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How to measure the difficulty

of examples?
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Measuring the difficulty of examples

• Previously

– A statistical view

• The probability of predicting the ground truth label for an example omitted 
from the training set

– A learning view

• The difficulty of learning an example, parameterized by the earliest training 
iteration after which the model (e.g. NN) predicts the ground truth class for 
that example in all subsequent iterations

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of 
example difficulty. Advances in Neural Information Processing Systems, 34.
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Measuring the difficulty of examples

• Proposition 

– The notion of  “prediction depth”

– And three distinct difficulty types:

• Does this example look mislabeled?

• Is classifying this example only easy if the label is given?

• Is this example ambiguous both with and without its label?

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of 
example difficulty. Advances in Neural Information Processing Systems, 34.
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Prediction depth

...



129 / 146

Prediction depth

• The number of hidden layers after which the network’s final 
prediction is already determined
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Prediction depth

• The number of hidden layers after which the network’s final 
prediction is already determined

Input

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the last layer

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the first layer

Figure 1: Deep models use fewer layers to (effectively) determine the prediction for easy examples and more layers

for hard examples. Left: A cartoon illustrating the definition of prediction depth (given in Section 2.1). Also shown
are training examples from CIFAR100 (“Clock”) and SVHN (“Digit 8”). The examples shown are predicted at the
input (first layer) or softmax (last layer) of ResNet18. The examples predicted in the input are visually typical
(“easy”), while those predicted in the softmax are mislabeled and/or visually confusing (“hard” examples). To find the
prediction depth, we build k-NN classifiers from the embeddings of the training set in different layers of the model.
The prediction depth corresponds to the earliest layer at which the predictions of all subsequent k-NN classifiers
converge to a fixed label. Right: Probability of prediction depth in ResNet18 models for four datasets (training split).
We see that the four distributions have different characteristic prediction depths. Ranking the mean prediction depths
of these datasets in ascending order, we observe: Fashion MNIST (smallest), SVHN (second), CIFAR10 (third), and
CIFAR100 (largest). This order aligns with how one might intuitively rank the difficulties of these classification tasks.

existing notions of example difficulty (E.g. Carlini et al. (2019)) provide a one-dimensional view of difficulty
which can not distinguish between examples that are difficult for different reasons.

In this paper, we take a significant step towards resolving the above shortcomings. To take the processing
of the data into account we propose a new measure of example difficulty, the prediction depth, which is
determined from the hidden embeddings. To escape the one-dimensional view of difficulty, we introduce three
distinct difficulty types by relating the hidden embeddings for an input to high-level concepts about example
difficulty: “Does this example look mislabeled?”; “Is classifying this example only easy if the label is given?”;
“Is this example ambiguous both with and without its label?”. Furthermore, we show how this enhanced
notion of example difficulty can unify our understanding of several seemingly unrelated phenomena in deep
learning. We hope that the results presented in this work will aid the development of models that capture
heteroscedastic uncertainty, our understanding of how deep networks respond to distributional shift, and
the advancement of curriculum learning approaches and machine learning fairness. These connections are
discussed in Section 5.

Contributions Our main contributions are as follows:

• We introduce a measure of computational example difficulty : the prediction depth (PD). The prediction
depth, illustrated in Figure 1, represents the number of hidden layers after which the network’s final
prediction is already (effectively) determined (Section 2).

• We show that the prediction depth is larger for examples that visually appear to be more difficult, and
that prediction depth is consistent between architectures and random seeds (Section 2.2).

• Our empirical investigation reveals that prediction depth appears to establish a linear lower bound on
the consistency of a prediction. We further show that predictions are on average more accurate for
validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training are typically
determined in earlier layers which establishes a correspondence between the training history of the
network and the processing of data in the hidden layers (Section 3.2).

2
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Prediction depth

• The number of hidden layers after which the network’s final 
prediction is already determined
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heteroscedastic uncertainty, our understanding of how deep networks respond to distributional shift, and
the advancement of curriculum learning approaches and machine learning fairness. These connections are
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Contributions Our main contributions are as follows:

• We introduce a measure of computational example difficulty : the prediction depth (PD). The prediction
depth, illustrated in Figure 1, represents the number of hidden layers after which the network’s final
prediction is already (effectively) determined (Section 2).

• We show that the prediction depth is larger for examples that visually appear to be more difficult, and
that prediction depth is consistent between architectures and random seeds (Section 2.2).

• Our empirical investigation reveals that prediction depth appears to establish a linear lower bound on
the consistency of a prediction. We further show that predictions are on average more accurate for
validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training are typically
determined in earlier layers which establishes a correspondence between the training history of the
network and the processing of data in the hidden layers (Section 3.2).
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How to measure the prediction depth?

• k-NN classifier probes  (with k = 30)

– Compare the hidden embedding of an input
to   those of the training set

(what is the class of the k nearest neighbors in the embedding considered)

• A prediction is defined to be made at a depth L = l if

– The k-NN classification after layer L = l – 1 is different from the network’s 
final classification, 

– but the classification of k-NN probes after every layer L ≥ l are all equal to 
the final classification of the network
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What they claim to show

• The prediction depth is larger for examples that visually appear to be more 
difficult

– And this is consistent between NN’s architectures and random seeds

• Predictions are on average more accurate for validation points 
with small prediction depths

• Final predictions for data points that converge earlier during training 
are typically determined in earlier layers

• Both the adversarial input margin and output margin are larger for examples with 
smaller prediction depths

– Intervention to reduce the output margin leads to predictions being made 
only in the latest hidden layers
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What they claim to show

1. Early layers generalize while later layers memorize

2. Networks converge from input layers towards output layers

3. Easy examples are learned first 

4. Networks present simpler functions earlier in the training
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What they claim to show

• The prediction depth is larger for examples that visually appear to be more 

difficult
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depth, illustrated in Figure 1, represents the number of hidden layers after which the network’s final
prediction is already (effectively) determined (Section 2).

• We show that the prediction depth is larger for examples that visually appear to be more difficult, and
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• Our empirical investigation reveals that prediction depth appears to establish a linear lower bound on
the consistency of a prediction. We further show that predictions are on average more accurate for
validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training are typically
determined in earlier layers which establishes a correspondence between the training history of the
network and the processing of data in the hidden layers (Section 3.2).
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What they claim to show

• Predictions are on average more accurate for validation points 
with small prediction depths

250 ResNet18 were trained on CIFAR100 (90:10% 
random train:validation splits). Comparison of the 
average prediction depth of a point to the consensus-
consistency of the corresponding prediction.

For each dataset, 250 ResNet18 were trained on 
CIFAR100 (90:10% random train:validation splits). 
Each time a point appears in the validation split, its 
prediction depth and whether the prediction was 
correct was recorded.

Consensus-consistency: the fraction of NNs that 
predict the ensemble’s consensus class 
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What they claim to show

• Final predictions for data points that converge earlier during training 

are typically determined in earlier layers

– Measure the difficulty of learning an example by the speed at which the model’s prediction converges

for that input during training

– Iteration learned. A data point is said to be learned by a classifier at training iteration t = t if the 

predicted class at iteration t = t – 1 is different from the final prediction of the converged NN and the 

predictions at all iterations t ≥ t are equal to the final prediction of the converged NN.

Each time an input appears in the 
validation split, the prediction depth

and the iteration learned are recorded

Positive correlation between the 
prediction depth and the iteration learned

appears for all datasets
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What they claim to show

• Both the adversarial input margin and output margin are larger

for examples with smaller prediction depths

– Output margin: difference between the largest and second-largest output of the NN (logits)

– Adversarial input margin: the smallest norm required for an adversarial perturbation in the 

input to change the NN’s class prediction

Figure 6: Left and Middle: Test examples with smaller prediction depths, on average, have larger output and input

margins. We train 25 VGG16 models with different random seeds on CIFAR10 (see Appendix A for details) and
compare the mean prediction depth of each test point in these 25 runs to its mean output and input margins (log
scales). Correlation coefficients are �0.70 (output margin) and �0.69 (input margin). Although the prediction depth
could be at most 14, no data point has an average prediction depth greater than 12. Right: An intervention that

does not encourage large output margin (“0-Hinge”) results, as predicted, in models where the predictions are effectively

determined in higher layers in the network compared to the standard training (“CE”).

mislabeled training data; the original labels of the mislabeled training data and the test split. In Figure 5
(middle and right plots) we see that many of the important features of the training learning curve are indeed
present in the inference learning curve. During training (middle), mislabeled data are initially processed as
though they are a member of their original class (before they were mislabeled) (Liu et al., 2020a). After an
initial period of learning, the network begins to learn the new (random) labels that have been assigned to
those data points, so the orange curve moves upwards, and the green curve downwards. At this point, a
maximum is observed in the training accuracy (Arpit et al., 2017). In the right plot we see that these same
phenomena occur in the inference learning curve.

3.3 Deep models exhibit larger margins for inputs with lower prediction depth

It is reported in the literature that deep networks learn functions of increasing complexity during training (Hu
et al., 2020; Kalimeris et al., 2019). We frame this observation differently: the learned function is “locally
simpler” in the vicinity of data points with smaller prediction depths, and these points are typically learned
earlier in training (Section 3.2).

Two known measures of the simplicity of a learned function are the output margin (the difference between
the largest and second-largest logits) and the adversarial input margin (the smallest norm required for an
adversarial perturbation in the input to change the model’s class prediction). We estimate the adversarial
input margin, �, with a linear approximation (Jiang et al., 2018): for an input x with predicted class i,
� ' minj 6=i

|zi�zj |
|rx(zi�zj)|

where zj is the logit returned by the network for class j. Figure 6 (left and middle

plots) show that data points with smaller prediction depths have both larger input and output margins on
average and that variances of the input and output margins decrease as the prediction depth increases.

To illustrate the strength of the relationship between the prediction depth and output margin, we
demonstrate that reducing the output margin of the learned function results in a model that clusters the
data only in the latest layers: such a solution has a very high average prediction depth. We do not minimize
the output margin directly but rather use a loss and an optimizer that do not encourage high output margin.
Naturally there are many unknowns that may contribute to this effect. We simply report the intervention
and the outcome.

The intervention is performed as follows: we construct a loss function that does not promote confidence: a
zero-margin hinge loss (“0-Hinge”), and optimize the network using full-batch gradient descent with momentum
and very small learning rate. For an input x with label i the 0-Hinge loss is given by l(x) =

P
j 6=i max(0, zi�zj)

where zj represents the logit for class j. The form of this intervention is justified in Appendix A.7. As a
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Shows that data points with smaller prediction depths have both larger input and output margins on average, 
and that variances of the input and output margins decrease as the prediction depth increases
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What they claim to show

• Different forms of example difficulty
• Validation: points with low prediction depth are “clear” 

and “ambiguous” otherwise
• Training: idem

– Easy examples (Low PDval and low PDtrain)

– Look like a different class (Low PDval and high PDtrain). 

• E.g. mislabeled examples

– Ambiguous unless the label is given (High PDval and low PDtrain). 

• E.g. resemble both their own class and another class 
Likely to be misclassified

– Ambiguous (High PDval and high PDtrain). 

• Examples that may be corrupted or of a rare sub-class.



140 / 146

What they claim to show

These examples are difficult to connect to their predicted class in the validation split but easy to 
connect to their ground truth class during training. These points may, for example, visually 
resemble both their own class and another class. They are likely to be misclassified. 

Looks like a different classEasy AmbiguousAmbiguous w/o its label

C
la

ss
: B

ird

Figure 7: The prediction depth can be the same, or very different for the same input when it occurs in the train and

validation splits. Corners of this plot correspond to different forms of example difficulty. (See Section 4 for discussion.)
We train 250 ResNet18 models on CIFAR10 with random 90:10% train:validation splits as described in Appendix A.
These histograms compare average prediction depth for each data point when it occurs in the validation split vs the
training split. This behavior is consistently reproduced for all datasets and architectures in Appendix C.5. Below we
show extreme (not hand-chosen) images of “Birds” that appear closest to the corners of this plot. The consensus class
is given above each image (tiebreaks favor the class “Bird”.).

control, we additionally train a model in the standard fashion using the cross-entropy loss and SGD with
momentum and large initial learning rate. Since full-batch gradients are computationally expensive, we
train on a subset of CIFAR10 (see Appendix A.7, where we also give the hyperparameters and learning
curves.). The output margin obtained with the intervention is 5 orders of magnitude smaller than in the
control experiment: 2.0⇥ 10�4 ± 2.0⇥ 10�4 for the 0-Hinge loss and 1.6⇥ 101 ± 0.50⇥ 101 for cross-entropy
loss. Figure 6 (right) compares the accuracies of the k-NN probes resulting from these training approaches.
The 0-Hinge loss training achieves only a marginal improvement in accuracy (red) over an untrained network
(purple), and the training split is accurately clustered only in the latest layers. This confirms the predicted
behavior: the intervention leads to a model that exhibits both very small average output margins and very
late clustering of the data. Very late clustering of the data implies high prediction depths since the k-NN
probe classifications change in the latest layers for many data points.

4 Beyond a One-Dimensional Picture of Example Difficulty
In this section we transcend the one-dimensional picture of example difficulty by identifying different underlying
reasons behind the difficulty of an example, in a way that is general to different architectures and datasets.

Figure 7 shows that the prediction depth can be different when an input occurs in the training split vs.
the validation split. Thus, there are two axes of example difficulty:

1. Difficulty of making a prediction when an input is in the validation set
2. Difficulty of finding commonalities during training with other examples of the same ground truth class

Both axes have a range from “clear” to “ambiguous”. In Section 3.1 we show that predictions made
for validation points with later prediction depths are often inconsistent, with low consensus-consistency.
Conversely, a low prediction depth typically indicates an input with high consensus-consistency. For Axis
1 we will identify validation points with low prediction depths as “clear” and those with high prediction
depths as “ambiguous”. We will additionally identify a low or high prediction depth in the training split
with examples that are respectively “clear” and “ambiguous” on Axis 2. By making combinations of low/high
values of (PDVal.,PDTrain) we obtain four extremes of example difficulty:

9

Mislabeled Misclassified Corrupted
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Conclusion

Introduces a notion of example difficulty called the prediction depth

• which uses the processing of data inside the network
to score the difficulty of an example
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Outline

1. Transfer learning: questions

2. Transfer learning in neural networks

3. TransBoost: an algorithm and what it tells on the role of the source 
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Issues

• In numerous cases, transfer learning works well

• But in other cases, it does not

– A pretrained model on ImageNet leads to poor performance on MRI 
images [Merkow, et al. 2017]

• And we still cannot predict how transfer will fare from one 
learning task to another and the reasons for success or failure
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Conclusions (1)

Transfer learning            mostly heuristical approaches so far

1. Parallel transport is a natural way for looking at transfer learning

– The covariant derivative is then a measure of difference

• How to compute it?
– Pioneering works in computer vision

• What about when the source and target domains are different?
– TransBoost: a proposal

2. Transfer learning is path dependent in general

– The study of these path dependencies is important ...

• Curriculum learning

• Longlife learning

– ... and a wide open research question
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Conclusions (2)

• The theoretical guarantees for transfer learning:

• Do not necessarily depend on the performance of the source hypothesis hS

But depend on the bias that hS determines

• Involve the capacity of the space of transformations

(and the path followed between source and target)

Still to be explored
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