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Transfer learning and Curriculum learning

Here, with a focus on the distance between tasks

Defining a geometry of the space of learning tasks
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Sequencing effects

• Instruction: cut the following figure in n equal parts

in 2 : in 3 : in 4 : in 5 : 
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An example of  ANTI-curriculum
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Order effects

n How to predict them?

e0

ex1

ex2

x2

x1

x1

x2

ex1x2

ef = ex2x1

n How to quantify them?

n How to formalize them? 

n How to control them?
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Continual learning

• What?
– Do not retrain for each new task

– Try to benefit from what has been learned previously

• Why?
– Often too costly to retrain for each new task

• Lots of (labeled) training data is needed

– A good “source” could provide a lot of useful information

• When?
– Having a good source

• How to evaluate this?

• How?
– To transfer from one source to a target

Transfer learning
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Transfer learning and curriculum learning

• An active and constructive viewpoint: 

– Training a system for a target task through successive intermediate

learning tasks

– Necessitates 

• To identify relevant intermediate subtasks

• To order them

Curriculum learning
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• Transfer learning

– ability to use what has been learned from a previous task on a new task.

The difference with continual learning is that transfer learning is not 
concerned about keeping the ability to solve previous tasks. 

• Curriculum learning

– a training process that proposes a sequence of more and more difficult 
tasks to a learning algorithm in order to make it able to learn, at last, a 
generally harder task. 
The sequence of tasks is designed in order to be able to learn the last one. 
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When PY|X(train) ≠ PY|X(test)

(and, not necessarily)  PX(train) ≠ PX(test)

Concept shift
and sequences of concept shifts
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Outline

1. Transfer learning: questions

2. Transfer learning in neural networks

3. TransBoost: an algorithm and what it tells on the role of the source 

4. Curriculum learning and the geometry of the space of learning tasks

5. How to measure the difficulty of a training example

6. Conclusions
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Transfer learning
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Questions (more of them)

• What is a “successful” transfer learning situation?

– How to measure “success”?

– How can we measure the performance of transfer learning?

– Is “failure” possible? Illustrations?

Remark:
if the target data set is sufficiently large, 
transfer learning should not bring any advantage
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Questions

• What are the conditions for a successful transfer learning? 

• Should the proximity between the source and the target play a 
role?

– How to measure this proximity?

• Between the input distributions PS and PT?
• Between the underlying true source and target functions fS and fT?

• What should intervene in the guarantees?

– “distance” between source and target?

– Size of the target training data?

– Performance of the source hypothesis?
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Questions

• What to transfer?

• When to transfer?  Useful or not?

• How to transfer?
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Bounds between the real risk and the empirical risk

• From the non realisable case (H finite)

• To the realisable one (H finite)

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

�
log |H|+ log 1

�

2 m

�
> 1� �

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

log |H|+ log 1
�

m

�
> 1� �

By removing the “problematic” examples, you go 
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Which link between training and testing?

Transfer Learning
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Which link between training and testing?

Transfer Learning

– Reuse the latent space learnt on the source data

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of example difficulty. Advances in Neural Information 
Processing Systems, 34.
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Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

(here object and action classification in Pascal VOC), as il-
lustrated in Figure 2. However, this is difficult as the la-
bels and the distribution of images (type of objects, typical
viewpoints, imaging conditions, etc.) in the source and tar-
get datasets can be very different, as illustrated in Figure 3.
To address these challenges we (i) design an architecture
that explicitly remaps the class labels between the source
and target tasks (Section 3.1), and (ii) develop training and
test procedures, inspired by sliding window detectors, that
explicitly deal with different distributions of object sizes,
locations and scene clutter in source and target tasks (Sec-
tions 3.2 and 3.3).

3.1. Network architecture

For the source task, we use the network architec-
ture of Krizhevsky et al. [24]. The network takes as
input a square 224 ⇥ 224 pixel RGB image and pro-
duces a distribution over the ImageNet object classes.
This network is composed of five successive convolu-
tional layers C1. . . C5 followed by three fully connected
layers FC6. . . FC8 (Figure 2, top). Please refer to [24]
for the description of the geometry of the five convolu-
tional layers and their setup regarding contrast normaliza-
tion and pooling. The three fully connected layers then
compute Y6=�(W6Y5 +B6), Y7=�(W7Y6 +B7),
and Y8= (W8Y7 +B8), where Yk denotes the out-
put of the k-th layer, Wk, Bk are the trainable param-
eters of the k-th layer, and �(X)[i]=max(0,X[i]) and
 (X)[i]=eX[i]/

P
j e

X[j] are the “ReLU” and “SoftMax”
non-linear activation functions.

For target tasks (Pascal VOC object and action classifica-
tion) we wish to design a network that will output scores for
target categories, or background if none of the categories
are present in the image. However, the object labels in the
source task can be very different from the labels in the tar-
get task (also called a “label bias” [49]). For example, the
source network is trained to recognize different breeds of
dogs such as huskydog or australianterrier, but the
target task contains only one label dog. The problem be-
comes even more evident for the target task of action classi-
fication. What object categories in ImageNet are related to
the target actions reading or running ?

In order to achieve the transfer, we remove the output
layer FC8 of the pre-trained network and add an adaptation
layer formed by two fully connected layers FCa and FCb
(see Figure 2, bottom) that use the output vector Y7 of the
layer FC7 as input. Note that Y7 is obtained as a complex
non-linear function of potentially all input pixels and may
capture mid-level object parts as well as their high-level
configurations [27, 53]. The FCa and FCb layers compute
Ya=�(WaY7 +Ba) and Yb= (WbYa +Bb), where
Wa, Ba, Wb, Bb are the trainable parameters. In all our
experiments, FC6 and FC7 have equal sizes (either 4096 or
6144, see Section 4), FCa has size 2048, and FCb has a size
equal to the number of target categories.

The parameters of layers C1. . .C5, FC6 and FC7 are first
trained on the source task, then transferred to the target task
and kept fixed. Only the adaptation layer is trained on the
target task training data as described next.

From Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using 

convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724).
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Which link between training and testing?

Transfer Learning

– Reuse the latent space learnt on the source data

– Re-use the first layers of a NN trained on task A

– And fine-tune on task B

Increases the performance wrt. to training on task B alone
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Transfer Learning

• Guarantees function of
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Transfer Learning

• Guarantees function of

– The quality of the source hypothesis on the source task

• The better hS, the better hT
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Transfer Learning

• Guarantees function of

– The quality of the source hypothesis on the source task

• The better hS, the better hT

– A “distance” between the source task and the target one

• The smaller the distance, the better the transfer
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Transfer Learning

• Guarantees function of

– The quality of the source hypothesis on the source task

• The better hS, the better hT

– A “distance” between the source task and the target one

• The smaller the distance, the better the transfer

– The size of the target training data

• The larger the target training data set, the useless the transfer

Really? 
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Outline

1. Transfer learning: questions

2. Transfer learning in neural networks

3. TransBoost: an algorithm and what it tells on the role of the source 

4. Curriculum learning and the geometry of the space of learning tasks

5. How to measure the difficulty of a training example

6. Conclusions
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Transfer learning

for neural networks
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Transfer learning for deep neural networks

• In practice, very few people train an entire Convolutional Network from scratch.

• Instead, it is common to pretrain a ConvNet on a very large dataset 
(e.g. ImageNet, which contains 1.2 million images with 1000 categories), 

– and then use the ConvNet either as an initialization

– or a fixed feature extractor for the task of interest.

• Examples of pretrained networks

– Oxford VGG Model

– Google Inception Model

– Microsoft ResNet model

[Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural 
networks? In Advances in Neural Information Processing Systems 27 (NIPS ’14), NIPS 
Foundation, 2014. ]
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Transfer learning for deep neural networks

• The assumption: 

– the features learned for a task can be used almost as such 

for other, related, tasks

• Approach: 

– Reuse the first layers and learn the last ones

– Same input spaces XS = XT, possibly YS ≠ YT
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Example: VGG 16 filters

...

What the successive layers learn
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Principle

...

http://slideplayer.com/slide/8370683/
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Transfer learning for deep neural networks

From Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional 
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724).
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Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

(here object and action classification in Pascal VOC), as il-
lustrated in Figure 2. However, this is difficult as the la-
bels and the distribution of images (type of objects, typical
viewpoints, imaging conditions, etc.) in the source and tar-
get datasets can be very different, as illustrated in Figure 3.
To address these challenges we (i) design an architecture
that explicitly remaps the class labels between the source
and target tasks (Section 3.1), and (ii) develop training and
test procedures, inspired by sliding window detectors, that
explicitly deal with different distributions of object sizes,
locations and scene clutter in source and target tasks (Sec-
tions 3.2 and 3.3).

3.1. Network architecture

For the source task, we use the network architec-
ture of Krizhevsky et al. [24]. The network takes as
input a square 224 ⇥ 224 pixel RGB image and pro-
duces a distribution over the ImageNet object classes.
This network is composed of five successive convolu-
tional layers C1. . . C5 followed by three fully connected
layers FC6. . . FC8 (Figure 2, top). Please refer to [24]
for the description of the geometry of the five convolu-
tional layers and their setup regarding contrast normaliza-
tion and pooling. The three fully connected layers then
compute Y6=�(W6Y5 +B6), Y7=�(W7Y6 +B7),
and Y8= (W8Y7 +B8), where Yk denotes the out-
put of the k-th layer, Wk, Bk are the trainable param-
eters of the k-th layer, and �(X)[i]=max(0,X[i]) and
 (X)[i]=eX[i]/

P
j e

X[j] are the “ReLU” and “SoftMax”
non-linear activation functions.

For target tasks (Pascal VOC object and action classifica-
tion) we wish to design a network that will output scores for
target categories, or background if none of the categories
are present in the image. However, the object labels in the
source task can be very different from the labels in the tar-
get task (also called a “label bias” [49]). For example, the
source network is trained to recognize different breeds of
dogs such as huskydog or australianterrier, but the
target task contains only one label dog. The problem be-
comes even more evident for the target task of action classi-
fication. What object categories in ImageNet are related to
the target actions reading or running ?

In order to achieve the transfer, we remove the output
layer FC8 of the pre-trained network and add an adaptation
layer formed by two fully connected layers FCa and FCb
(see Figure 2, bottom) that use the output vector Y7 of the
layer FC7 as input. Note that Y7 is obtained as a complex
non-linear function of potentially all input pixels and may
capture mid-level object parts as well as their high-level
configurations [27, 53]. The FCa and FCb layers compute
Ya=�(WaY7 +Ba) and Yb= (WbYa +Bb), where
Wa, Ba, Wb, Bb are the trainable parameters. In all our
experiments, FC6 and FC7 have equal sizes (either 4096 or
6144, see Section 4), FCa has size 2048, and FCb has a size
equal to the number of target categories.

The parameters of layers C1. . .C5, FC6 and FC7 are first
trained on the source task, then transferred to the target task
and kept fixed. Only the adaptation layer is trained on the
target task training data as described next.
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Experiments on two domains

...

ImageNet

1000 Classes

dataset

A

dataset

B

500 Classes

500 Classes
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Hypothesis: If transferred features are specific to task A, performance on 
task B drops. Otherwise the performance should be the same. 

http://slideplayer.com/slide/8370683/
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http://slideplayer.com/slide/8370683/



34 / 146
...

http://slideplayer.com/slide/8370683/
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• Comparisons between

– Base B           : a NN trained directly on database B (500 random classes)

– Selffer BnB   (self-transfer): 

• A number of the first layers are frozen, and re-training is done on the last ones

– Selffer BnB+ (self-transfer + retraining): 

• A number of the first layers are frozen, and re-training is done on all layers (a 
kind of initialization, but on the same task)

– Transfer AnB (transfer + fine-tuning last layers only):

– Transfer AnB+  (transfer + retraining of all layers): 
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Results

...
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Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.
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Results: what to think of them?

All layers but the first are retrained
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4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.
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All layers but the first two are retrained

All layers but …  are retrained

NN (8 layers) trained 
from scratch
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It is clear that the higher the layer, the more specific it is to task A

http://slideplayer.com/slide/8370683/

Accuracy on the 500 classes of domain B
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Interpretation

...

Freeze the first layers, and retrain using them on same domain 

!!??
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Interpretation

...

!!??

Fragile
co-adaptation

The first layers have co-adapted features specific to the 
1st training that can not be relearned by the upper layers Less to relearn
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Interpretation

...

!!??

Fragile
co-adaptation

Representation
specificityThe first layers have 

captured general features

The features tend to be 
specific to domain A + 
fragile co-adaptation
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• Remark on the scientific methodology

It was essential to look at “fragile co-adaptation” 

in order to assess the true effect of “representation specificity”



43 / 146

Interpretation

...

Retrain on all layers (fine-tuning) on domain B
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Interpretation

...

Retrain on all layers (fine-tuning) on domain B after transfer from domain A
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Interpretation

...

Retrain on all layers (fine-tuning) on domain B after transfer from domain A

Transfer + fine-tuning improves generalization

A surprising finding since there is already a 
large training dataset for the target task
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Conclusions of the paper

1. Be careful to separate effects

– Fragile co-adapted first layers

– Specialization of higher layers 

2. The transferability gap grows as the distance between tasks increases 

3. But even features transfered from distant tasks are better than 
random weights

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep 
neural networks?. Advances in neural information processing systems, 27.
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• ImageNet has many categories

Dataset A: random Dataset B: random

http://slideplayer.com/slide/8370683/
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• ImageNet has many categories

Dataset A: man-made Dataset B: natural

http://slideplayer.com/slide/8370683/

Dissimilar
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• Comparison

http://slideplayer.com/slide/8370683/



• Transferability governed by:

– lost co-adaptations

– specificity

– difference between base and target dataset

• Fine-tuning helps even on large target dataset

co-adaptation

specificity

fine-tuning helps

Conclusions
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Transfer learning with language data

• For texts in different

– Domains (e.g. finance, politics, society, ...)

– Media (e.g. journals, blogs, ...)

• A word embedding is used 

– A mapping of the words to a high-dimensional (e.g. 500) continuous vector 
space where different words with similar meanings have a similar vector 
representation

• There exit pre-trained models trained on very large corpus of text 
documents

– Google word2vec

– Stanford Glove model
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Outline

1. Transfer learning: questions

2. Transfer learning in neural networks

3. TransBoost: an algorithm and what it tells on the role of the source 

4. Curriculum learning and the geometry of the space of learning tasks

5. How to measure the difficulty of a training example

6. Conclusions



53 / 146

TransBoost: an algorithm for transfer learning

And what it tells about the role of the source

Cornuéjols, A. (2024). Some thoughts about Transfer learning. What role for the source domain. 
International journal of Approximate Reasoning (IJAR), vol. 166, p.109107. Elsevier.
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A LUPI type of algorithm for transfer learning

25/46 Cours IA  (A. Cornuéjols) 

L�algorithme alpha-beta : Illustration (9) 

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α  = + 10
β  = + ∞

6 7

Coup à jouerCoup à jouer

Taking decision when the current 
information is incomplete

...
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Algorithms for games

• Which move to play?

The evaluation function is insufficiently informed at the root (current situation)

1. Query experts that have more information about 
potential outcomes

2. Combination of the estimates through MinMax

“Experts” may live in input spaces that are different

25/46 Cours IA  (A. Cornuéjols) 

L�algorithme alpha-beta : Illustration (9) 

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α  = + 10
β  = + ∞

6 7

Coup à jouerCoup à jouer

Taking decision when the current 
information is incomplete
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Algorithms for games and transfer learning

?

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

α  = − ∞

β  = + ∞

1

α  = − ∞
β  = + ∞

α  = − ∞
β  = + ∞

α  = − ∞
β  = + ∞

α  = − ∞
β  = + 10

?

2 XS

2 XT

...
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Can we do the “same” for transfer learning?
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Boosting

X h1D1

X h2D2

X h3D3

X hTDT

• How to compute Dt from  Dt-1 and thus ht?

• How to compute the at ?

H(x) = sign

 TX

t=1

↵t ht(x)

�
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TransBoost

HT (x
T ) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T )
��
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TransBoost

• Principle:

– Learn “weak projections”: 

• Using the target training data:

– With boosting

• Projection such that : 

• Re-weight the training time series and loop until termination

– Result

"n
.
= Pi⇠Dn [hS(⇡n(xi)) 6= yi] < 0.5⇡n

HT (x
T ) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T )
��

⇡i : XT ! XS

ST = {(xT
i , y

T
i )}1im
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TransBoost

...
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Figure 1: The principle of prediction using TransBoost. A given target exemple x
T

i is projected in the source
domain using a set of identified weak projections fij and the prediction for x

T

i is computed as: HT (xT

i ) =

sign
;qN

j=1 hS

!
fij(xT

i )
"<

.

Algorithm 1: Transfer learning by boosting
Input: hS : XS æ YS the source hypothesis

ST = {(xT

i , y
T

i }1ÆiÆm: the target training set

Initialization of the distribution on the training set: D1(i) = 1/m for i = 1, . . . , m ;

for n = 1, . . . , N do

Find a projection fii : XT æ XS st. hS(fii(·)) performs better than random on Dn(ST ) ;
Let Án be the error rate of hS(fii(·)) on Dn(ST ) : Án

.= Pi≥Dn [hS(fin(xi)) ”= yi] (with Án < 0.5) ;
Computes –i = 1

2 log2
! 1≠Ái

Ái

"
;

Update, for i = 1 . . . , m:

Dn+1(i) = Dn(i)
Zn

◊
I

e
≠–n if hS

!
fin(xT

i )
"

= y
T

i

e
–n if hS

!
fin(xT

i )
"

”= y
T

i

=
Dn(i) exp

!
≠–n y

(T )
i hS(fin(x(T )

i ))
"

Zn

where Zn is a normalization factor chosen so that Dn+1 be a distribution on ST ;
end

Output: the final target hypothesis HT : XT æ YT :

HT (xT ) = sign
; Nÿ

n=1
–n hS

!
fin(xT )

"<
(2)

5
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Controlled data

– The slope to distinguish between classes

– The shapes of time series within each class: variety

– The noise level

xt = t⇥ slope⇥ class| {z }
information gain

+ xmax sin(!i ⇥ t + 'j)| {z }
sub shape within class

+ ⌘(t)|{z}
noise factor
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The set of projections

Example of a projection π (a hinge function with three parameters): 

• the first slope, 

• the second one 

• and the time of the hinge) that is adjusted to the target exemple xT by least square. 

The resulting projection π(xT) is the concatenation of xT and the remaining part of the adjusted 
hinge function. 

A. Cornuéjols / Procedia Computer Science 00 (2023) 1–19 14

class �1 or +1. We varied the di�culty of learning by varying the slope from almost non existent: 0.001 to significant:
0.01. The source hypothesis, Gaussian SVM as implemented in Scikit Learn, was learned using these time series [21].

The target training data set was obtained using the same generation process as for the source data (using equation
3), but with the length tT varying in {20, 50, 70, 100}, thus providing increasing levels of signal since the target
examples shared more and more features (time measurements) with the source ones.

A target training data set of 300 time series was drawn equally balanced between the two classes (150 ‘+’, and
150 ‘�’). Note that this relatively small number corresponds to transfer learning scenarios where the training data is
limited in the target domain. A remaining 600 time series not used for learning were employed as a test set.

Projecting the target examples into the source input space

In these experiments, the set of projections⇧was chosen as a set of “hinge functions”, defined by three parameters,
the slope of the first linear part, the time t where the hinge takes place, and the slope of the second linear part
(see Figure 8). The set is explored randomly by the algorithm and a projection is retained if its error rate on the
current weighted data is lower than 0.45. We explored other, richer, spaces of projections without gaining superior
performances. This simple set seems to be su�cient for this learning task.

xt

t T0 <latexit sha1_base64="JWfAj1WrahRS7wB5qJFff+AuyrI="></latexit>

tT
<latexit sha1_base64="74N7Hqy3M20liElSbUfJGhdNoFw="></latexit>

tS

<latexit sha1_base64="4qvkWjVuhY3MAJ9Yd3J2WW29wzg="></latexit>xT <latexit sha1_base64="ho1kAJPI9ikF/vFCfmlFHiTmnzY="></latexit>

�(xT )

Figure 8: Example of a projection ⇡ (a hinge function with three parameters: the first slope, the second one and the time of the hinge) that is
adjusted to the target exemple xT by least square. The resulting projection ⇡(xT ) is the concatenation of xT and the remaining part of the adjusted
hinge function.

In order to assess the value of TransBoost, its performance was compared:

1. to a classifier (Gaussian SVM as implemented in Scikit Learn) acting directly on the target training data (column
‘SVM (test)’ in Table 1),

2. to a boosting algorithm operating in the target domain with base classifiers being Gaussian SVMs. In that way,
it was possible to check if this was the boosting algorithm that was responsible for the level of performance of
TransBoost, with no use for transfer learning, or not. (For the results, see the remark below).

3. to a baseline transfer learning method that consists in finding a regression from the target input space to the
source input space using a SVR regression. In this last method the regression acts as a translation from XT to
X
S and the class of an example xT is given by hS

�
regression(xT )

�
(column ‘SVR+SVM (test)’ in Table 1).

The number of boosting steps for TransBoost was varied between 5, 10 and 20, with a slight increase of perfor-
mance when augmenting the number of steps. In the experiments reported, the number of steps is N = 20.

Table 1 provides representative examples of the results obtained. Each cell of the table shows the average per-
formance (and the standard deviations) computed from 100 experiments repeated under the same conditions. The
experimental conditions are organized according to the level of signal in the training data.

The first group corresponds to target time series of length tT = 20 which amounts to little signal. This is testimoned
by the fact that both classifiers learned directly on these times series (column SVM (test)) and classifiers learned over
time series completed by a SVR, reach levels of performance barely above random guessing, while TransBoost is
remarkably e�cient (with error rates below 0.1), at least when the noise level is below 0.200.

This is almost the same configuration for the second group with target time series of length tT = 50. Again
TransBoost has very low testing error, while the two other approaches struggle. Of course, when the noise level is
high (= 0.200) with a small slope (= 0.001), there is no signal to build upon and TransBoost does not fare better
than other approaches.

14
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Results

Learning from 
target data only

TransBoost Naïve transfer

Increasing 
information 

in the source 

Increasing 
level of 
noise

A. Cornuéjols / Procedia Computer Science 00 (2023) 1–19 15

slope, noise, tT SVM (test) HT (train) HT (test) SVR+SVM (test)

0.001, 0.001, 20 0.50 ± 0.08 0.08 ± 0.03 0.08 ± 0.02 0.49 ± 0.01

0.005, 0.001, 20 0.49 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.45 ± 0.01

0.005, 0.002, 20 0.49 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.43 ± 0.01

0.005, 0.020, 20 0.48 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.47 ± 0.01

0.001, 0.200, 20 0.50 ± 0.01 0.46 ± 0.02 0.51 ± 0.02 0.49 ± 0.01

0.010, 0.200, 20 0.47 ± 0.03 0.34 ± 0.02 0.35 ± 0.02 0.35 ± 0.01

0.001, 0.001, 50 0.50 ± 0.01 0.08 ± 0.03 0.08 ± 0.02 0.41 ± 0.01

0.005, 0.001, 50 0.28 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.28 ± 0.01

0.005, 0.002, 50 0.30 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.28 ± 0.01

0.005, 0.020, 50 0.30 ± 0.08 0.04 ± 0.01 0.04 ± 0.01 0.31 ± 0.01

0.001, 0.200, 50 0.50 ± 0.01 0.38 ± 0.03 0.44 ± 0.02 0.43 ± 0.01

0.010, 0.200, 50 0.12 ± 0.04 0.10 ± 0.02 0.11 ± 0.02 0.15 ± 0.02

0.001, 0.001, 100 0.47 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.23 ± 0.01

0.005, 0.001, 100 0.07 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.07 ± 0.02

0.005, 0.002, 100 0.10 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.07 ± 0.01

0.005, 0.020, 100 0.09 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.07 ± 0.01

0.001, 0.200, 100 0.46 ± 0.02 0.28 ± 0.02 0.31 ± 0.01 0.31 ± 0.01

0.010, 0.200, 100 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.05 ± 0.01

Table 1: Comparison of the error rate (lower is better) between: learning directly in the target domain, here using a Gaussian
SVM (columns hT (test)), using TransBoost (columns HT (train) and HT (test)) and, finally, mapping the time series with a
SVR regression in order to project the target time series (of length tT ) into the source domain (length tT ) and using hS a Gaussian
SVM; called naı̈ve transfer (column SVR (test)). Test errors are highlighted in the orange columns. Bold numbers indicate where
TransBoost significantly dominates both learning without transfer and learning with naı̈ve transfer.

Finally, in the third group with time series of length tT = 100, the signal in the target times series is enough for all
approaches, but still with a significant advantage for TransBoost.

Inrerestingly, TransBoost does not exhibit overfitting as the columns ‘HT (train)’ and ‘HT (test)’ show.
Remark: We did not report here the results obtained with boosting directly in the target input space XT since the
learning performance was almost the same as the performance as the one of the SVM classifier. This shows that this
is not boosting in itself that brings a gain.

Several lessons can be drawn. First of all, in most situations, TransBoost brings very significant gains over
learning without transfer or using transfer learning with regression. Figures 9 and 10 that sum up a larger set of
experimental conditions make this even more striking. In both tables, the x-axis reports the error rate obtained using
TransBoost, while the y-axis reports the error rate of the competing algorithms: either the hypothesis hT learnt on
the target training data alone (Figure 9), or the hypothesis H

0T learned on the target data projected on the source
input space using a SVR regression (Figure 10). The remarquable e�ciency of TransBoost in a large spectrum of
situations is readily apparent.

Secondly, as expected, Transboost is less dominant when either the data is so noisy that no method can learn
from the data (high level of noise or low slope): this is apparent on the right part of the graphs 9 and 10 (near the
diagonal), or when the task is so easy (large slope and/or low noise) that nothing can be gained from transfer learning
(left part of the two graphs).

5.2.3. Additional Experiments

We show here, in Figures 11, 12 and 13 qualitative results obtained on the classical half-moon problem. It is
apparent that Transboost brings satisfying results.

15

First a projection 
from XT to XS by 

SVR then using hS

Very little 
information 

in the source 

Lots of information 
in the source and 

lots of noise 
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Results

The source domain comprises the complete time series (tS = 200), while the target domain contains
time series truncated to their first tT time steps (in our experiments, tT 2 {20, 50, 100}). On
each domain, a classifier (Gaussian SVM as implemented in Scikit Learn) was trained using the
corresponding training time series.

In these experiments, the set of projections ⇧ was chosen as a set of “hinge functions”, defined by
three parameters, the slope of the first linear part, the time where the hinge takes place, and the slope
of the second linear part. The set is explored randomly by the algorithm and a projection is retained
if its error rate on the current weighted data is better than 0.45.

Table 1 provides representative examples of the results obtained (see the supplementary material for
more comprehensive results). Each cell of the table shows the average performance (and the standard
deviations) computed from 100 experiments repeated under the same conditions. It is apparent that
TransBoost yields very significantly superior results in conditions where there is signal in the target
data set, but the learning task is not so easy as to not require transfer learning.

slope, noise, tT hT (train) hT (test) HT (train) HT (test) hS (test) H
0
T (test)

0.001, 0.001, 20 0.46 ± 0.02 0.50 ± 0.08 0.08 ± 0.03 0.08 ± 0.02 0.05 0.49 ± 0.01
0.005, 0.001, 20 0.46 ± 0.02 0.49 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 0.45 ± 0.01
0.005, 0.002, 20 0.46 ± 0.02 0.49 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.02 0.43 ± 0.01
0.005, 0.02, 20 0.44 ± 0.02 0.48 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.01 0.47 ± 0.01
0.001, 0.2, 20 0.46 ± 0.02 0.50 ± 0.01 0.46 ± 0.02 0.51 ± 0.02 0.11 0.49 ± 0.01
0.01, 0.2, 20 0.42 ± 0.03 0.47 ± 0.03 0.34 ± 0.02 0.35 ± 0.02 0.02 0.35 ± 0.01
0.001, 0.001, 50 0.46 ± 0.02 0.50 ± 0.01 0.08 ± 0.03 0.08 ± 0.02 0.06 0.41 ± 0.01
0.005, 0.001, 50 0.25 ± 0.07 0.28 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.01 0.28 ± 0.01
0.005, 0.002, 50 0.27 ± 0.07 0.30 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.02 0.28 ± 0.01
0.005, 0.02, 50 0.26 ± 0.07 0.30 ± 0.08 0.04 ± 0.01 0.04 ± 0.01 0.01 0.31 ± 0.01
0.001, 0.2, 50 0.44 ± 0.02 0.50 ± 0.01 0.38 ± 0.03 0.44 ± 0.02 0.15 0.43 ± 0.01
0.01, 0.2, 50 0.10 ± 0.03 0.12 ± 0.04 0.10 ± 0.02 0.11 ± 0.02 0.03 0.15 ± 0.02
0.001, 0.001, 100 0.43 ± 0.03 0.47 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.02 0.23 ± 0.01
0.005, 0.001, 100 0.06 ± 0.03 0.07 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.01 0.07 ± 0.02
0.005, 0.002, 100 0.08 ± 0.03 0.10 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.02 0.07 ± 0.01
0.005, 0.02, 100 0.08 ± 0.03 0.09 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.01 0.07 ± 0.01
0.001, 0.2, 100 0.04 ± 0.03 0.46 ± 0.02 0.28 ± 0.02 0.31 ± 0.01 0.16 0.31 ± 0.01
0.01, 0.2, 100 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.02 0.05 ± 0.01

Table 1: Comparison of learning directly in the target domain (columns hT (train) and hT (test)), using
TransBoost (columns HT (train) and HT (test)), learning in the source domain (column hS (test)) and, finally,
completing the time series with a SVR regression and using hS (naïve transfer). Test errors are highlighted in
the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without
transfer and learning with naïve transfer.

Figures 3 and 4 sum up all results. In both tables, the x-axis reports the error rate obtained using
TransBoost, while the y-axis reports the error rate of the competing algorithm: either the hypothesis
hT learnt on the target training data alone (Figure 3), or the hypothesis H

0

T
learned on the target data

completed using a SVR regression (Figure 4). The remarquable efficiency of TransBoost in a large
spectrum of situations is readily apparent. Transboost is less dominant when either the data is so
noisy that no method can learn from the data (right part of the graphs near the diagonal), or when the
task is so easy (large slope and/or low noise) that nothing can be gained from transfer learning (left
part).

When the source problem is a priori unrelated to the target learning problem

In this set of experiments, the source hypothesis hS : RtS ! {�1, +1} is chosen independently
from the target data set. TransBoost tries to find a set of projections from RtT to RtS so that a

combined hypothesis HT (xT ) = sign
⇢PN

n=1 ↵n hS

�
⇡n(xT )

��
can be computed for use in the

target domain DT .

7

Learning from 
target data only TransBoost

On the source 
domain

Naïve transfert

High 
noise 
level

Large 
slopeEasy
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Transfer learning using TransboostProject Report - Telecom Paris 5

(a) kNN source model trained on
the data source : it fits to the data
source

(b) kNN source model trained on
the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target

Figure 5

(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.
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source

(b) kNN source model trained on
the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target
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(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target
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Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.

Using TransboostLearning on the target data
(without transfer)

⇡i(x) = Ai · x + vi

⇡i(x) = x + vi
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Transfer learning using Transboost

• Illustrations

Project Report - Telecom Paris 9

3 Application to MNIST and sklearn digits

3.1 Summary
MNIST and sklearn digits datasets are two commonly used hand-written digits datasets with two different

resolutions. MNIST is made of 28 by 28 hand-written digits images while digits from scikit-learn library is only
8 by 8.

Once we have studied TransBoost method on half-moons two-dimensional datasets, we tackle larger dimen-
sions, respectively d = 784 for MNIST and d = 64 for sklearn digits. We first transfer on MNIST only from 0
and 1 classification to 7 and 8. Then we transfer from 0 and 1 in MNIST to 0 and 1 in sklearn digits, and finally
the other way, from 0 and 1 in sklearn digits to 0 and 1 in MNIST.

The main targets remain scoring TransBoost method and comparing it to relearning from target training
set, in particular via linear SVC classifier.

3.2 Method
We first introduce a canonical projection matrix P between the two spaces we would transfer. It is supposed

to be an simple and relatively good transformation, without any form of boosting.
Then comes TransBoost, so the ⇧ projection function at each step is chosen to have the lowest error between

1000 random samples, given by :
⇧(x) = (P +A) ⇤ x+ y (12)

where P is the canonical projection matrix of size (dsource, dtarget), A a Gaussian matrix and y a Gaussian
vector (with standard normal distribution).

The projection between the two spaces is thereby a random variation of the canonical projection. Never-
theless, choosing the projection within relatively high-dimensional randomly generated matrices is of course an
unoptimized method which lead to longer calculation time.

3.2.1 From 0/1 in MNIST to 7/8 in MNIST

(a) Is it a zero or a one ? (b) Is it an eight or a seven ?

Figure 13: Transfer learning of the source model 0/1 so that it can distinguish 8/7

In this case, P is chosen to be the identity matrix. The intuitive idea is that representations of 7 are quite
close to 1’s, as 0’s are to 8’s. Transfer methods are thought all the more relevant to use as the distance between
source and target datasets are small. Therefore we expected a very low error by classifying sevens and eights
with the original classifier hsource trained on ones and zeros.

Figure 14: Canonical projection from MNIST (clipped to 24 by 24) to sklearn digits (8 by 8)

Project Report - Telecom Paris 10

3.2.2 Between 0/1 in MNIST and 0/1 sklearn digits

(a) Is it a zero or a one ? (b) Is it a zero or a one ?

Figure 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

In these cases, P are chosen to be whether an image compression matrix or a scaling up matrix, depending
on the direction of transfer. In order to increase performance and calculation speed, we clipped MNIST images
from 28 by 28 to 24 by 24 pixels. Not only we simplify compression as 24 is multiple of 8, and reduce the MNIST
dimension from d = 784 to d = 576, but also we equate the two datasets as sklearn digits are cut-short images.

3.3 Results
3.3.1 Scoring the canonical projection

For transferring from 0/1 in MNIST to 7/8 in MNIST, the average error was surprisingly evaluated at 70%
which contradict initial intuition. A posteriori, pairing zeros with sevens ans ones with eights leads to positive
results.

For projection between MNIST and sklearn digits, the use of the original model hsource composed with
canonical projection matrix, i.e. no TransBoost yet, leads to good accuracy results :

- less than 15% for transferring from MNIST to sklearn digits : 16

Figure 16: Accuracy comparison between both methods on a data test of variable proportion p

(a) Blue : TransBoost method

(b) Orange : Relearning SVC method

- less than 10% for transferring from sklearn Digit to MNIST : 18

3.3.2 Comparing TransBoost method with relearning from target training set

With TransBoost, minimal error on target test set is barely reached within at most 15 steps. Again, the
better the weak classifier hsource �⇧i is chosen, fewer are steps needed to achieve maximal accuracy.

Again, we compared this method to relearning via linear SVC, depending on the ratio of target test dataset
among total target data.

The result are quite similar within the 3 transfers tested.

3.4 Conclusion
Though TransBoost method allow reasonable low error levels, it seems to be less efficient than relearning

from a linear SVC, whatever the ratio of target test set is.
Moreover, TransBoost method takes certainly longer time to process as the projection are chosen randomly

between huge sample at each steps, but there is no doubt picking off weak classifier could largely be optimized.
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Transfer learning using Transboost

• Illustrations

Project Report - Telecom Paris 2

1 Overview

Nowadays, several classification methods exist to split different classes of data. In order to do this, one could
mention classic binary classifiers such as the K- nearest neighbours (kNN) or the Linear SVC algorithms.

Assuming that you have a data that contains pictures of dogs and cats, using one of the basic binary class
methods is an obvious option to learn on this dataset, which we are about to call the dataset source in this
report. What about now if you have another dataset, so-called dataset target, composed of clip-arts of dogs
and cats ? Will you start over and train another independent model on this new dataset or will you use the one
you already have on the former data and adapt it ? Basically, our team has tried to answer this question by
comparing the accuracy of both approaches on different datasets.

Figure 1: Trained model on the data source : is it a picture of a dog or a cat ?

Figure 2: Model source transferred on the data target : is it a clip-art of a dog or a cat ?

In this study, we will let you know how we managed to do this classification transfer, by using a boosting
algorithm on the source model : Adaptive Boosting (AdaBoost). This being said, we will try to see how to
optimize the transferred model’s accuracy analytically. After that, we will see its performances on the classic
Half-moons dataset, which has been rotated. Then, we will use this process to compare the accuracy of a new
independent model trained on the data target in the one hand, and, on the other hand, the accuracy of the
method that we implemented using at the same time transfer and adaptive boosting methods. At least, we will
describe how this process had been employed on the convolutional neural artificial networks model trained on
the data source to make it able to classify the data target with a high level of accuracy from a very few data
training thanks to deep learning.

2 Adaptive Boosting or AdaBoost

2.1 Principle of AdaBoost
Obviously, all data cannot be fully well classified by a linear hypothesis (or classifier). This is the case of the

half-moons dataset for instance. That is why it is called a non linear dataset 3. It is composed of n vectors (x1,
y1), (x2,y2), ..., (xn, yn), where yj is the label associated to the feature xj .

AdaBoost is based on this idea that, after using a simple linear classifier on the data, some points will be
neglected and affected to the wrong class. Well, at the next iteration, these points will be overweighted as the
most important points of the dataset to well classify. Then, a second linear hypothesis is used to split again

Task A

Task B

XA 6= XB



69 / 146

Standard Transfer with NNs

...

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn NN on task A

Then freeze all 
layers except the 
first (and second)

Learn the first 
layer(s) to project 

from task B to task A

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn 
projection 

p2

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.
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Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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Transferring the 
decision function

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

 
`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i
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, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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One last question

Does the quality of hS plays a role?
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What if ...

Source hypothesis a priori without relation to the target task

Figure 3: Comparison of error rates. y-axis:
test error of the SVM classifier (without trans-
fer). x-axis : test error of the TransBoost clas-
sifier with 10 boosting steps. The results of
75 experiments (each one repeated 100 times)
are summed up in this graph.

Figure 4: Comparison of error rates. y-axis:
test error of the “naïve” transfer method. x-
axis : test error of the TransBoost classifier
with 10 boosting steps. The results of 75
experiments (each one repeated 100 times)
are summed up in this graph.

In these experiments the target domain is R70 while the source domain is R40. The source hypothesis
is chosen randomly in a set of functions completely independently from the target classification
problem, which, here, is the same as in the first set of experiments. The set of projections is the same
as in the first set of experiments.

Table 2 shows a representative set of results. Again, even in this a priori difficult transfer problem,
TransBoost brings remarkable gains wrt. learning without transfer, except when the learning task is
easy using directly the target data. (Note that there is no error rate given for the source hypothesis
since it was not learnt using a data set. Indeed, even if it had been so, this error rate would not have
any meaning as regards to the target learning task).

slope, noise, tT hT (train) hT (test) HT (train) HT (test)
0.001, 0.001, 70 0.44 ± 0.02 0.48 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
0.005, 0.005, 70 0.11 ± 0.04 0.13 ± 0.05 0.02 ± 0.01 0.02 ± 0.02
0.005, 0.005, 70 0.10 ± 0.04 0.11 ± 0.05 0.01 ± 0.01 0.01 ± 0.01
0.005, 0.05, 70 0.11 ± 0.04 0.12 ± 0.05 0.04 ± 0.02 0.03 ± 0.01
0.001, 0.001, 70 0.42 ± 0.03 0.48 ± 0.02 0.33 ± 0.02 0.37 ± 0.02
0.01, 0.1, 70 0.06 ± 0.03 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.02

Table 2: Learning without transfer and with transfer using an apriori irrelevant source hypothesis.

7 Conclusions

In this paper, we have introduced a new perspective on transfer learning and a new method. The notion
of difference or distance between the source and target domains is seen differently. Whereas previous
works on domain adaptation and transfer learning emphasized finding a common representation of the
source and target training sets, thus limiting the possible differences between source and target, our
view is that what matters is to be able to translate questions in the target domain into questions that
can be answered by the available source hypothesis. In fact, as long as we can find “weak translators”,
we can use any source hypothesis at all, without any regard to its internal function or its purpose. In
this perspective, the core of transfer learning is to be able to identify an adequate set of projections or
translations ⇡: one with the weak transfer property and with limited capacity.

This is similar to the choice of a good regularization term. Here, the source hypothesis forces the
target hypothesis space to be of the form hS � ⇡ with ⇡ : XT ! XS . If the source hypothesis
(regularizer) is ill-chosen, then the learning task is made difficult or even impossible. In fact, negative

8

Learning from target data only
TransBoost with 

“irrelevant” source hypothesis

hS randomly chosen on the source task 

Very good 
results!!

bR(hS) ⇡ 0.5

Hard
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One last question

Does the quality of hS plays a role?

What is the role of hS??

NO!!
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Analysis

• The quality of the source hypothesis on the source data?

– Plays no role

• The proximity of the source and target distributions PX and PY?

– Plays no role
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But… !?

Still some transfer learning problems 

appear to us more easy than others???

=>  No condition on the source!??
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Interpretation

Transfer acts as a  bias   and  hS is a strong part of this bias

– If the source hypothesis is well chosen: the bias is well informed

• Which does not mean that hS must be good on the source task

– Otherwise: Learning is badly directed

or there is over-fitting if the capacity of                is too largehS � ⇡
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Lessons

– The learning problem now becomes the problem 

of choosing a good set of (weak) projections

– Theoretical guarantees exist



81 / 146

Analysis

• The generalization properties of TransBoost

can be imported from the ones for boosting

Transfer Learning by Learning Projections from Target to Source 5

where ! : IR ! IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS ,

PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧ have the property given by Equation

(2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.
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This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy

|(R(h)� bR(h)|  2
q

2 d log(2em/d)+2 log(4/�)
m . For hS �⇧, this yields the first and

third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth
inequality with probability at least 1 � �/2. Applying the union bound archives
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Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probability at least 1 � �:

RT (hS � b⇡)  bRT (hS � b⇡) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 bRT (hS � ⇡⇤) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 RT (hS � ⇡⇤) + 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 !
�
RS(bhS)

�
+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 !
� bRS(bhS)

�
+ 2

r
2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy
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Theory for HTL

• …

112 Advances in Domain Adaptation Theory

In the formulation above, the loss function is only minimized with respect to w
and not specifically with respect to β. However, it is assumed that Ω(β) ≤ ρ making
β constrained by a strongly convex function, which allows one to cover regularized
algorithms that consider an additional regularization with respect to β. As in the
previous analysis, the key quantity RT (h

β
src) measuring the relevance of the source

hypothesis on the target domain will play a crucial role in the analysis of the
generalization properties of hŵ,β. To illustrate the types of algorithms covered by
this analysis, we can consider the least squares based regularization. More formally,
given a target training sample T = {(xi, yi)}mi=1, source hypothesis {wi

src} ⊂ H, the
parameters β ∈ Rn and λ ∈ R+, the least squares algorithm with biased
regularization outputs the target hypothesis

h(x) := 〈ŵ,x〉,

where

ŵ = argmin
w∈H





1

m

m∑

i=1

(〈ŵ,xi〉 − yi)
2 + λ‖w −

n∑

j=1

βjw
j
src‖22




 . [7.2]

The problem defined by equation [7.2] can be interpreted as the minimization of
the empirical error on the target sample, while keeping the solution close to the (best)
linear combination of source hypotheses. It can actually be proved that this
formulation is a special case of the classic regularized ERM [KUZ 17, KUZ 18].
While the formulation presented in equation [7.2] is limited to linear combination of
source hypotheses living in the same space of the target predictor, it can be
generalized allowing one to treat the source hypotheses as “black boxes” predictors
[KUZ 17, KUZ 18].

The results presented below correspond to generalization bounds for regularized
ERM-based algorithms.

THEOREM 7.3 ([KUZ 17]).– Let hŵ,β a hypothesis output by a regularized ERM
algorithm from a m-sized training set T i.i.d. from the target domain T , n source
hypotheses {hi

src : ‖hi
src‖∞ ≤ 1}ni=1, any source weights β obeying Ω(β) ≤ ρ and
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


Rsrc

T κ√
mλ

+

√
Rsrc

T ρκ2

mλ
+

Mη

m log

(
1 +

√
Mη
usrc

)





112 Advances in Domain Adaptation Theory

In the formulation above, the loss function is only minimized with respect to w
and not specifically with respect to β. However, it is assumed that Ω(β) ≤ ρ making
β constrained by a strongly convex function, which allows one to cover regularized
algorithms that consider an additional regularization with respect to β. As in the
previous analysis, the key quantity RT (h

β
src) measuring the relevance of the source

hypothesis on the target domain will play a crucial role in the analysis of the
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(〈ŵ,xi〉 − yi)
2 + λ‖w −

n∑

j=1

βjw
j
src‖22




 . [7.2]

The problem defined by equation [7.2] can be interpreted as the minimization of
the empirical error on the target sample, while keeping the solution close to the (best)
linear combination of source hypotheses. It can actually be proved that this
formulation is a special case of the classic regularized ERM [KUZ 17, KUZ 18].
While the formulation presented in equation [7.2] is limited to linear combination of
source hypotheses living in the same space of the target predictor, it can be
generalized allowing one to treat the source hypotheses as “black boxes” predictors
[KUZ 17, KUZ 18].

The results presented below correspond to generalization bounds for regularized
ERM-based algorithms.
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where usrc = Rsrc
T

(
m+ κ

√
m

λ

)
+ κ

√
Rsrc

T mρ
λ and Rsrc

T = RT (hβ
src) is the risk of the

source hypothesis combination.

The risk of the source hypothesis combination on the target domain (Rsrc)
provides an important information that can be interpreted in two aspects: obviously
the performance of the source hypothesis combination on the target domain, but also
an indicator of the relatedness between the source and target domains:

– when the source information is bad for the target domain, i.e. Rsrc
T is high, then

hβ
src is useless for the transfer task. This can be interpreted as learning with no useful

auxiliary information. Assuming that Rsrc
T ≤ M , from theorem 7.3, we can get that

RT (hŵ,β) − RT̂ (hŵ,β) ≤ O(1/(
√
mλ). We recover classic rate suggesting that the

approach is robust to negative transfer;

– when the source domain is informative for the target domain, one can have
guarantees for small learning samples. In particular, let m = O(1/Rsrc

T ), then we
can obtain a convergence rate of O(

√
ρ/m

√
λ). This implies that a fast convergence

rate behavior can be obtained with “small m” that depends on the performance of the
combined source hypotheses. Asymptotically, the theorem also shows that a rate of
O(Rsrc

T /(
√
mλ) +

√
Rsrc

T ρ/mλ) can be obtained where the term Rsrc
T is related to the

constant factor of the rate. Hence, a small Rsrc
T allows one to have a faster convergence

making use of the information coming the source hypotheses combination;

– when the source domain is actually perfect for the target domain, i.e. Rsrc
T =

0, the source hypothesis is able to perfectly predict labels of instances of the target
domain. In this case, theorem 7.3 implies that R(hŵ,β) = RT̂ (hŵ,β) with probability
one. For most commonly used smooth loss functions, this setting is realistic only if
source and target domains are the same and the task considered is noise free. Anyway,
it is possible for some specific loss, such as the squared hinge loss, and with a target
domain that can perfectly classified by the source.

7.3.4. Comparison with standard theory of domain adaptation

The seminal results from [BEN 10a] and [MAN 09a] have provided the first
theoretical frameworks for domain adaptation using a domain divergence between
distributions. Following the results presented in Chapter 3 on divergence-based
generalization bounds derived in the literature, these bounds have in general the
following form:

RT (h) ≤ RS(h) + d(SX, TX) + λ,
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This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy
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q

2 d log(2em/d)+2 log(4/�)
m . For hS �⇧, this yields the first and

third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth
inequality with probability at least 1 � �/2. Applying the union bound archives

“Authors also present some theory, but at the moment, again, it is essentially a trivial 
extension of boosting theory. TL bounds should incorporate the quality of the source 
hypothesis, e.g. the risk of the source on \mathcal{D}_T.”
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third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth
inequality with probability at least 1 � �/2. Applying the union bound archives
the desired results. The second inequality follows from the definition of b⇡, and
the fourth inequality is where we inject our assumption about the transferability
(or proximity) between the source and the target problem. ⇤

We can thus control the generalization error on the transfer domain by con-
trolling dhS�⇧ , mS and ! which measures the link between the domain and the
target domain. The number of target training data mT is typically supposed to
be small in transfer learning and thus cannot be employed to control the error.

Theoretical guarantees

[ Cornuéjols A., Murena P-A. & Olivier R. “Transfer Learning by Learning Projections from Target to Source”.

Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany. ]

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Transfer Learning by Learning Projections from Target to Source

For the latter term, we adapt the theoretical study of Mc-
Namara and Balcan (?) on the transfer of representation
in deep neural networks. We suppose that PS , PT , hS ,
hT = bhS � ⇡ (⇡ 2 ⇧), bhS and ⇧ have the property:

8 bhS 2 HS : Min
⇡2⇧

RT (bhS � ⇡)  !
�
RS(hS)

�
(2)

where ! : IR ! IR is a non-decreasing function.

Equation (2) means that the best target hypothesis expressed
using the learned source hypothesis has a true risk bounded
by a non-decreasing function of the true risk on the source
domain of the learned source hypothesis.
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Transfer Learning by Learning Projections from Target to Source

For the latter term, we adapt the theoretical study of Mc-
Namara and Balcan (?) on the transfer of representation
in deep neural networks. We suppose that PS , PT , hS ,
hT = bhS � ⇡ (⇡ 2 ⇧), bhS and ⇧ have the property:

8 bhS 2 HS : Min
⇡2⇧

RT (bhS � ⇡)  !
�
RS(hS)

�
(2)

where ! : IR ! IR is a non-decreasing function.

Equation (2) means that the best target hypothesis expressed
using the learned source hypothesis has a true risk bounded
by a non-decreasing function of the true risk on the source
domain of the learned source hypothesis.

Ridiculous

Irrelevant
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One last question

A relationship with tracking?
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Tracking

Instead of learning a complex function over the whole of X
• If you know that the task is slowly evolving with time

• Learn a simple local function

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Definition

Assumptions:

Data streams

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

Limited resources: Restricted
hypothesis space H x

y

“Local” learning

and local prediction :

Lt = `(ht(xt), yt)

= `(ht(xt), f (xt, ✓t))
x

y

fenêtre

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.
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Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
A new inductive problem

Notion of temporal consistency

f (·, ✓t) continuous
and with bounded variation / ✓t

New inductive criterion

Lh0,Ti(r) =
TX

t=0

`(ht(xt), yt)

+ �
X

||ht � ht�1||2

+ Capacity(R)

x

y

fenêtre

x

y

fenêtre

Do not optimize the choice of ONE h any longer!!

but optimize the learning rule (r 2 R) instead: (ht�1, xt)
r
�! ht !!

73 / 81

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Motivation

In a lot of natural settings:

Data comes sequentially

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

This enables:

Powerful learning

with limited resources
(time + memory)

x1

x2

X

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.
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Tracking in stationary environments

Tracking to play Go

• 5 x 5 Go

– More than 5 x 1010 unique positions

• Usual approach: learn a general evaluation function V(s) valid    s

On the Role of Tracking in Stationary Environments
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Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w
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Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F ) of local shape features in F , and
the total number of active featuresm(F ) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F )
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F )
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

8

Features describing the situation

Associated weights (learnt)
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Tracking in stationary environments

• Tracking approach: learn an evaluation function V(s) 
local to the current s

On the Role of Tracking in Stationary Environments
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Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.
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Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F ) of local shape features in F , and
the total number of active featuresm(F ) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F )
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F )
LI 50 80 128 32 72
LD 50 40 32 32 32
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Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).
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b
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Figure 7. (Left) A 3 ⇥ 3 feature making two eyes in the
corner. (Right) Black to play, move a is now the winning
move. Using 3 ⇥ 3 features, the converging agent makes
two eyes at b, believing this to be a good shape in general.
However, the tracking agent realizes that move b is redun-
dant (black already has two eyes) and learns to play the
winning move at a.

now bad: Black already has two eyes and should play
in the center to maximize his territory. The converg-
ing agent is unable to understand the global context
and plays the wrong move in the corner. The track-
ing agent learns that the corner pattern is not as im-
portant as the central territory in this context, and
plays the correct move in the center. Thus, the track-
ing agent customizes its policy to the current situation
and outperforms the converging agent, even when the
representation is expressive and rich with features.

4. Step-size adaptation in the Black

and White world

As we saw in the Black and White world, the best
step-size parameter ↵ generally depends on the degree
of temporal coherence of the world, which may not
be known a priori. This is an area in which meta-
learning might play a role. We present an adaptation
of the incremental delta-bar-delta (IDBD) algorithm,
an online meta-learning algorithm that uses gradient
descent to learn step-size parameters (Sutton, 1992a,
1992b). Here we use a version of IDBD customized for
the log loss we use in this paper. Our derivation of
the IDBD algorithm for log loss directly parallels that
presented by Sutton (1992a) for squared error.

The IDBD algorithm allows for a di↵erent step-size ↵i

for each component wi of the parameter vector w. The
weight update rule is similar to that for the scalar case
shown in Section 2:

wi
t+1 = wi

t + ↵i
t+1�tx

i
t. (5)

The step-size ↵i
t is a function of a new parameter �i

t:

↵i
t = e�i

t . (6)

The parameter �i is updated according to the gradient
descent rule with meta-learning rate µ. The derivative

is with respect to �i, which can be thought of as the
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change in �i at all time steps. Let hi
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Note the derivative is exact in the scalar case.

We calculate the derivative of wi
t with an accumulating
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The full algorithm for semi-linear IDBD is given in
Figure 1.

Algorithm 1 Semi-linear IDBD
Initialize hi

0 to 0, wi
0 and �i

0 as desired.
for each time step t do

y  1

1+e
Pn

i=1 �wixi

�  z � y
for each weight i do

�i  �i + µ�xihi

↵i  e�i

wi  wi + ↵i�xi

hi  hi[1� ↵i(xi)2y(1� y)] + ↵i�xi

end for
end for
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Figure 7. (Left) A 3 ⇥ 3 feature making two eyes in the
corner. (Right) Black to play, move a is now the winning
move. Using 3 ⇥ 3 features, the converging agent makes
two eyes at b, believing this to be a good shape in general.
However, the tracking agent realizes that move b is redun-
dant (black already has two eyes) and learns to play the
winning move at a.

now bad: Black already has two eyes and should play
in the center to maximize his territory. The converg-
ing agent is unable to understand the global context
and plays the wrong move in the corner. The track-
ing agent learns that the corner pattern is not as im-
portant as the central territory in this context, and
plays the correct move in the center. Thus, the track-
ing agent customizes its policy to the current situation
and outperforms the converging agent, even when the
representation is expressive and rich with features.

4. Step-size adaptation in the Black

and White world

As we saw in the Black and White world, the best
step-size parameter ↵ generally depends on the degree
of temporal coherence of the world, which may not
be known a priori. This is an area in which meta-
learning might play a role. We present an adaptation
of the incremental delta-bar-delta (IDBD) algorithm,
an online meta-learning algorithm that uses gradient
descent to learn step-size parameters (Sutton, 1992a,
1992b). Here we use a version of IDBD customized for
the log loss we use in this paper. Our derivation of
the IDBD algorithm for log loss directly parallels that
presented by Sutton (1992a) for squared error.

The IDBD algorithm allows for a di↵erent step-size ↵i

for each component wi of the parameter vector w. The
weight update rule is similar to that for the scalar case
shown in Section 2:

wi
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i
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The step-size ↵i
t is a function of a new parameter �i
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The parameter �i is updated according to the gradient
descent rule with meta-learning rate µ. The derivative
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derivative of the loss with respect to an infinitesimal
change in �i at all time steps. Let hi
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The full algorithm for semi-linear IDBD is given in
Figure 1.

Algorithm 1 Semi-linear IDBD
Initialize hi

0 to 0, wi
0 and �i

0 as desired.
for each time step t do

y  1

1+e
Pn

i=1 �wixi

�  z � y
for each weight i do

�i  �i + µ�xihi

↵i  e�i

wi  wi + ↵i�xi

hi  hi[1� ↵i(xi)2y(1� y)] + ↵i�xi

end for
end for

On the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 1. Percentage of 5⇥5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ✏-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to ↵t = 0.1/||x(st)||
for both agents.

The first experiment used only the 1⇥1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 ⇥ 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 ⇥ 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 ⇥ 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

In general, playing (a) 
(center) is better than 

playing (b)

In this situation, playing (b) 
is better than playing (a)

More weight

BUT

More weight



90 / 146

Tracking as local changes of representation

...

Space of go positions

Features

x

x’

Embedding 
Space of representations

The weights of the features
change with the evolving positionOn the Role of Tracking in Stationary Environments

b

a

Figure 7. (Left) A 3 ⇥ 3 feature making two eyes in the
corner. (Right) Black to play, move a is now the winning
move. Using 3 ⇥ 3 features, the converging agent makes
two eyes at b, believing this to be a good shape in general.
However, the tracking agent realizes that move b is redun-
dant (black already has two eyes) and learns to play the
winning move at a.

now bad: Black already has two eyes and should play
in the center to maximize his territory. The converg-
ing agent is unable to understand the global context
and plays the wrong move in the corner. The track-
ing agent learns that the corner pattern is not as im-
portant as the central territory in this context, and
plays the correct move in the center. Thus, the track-
ing agent customizes its policy to the current situation
and outperforms the converging agent, even when the
representation is expressive and rich with features.

4. Step-size adaptation in the Black

and White world

As we saw in the Black and White world, the best
step-size parameter ↵ generally depends on the degree
of temporal coherence of the world, which may not
be known a priori. This is an area in which meta-
learning might play a role. We present an adaptation
of the incremental delta-bar-delta (IDBD) algorithm,
an online meta-learning algorithm that uses gradient
descent to learn step-size parameters (Sutton, 1992a,
1992b). Here we use a version of IDBD customized for
the log loss we use in this paper. Our derivation of
the IDBD algorithm for log loss directly parallels that
presented by Sutton (1992a) for squared error.

The IDBD algorithm allows for a di↵erent step-size ↵i

for each component wi of the parameter vector w. The
weight update rule is similar to that for the scalar case
shown in Section 2:
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t is a function of a new parameter �i

t:

↵i
t = e�i

t . (6)

The parameter �i is updated according to the gradient
descent rule with meta-learning rate µ. The derivative

is with respect to �i, which can be thought of as the
derivative of the loss with respect to an infinitesimal
change in �i at all time steps. Let hi
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t with an accumulating

trace:

hi
t+1 =

@wi
t+1

@�i

=
@wi

t

@�i
+

@↵i
t+1�t

@�i
xi

t

= hi
t +

@e�i
t+1

@�i
�tx

i
t + e�i

t+1xi
t
@(zt � yt)

@�i

= hi
t + e�i

t+1�tx
i
t � e�i

t+1xi
tyt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

⇡ hi
t + e�i

t+1�tx
i
t � e�i

t+1(xi
t)

2yt(1� yt)
@wi

t

@�i

= hi
t[1� ↵i

t+1(x
i
t)

2yt(1� yt)] + ↵i
t+1�tx

i
t

The full algorithm for semi-linear IDBD is given in
Figure 1.

Algorithm 1 Semi-linear IDBD
Initialize hi

0 to 0, wi
0 and �i

0 as desired.
for each time step t do

y  1

1+e
Pn

i=1 �wixi

�  z � y
for each weight i do

�i  �i + µ�xihi

↵i  e�i

wi  wi + ↵i�xi

hi  hi[1� ↵i(xi)2y(1� y)] + ↵i�xi

end for
end for

On the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 1. Percentage of 5⇥5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ✏-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to ↵t = 0.1/||x(st)||
for both agents.

The first experiment used only the 1⇥1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 ⇥ 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 ⇥ 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 ⇥ 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

Weight Weight
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Transboost as local changes of representation
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Outline

1. Transfer learning: questions

2. Transfer learning in neural networks

3. TransBoost: an algorithm and what it tells on the role of the source 

4. Curriculum learning and the geometry of the space of learning tasks

5. How to measure the difficulty of a training example

6. Conclusions



94 / 146

Curriculum building

And the geometry of the space of learning tasks
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Sequencing effects

A fundamental question
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Outline

1. Supervised induction: the classical setting

2. What about Out Of Distribution learning (OOD)?

3. Parallel transport, covariant derivative and transfer learning

– What they are

– ... and in Machine Learning

4. A way to deal with different spaces of tasks

5. Conclusions
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Parallel Transport 

and Covariant Derivative
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Euclidian geometry

• Addition of vectors

• Substraction of vectors and derivative
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Non Euclidian geometry

• Substraction of vectors and derivative

We can no longer directly compare vectors (or tensors)

Referen&al_s

Referen&al_t

hypothesis_s

hypothesis_t

Necessity of the covariant derivative



100 / 146

Parallel transport

• Transport a vector (or a tensor) parallel to itself along a curve

Covariant derivative = 0

(@kV
i)covariant = @kV

i + �i
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Path 
dependent!

Kronecker symbol
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Transfer and path dependence

Transfer = Parallel transport of hypothesis from source to target
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Transfer and path dependence
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Parallel transport in ML works

1. Tracking

2. Computer vision

3. Curriculum learning

Transfer =  parallel transport of the source hypothesis 
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Computer vision

...

THE SPACE OF FULL-RANKED ONE-FORMS 3

Figure 1. A geodesic in the space of regular curves modulo
translations with respect to the Younes-metric (5.2), a special
case of our metric.

Figure 2. Examples of geodesics in the space of surfaces
modulo translations with respect to the generalized Ebin
metric (4.1). These examples have been calculated using the
numerical framework for the Riemannian metric studied in
this paper as developed in [36].

to the SRNF. In fact we obtain the isometric immersion:

Imm(M,Rn) �! ⌦1
+,ex(M,Rn) ⇢ ⌦1

+(M,Rn) ,

where ⌦1
+,ex(M,Rn) denotes the subset of exact one-forms (assuming that

the topology of M is su�ciently simple). The present article will focus
mainly on the geometry on the larger space of all full-ranked one-forms; we
plan to study the submanifold geometry of the space of exact one-forms in
future work. This strategy is similar to that of Ebin-Marsden [17], who
considered the L2-geometry of Di↵(M) where all the geometry may be done
point-wise, then considered the submanifold of volume-preserving di↵eo-
morphisms under the induced metric (where geodesics describe ideal fluid
motion).

In Figures 1, 2, and 5 one can see examples of geodesics in the space
of immersions, equipped with the pull-back of the generalized Ebin met-
ric studied in this article. These examples have been calculated using the
numerical framework for the Riemannian metric studied in this paper as
developed in [36]1, where the spherical parametrizations of the boundary
surfaces have been obtained using the code of Laga et al. [27].
Connections to the Ebin-metric on the space of all Riemannian metrics. An-
other motivation for the present article can be found in the connection of
the proposed metric to the Ebin metric on the space of all Riemannian met-
rics, which has been introduced by Ebin [16]; see also the article of DeWitt
[14]. Motivated by applications in Teichmüller theory, Kähler geometry and

1An open source implementation of the corresponding numerical framework can be
found at https://github.com/zhesu1/elasticMetrics.

Bauer, M., Klassen, E., Preston, S. C., & Su, Z. (2018). A diffeomorphism-invariant metric on the space of vector-valued one-
forms. arXiv preprint arXiv:1812.10867.
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Parallel transport in computer vision

Problem: 

• the convolution operator used in standard neural 
network for vision assumes an Euclidian space

– Translation invariance  (in particular)

• But this is not true for general forms

• We want a convolution operator that 
changes with the position

(a) (b) (c) (d)

Figure 1: A compactly supported kernel (a) is transported
on a manifold from the FAUST data set [2] through trans-
lation (b), translation + dilation (c) and translation + rota-
tion (d).

point by solving the Eikonal equation |rMD(x)| = 1 us-
ing the fast marching method [30, 16]. Next we calcu-
late rMD and its orthonormal direction on each trian-
gle ⌧s. Together with the face normal direction ~ns, for
each triangle ⌧s, we construct a local orthonormal frame
Fs = {~b1s,~b2s,~ns} where ~b1s,~b2s, reflecting the intrinsic in-
formation, are tangent to ⌧s, and ~ns, reflecting the extrin-
sic information, is orthogonal to ⌧s. For an edge adjacent
with ⌧s and ⌧t, we write Rst as an orthonormal transi-
tion matrix such that RstFt = Fs. Then any vector in
Span{~b1s,~b2s} can be transported to Span{~b1t ,~b2t} using
the transition matrix Rst. This can be viewed as a dis-
cretization of connection and used to transport a vector on
the tangent space of one given point to all other points.
The compatibility condition of all Rst discussed in [34]
can guarantee that no ambiguity will be introduced in this
way.

After the transportation is conducted, the convolution
kernel can be transported to a new point by interpolat-
ing the transported vectors in the local tangent space at
the target point. Computationally, we define a sparse
matrix K where the ith column is the transportation of
the kernel to the ith vertex. Thus, we have the follow-
ing definition of discrete parallel transport convolution:
(f ⇤M k)(x) := KT

MF where F is column vector repre-
sentation the function f at each vertex and M is the mass
matrix. Note that once we have found the vector field of
the geodesic equation, the transportation of the kernel to
each new center and multiplication with F is independent
and can therefore be parallelized efficiently. Figure 1 il-
lustrates the effect of the proposed method of transporting
a kernel function on a manifold. This result shows that the
proposed method produce an analogy of the behavior of a
kernel function k(x � y) operating in the Euclidean do-
main. More importantly, we would like to emphasize that
number of freedoms in our PTC is essentially the same
as the classical convolution on Euclidean domain. This
makes our method has much less number of parameters

as those used in the patch based methods [25]. In addi-
tion, PTC can be computed very efficiently using sparse
matrices product once the interpolation matrices and mass
matrices have been precomputed. We provide detailed im-
plementation about sparse matrices multiplication of PTC
in the appendix.

3.3 Convolutional neural networks on man-

ifolds through PTC

Using the proposed PTC, we can define convolutional
neural networks on manifolds. We shall refer these net-
work as PTCNets. Similar as CNNs on Euclidean do-
mains, a PTCNet consists of an input and an output layer,
as well as multiple hidden layers including fully con-
nected layers, nonlinear layers, pooling layers and PTC
layers listed as follows.

• Fully connected layer: fout
i (x) =PN

j=1 wijf in
j (x), i = 1, · · · , L. This layer

connects every neuron in one layer to every neuron
in the previous layer. The coefficient matrix (wij)
parametrizes this layer and will be trained by a training
data set.

• ReLu layer: fout
i (x) = max{0, f in

i (x)}, i =
1, · · · , L. This is a fixed layer applying the nonlin-
ear Rectified Linear Units function max{0, x} to each
input.

• PTC layer: fout
i,↵ (x) =

R
k↵(x, y)f in

i (y) dy ⇡
K↵MF in

i , ↵ = 1, · · · ,m. This layer applies the
proposed PTC to the input, passes the result to the next
layer. Each k↵ is determined by the proposed PTC on
manifolds with an initial convolution kernel k↵(x0, ·),
which parametrize the parallel transport convolution
process and will be trained based on a training data set.
For certain applications with a moderate size of train-
ing set, more structured initial kernel might be needed.
In this case, we can control k↵ by a sequence of rota-
tion in the tangent space, which can reduce the number
of free parameters and save computation time. Detail
on memory efficient implementation of this layer can
be found in the appendix

Therefore, it is straightforward to adapt established net-
work architectures in Euclidean domain cases to mani-
folds case as the only change is to replace traditional con-
volution by PTC. In addition, back-propagation can be
achieved by taking derivation of K. The compact sup-
port of the convolution kernel is represented as a sparse
matrix which makes computation efficient.

Thus far we have only considered transportation along
the geodesic. In practice we can compute the parallel
transportation along any given vector field. For some ap-
plications it may be more natural to use another vector
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Question: what convolution operations to use then?
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Parallel transport in computer vision

...

(a) (b) (c) (d)

Figure 1: A compactly supported kernel (a) is transported
on a manifold from the FAUST data set [2] through trans-
lation (b), translation + dilation (c) and translation + rota-
tion (d).
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For certain applications with a moderate size of train-
ing set, more structured initial kernel might be needed.
In this case, we can control k↵ by a sequence of rota-
tion in the tangent space, which can reduce the number
of free parameters and save computation time. Detail
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Therefore, it is straightforward to adapt established net-
work architectures in Euclidean domain cases to mani-
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volution by PTC. In addition, back-propagation can be
achieved by taking derivation of K. The compact sup-
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of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1
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where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,
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Standard CNN PTCNet

Parallel Transported 
Convolution layer

The crucial idea of PTC is to define a kernel function 
k(x, y) which is able to encode x − y using a parallel 
transportation that naturally incorporates the 
manifold structure 
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Outline

1. Reminders from the past classes

2. Sequencing effects

3. Parallel transport, covariant derivative and transfer learning

4. Curriculum building

5. Can we find a role for the source task in solving a target one?

6. Conclusions
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Curriculum building
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Sequencing effects

• How to eliminate them? NO!

• How to organize them and guide learning?

• How to build a curriculum for machines?

YES!
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• “… Unlike (statistical) machine learning, in human learning supervision is often 

accompanied by a curriculum. Thus the order of presented examples is rarely 

random when a human teacher teaches another human. 

• Likewise, the task may be divided by the teacher into smaller sub-tasks, a 

process sometimes called shaping (Krueger & Dayan, 2009) and typically 

studied in the context of reinforcement learning (e.g. Graves et al., 2017). 

• Although it remained for the most part in the fringes of machine learning 

research, curriculum learning has been identified as a key challenge for 

machine learning throughout.”

[Daphna Weinshall et al. (2018) « Curriculum Learning by Transfer Learning: Theory and Experiments with 
Deep Networks ». ICML-2018.]
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Curriculum learning

• “Humans need about two decades to be trained as fully functional adults of 

our society. 

• That training is highly organized, based on an education system and a 

curriculum which introduces different concepts at different times, exploiting 

previously learned concepts to ease the learning of new abstractions. 

• By choosing which examples to present and in which order to present them to 

the learning system, one can guide training and remarkably increase the 

speed at which learning can occur.”

[Joshua Bengio (2018) « Learning deep architectures for AI ». ‪Now Publishers Inc, 2009‬.]
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Cognitive tunnel effect

[A. Cornuéjols, A. Tiberghien, G. Collet.  Tunnel Effects in Cognition: A new Mechanism for Scientific 
Discovery and Education.   Arxiv-1707.04903- Tue, 18 Jul 2017 00:00:00 GMT]
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Cognitive tunnel effect
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• We expect that transfer is easy when source and target tasks are “close”

• And it may be difficult to transfer across tasks that are “far away”

But how to measure “closeness” 

and “far away” for learning tasks?

Define a geometry over the space of tasks
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Geometry of the space of tasks 

• Desiderata

1. Should incorporate the hypothesis space, 
and not only the “distance” between the inputs (as is usually done)

• For instance, it is often observed that transferring larger models is easier. 
The geometry should reflect this. 

2. The distance between tasks is not symmetrical

Gao, Y., & Chaudhari, P. (2021, July). An information-geometric distance on the space of tasks. 
In International Conference on Machine Learning (pp. 3553-3563). PMLR.
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Idea

Modify conjointly the training data distribution and the learned hypothesis

An Information-Geometric Distance on the Space of Tasks

Yansong Gao 1 Pratik Chaudhari 2

Abstract
This paper prescribes a distance between learning
tasks modeled as joint distributions on data and
labels. Using tools in information geometry, the
distance is defined to be the length of the shortest
weight trajectory on a Riemannian manifold as
a classifier is fitted on an interpolated task. The
interpolated task evolves from the source to the
target task using an optimal transport formulation.
This distance, which we call the “coupled transfer
distance” can be compared across different clas-
sifier architectures. We develop an algorithm to
compute the distance which iteratively transports
the marginal on the data of the source task to that
of the target task while updating the weights of
the classifier to track this evolving data distribu-
tion. We develop theory to show that our distance
captures the intuitive idea that a good transfer tra-
jectory is the one that keeps the generalization
gap small during transfer, in particular at the end
on the target task. We perform thorough empiri-
cal validation and analysis across diverse image
classification datasets to show that the coupled
transfer distance correlates strongly with the diffi-
culty of fine-tuning.

1. Introduction
A part of the success of Deep Learning stems from the fact
that deep networks learn features that are discriminative
yet flexible. Models pre-trained on a particular task can be
easily adapted to perform well on other tasks. The transfer
learning literature forms an umbrella for such adaptation
techniques, and it works well, see for instance Mahajan
et al. (2018); Dhillon et al. (2020); Kolesnikov et al. (2019);
Joulin et al. (2016) for image classification or Devlin et al.
(2018) for language modeling, to name a few large-scale
studies. There are also situations when transfer learning
does not work well, e.g., a pre-trained model on ImageNet
is a poor representation to transfer to MRI data (Merkow

1Department of Applied Mathematics and Computational Science,
University of Pennsylvania 2Department of Electrical and Sys-
tems Engineering, University of Pennsylvania. Correspondence
to: Yansong Gao <gaoyans@sas.upenn.edu>, Pratik Chaudhari
<pratikac@seas.upenn.edu>.

Figure 1. Coupled transfer of the data and the conditional dis-
tribution. We solve an optimization problem that transports the
source data distribution ps(x) to the target distribution pt(x) as
⌧ ! 1 while simultaneously updating the model using samples
from the interpolated distribution p⌧ (x). This modifies the condi-
tional distribution pws(y|x) on the source task to the correspond-
ing distribution on the target task pwt(y|x). The “coupled transfer
distance” between source and target tasks is the length of the short-
est such weight trajectory under the Fisher Information Metric.

et al., 2017).

It stands to reason that if source and target tasks are “close”
to each other then we should expect transfer learning to
work well. It may be difficult to transfer across tasks that
are “far away”. We lack theoretical tools to characterize the
difficulty of adapting a model training on a source task to
the target task. While there are numerous candidates in the
literature (see Related Work in Sec. 6) for characterizing
the distance between tasks, a unified understanding of these
domain-specific methods is missing.

Desiderata. Our desiderata for a task distance are as follows.
First, it should be a distance between learning tasks, i.e.,
it should explicitly incorporate the hypothesis space of the
model that is being transferred and accurately reflect the
difficulty of transfer. For example, it is often observed in
practice that transferring larger models is easier, we would
like our task distance to capture this fact. Such a distance
is different than discrepancy measures on the input, or the
joint input-output space, which do not consider the model.

Second, we would like a theoretical framework to prescribe
this distance. Task distances in the literature often de-
pend upon quantities such as the number of epochs of fine-
tuning to reach a certain accuracy, where different hyper-
parameters may result in different conclusions. Also, as
the present paper explores at depth, there are mechanisms
for transfer other than fine-tuning that may transfer easily
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Experimental results

• Using an 8-layer convolutional NN (ReLU, dropout, batch-normalization) with 
a final fully connected layer

An Information-Geometric Distance on the Space of Tasks

an 8-layer convolutional neural network with ReLU non-
linearities, dropout, batch-normalization with a final fully-
connected layer along with a larger wide-residual-network
WRN-16-4 (Zagoruyko & Komodakis, 2016). Sec. A gives
details about pre-processing, architecture and training.

5.2. Baseline methods to estimate task distances

The difficulty of fine-tuning is the gold standard of dis-
tance between tasks. It is therefore very popular, e.g., Ko-
rnblith et al. (2019) use the number of epochs during transfer
as the distance. We compute the length of the weight tra-
jectory, i.e.,

R 1
0 |dw| and call this the fine-tuning distance.

The trajectory is truncated when validation accuracy on the
target task is 95% of its final validation accuracy. No trans-
port of the task is performed and the model directly takes
SGD updates on the target task after being pre-trained on
the source task.

The next baseline is Task2Vec (Achille et al., 2019a) which
embeds tasks using the diagonal of the FIM of a model
trained on them individually. Cosine distance between these
vectors is defined as the task distance.

We also compare with the uncoupled transfer distance
developed in Sec. 3.1. This distance computes length of
the weight trajectory on the Riemannian distance and also
interpolates the data but does not do them synchronously.

Discrepancy measures on the input space are a popular
way to measure task distance. We show task distance com-
puted as the Wasserstein W

2
2 metric on the the pixel-

space, the Wasserstein W
2
2 metric on the embedding

space and also method that we devised ourselves where
we transfer a variational autoencoder (VAE (Kingma &
Welling, 2014)) from the source to the target task and com-
pute the length of weight trajectory on the manifold. We
transfer the VAE in two ways, (i) by directly fitting the
model on the target task, and (ii) by interpolating the task
using a mixture distribution as described in Sec. 3.1.

5.3. Quantitative comparison of distance matrices

Metrics are not unique. We would however still like to com-
pare two task distances across various pairs of tasks. In
addition to showing these matrices and drawing qualitative
interpretations, we use the Mantel test (Mantel, 1967) to ac-
cept/reject the null hypothesis that variations in two distance
matrices are correlated. We will always compute correla-
tions with the fine-tuning distance matrix because it is
a practically relevant quantity and task distances are often
designed to predict this quantity. We report p-values and the
normalized test statistic r = 1/(n2

� n� 1)
Pn

i,j=1(aij �

ā)(bij � b̄)/(�a�b) where a, b 2 Rn⇥n are distance matri-
ces for n tasks, ā,�a denote mean and standard deviation of
entries respectively. Numerical values of r are usually small

for all data (Ape; Goslee et al., 2007) but the pair (r, p) are
a statistically sound way of comparing distance matrices;
large r with small p indicates better correlation.

5.4. Transferring between subsets of benchmark
datasets

CIFAR-10 and CIFAR-100. We consider four tasks (i) all
vehicles (airplane, automobile, ship, truck) in CIFAR-10,
(ii) the remainder, namely six animals in CIFAR-10, (iii)
the entire CIFAR-10 dataset and (iv) the entire CIFAR-100
dataset. We show results in Fig. 2 using 4⇥4 distance matri-
ces where numbers in each cell indicate the distance between
the source task (row) and the target task (column).
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Figure 2. Fig. 2a shows coupled transfer distance (r = 0.428 p =
0.13), Fig. 2b shows distances estimated using Task2Vec (r = 0.03,
p = 0.98), Fig. 2c shows fine-tuning distance (r = 0.61, p = 0.09
with itself). The numerical values of the distances in this figure are
not comparable with each other. Coupled transfer distances satisfy
certain sanity checks, e.g., transferring to a subset task is easier
than transferring from a subset task (CIFAR-10-vehicles/animals),
which Task2Vec does not.

Coupled transfer shows similar trends as fine-tuning, e.g.,
the tasks animals-CIFAR-10 or vehicles-CIFAR-10 are close
to each other while CIFAR-100 is far away from all tasks (it
is closer to CIFAR-10 than others). Task distance is asym-
metric in Fig. 2a, Fig. 2c. Distance from CIFAR-10-animals
is smaller than animals-CIFAR-10; this is expected because
animals is a subset of CIFAR-10. Task2Vec distance esti-
mates in Fig. 2b are qualitatively quite different from these
two; the distance matrix is symmetric. Also, while fine-
tuning from animals-vehicles is relatively easy, Task2Vec
estimates the distance between them to be the largest.

This experiment also shows that our approach can scale to
medium-scale datasets and can handle situations when the
source and target task have different number of classes.

Transferring between subsets of CIFAR-100. We con-
struct five tasks (herbivores, carnivores, vehicles-1, vehicles-
2 and flowers) that are subsets of the CIFAR-100 dataset.
Each of these tasks consists of 5 sub-classes. The distance
matrices for coupled transfer, Task2Vec and fine-tuning are
shown in Fig. 3a, Fig. 3b and Fig. 3c respectively. We also
show results using uncoupled transfer in Fig. 3d.

Coupled transfer estimates that all these subsets of CIFAR-
100 are roughly equally far away from each other with
herbivores-carnivores being the farthest apart while vehicles-

Distance is asymmetrical
– CIFAR-10 to animals  < animals to CIFAR-10

– CIFAR-100 to any other is much easier

than the reverse

Estimated task distances
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• Using an 8-layer convolutional NN

Distance is much reduced
using a larger capacity model

An Information-Geometric Distance on the Space of Tasks
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Figure 5. Fig. 5a shows coupled transfer distance (r = 0.15, p
= 0.01) and Fig. 5b shows fine-tuning distance (r = 0.39, p =
0.01 with itself and r = 0.21, p = 0.20 with fine-tuning distance
in Fig. 3c). Numbers in Fig. 5a can be directly compared to those
in Fig. 3a. WRN-16-4 model has a shorter trajectory for all task
pairs compared to the CNN in Fig. 3a with fewer parameters.

fine-tuning for pairs of CIFAR-100 tasks. It shows that
broadly, the former improves generalization. This is consis-
tent with existing literature (Gao & Chaudhari, 2020) which
employs task interpolation for better transfer. Let us note
that improving fine-tuning is not our goal while develop-
ing the task distance. In fact, we want the task distance to
correlate with the difficulty of fine-tuning.

 

 

   Herbivores   Carnivores    Vehicle 1    Vehicle 2     Flowers 

   Vehicle 1  ​0.693  ​1.091 
  ​82.4 ​ ​  ​ 80.4 

 ​0.530  ​0.928  
  ​85.0    ​85.0 

       N/A  ​0.247  ​0.423 
  ​93.2    ​92.6 

 0.843  ​1.110 
  ​81.4    ​81.0 

   Vehicle 2  0.616  ​1.088 
  ​84.4    ​84.0 

 0.504  ​0.968 
  ​87.2    ​84.8 

 0.451  ​0.500 
  ​88.4    ​89.0 

        N/A  0.778 ​  ​1.000 
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Figure 6. Comparison of validation loss (red for coupled transfer,
green for fine-tuning) and accuracy (%) (blue and yellow respec-
tively) between different subsets of CIFAR-100. Optimal transport
for the task distribution results in large improvements in the vali-
dation loss in all cases; The validation accuracy also improve by
0.4%–2.5% in all cases except the last two.

Comparison with other task discrepancy measures.
Fig. 7a shows task distances computed using the Rie-
mannian length of the weight trajectory for the VAE
(see Sec. 5.2) when task is interpolated using a mixture
distribution, Fig. 7b shows the same quantity when the VAE
is directly fitted to the target task after initialization on the
source. Fig. 7c and Fig. 7d show the Wasserstein distance on
the pixel-space and feature-space respectively. We find that
although the four distance matrices in Fig. 7 agree with each
other very well (r ⇡ 0.15, p < 0.08 for all pairs, except the
VAE with uncoupled transfer), they are very different from
the fine-tuning distance in Fig. 3c. This shows that task dis-
tances computed using discrepancy measures on the input
space are not reflective of the difficulty of fine-tuning, after
all images in these tasks are visually quite similar to each
each. Coupled transfer distance explicitly takes the hypoth-
esis space into account and correctly reflects the difficulty
of transfer, even if the input spaces are similar.

(a) (b) (c) (d)

Figure 7. Fig. 7a shows task distance computed using the Rieman-
nian length of the weight trajectory for the VAE using a mixture
distribution to interpolate the tasks (see Sec. 5.1, r = 0.1, p =
0.76), Fig. 7b shows the same quantity for directly fine-tuning the
VAE (r = 0.09, p = 0.88), Fig. 7c shows task distance using the
Wasserstein metric on the pixel-space (r = 0.02, p = 0.22), Fig. 7d
shows distances using Wasserstein metric on the embedding space
(r = 0.06, p = 0.40). The last three methods agree with each other
very well (see the narrative for p-values) but small Mantel test
statistic and high p-values as compared to Fig. 3c indicates that
these distances are not correlated with the difficulty of fine-tuning.

6. Related Work
Domain-specific methods. A rich understanding of task
distances has been developed in computer vision, e.g., Za-
mir et al. (2018) compute pairwise distances when differ-
ent tasks such as classification, segmentation etc. are per-
formed on the same input data. The goal of this work, and
others such as (Cui et al., 2018), is to be able to decide
which source data to pre-train to generalize well on a target
task. Task distances have also been widely discussed in
the multi-task learning (Caruana, 1997) and meta/continual-
learning (Liu et al., 2019; Pentina & Lampert, 2014; Hsu
et al., 2018). The natural language processing literature also
prevents several methods to compute similarity between
input data (Mikolov et al., 2013; Pennington et al., 2014).

Most of the above methods are based on evaluating the dif-
ficulty of fine-tuning, or computing the similarity in some
embedding space. It is difficult to ascertain whether the
distances obtained thereby are truly indicative of the diffi-
culty of transfer; fine-tuning hyper-parameters often need to
be carefully chosen (Li et al., 2020) and neither is the em-
bedding space unique. For instance, the uncoupled transfer
process that modifies the input data distribution will lead to
a different estimate of task distance.

Information-theoretic approaches. We build upon a line
of work that combines generative models and discrimina-
tory classifiers (see (Jaakkola & Haussler, 1999; Perronnin
et al., 2010) to name a few) to construct a notion of sim-
ilarity between input data. Modern variants of this idea
include Task2Vec (Achille et al., 2019a) which embeds the
task using the diagonal of the FIM and computes distance
between tasks using the cosine distance for this embedding.
The main hurdle in Task2Vec and similar approaches is to
design the architecture for computing FIM: a small model
will indicate that tasks are far away. Achille et al. (2019b;c)
use the KL divergence between the posterior weight dis-

• And a wide residual network (WRN-16-
4): larger capacityAn Information-Geometric Distance on the Space of Tasks
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Figure 5. Fig. 5a shows coupled transfer distance (r = 0.15, p
= 0.01) and Fig. 5b shows fine-tuning distance (r = 0.39, p =
0.01 with itself and r = 0.21, p = 0.20 with fine-tuning distance
in Fig. 3c). Numbers in Fig. 5a can be directly compared to those
in Fig. 3a. WRN-16-4 model has a shorter trajectory for all task
pairs compared to the CNN in Fig. 3a with fewer parameters.

fine-tuning for pairs of CIFAR-100 tasks. It shows that
broadly, the former improves generalization. This is consis-
tent with existing literature (Gao & Chaudhari, 2020) which
employs task interpolation for better transfer. Let us note
that improving fine-tuning is not our goal while develop-
ing the task distance. In fact, we want the task distance to
correlate with the difficulty of fine-tuning.
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tively) between different subsets of CIFAR-100. Optimal transport
for the task distribution results in large improvements in the vali-
dation loss in all cases; The validation accuracy also improve by
0.4%–2.5% in all cases except the last two.

Comparison with other task discrepancy measures.
Fig. 7a shows task distances computed using the Rie-
mannian length of the weight trajectory for the VAE
(see Sec. 5.2) when task is interpolated using a mixture
distribution, Fig. 7b shows the same quantity when the VAE
is directly fitted to the target task after initialization on the
source. Fig. 7c and Fig. 7d show the Wasserstein distance on
the pixel-space and feature-space respectively. We find that
although the four distance matrices in Fig. 7 agree with each
other very well (r ⇡ 0.15, p < 0.08 for all pairs, except the
VAE with uncoupled transfer), they are very different from
the fine-tuning distance in Fig. 3c. This shows that task dis-
tances computed using discrepancy measures on the input
space are not reflective of the difficulty of fine-tuning, after
all images in these tasks are visually quite similar to each
each. Coupled transfer distance explicitly takes the hypoth-
esis space into account and correctly reflects the difficulty
of transfer, even if the input spaces are similar.
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Figure 7. Fig. 7a shows task distance computed using the Rieman-
nian length of the weight trajectory for the VAE using a mixture
distribution to interpolate the tasks (see Sec. 5.1, r = 0.1, p =
0.76), Fig. 7b shows the same quantity for directly fine-tuning the
VAE (r = 0.09, p = 0.88), Fig. 7c shows task distance using the
Wasserstein metric on the pixel-space (r = 0.02, p = 0.22), Fig. 7d
shows distances using Wasserstein metric on the embedding space
(r = 0.06, p = 0.40). The last three methods agree with each other
very well (see the narrative for p-values) but small Mantel test
statistic and high p-values as compared to Fig. 3c indicates that
these distances are not correlated with the difficulty of fine-tuning.

6. Related Work
Domain-specific methods. A rich understanding of task
distances has been developed in computer vision, e.g., Za-
mir et al. (2018) compute pairwise distances when differ-
ent tasks such as classification, segmentation etc. are per-
formed on the same input data. The goal of this work, and
others such as (Cui et al., 2018), is to be able to decide
which source data to pre-train to generalize well on a target
task. Task distances have also been widely discussed in
the multi-task learning (Caruana, 1997) and meta/continual-
learning (Liu et al., 2019; Pentina & Lampert, 2014; Hsu
et al., 2018). The natural language processing literature also
prevents several methods to compute similarity between
input data (Mikolov et al., 2013; Pennington et al., 2014).

Most of the above methods are based on evaluating the dif-
ficulty of fine-tuning, or computing the similarity in some
embedding space. It is difficult to ascertain whether the
distances obtained thereby are truly indicative of the diffi-
culty of transfer; fine-tuning hyper-parameters often need to
be carefully chosen (Li et al., 2020) and neither is the em-
bedding space unique. For instance, the uncoupled transfer
process that modifies the input data distribution will lead to
a different estimate of task distance.

Information-theoretic approaches. We build upon a line
of work that combines generative models and discrimina-
tory classifiers (see (Jaakkola & Haussler, 1999; Perronnin
et al., 2010) to name a few) to construct a notion of sim-
ilarity between input data. Modern variants of this idea
include Task2Vec (Achille et al., 2019a) which embeds the
task using the diagonal of the FIM and computes distance
between tasks using the cosine distance for this embedding.
The main hurdle in Task2Vec and similar approaches is to
design the architecture for computing FIM: a small model
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• Interesting work

– New definition of distance between tasks 

• Asymmetrical
• Depends on the capacity of the learning system

– New way to build a curriculum

• Limits

– Still a crude way to build intermediate tasks

– Same input-output source and target domains!!!  

– Same hypothesis space in both source and target domains!!!
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What if the space of tasks is not continuous?


