68.88 ±0.11 63.28 ±0.69 67.54 ±0.12

Smth long (N10) 66.89 ±0.23 70.50 ±0.13 65.29 ±0.51 61.29 ±0.49 66.19 ±0.03

Smth + KE (N10) 63.25 ±0.17 66.51 ±0.07 63.32 ±0.30 59.58 ±0.62 63.86 ±0.20

Smth + LLF (N10) (Ours) 70.87 ±0.41 72.47 ±0.31 70.82 ±0.50 64.40 ±0.58 68.51 ±0.39

Smth + LW (N8) 68.43 ±0.27 70.87 ±0.15 69.10 ±0.27 61.67 ±0.32 66.97 ±0.24

Smth + LLF (N8) (Ours) 69.48 ±0.24 72.30 ±0.28 70.37 ±0.49 63.58 ±0.16 68.45 ±0.25

CS-KD (N1) 57.57 ±0.61 66.61 ±0.02 65.18 ±0.68 58.61 ±0.25 66.48 ±0.12

CS-KD long (N3) 64.44 ±0.62 69.50 ±0.24 65.31 ±0.67 57.16 ±0.34 66.43 ±0.24

CS-KD + KE (N3) 63.48 ±1.30 68.76 ±0.57 67.16 ±0.23 58.88 ±0.63 67.05 ±0.31

CS-KD + LLF (N3) (Ours) 67.20 ±0.51 72.58 ±0.02 71.65 ±0.21 62.41 ±0.45 68.77 ±0.24

CS-KD long (N10) 68.68 ±0.28 69.59 ±0.40 64.58 ±0.07 56.12 ±0.43 64.96 ±0.17

CS-KD + KE (N10) 67.29 ±0.74 69.54 ±0.60 68.70 ±0.33 57.61 ±0.91 67.11 ±0.11

CS-KD + LLF (N10) (Ours) 74.68 ±0.19 73.51 ±0.35 72.01 ±0.23 62.89 ±0.59 69.20 ±0.12

CS-KD + LW (N8) 73.72 ±0.74 71.81 ±0.21 70.82 ±0.34 59.18 ±0.41 68.09 ±0.24

CS-KD + LLF (N8) (Ours) 73.48 ±0.31 73.47 ±0.35 71.95 ±0.23 62.26 ±0.47 69.24 ±0.29

We challenge this “ease-of-teaching” interpretation in Li & Bowling (2019) and offer an alternative
explanation. Instead of viewing the resetting of the receiver as inducing an ease-of-teaching pressure
on the sender, we can view it as an asymmetric form of forgetting in the two-agent system. This
form of forgetting is sub-optimal, since we care about the quality of the messages, which is con-
trolled by the sender. This motivates a balanced forgetting approach for the Lewis game, whereby
both sender and receiver can forget non-compositional aspects of their shared language. Therefore,
we propose an explicit forgetting mechanism that removes the asymmetry from the Li & Bowling
(2019) setup. We do this by partially reinitializing the weights of both the sender and the receiver
and refer to this method as partial balanced forgetting (PBF). We use the “same weight reinit” per-
turbation method from Section 3.2 with 90% of weights masked. Further training details are found
in Appendix A3. We show in Figure 4c that this method, which does not exert an “ease-of-teaching”
pressure, significantly outperforms both no resetting and resetting only the receiver in terms of ⇢.

5 UNDERSTANDING THE FORGET-AND-RELEARN DYNAMIC

In Section 4, we discussed the importance of targeted forgetting in the forget-and-relearn dynamic.
In this section, we study the mechanism through which iterative retraining shapes learning.

5.1 IMAGE CLASSIFICATION

We consider two hypotheses for why iterative retraining with LLF helps generalization. We note
that these hypotheses are not contradictory and can both be true.

1. Later layers improve during iterative retraining with LLF. Due to co-adaptation during training,
the later layers may be learning before the more stable early layer features are fully developed
(notably in early epochs of the first generation), which might lead to more overfitting in the later

7

• Importance of having variable conditions for refining first layers

• Keeps and amplifies the useful features of the first layers
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Lesson

• Forgetting is useful

– If it promotes the amplification of useful features in the first layers



80 / 95

Outline

1. How to measure the difficulty of a training example

2. What is catastrophic forgetting

3. Catastrophic forgetting and hidden representations

4. Catastrophic forgetting and the semantic similarity between tasks

5. Can forgetting be useful for transfer learning?

6. Is “forgetting less” useful for transfer learning?

7. Conclusions
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Is “forgetting less”  good for forward transfer?

Training new tasks 
from scratch

Forward transfer
learning

Chen, J., Nguyen, T., Gorur, D., & Chaudhry, A. (2023). 
Is forgetting less a good inductive bias for forward transfer? 
ICLR-2023.
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Is “forgetting less”  good for forward transfer?

• Claim that 

– many continual learning approaches alleviate catastrophic 

forgetting at the expense of forward transfer 

Chen, J., Nguyen, T., Gorur, D., & Chaudhry, A. (2023). Is forgetting less a good inductive bias for 
forward transfer? ICLR-2023.
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Is “forgetting less”  good for forward transfer?

• Claim that 

– many continual learning approaches alleviate catastrophic 

forgetting at the expense of forward transfer 

In which situation is it necessary to forget? 
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Is “forgetting less”  good for forward transfer?

• They measure forward transfer in terms of how easy it is to learn a new task given continually 
trained representations

• The easiness is measured by learning a linear classifier on top of the fixed representations using a small 
subset of the data of the new task 
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Is “forgetting less”  good for forward transfer?

• They measure forward transfer in terms of how easy it is to learn a new task given continually 
trained representations

• The easiness is measured by learning a linear classifier on top of the fixed representations using a small 
subset of the data of the new task 

Remark: they say that this appropriate when considering foundation models
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Is “forgetting less”  good for forward transfer?

• They measure forward transfer in terms of how easy it is to learn a new task given continually 
trained representations

• The easiness is measured by learning a linear classifier on top of the fixed representations using a small 
subset of the data of the new task 

Remark: they say that this appropriate when considering foundation models

Because we finetune them in order to address new tasks



87 / 95

Is “forgetting less”  good for forward transfer?

• They measure forward transfer in terms of how easy it is to learn a new task given continually trained 
representations 

• The easiness is measured by learning a linear classifier on top of the fixed representations using a small 
subset of the data of the new task 

Published as a conference paper at ICLR 2023
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Figure 2: Illustration of continual learning and k-shot evaluation process. We continuously train the feature
extractor and the classification head on a task sequence T1, . . . , TN . ⇥j��j is the model obtained after training
on Tj . To evaluate the forward transfer of �j , we use linear probing on k-shot samples from the next task Tj+1

to learn a classifier ⇥̂ and then evaluate the accuracy of ⇥̂ � �j on the test set Dte
j+1 from the task Tj+1.

2 PROBLEM SETUP AND METRICS

We consider a supervised continual learning setting consisting of a sequence of tasks T =
{T1, · · · , TN}. A task Tj is defined by a dataset Dj = {(xi, yi, ti)

nj

i=1}, consisting of nj

triplets, where x 2 X , y 2 Y , and t 2 T are input, label and task id, respectively. Each
Dj = {Dtr

j ,Dval
j ,Dte

j } consists of train, validation and test sets. At a given task ‘j’, the learner
may have access to all the previous tasks’ datasets {Di}i<j , but it will not have access to the future
tasks. We define a feed-forward neural network consisting of a feature extractor � : X 7! RD

and a task-specific classifier ⇥j : RD ⇥ T 7! Yj , that implements an input to output map-
ping fj = (⇥j � �) : X ⇥ T 7! Yj . The neural network is trained by minimizing a loss
`j : fj(X ,T) ⇥ Yj 7! R+ using stochastic gradient descent (SGD) (Bottou, 2010). While we
consider image classification tasks and use cross-entropy loss for each task, the approach would be
applicable to other tasks and loss functions as well.

The learner updates a shared feature extractor (�) and task-specific heads (⇥j) throughout the con-
tinual learning experience. After training on each task ‘i’, we measure the performance of the learner
on all the tasks observed so far. Let Acc(i, j) be the accuracy of the model on Dte

j after the feature
extractor is updated with Ti. We define the average forgetting metric at task ‘i’ similar to (Lopez-Paz
& Ranzato, 2017):

Fgti =
1

i� 1

i�1X

j=1

Acc(i, j)� Acc(j, j).

The average forgetting metric (2 [�1, 1]) throughout the continual learning is then defined as,

AvgFgt =
1

N � 1

NX

i=2

Fgti. (1)

A negative value of Fgti indicates that the learner has lost performance on the previous tasks, and
the more negative AvgFgt is the more forgetful the representations are of the previous knowledge.

Forward Transfer through K-Shot Probing We measure forward transfer in terms of how easy it
is to learn a new task given continually trained representations. The easiness is measured by learning
a linear classifier on top of the fixed representations using a small subset of the data of the new task

3
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Figure 2: Illustration of continual learning and k-shot evaluation process. We continuously train the feature
extractor and the classification head on a task sequence T1, . . . , TN . ⇥j��j is the model obtained after training
on Tj . To evaluate the forward transfer of �j , we use linear probing on k-shot samples from the next task Tj+1

to learn a classifier ⇥̂ and then evaluate the accuracy of ⇥̂ � �j on the test set Dte
j+1 from the task Tj+1.

2 PROBLEM SETUP AND METRICS

We consider a supervised continual learning setting consisting of a sequence of tasks T =
{T1, · · · , TN}. A task Tj is defined by a dataset Dj = {(xi, yi, ti)

nj

i=1}, consisting of nj

triplets, where x 2 X , y 2 Y , and t 2 T are input, label and task id, respectively. Each
Dj = {Dtr

j ,Dval
j ,Dte

j } consists of train, validation and test sets. At a given task ‘j’, the learner
may have access to all the previous tasks’ datasets {Di}i<j , but it will not have access to the future
tasks. We define a feed-forward neural network consisting of a feature extractor � : X 7! RD

and a task-specific classifier ⇥j : RD ⇥ T 7! Yj , that implements an input to output map-
ping fj = (⇥j � �) : X ⇥ T 7! Yj . The neural network is trained by minimizing a loss
`j : fj(X ,T) ⇥ Yj 7! R+ using stochastic gradient descent (SGD) (Bottou, 2010). While we
consider image classification tasks and use cross-entropy loss for each task, the approach would be
applicable to other tasks and loss functions as well.

The learner updates a shared feature extractor (�) and task-specific heads (⇥j) throughout the con-
tinual learning experience. After training on each task ‘i’, we measure the performance of the learner
on all the tasks observed so far. Let Acc(i, j) be the accuracy of the model on Dte

j after the feature
extractor is updated with Ti. We define the average forgetting metric at task ‘i’ similar to (Lopez-Paz
& Ranzato, 2017):

Fgti =
1

i� 1

i�1X

j=1

Acc(i, j)� Acc(j, j).

The average forgetting metric (2 [�1, 1]) throughout the continual learning is then defined as,

AvgFgt =
1

N � 1

NX

i=2

Fgti. (1)

A negative value of Fgti indicates that the learner has lost performance on the previous tasks, and
the more negative AvgFgt is the more forgetful the representations are of the previous knowledge.

Forward Transfer through K-Shot Probing We measure forward transfer in terms of how easy it
is to learn a new task given continually trained representations. The easiness is measured by learning
a linear classifier on top of the fixed representations using a small subset of the data of the new task

3

Linear classifier
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Is “forgetting less”  good for forward transfer?

• Less forgetting leads to better transfer learning

• Less forgetful models result in more diverse and easily separable representations

YES!
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Is “forgetting less”  good for forward transfer?

• Measure how diverse and easily separable are the features 
learned in Fj

Published as a conference paper at ICLR 2023

(refer to Figure 2 for illustration). Specifically, let Sk
j+1

k⇠ Dtr
j+1 denote a sample consisting of ‘k’

examples per class from Dtr
j+1, and let �j be the representations obtained after training on task ‘j’

(see the bottom blob of Figure 2). Let ⇥̂ be the temporary (linear) classifier head learned on top
of fixed �j using Sk

j+1. We measure the accuracy of this temporary classifier on the test set of task
‘j+1’ and denote it as Fwtk

j . This is called the forward transfer of learned representations �j to the
next task ‘j+1’. The average forward transfer throughout the continual learning is then defined as,

AvgFwtk =
1

N � 1

N�1X

j=1

Fwtk
j . (2)

We note that linear probing is an auxiliary evaluation process where model updates during evaluation
remain distinct from the updates made by the continual learner while observing a task sequence.
Contrary to this, in most prior works (Wolczyk et al., 2021; Lopez-Paz & Ranzato, 2017), forward
transfer is measured after the continual learner has made updates on the task. Such updates typically
restrict the learning on current task to alleviate catastrophic forgetting on the previous tasks. This
causes the learner to perform worse on the current task compared to a learner that is not trying to
mitigate catastrophic forgetting. We sidestep this dilemma by separating the updates made by the
continual learner on a new task from the temporary updates made during auxiliary evaluation on a
copy of the model. We also note that similar to linear probing, one could finetune the whole model,
including the representations, during the auxiliary evaluation. The main argument is to decouple the
notion of forward transfer from modifications made by the continual learning algorithm to preserve
knowledge of the previous tasks.

Feature Diversity In addition to AvgFgt (Equation 1) and AvgFwtk (Equation 2), we also
measure how diverse and easily separable the features of our trained models are for analyzing the
transferability of the representations. Specifically, let  j 2 Rm⇥D be the feature matrix computed
using the feature extractor �j (obtained after training on task ‘j’) on the ‘m’ test examples of task
‘j+1’. Let  c

j be a sub-matrix constructed by collecting the rows of  j that belong to class ‘c’.
Similar to (Wu et al., 2021; Yu et al., 2020), we define the feature diversity score of �j as

FDivj = log |↵ >
j  j + I|�

CjX

c=1

log |↵j 
c
j
> c

j + I|,

where |·| is a matrix determinant operator, ↵ = D/(m✏2), ↵j = D/(mj✏2), ✏ = 0.5, and Cj denotes
the number of classes for task ‘j’. The average feature score throughout the continual learning
experience is then defined as,

AvgFDiv =
1

N � 1

N�1X

j=1

FDivj . (3)

The intuition behind using this score is that features that enforce high inter-class separation and
low intra-class variability should make it easier to learn a classifier head on top leading to a better
transfer to next tasks.

3 EXPERIMENTS & RESULTS

3.1 SETUP

We now briefly describe the experimental setup including the benchmarks, approaches and training
details. More details can be found in Appendix A. After the experimental details, we provide the
main results of the paper.

Benchmarks

• Split CIFAR-10: We split CIFAR-10 dataset (Krizhevsky et al., 2009) into 5 disjoint sub-
sets corresponding to 5 tasks. Each task has 2 classes.

4
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Is “forgetting less”  good for forward transfer?

• Measure how diverse and easily separable are the features 
learned in Fj
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(refer to Figure 2 for illustration). Specifically, let Sk
j+1

k⇠ Dtr
j+1 denote a sample consisting of ‘k’

examples per class from Dtr
j+1, and let �j be the representations obtained after training on task ‘j’

(see the bottom blob of Figure 2). Let ⇥̂ be the temporary (linear) classifier head learned on top
of fixed �j using Sk

j+1. We measure the accuracy of this temporary classifier on the test set of task
‘j+1’ and denote it as Fwtk

j . This is called the forward transfer of learned representations �j to the
next task ‘j+1’. The average forward transfer throughout the continual learning is then defined as,

AvgFwtk =
1

N � 1

N�1X

j=1

Fwtk
j . (2)

We note that linear probing is an auxiliary evaluation process where model updates during evaluation
remain distinct from the updates made by the continual learner while observing a task sequence.
Contrary to this, in most prior works (Wolczyk et al., 2021; Lopez-Paz & Ranzato, 2017), forward
transfer is measured after the continual learner has made updates on the task. Such updates typically
restrict the learning on current task to alleviate catastrophic forgetting on the previous tasks. This
causes the learner to perform worse on the current task compared to a learner that is not trying to
mitigate catastrophic forgetting. We sidestep this dilemma by separating the updates made by the
continual learner on a new task from the temporary updates made during auxiliary evaluation on a
copy of the model. We also note that similar to linear probing, one could finetune the whole model,
including the representations, during the auxiliary evaluation. The main argument is to decouple the
notion of forward transfer from modifications made by the continual learning algorithm to preserve
knowledge of the previous tasks.

Feature Diversity In addition to AvgFgt (Equation 1) and AvgFwtk (Equation 2), we also
measure how diverse and easily separable the features of our trained models are for analyzing the
transferability of the representations. Specifically, let  j 2 Rm⇥D be the feature matrix computed
using the feature extractor �j (obtained after training on task ‘j’) on the ‘m’ test examples of task
‘j+1’. Let  c

j be a sub-matrix constructed by collecting the rows of  j that belong to class ‘c’.
Similar to (Wu et al., 2021; Yu et al., 2020), we define the feature diversity score of �j as

FDivj = log |↵ >
j  j + I|�

CjX

c=1

log |↵j 
c
j
> c

j + I|,

where |·| is a matrix determinant operator, ↵ = D/(m✏2), ↵j = D/(mj✏2), ✏ = 0.5, and Cj denotes
the number of classes for task ‘j’. The average feature score throughout the continual learning
experience is then defined as,

AvgFDiv =
1

N � 1

N�1X

j=1

FDivj . (3)

The intuition behind using this score is that features that enforce high inter-class separation and
low intra-class variability should make it easier to learn a classifier head on top leading to a better
transfer to next tasks.

3 EXPERIMENTS & RESULTS

3.1 SETUP

We now briefly describe the experimental setup including the benchmarks, approaches and training
details. More details can be found in Appendix A. After the experimental details, we provide the
main results of the paper.

Benchmarks

• Split CIFAR-10: We split CIFAR-10 dataset (Krizhevsky et al., 2009) into 5 disjoint sub-
sets corresponding to 5 tasks. Each task has 2 classes.

4
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where | · | is a matrix determinant operator, ↵ = D/(m"2), ↵j = D/(mj"2),

" = 0.5, and Cj denotes the number of classes for task ‘j’.

Hypothesis: less forgetful representations maintain more diversity and 
discrimination in the features making it easy to learn a classifier head on 
top leading to better forward transfer 
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Less forgetting generally leads to representations that have higher AvgFDiv score, both 

for randomly initialized and for pre-trained models
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Dataset Random Init Pretrain
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

Split CIFAR-10 0.64 0.56 0.65 0.68 0.66 0.58
Split CIFAR-100 0.92 0.88 0.91 0.86 0.86 0.88
CIFAR100 Superclasses 0.3 (0.11) 0.4 (0.03) 0.4 (0.03) 0.16 (0.40) 0.46 (0.01) 0.62
CLEAR10 0.7 0.65 0.73 0.43 (0.02) 0.37 (0.04) 0.64
CLEAR100 0.58 0.59 0.53 0.83 0.8 0.81
Split ImageNet 0.85 0.85 0.79 - - -

Table 1: Spearman correlation between AvgFgt and AvgFwtk for different k, which computes the correla-
tion over different settings (different training methods and random runs). p-values are shown in parenthesis if
greater than or equal to 0.01.

Dataset Method Random Init Pre-trained
AvgFgt " AvgFDiv " AvgFgt " AvgFDiv "

Split
CIFAR-10

FT -28.18 ± 2.97 35.59 ± 10.52 -29.01 ± 7.97 60.18 ± 36.35
LP-FT - - -3.39 ± 1.06 171.41 ± 13.41
ER (m=50) -9.18 ± 1.50 37.33 ± 14.66 -7.15 ± 1.97 66.18 ± 35.74
AGEM (m=50) -13.77 ± 2.38 35.79 ± 16.34 -19.26 ± 5.01 60.77 ± 41.80
MT -3.88 ± 5.86 36.88 ± 13.21 -4.83 ± 5.56 86.88 ± 21.82
FOMAML -0.75 ± 1.39 45.52 ± 7.82 -1.40 ± 0.61 65.26 ± 10.36

Split
CIFAR-100

FT -25.83 ± 2.43 224.27 ± 3.63 -24.33 ± 4.19 263.31 ± 27.46
LP-FT - - -4.46 ± 0.46 332.10 ± 2.97
ER (m=20) -9.44 ± 1.11 225.95 ± 2.38 -9.19 ± 0.28 281.31 ± 3.59
AGEM (m=20) -18.70 ± 1.00 224.46 ± 2.93 -20.05 ± 3.12 260.01 ± 20.32
MT -9.35 ± 4.96 225.33 ± 4.62 -7.93 ± 4.04 277.14 ± 8.31
FOMAML -3.05 ± 0.98 225.87 ± 5.31 -4.40 ± 0.20 271.56 ± 7.45

CIFAR-100
Superclasses

FT -14.45 ± 1.02 458.73 ± 12.99 -13.51 ± 0.56 599.29 ± 13.65
LP-FT - - -2.66 ± 0.53 702.43 ± 4.10
ER (m=5) -11.33 ± 1.79 463.78 ± 7.86 -11.36 ± 1.44 600.23 ± 23.86
AGEM (m=5) -12.28 ± 0.84 459.65 ± 14.52 -12.11 ± 0.76 594.70 ± 27.51
MT -1.30 ± 4.02 465.47 ± 7.84 -5.50 ± 3.65 601.38 ± 16.92
FOMAML 1.99 ± 0.76 470.27 ± 5.17 -1.24 ± 0.44 620.66 ± 10.34

CLEAR10

FT 0.93 ± 1.01 76.72 ± 1.70 0.14 ± 0.42 265.72 ± 1.08
LP-FT - - 0.87 ± 0.11 281.78 ± 0.34
ER (m=10) 1.79 ± 0.24 76.76 ± 1.62 -0.05 ± 0.23 263.89 ± 0.82
AGEM (m=10) 2.03 ± 0.86 76.00 ± 1.79 -0.01 ± 0.19 266.36 ± 1.02
MT 4.49 ± 0.99 79.01 ± 1.41 0.77 ± 0.51 265.25 ± 1.49
FOMAML 4.49 ± 0.56 77.98 ± 1.27 0.84 ± 0.34 262.88 ± 1.28

CLEAR100

FT 5.06 ± 0.29 179.47 ± 1.01 -0.03 ± 0.13 441.22 ± 0.50
LP-FT - - 1.52 ± 0.07 488.94 ± 0.71
ER (m=5) 5.53 ± 0.24 181.39 ± 1.56 0.34 ± 0.18 440.48 ± 0.79
AGEM (m=5) 4.94 ± 0.36 179.12 ± 1.03 0.04 ± 0.14 441.26 ± 0.27
MT 8.65 ± 0.96 186.16 ± 3.31 1.56 ± 0.15 444.38 ± 0.41
FOMAML 9.21 ± 0.12 184.38 ± 1.58 1.55 ± 0.16 440.30 ± 0.71

Split
ImageNet

FT -54.62 ± 2.26 271.98 ± 0.96 - -
ER (m=10) -27.56 ± 0.63 289.18 ± 3.99 - -
AGEM (m=10) -50.53 ± 1.58 274.07 ± 1.20 - -
MT -16.79 ± 0.69 274.88 ± 2.13 - -
FOMAML -10.58 ± 0.69 305.63 ± 5.59 - -

Table 2: Comparing AvgFgt with AvgFDiv. The numbers for AvgFgt are percentages. Bold numbers are
superior results.

sentations that have higher AvgFDiv score. Similarly, on pre-trained models, methods with lower
overall forgetting between the upstream and downstream tasks, such as LP-FT, leads to the highest
AvgFDiv score. These results suggest that less forgetful representations tend to be more diverse
and discriminative.

4 RELATED WORKS

Continual Learning (also known as Life-long Learning) (Ring, 1995; Thrun, 1995) aims to learn a
model on a sequence of tasks that has good performance on all the tasks observed so far. However,
SGD training, relying on IID assumption of data, tends to result in a degraded performance on older
tasks, when the model is updated on new tasks. This phenomenon is known as catastrophic forget-

8

Average forgetting Average diversity
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• Here, no difference is made between layers

• But it emphasizes the beneficial role of diversity in the features

learned in each learning task
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Outline

1. How to measure the difficulty of a training example

2. What is catastrophic forgetting

3. Catastrophic forgetting and hidden representations

4. Catastrophic forgetting and the semantic similarity between tasks

5. Can forgetting be useful for transfer learning?

6. Is “forgetting less” useful for transfer learning?

7. Conclusions
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Conclusions

• Better transfer 

– If the tasks are orthogonal or similar (as measured by PCA on the 
subspaces) 

– If the learnt features (in the first layers) are diverse and useful 
in general (for different tasks)

Devise algorithms that promote that
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