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Measuring the difficulty of examples

* Previously

— A statistical view

* The probability of predicting the ground truth label for an example omitted
from the training set

— A learning view

* The difficulty of learning an example, parameterized by the earliest training
iteration after which the model (e.g. NN) predicts the ground truth class for
that example in all subsequent iterations

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34.
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Measuring the difficulty of examples

* Proposition

— The notion of “prediction depth”

— And three distinct difficulty types:

* Does this example look mislabeled?
* |s classifying this example only easy if the label is given?

* |s this example ambiguous both with and without its label?

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34.
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== Prediction depth
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Prediction depth

 The number of hidden layers after which the network’s final

prediction is already determined
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Prediction depth

The number of hidden layers after which the network’s final

prediction is already determined
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How to measure the prediction depth?

* k-NN classifier probes (with k = 30)

— Compare the hidden embedding of an input
to those of the training set

(what is the class of the k nearest neighbors in the embedding considered)

* A prediction is defined to be made at a depth L=/ if

— The k-NN classification after layer L =/ —1 is different from the network’s

final classification,

— but the classification of k-NN probes after every layer L >/ are all equal to

the final classification of the network
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What they claim to show

The prediction depth is larger for examples that visually appear to be more
difficult

— And this is consistent between NN’s architectures and random seeds

Predictions are on average more accurate for validation points
with small prediction depths

Final predictions for data points that converge earlier during training
are typically determined in earlier layers

Both the adversarial input margin and output margin are larger for examples with
smaller prediction depths

— Intervention to reduce the output margin leads to predictions being made
only in the latest hidden layers
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What they claim to show

Early layers generalize while later layers memorize

Networks converge from input layers towards output layers

Easy examples are learned first

Networks present simpler functions earlier in the training
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What they claim to show

 The prediction depth is larger for examples that visually appear to be more

difficult
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What they claim to show

* Predictions are on average more accurate for validation points

with small prediction depths
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250 ResNet18 were trained on CIFAR100 (90:10%
random train:validation splits). Comparison of the
average prediction depth of a point to the consensus-
consistency of the corresponding prediction.

Consensus-consistency: the fraction of NNs that
predict the ensemble’s consensus class
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For each dataset, 250 ResNet18 were trained on
CIFAR100 (90:10% random train:validation splits).
Each time a point appears in the validation split, its
prediction depth and whether the prediction was

correct was recorded.
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What they claim to show

* Final predictions for data points that converge earlier during training
are typically determined in earlier layers

— Measure the difficulty of learning an example by the speed at which the model’s prediction converges

for that input during training

— lteration learned. A data point is said to be learned by a classifier at training iteration t = t if the
predicted class at iteration t = 1 — 1 is different from the final prediction of the converged NN and the

predictions at all iterations t > T are equal to the final prediction of the converged NN.
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What they claim to show

* Both the adversarial input margin and output margin are larger

for examples with smaller prediction depths

Output margin: difference between the largest and second-largest output of the NN (logits)

— Adversarial input margin: the smallest norm required for an adversarial perturbation in the

input to change the NN’s class prediction

Output Margin
Input Margin

Prediction Depth | Prediction Depth

Shows that data points with smaller prediction depths have both larger input and output margins on average,

and that variances of the input and output margins decrease as the prediction depth increases
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What they claim to show

* Different forms of example difficulty

)

» Validation: points with low prediction depth are “clear’
and “ambiguous” otherwise

* Training: idem

— Easy examples (Low PD,, and low PDy,.i,)

— Look like a different class (Low PD,, and high PD;,.i,)-
* E.g. mislabeled examples

— Ambiguous unless the label is given (High PD,, and low PD;,,;,).

* E.g. resemble both their own class and another class
Likely to be misclassified

— Ambiguous (High PD,,, and high PD;,;,).
 Examples that may be corrupted or of a rare sub-class.
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What they claim to show
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These examples are difficult to connect to their predicted class in the validation split but easy to
connect to their ground truth class during training. These points may, for example, visually
resemble both their own class and another class. They are likely to be misclassified.
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Conclusion

Introduces a notion of example difficulty called the prediction depth

* which uses the processing of data inside the network

to score the difficulty of an example
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Issues

In numerous cases, transfer learning works well

But in other cases, it does not

— A pretrained model on ImageNet leads to poor performance on MRI
images [Merkow, et al. 2017]

And we still cannot predict how transfer will fare from one

learning task to another and the reasons for success or failure
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Conclusions (1)

Transfer learning -5 mostly heuristical approaches so far

1. Parallel transport is a natural way for looking at transfer learning

— The covariant derivative is then a measure of difference

* How to compute it?

— Pioneering works in computer vision

* What about when the source and target domains are different?

— TransBoost: a proposal

2. Transfer learning is path dependent in general

— The study of these path dependencies is important ...

e Curriculum learning

* Longlife learning

— ...and a wide open research question



Conclusions (2)

* The theoretical guarantees for transfer learning:

* Do not necessarily depend on the performance of the source hypothesis he

But depend on the bias that hg determines

* Involve the capacity of the space of transformations

(and the path followed between source and target)

Still to be explored
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