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Instruction: cut the following figure in n equal parts
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An example of ANTI-curriculum
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Order effects

How to predict them?

How to quantify them?

How to formalize them?

How to control them?
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Continual learning

What?

— Do not retrain for each new task

— Try to benefit from what has been learned previously

Why?
— Often too costly to retrain for each new task

* Lots of (labeled) training data is needed

— A good “source” could provide a lot of useful information

When?
_ Having a good source Transfer learning

e How to evaluate this?

How?

— To transfer from one source to a target
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Transfer learning and curriculum learning

* An active and constructive viewpoint:

— Training a system for a target task through successive intermediate

learning tasks

— Necessitates

* To identify relevant intermediate subtasks

e To order them

Curriculum learning
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* Transfer learning

— ability to use what has been learned from a previous task on a new task.

The difference with continual learning is that transfer learning is not

concerned about keeping the ability to solve previous tasks.

* Curriculum learning

— a training process that proposes a sequence of more and more difficult
tasks to a learning algorithm in order to make it able to learn, at last, a

generally harder task.

The sequence of tasks is designed in order to be able to learn the last one.

7 /146



When Py y(train) # Py y(test)

(and, not necessarily) Py(train) # Py(test)

Concept shift
and sequences of concept shifts
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Outline

Transfer learning: questions

Transfer learning in neural networks

TransBoost: an algorithm and what it tells on the role of the source

Curriculum learning and the geometry of the space of learning tasks

How to measure the difficulty of a training example

Conclusions
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Transfer learning

10 / 146



Questions (more of them)

I”

 Whatis a “successful” transfer learning situation?
— How to measure “success”?

— How can we measure the performance of transfer learning?

— |Is “failure” possible? lllustrations?

Remark:
if the target data set is sufficiently large,

transfer learning should not bring any advantage
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Questions

What are the conditions for a successful transfer learning?

Should the proximity between the source and the target play a

role?

— How to measure this proximity?

* Between the input distributions P and P;?
* Between the underlying true source and target functions f; and f;?
What should intervene in the guarantees?
— “distance” between source and target?
— Size of the target training data?

— Performance of the source hypothesis?
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Questions

e What to transfer?

e When to transfer? Useful or not?

e How to transfer?
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Bounds between the real risk and the empirical risk

By removing the “problematic” examples, you go

* From the non realisable case (7 finite)

log [H| + log%

Vhe H,Vo<1: P™
2m

Rreei(h) < Remp(h) + \/

]>1_5

* To the realisable one (H finite)

Vh e H,Vo <1: Pm RRéel(h) < REmp(h) +

m

logHJrlog;] .15

14 / 146



Which link between training and testing?

Transfer Learning
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Which link between training and testing?

Transfer Learning

— Reuse the latent space learnt on the source data

Training images

1: Feature
learning

2 : Feature
transfer

I Source task

Convolutional layers

Fully-connected layers

C1-C2-C3-C4-C5

Source task labels

African elephant
i

y

v
3 : Classifier
learning

Training images  Sliding patches

C1-C2-C3-C4-C5

Target task

New adaptation
layers trained
on target task

i Wall clock
FC6 [ FC7 FC8 . —
4096 or f-“
6144-dim B | Green snake
/ vector — .
P
Yorkshire terrier
Transfer
parameters
. Chair
m Background
FC6 [ FC7 FCa —> FCb —» -
4096 or o N
6144-dim gl Person
9216-dim 4096 or vector - i
vector  6144-dim ﬂl .
vector L TV/monitor

Target task labels

From Oquab, M., Bottou, L., Laptev, |., & Sivic, J. (2014). Learning and transferring mid-level image representations using

convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724).

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of example difficulty. Advances in Neural Information

Processing Systems, 34.
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Which link between training and testing?

Transfer Learning

— Reuse the latent space learnt on the source data

— Re-use the first layers of a NN trained on task A

— And fine-tune on task B

-3 Increases the performance wrt. to training on task B alone
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Transfer Learning

e Guarantees function of
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Transfer Learning

e Guarantees function of

— The quality of the source hypothesis on the source task

* The better hs, the better h;
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Transfer Learning

e Guarantees function of

— The quality of the source hypothesis on the source task

* The better hs, the better h;

— A “distance” between the source task and the target one

 The smaller the distance, the better the transfer
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Transfer Learning

Really?

e Guarantees function of

— The quality of the source hypothesis on the source task

* The better hs, the better h;

— A “distance” between the source task and the target one

 The smaller the distance, the better the transfer

— The size of the target training data

* The larger the target training data set, the useless the transfer
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Outline

Transfer learning: questions

Transfer learning in neural networks

TransBoost: an algorithm and what it tells on the role of the source

Curriculum learning and the geometry of the space of learning tasks

How to measure the difficulty of a training example

Conclusions
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Transfer learning

for neural networks
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Transfer learning for deep neural networks

* |n practice, very few people train an entire Convolutional Network from scratch.

* Instead, it is common to pretrain a ConvNet on a very large dataset
(e.g. ImageNet, which contains 1.2 million images with 1000 categories),

— and then use the ConvNet either as an initialization

— or a fixed feature extractor for the task of interest.

 Examples of pretrained networks
— Oxford VGG Model
— Google Inception Model
— Microsoft ResNet model

[Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural
networks? In Advances in Neural Information Processing Systems 27 (NIPS “14), NIPS
Foundation, 2014. ]
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Transfer learning for deep neural networks
 The assumption:

— the features learned for a task can be used almost as such

for other, related, tasks

 Approach:

— Reuse the first layers and learn the last ones

— Same input spaces X = Xy, possibly Yo # Y
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Example: VGG 16 filters

conv3_1:a few of the 256 filters

conv1_1:a few of the 64 filters

conv2_1:a few of the 128 filters conv4_1:a few of the 512 filters

conv5_1: afew of the 512 filters

What the successive layers learn




Principle

Lion

\ | :

Image labels
Krizhevsky, Sutskever, Hinton — NIPS 2012

http://slideplayer.com/slide/8370683/ 27 / 146



Transfer learning for deep neural networks

1: Feature
learning

2 : Feature
transfer

Training images

Source task

Convolutional layers

Fully-connected layers

C1-C2-C3-C4-C5

— FC6 i FC7

\ 4

4096 or

6144-dim

) vector

3 : Classifier
learning

Training images Sliding patches

Transfer
parameters

FC8

Source task labels

! “""~ i African elephant

] - Wall clock

1 Green snake

Yorkshire terrier

C1-C2-C3-C4-C5

—» FC6 i FC7

4096 or

6144-dim

9216-dim 4096 or

vector

6144-dim
vector

Target task

vector

New adaptation
layers trained
on target task

—————» FCa —> FCb —» -

Chair

Background

o ™

b Person

n TV/monitor

Target task labels

Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

From Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional

neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724).
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Experiments on two domains

ImageNet

1000 Classes

500 Classes
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Transfer

Input B

Layer n

AnB: Frozen Weights
d

"‘H Task A

—I] Task B
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Input A |
i 1 Task A

Transfer

Input B BT . —I] Task B

AnB*: Fine-tuning
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\:\_\ NN —

Hypothesis: If transferred features are specific to task A, performance on

task B drops. Otherwise the performance should be the same.

http://slideplayer.com/slide/8370683/ 32 /146



transfer
AnB

B Images B Labels
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transfer
AnB

Compare to w

B Images B Labels

baseB
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* Comparisons between

— Base B : a NN trained directly on database B (500 random classes)

— Selffer BnB (self-transfer):

* A number of the first layers are frozen, and re-training is done on the last ones

— Selffer BnB* (self-transfer + retraining):

* A number of the first layers are frozen, and re-training is done on all layers (a

kind of initialization, but on the same task)

— Transfer AnB (transfer + fine-tuning last layers only):

— Transfer AnB+ (transfer + retraining of all layers):
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Results
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Figure 2: The results from this paper’s main experiment. 7op: Each marker in the figure represents

the average accuracy over the validation set for a trained network. The

0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each [dark blue|dot represents a BnB network.

BnB™ networks, or fine-tuned versions of BnB.

red diamonds |are the fine-tuned AnB™ versions.
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ightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.
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Results: what to think of them?

All layers but the first are retrained

NN (8 layers) trained
from scratch
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It is clear that the higher the layer, the more specific it is to task A
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Interpretation

12?
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Interpretation
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0.60

Top-1 accuracy (higher is better)

0.54¢

S
o))
)

0.58;

0.56;

Fragile
co-adaptation

Representation

The first layers have specificity

captured general features

Pt

0.52

The features tend to be
-O- baseB specific to domain A +
—— selffer BnB fragile co-adaptation
— transfer AnB
0 1 2 3 4 5 6 7

Layer n at which network is chopped and retrained

41 /146



 Remark on the scientific methodology

It was essential to look at “fragile co-adaptation”

in order to assess the true effect of “representation specificity”

42 [/ 146



Top-1 accuracy (higher is better)

Interpretation

Retrain on all layers (fine-tuning) on domain B
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Interpretation

Retrain on all layers (fine-tuning) on domain B after transfer from domain A
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Interpretation

Retrain on all layers (fine-tuning) on domain B after transfer from domain A

0.66— \
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Transfer + fine-tuning improves generalization

0.64f

o
o))
)

©
D
o

Top-1 accuracy (higher is better)

0.58}
056 |"O - baseB
—— selffer BnB A surprising finding since there is already a
selffer BnB~ | o for th y
0541 4ot ccorang arge training dataset for the target tas
transfer AnB*
0.52— 1 ‘ . l 1
0 1 2 3 4 5 6 T 5 /146

Layer n at which network is chopped and retrained



Conclusions of the paper

Be careful to separate effects

— Fragile co-adapted first layers

— Specialization of higher layers
The transferability gap grows as the distance between tasks increases

But even features transfered from distant tasks are better than
random weights

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep
neural networks?. Advances in neural information processing systems, 27.
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ImageNet has many categories

Dataset A: random

gecko

fire truck

baseball

panther

rabbit
gorilla

http://slideplayer.com/slide/8370683/

Dataset B: random

garbage truck
toucan
radiator
binoculars
lion
bookshop
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ImageNet has many categories

Dataset A: man-made

fire truck
radiator
baseball

binoculars

bookshop

Di

ssimi

http://slideplayer.com/slide/8370683/

ar

Dataset B: natural

gorilla

gecko

toucan

rabbit
panther

lion
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* Comparison
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Transfer learning with language data

For texts in different
— Domains (e.g. finance, politics, society, ...)

— Media (e.g. journals, blogs, ...)

A word embedding is used

— A mapping of the words to a high-dimensional (e.g. 500) continuous vector
space where different words with similar meanings have a similar vector

representation

There exit pre-trained models trained on very large corpus of text
documents

— Google word2vec

— Stanford Glove model
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Outline

Transfer learning: questions

Transfer learning in neural networks

TransBoost: an algorithm and what it tells on the role of the source

Curriculum learning and the geometry of the space of learning tasks

How to measure the difficulty of a training example

Conclusions
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TransBoost: an algorithm for transfer learning

And what it tells about the role of the source

Cornuéjols, A. (2024). Some thoughts about Transfer learning. What role for the source domain.

International journal of Approximate Reasoning (IJAR), vol. 166, p.109107. Elsevier.
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A LUPI type of algorithm for transfer learning

Coup a jouer (R

O Noeud Max

Taking decision when the current

information is incomplete
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Algorithms for games

Coup & jouer (R

N

O Noeud Max

in

Taking decision when the current

information is incomplete

*  Which move to play?
The evaluation function is insufficiently informed at the root (current situation)

1. Query experts that have more information about

potential outcomes

2. Combination of the estimates through MinMax

“Experts” may live in input spaces that are different
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Algorithms for games and transfer learning

E XT U Noeud Max

/ O Noeud Min
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Can we do the “same” for transfer learning?
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Boosting

\

Y e = e[S

How to compute D, from ‘D, ; and thus h,?

I[] —

How to compute the o, ?
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TransBoost

Target Domain Source Domain

Hr(xT) = sign{ f: an hs (mn(x7)) }

n=1
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TransBoost

* Principle:

— Learn “weak projections”.  T; : XT — Xs

* Using the target training data: ST — {(Xz-,yz-)}1<z‘<m

— With boosting

» Projection Ty suchthat: €n = Piup,[hs(mn(xi)) # yi] < 0.5

* Re-weight the training time series and loop until termination

— Result Hr(x") = Sign{z Ol hs(ﬂn(XT))}

n=1
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Algorithm 1: Transfer learning by boosting

Input: hs : Xs — Vs the source hypothesis
St = {(x],y] }1<i<m: the target training set

Initialization of the distribution on the training set: Dy(i) =1/m fori=1,...,m ;

forn=1,...,N do

Find a projection m; : X7 — Xs|st. hs(m;(-)) performs better than random on D,,(S7) ;

Let ,, be the error rate of hig(7;(-)) on D, (S7) : € = Piwp, [hs(mn(x:)) # ys] (with &, < 0.5) ;
Computes a; = %logQ(l;ei) :

Update, forv=1...,m:

L Dn(i) _ Jemon i hs(ma(x])) =yl
Dn-{—l(Z) = 7 X {ean if hg (Wn(XzT)) 7& yZ—
Da(i) exp(—an yt " hs(ma(x{7)))

where Z,, is a normalization factor chosen so that D, be a distribution on &7 ;
end

Output: the final target hypothesis Hy : X5+ — V7

Hr(x") = Sign{nil an hs (vrn(xT>)} (2)
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Controlled data

— The slope to distinguish between classes
— The shapes of time series within each class: variety

— The noise level

x¢ = U xslope X class + Xmao sin(w; Xt + ;) +  7(t)

o

v TV
information gain sub shape within class noise factor

Ay i{w=10 =0 m=0.01,y=+1}

As i {w = ws.gn p=0,m=001,y=+1}

Ci{fw=" o=10 m=0,y==+1} By {w="1230 &0 m=—001,y=—1}

Bl:{w=%,v=0,]]]=—0_01!y=_1}
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The set of projections

Example of a projection 1t (a hinge function with three parameters):

* thefirst slope,

* the second one

* and the time of the hinge) that is adjusted to the target exemple x; by least square.

The resulting projection 1t(x;) is the concatenation of x; and the remaining part of the adjusted

hinge function.
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Results

Learning from

target data only Naive transfer

Very little TransBoost First a projection
information \l/ | / from X; to Xs by
in the source | SVR then using he
\ slope, noise, - SVM (test) Hy (train) Hy (test) SVR+SVM (test)
0.001, 0.001, 20 0.50 +0.08 | 0.08£0.03 | 0.08+0.02 0.49 + 0.01
0.005, 0.001, 20 049 +0.01 | 0.01+0.01 | 0.01 +0.01 0.45 £ 0.01
, 0.005, 0.002, 20 0.49 £ 0.03 | 0.03+0.02 | 0.04 +0.02 0.43 £ 0.01
Increasing
inf , 0.005, 0.020, 20 0.48 +0.03 | 0.09+0.01 | 0.10 +0.01 0.47 + 0.01
.m ormation 0.001, 0.200, 20 050+ 0.01 | 046+0.02 | 0.51+0.02 0.49 + 0.01
in the source
0.010, 0.200, 20 047 £0.03 | 0.34+0.02 | 0.35+0.02 0.35 + 0.01
0.001, 0.001, 50 0.50+0.01 | 0.08+0.03 | 0.08+0.02 0.41 + 0.01
Increasing 0.005, 0.001, 50 028 +0.09 | 0.01+0.01 | 0.01+0.01 0.28 + 0.01
level of 0.005, 0.002, 50 0.30+0.08 | 0.02+0.01 | 0.02+0.01 0.28 + 0.01
noise 0.005, 0.020, 50 030+ 0.08 | 0.04+0.01 | 0.04+0.01 0.31 + 0.01
0.001, 0.200, 50 050+ 0.01 | 0.38+0.03 | 0.44+0.02 0.43 + 0.01
0.010, 0.200, 50 0.12+0.04 | 0.10£0.02 | 0.11 +0.02 0.15 + 0.02
0.001,0.001,100 | 0.47 £0.03 | 0.07+0.02 | 0.07 = 0.02 0.23 + 0.01
0.005,0.001,100 | 0.07 £0.03 | 0.01+0.01 | 0.01+0.01 0.07 + 0.02
0.005,0.002,100 | 0.10+0.04 | 0.02+0.01 | 0.02+0.01 0.07 + 0.01
0.005, 0.020,100 | 0.09 £0.03 | 0.02+0.01 | 0.03 +0.01 0.07 £ 0.01 . .
Lots of information
0.001,0.200,100 | 046 +0.02 | 0.28+0.02 | 0.31 +0.01 0.31 + 0.01 .
in the source and
0.010,0.200,100 | 0.05+0.02 | 0.04+0.01 | 0.05+0.01 0.05 + 0.01 .
lots of noise
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High
noise
level

Large
Easy slope

Results

On the source

Learning from domain )
target data only TransBoost \l/ Naive transfert
. ) . \

slope, noise, t h (train) hT (test) H (train) H (test) hs (test) H’- (test)
0.001, 0.001, 20 0.46 £0.02 | 0.504+0.08 | 0.08 £0.03 | 0.08 4= 0.02 0.05 0.49 £+ 0.01
0.005, 0.001, 20 0.46 £0.02 | 0.494+0.01 | 0.01 £0.01 | 0.01 £ 0.01 0.01 0.45 £ 0.01
0.005, 0.002, 20 0.46 £0.02 | 0.494+0.03 | 0.03£0.02 | 0.04 £+ 0.02 0.02 0.43 £ 0.01
0.005, 0.02, 20 0.44 +£0.02 | 0.484+0.03 | 0.09 +£0.01 | 0.10 £ 0.01 0.01 0.47 £ 0.01
0.001, 0.2, 20 0.46 +0.02 | 0.504+0.01 | 0.46 +£0.02 | 0.51 4+ 0.02 0.11 0.49 £+ 0.01
{/AO.OI, 0.2,20 0.42+0.03 | 047+0.03 | 0.34 £0.02 | 0.35 +0.02 0.02 0.35 £ 0.01
0.001, 0.001, 50 0.46 £0.02 | 0.50+0.01 | 0.08 £0.03 | 0.08 4 0.02 0.06 0.41 £ 0.01
0.005, 0.001, 50 0.25£0.07 | 0.28 +=0.09 | 0.01 £0.01 | 0.01 £ 0.01 0.01 0.28 £ 0.01
0.005, 0.002, 50 0.27 £0.07 | 0.304+0.08 | 0.02 £0.01 | 0.02 £+ 0.01 0.02 0.28 £ 0.01
0.005, 0.02, 50 0.26 £0.07 | 0.304+0.08 | 0.04 £0.01 | 0.04 £ 0.01 0.01 0.31 £0.01
0.001, 0.2, 50 044 +£0.02 | 0.50+0.01 | 0.38+£0.03 | 0.44 £+ 0.02 0.15 0.43 £+ 0.01
0.01, 0.2, 50 0.10£0.03 | 0.12+0.04 | 0.10£0.02 | 0.11 &£ 0.02 0.03 0.15£0.02
0.001, 0.001, 100 | 0.434+0.03 | 047 £0.03 | 0.07 £ 0.02 | 0.07 + 0.02 0.02 0.23 +£0.01
0.005, 0.001, 100 | 0.06 +0.03 | 0.07 £0.03 | 0.01 £0.01 | 0.01 + 0.01 0.01 0.07 £ 0.02
0.005, 0.002, 100 | 0.08 +0.03 | 0.10 £0.04 | 0.02 £0.01 | 0.02 + 0.01 0.02 0.07 £ 0.01
0.005, 0.02, 100 0.08 £0.03 | 0.09 +0.03 | 0.02 +£0.01 | 0.03 £+ 0.01 0.01 0.07 £ 0.01
0.001, 0.2, 100 0.04 £0.03 | 046 +0.02 | 0.28 £0.02 | 0.31 = 0.01 0.16 0.31 £0.01
/ 0.01, 0.2, 100 0.03 £0.01 | 0.054+0.02 | 0.04 £0.01 | 0.05 £ 0.01 0.02 0.05 £ 0.01

Table 1: Comparison of learning directly in the target domain (columns A7 (train) and h7 (test)), using

TransBoost (columns H 7 (train) and H7 (test)), learning in the source domain (column hs (test)) and, finally,
completing the time series with a SVR regression and using hs (naive transfer). Test errors are highlighted in
the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without
transfer and learning with naive transfer.
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Transfer learning using Transboost

mi(x) = A; X + v;

H' (X)) = X + v;

5 3 ; ]
Learning on the target data
(without transfer)

i :
0 1 H 0 1
i
-1 4 -1 4
-2 4 -2
-2 -1 -2
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Transfer learning using Transboost

 |llustrations

Q_ Q_ B
o _ o .

o o

o o _

o o B

. S - .

(=] o

o~ _ o~ _

o o

o _ Q .

o o

00 02 04 06 08 10 00 02 04 06 08 10

(a) Is it a zero or a one? (b) Is it a zero or a one?

FIGURE 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

Q- — e- .
a- a - @ - 8-
e - s - @ _ @ _
s - s~ = - :-
- b - B g - g-
a = a- e e -
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0

(a) Is it a zero or a one? (b) Is it an eight or a seven?
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Transfer learning using Transboost

e |llustrations

FIGURE 2: Model source transferred on the data target : is it a clip-art of a dog or a cat?
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Standard Transfer with NNs

000 flz,w)
QOOO0

Then freeze the

‘i‘i’j‘f. first layers
JAWAWAN I
x
Transferring the
features
Learn NN on task A Learn the last layers

on task B

Same input space X, = Xz

From Oquab, M., Bottou, L., Laptev, |., & Sivic, J. (2014). Learning and transferring mid-level image representations using

convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724).
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TransBoost with NNs

A Then freeze all
layers except the
first (and second)

Learn NN on task A
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—_— T S
| >

]
LRI
A A A A

Learn NN on task A

TransBoost with NNs

—

- =7 Transferring the
decision function

Then freeze all

layers except the
first (and second)

Learn the first
layer(s) to project

from task B to task A

Learn
projection -[
T
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TransBoost with NNs

et el B
_~="" Transferring the
- e o .
- decision function Learn
/.».4. f(z,w) projection
O OO > Then freeze all T
====i= layers except the
.»I,,.;;.g!\‘. J  first (and second)
QRQOD
K}ir/’%‘\\( Learn
- projection -[
U%)
Learn NN on task A
Learn the first
layer(s) to project ~
from task B to task A Learn
projection -[
TN
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TransBoost with NNs

et el B
_~="" Transferring the
-~ decision function Learn
/!Q, f(z,w) projection -[
1010 > Then freeze all T
=== layers except the
.yyxo,.;,;.gf.:!g. i first (and second)
QREOC
pe=—=dl Learn
A AA A projection -[
%)
Learn NN on task A
Learn the first
layer(s) to project ~
from task B to task A Learn
projection -[
N

Different input spaces
Xa # Xgp




Does the quality of h plays a role?
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What if ...

Source hypothesis a priori without relation to the target task

Hard

Learning from target data only

TransBoost with

“irrelevant” source hypothesis

[

slope, noise, t1 h (train) hT (test) H 7 (train) H (test)

0.001, 0.001,70 | 0.44 +£0.02 | 048 £0.02 | 0.06 £0.02 | 0.06 & 0.02
0.005,0.005,70 | 0.11 =0.04 | 0.13 £0.05 | 0.02 £0.01 | 0.02 & 0.02
0.005, 0.005,70 | 0.10+£0.04 | 0.11 £0.05 | 0.01 £0.01 | 0.01 £ 0.01
0.005, 0.05, 70 0.11 £0.04 | 0.12£0.05 | 0.04 £0.02 | 0.03 &+ 0.01
0.001, 0.001, 70 {{0.42 +0.03 | 048 £0.02 | 0.33 £0.02 | 0.37 £ 0.02
0.01, 0.1, 70 0.06 £ 0.03 | 0.08 =0.03 | 0.08 £0.02 | 0.08 £ 0.02

hs randomly chosen on the source task E(hs) ~ 0.5

Very good
results!!
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quality of he NO!!

What is the role of h¢??
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Analysis

* The quality of the source hypothesis on the source data?

— Plays no role

* The proximity of the source and target distributions P, and P,?

— Plays no role
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But... I?

=> No condition on the source!??

Still some transfer learning problems

appear to us more easy than others???
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Interpretation

Transfer acts as a bias and hs is a strong part of this bias

— If the source hypothesis is well chosen: the bias is well informed

* Which does not mean that hy must be good on the source task

— Otherwise: Learning is badly directed

or there is over-fitting if the capacity of hg o 7 is too large
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Lessons

— The learning problem now becomes the problem

of choosing a good set of (weak) projections

— Theoretical guarantees exist
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Analysis

The generalization properties of TransBoost

can be imported from the ones for boosting

N
Hr = {signlz ay, hs own] o, e R,m, € II,n € [1,N]}

n=1

dye(H1) < 2(dhgorr + 1)(N + 1)logy (N + 1) e)

R(h) < R(h) + O(\/dhsoﬂ ln(mT/dhsoH)—l-ln(l/5)>

mT
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Theory for HTL

h(x) := (w, x)
: N -
b = argmin EZ(@U,XJ —yi)? + Alw =D Biwl I3
WE i=1 71=1

THEOREM 7.3 ([KUZ 17]).— Let h g a hypothesis output by a regularized ERM
algorithm from a m-sized training set T i.i.d. from the target domain T, n source
hypotheses {h’,. : ||hi |lcc < 1}7_,, any source weights 3 obeying )(3) < p and
A € Ry. Assume that the loss is bounded by M : ((hy g(x),y) < M for any (x,y)
and any training set. Then, denote xk = % and assuming that A\ < k with probability

at least 1 —e™",¥n > 0:

src Rsrc 2 M
Ry (hig) < Ro(hapg) + O | o 4| —LE2 d
’ ’ vm )\ mA\
mlog l—l—w/uu

Rsrc /TR ST
Ser(thB +O< @ \/Q) <+\/§>>,
where uS = RS ( ) o /_WL anS the risk of the
82 /146
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Analysis

* The generalization properties of TransBoost can be imported

from the ones for boosting

N
H+ = {signlz ay hs own] o, € R,m, € II,n € [1,N]}

n=1

dyc(HT) < 2(dnsorr + 1)(N + 1) logy (N +1)e)

dhsOH ln(mT/thOH) -+ ln(1/5)
mT

R(k) < R(h) + (9(\/

“Authors also present some theory, but at the moment, again, it is essentially a trivial
extension of boosting theory. TL bounds should incorporate the quality of the source

hypothesis, e.g. the risk of the source on \mathcal{D} T”
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Theoretical guarantees

vﬁs € Hs : 1\/1611[11 RT(}ZS om) < w(Rg(hg)) (2)

where w : R — R is a non-decreasing function.

Theorem 1. Let w : R — IR be a non-decreasing function. Suppose that Ps,
Pr, hs, ht = hsom(m € II), hs and II have the property given by Equation
(2). Let 7 := ArgMin_. 7 R7(hs o), be the best apparent projection.

Then, with probability at least 1 — 3§ (6 € (0,1)) over pairs of training sets
for tasks S and T :

Re(ir) < w(Bs(is) + 2\/ nsjosCe o) + 21(8/3

(3)

+4 \/zézhsolﬂmg(zemfr/dhson) + 2log(8/)
\_“

mr

[ Cornuéjols A., Murena P-A. & Olivier R. “Transfer Learning by Learning Projections from Target to Source”.

Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany. ]
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Theoretical guarantees

Vhs € Hs: MinRr(hson) < w(Rs(hs)) ()
‘)TFEH

Ridiculous . . .
where w : R — R is a non-decreasing function.

‘/\/hg [dys) + 2log(8/6)

Irrelevant

Rr(hr) < w(Rs(hs)) + 2 -

L \/Q(dhsoﬂog@emfr&mn) 1 2log(8/0)

N~ ()

[ Cornuéjols A., Murena P-A. & Olivier R. “Transfer Learning by Learning Projections from Target to Source”.

Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany. ]
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A relationship with tracking?
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Tracking

Instead of learning a complex function over the whole of X
* If you know that the task is slowly evolving with time

e Learn asimple local function

4y 1Y
. i ; i ; ; e .
i H ® H H oin H
", e 5 L__De'e E S !
— | USRI P : |
e O Q.. ‘. E E e ?_.—'-f .‘
) e __Lee 5 ¢ ‘:o.
A v e |
Xr

R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.
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Tracking in stationary environments

Tracking to play Go

 5x5Go

— More than 5 x 10%° unique positions

e Usual approach: learn a general evaluation function V(s) valid Vs

Associated weights (learnt)

Features describing the situation 88 / 146



Tracking in stationary environments

* Tracking approach: learn an evaluation function V(s)

local to the current s

£ i won

b

In general, playing (a) In this situation, playing (b)
(center) is better than BUT is better than playing (a)
playing (b) /
C ) More weight More weight 3:
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Tracking as local changes of representation

Embedding

Space of go positions Space of representations

i S
~~

Vv

Features

The weights of the features
change with the evolving position

i &
Weight \ Weight /50/146




Transboost as local changes of representation

\

— — -------’.

2

1
>

Projectors

Embedding

Space of projectors 77,

Space of learning tasks

Target training sets

Weighted projectors
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Transboost as local changes of representation

Path dependence

TN y
________ - - - ------'."-',V

2
1

Projectors

Embedding

Space of projectors 77,

Space of learning tasks

Target training sets

Weighted projectors
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Outline

Transfer learning: questions

Transfer learning in neural networks

TransBoost: an algorithm and what it tells on the role of the source

Curriculum learning and the geometry of the space of learning tasks

How to measure the difficulty of a training example

Conclusions
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Curriculum building

And the geometry of the space of learning tasks
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Sequencing effects

A fundamental question
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4.

5.

Outline

Supervised induction: the classical setting

What about Out Of Distribution learning (OOD)?

Parallel transport, covariant derivative and transfer learning

— What they are

— ...and in Machine Learning

A way to deal with different spaces of tasks

Conclusions

96 / 146



Parallel Transport

and Covariant Derivative
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Euclidian geometry

e Addition of vectors U+V
v
U
e Substraction of vectors and derivative v — lim V(s +e)—Vi(s)
dS e—0 €
V(s+¢e)— V(s)
é -
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Non Euclidian geometry

Substraction of vectors and derivative

hypothesis _t

Referential t

Referential_s

We can no longer directly compare vectors (or tensors)

Necessity of the covariant derivative
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Parallel transport

Transport a vector (or a tensor) parallel to itself along a curve

Covariant derivative =0 Kronecker symbol
(8k V'L)covarlant — ak Vz + F;kvj

Ve (xk)parallel transported __ Ve (.CCk) 4+ F;kvj Axk

Path
dependent!
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Transfer and path dependence

? hypothesis _t

hypothesis s
---------------------- J
7 Referential_t
\\\ 4 // Path
!

[ o dependence
4,

Referential_ts

?
Transfer = Parallel transport of hypothesis from source to target
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Transfer and path dependence

abc aababec L \ L
abd ijikkk
-_— 00 J)
L 2
abd

.v#_
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Need for non-symetrical similarity

Wy > W, + W,

Adapted from: D.W. Jacobs, D. Weinshall, and Y. Gdalyahu. Classication with non-metric distances: Image
retrieval and class representation. PAMI 200o0.
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Parallel transport in ML works

Transfer = parallel transport of the source hypothesis

Tracking

Computer vision

Curriculum learning
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Computer vision

LR S G

Bauer, M., Klassen, E., Preston, S. C., & Su, Z. (2018). A diffeomorphism-invariant metric on the space of vector-valued one-
forms. arXiv preprint arXiv:1812.10867.
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Parallel transport in computer vision

Problem:

* the convolution operator used in standard neural
network for vision assumes an Euclidian space
— Translation invariance (in particular)
(a) (b) (c) (d)

e But this is not true for general forms
Figure 1: A compactly supported kernel (a) is transported

e \We want a co nvolution operator that on a manifold from the FAUST data set [2] through trans-
) o lation (b), translation + dilation (c) and translation + rota-
changes with the position tion (d).

Question: what convolution operations to use then?

Schonsheck, S. C., Dong, B., & Lai, R. (2018). Parallel transport convolution: A new tool for convolutional neural

networks on manifolds. arXiv preprint arXiv:1805.07857.
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Parallel transport in computer vision

Standard CNN PTCNet

Parallel Transported
Convolution layer

(a) (b) (c) (d)

Figure 1: A compactly supported kernel (a) is transported
on a manifold from the FAUST data set [2] through trans-
lation (b), translation + dilation (c) and translation + rota-
tion (d).

The crucial idea of PTC 1s to define a kernel function
k(x, y) which is able to encode x — y using a parallel

transportation that naturally incorporates the

manifold structure

Schonsheck, S. C., Dong, B., & Lai, R. (2018). Parallel transport convolution: A new tool for convolutional neural

networks on manifolds. arXiv preprint arXiv:1805.07857.
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Outline

Reminders from the past classes

Sequencing effects

Parallel transport, covariant derivative and transfer learning

Curriculum building

Can we find a role for the source task in solving a target one?

Conclusions
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Curriculum building
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Sequencing effects

e How to eliminate them? NOI

LS

* How to organize them and guide learning?

- YES!

e How to build a curriculum for machines?
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* “... Unlike (statistical) machine learning, in human learning supervision is often
accompanied by a curriculum. Thus the order of presented examples is rarely

random when a human teacher teaches another human.

* Likewise, the task may be divided by the teacher into smaller sub-tasks, a
process sometimes called shaping (Krueger & Dayan, 2009) and typically

studied in the context of reinforcement learning (e.g. Graves et al., 2017).

* Although it remained for the most part in the fringes of machine learning

research, curriculum learning has been identified as a key challenge for
machine learning throughout.”

[Daphna Weinshall et al. (2018) « Curriculum Learning by Transfer Learning: Theory and Experiments with
Deep Networks ». ICML-2018.]
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Curriculum learning

*  “Humans need about two decades to be trained as fully functional adults of

our society.

* That training is highly organized, based on an education system and a

curriculum which introduces different concepts at different times, exploiting

previously learned concepts to ease the learning of new abstractions.

* By choosing which examples to present and in which order to present them to
the learning system, one can guide training and remarkably increase the

speed at which learning can occur.”

[Joshua Bengio (2018) « Learning deep architectures for Al ». Now Publishers Inc, 2009 ]
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Cognitive tunnel effect

[A. Cornuéjols, A. Tiberghien, G. Collet. Tunnel Effects in Cognition: A new Mechanism for Scientific
Discovery and Education. Arxiv-1707.04903- Tue, 18 Jul 2017 00:00:00 GMT]

Target conceptual V; - S
universe J

Target constraints

Model(t)

universes

} Operational conceptual

Battbery
Bulb
Experimental setting Experimental Wire
setting
Wire
Contack
f . Reservoir Transfer prapsformer Transfer pegservoir
Conceptual interpretation (Energy) (Energy)
i i & Envionment
in terms of energy chain —> Environment
(Electrical work) (heat & radliation)
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 We expect that transfer is easy when source and target tasks are “close”

* And it may be difficult to transfer across tasks that are “far away”

But how to measure “closeness”

and “far away” for learning tasks?

Define a geometry over the space of tasks
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Geometry of the space of tasks

e Desiderata

1. Should incorporate the hypothesis space,

and not only the “distance” between the inputs (as is usually done)

* Forinstance, it is often observed that transferring larger models is easier.

The geometry should reflect this.

2. The distance between tasks is not symmetrical

Gao, Y., & Chaudhari, P. (2021, July). An information-geometric distance on the space of tasks.
In International Conference on Machine Learning (pp. 3553-3563). PMLR.
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ldea

Training data

« distribution

pr()

Pwt (y|T) Learned

Pus (y]2) hypothesis

Pw, (y|x)

Modify conjointly the training data distribution and the learned hypothesis

Compute iteratively the intermediate training sets such that
at each step t the new task is close to

* what can be learned by the current learner
(characterized by its current hypothesis)

117 / 146



Experimental results

Using an 8-layer convolutional NN (RelLU, dropout, batch-normalization) with
a final fully connected layer

Distance is asymmetrical

— CIFAR-10 to animals < animals to CIFAR-10

\ — CIFAR-100 to any other is much easier
h

than the reverse

CIFARLI0  CIFARLODumm

/ als

0
Estimated task distances

vehicles

CIFAR100 CIFAR10 vehicles

animals

}
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Experimental results

Using an 8-layer convolutional NN * And a wide residual network (WRN-16-
4): larger capacity

flowers vehicles 2 vehicles 1 carnivores herbivores
flowers vehicles 2 vehicles 1 carnivores herbivores

herbivores carnivores vehicles 1 vehicles2 flowers herbivores carnivores vehicles 1 vehicles2 flowers

}

Distance is much reduced

using a larger capacity model
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Conclusions

* Interesting work

— New definition of distance between tasks

* Asymmetrical

* Depends on the capacity of the learning system

— New way to build a curriculum
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Conclusions

* Interesting work

— New definition of distance between tasks

* Asymmetrical

* Depends on the capacity of the learning system

— New way to build a curriculum

* Limits
— Still a crude way to build intermediate tasks
— Same input-output source and target domains!!!

— Same hypothesis space in both source and target domains!!!

121/ 146



Conclusions

* Interesting work

— New definition of distance between tasks

* Asymmetrical

* Depends on the capacity of the learning system

— New way to build a curriculum

* Limits Not general

— Still a crude way to build intermediate tasks transfer learning

— Same input-output source and target domains!!!

— Same hypothesis space in both source and target domains!!!
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What if the space of tasks is not continuous?
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