Online learning and Continual learning

Here, with a **focus** on the **examples**

Antoine Cornuéjols

AgroParisTech – INRAE MIA Paris-Saclay

EKINOCS research group

2 / 83

Outline

1. Online learning: motivation, scenario, measure of performance

- 2. Theoretical framework: learning against any sequence
- **3.** Heuristic approaches
- **4.** Conclusion

The online learning scenario

A stream:

E.g. *Choice of melons*. I see one, I make a prediction about its tastiness, then I eat it and know the answer.

Requirements

- 1. Process an instance at a time, and inspect it (at most) once
- 2. Use a limited amount of time to process each instance

Constant time for each instance

3. Use a limited amount of memory

- Sublinear in the number of instances, and constant if possible

- 4. Anytime algorithm: be ready to provide an answer at any time
- 5. Adapt to temporal changes

Online learning **applications**

- Sensor data and the Internet of Things
 - Cities with sensors to monitor mobility of people, check the state of bridges and roads, ...
- **Telecommunication** data
 - Adapt the networks
- Social media
 - Topic and community discovery
 - Sentiment analysis
- Marketing and e-commerce
 - Detection of fraud in electronic transactions
 - Change of preferences of the consumers (fashion, prices changes, ...)

Online learning **applications**

- Health care
 - Monitoring patient vital signs
 - Telemedicine
- Epidemic and disasters
 - Following (and anticipating) the trends
- Computer security
 - Intrusion detection
- Electricity demand prediction

Motivations

- Very large training data base with insufficient resources
 - Still the data is i.i.d.
- « anytime » context: data stream
- Non stationary environment
 - Covariate shift
 - Concept drift
- Domain Adaptation
- Transfer between tasks

Meta online learning

How to build a theory?

Non stationary

environment

The statistical theory of learning

Real risk: expected loss

$$R(h) = \mathbb{E}[\ell(h(x), y)] = \int_{x \in \mathcal{X}, y \in \mathcal{Y}} \ell(h(x), y) \mathbf{P}_{\mathcal{X}\mathcal{Y}} d(x, y)$$

But $\mathbf{P}_{\mathcal{X}\mathcal{Y}}$ is unknown, then use: $\mathcal{S}_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$

Empirical risk Minimization

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} [R_m(h)] + \operatorname{Reg}_{h \in \mathcal{H}} = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{1}{m} \sum_{i=1}^m \ell(\mathbf{h}(\mathbf{x}_i), y_i) \right] + \lambda \operatorname{Capacity}(\mathcal{H})]$$

- All examples are equal: no forgetting
- 2 Commutative criterion: **no information from the sequence**

The statistical theory of learning

• What does allow « generalization » and induction??

 Link between the past and the future: distributions P_X et P_{Y|X} are supposed stationnary
 I.i.d. data

But ... the world is constantly evolving

- New types of data
 - Data are made available through *unlimited streams* that continuously flow, possibly at high-speed
 - The underlying *regularities may evolve over time* rather than be stationary
 - The data is now often spatially as well as time situated

Data can **no longer** be considered as **independently** and **identically distributed**

The question of the evaluation of learning

- Problems
 - Deciding is intermixed with learning
 - The environment may be changing

• Holdout evaluation (standard)

- **Prequential** evaluation (prediction and sequential)
 - Aggregation of the **number of errors** of prediction **during learning**

In the **online** setting ...

- 1. There cannot be any notion of generalization
 - Which implies a **future** that is like the **past**

- 2. There is **no distinction** between
 - A training phase
 - A **test** phase

"Online" learning

- Learning against any (!!!) sequence
 - No longer a stationary environment assumption
 - Nor any temporal regularity!!!
- In these conditions, how can one measure if the learning algorithm is good?
 - No possible test set
 - The performance can be arbitrarily bad (against an omniscient adversary)
- Idea of comparison with a committee of "experts" (*N* experts)

• At each time, I had the choice between several decisions

- At each time, I had the choice between several decisions
- A posteriori, did I perform much worse than the best decision maker known afterwards?

- At each time, I had the choice between several decisions
- A posteriori, did I perform much worse than the best decision maker known afterwards?
 - Regret with respect to one "expert" E

$$R_{E,T} = \sum_{t=1}^{T} \left[\ell \left(h_t(\mathbf{x}_t), y_t \right) - \ell \left(f_t^E(\mathbf{X}_t, y_t) \right) \right] = \widehat{L_T} - L_{E,T}$$

- At each time, I had the choice between several decisions
- A **posteriori**, did I perform much worse **than the best decision** maker **known afterwards**?
 - Regret with respect to one "expert"

$$R_{E,T} = \sum_{t=1}^{T} \left[\ell \left(h_t(\mathbf{x}_t), y_t \right) - \ell \left(f_t^E(\mathbf{X}_t, y_t) \right] = \widehat{L_T} - L_{E,T} \right]$$

- Regret with respect to a set of "experts" (the best one among them)

$$R_{\mathcal{E},T} = \widehat{L_T} - \underset{E \in \mathcal{E}}{\operatorname{Min}} L_{E,t}$$

21/183

Outline

1. Online learning: motivation, scenario, measure of performance

2. Theoretical framework: learning against any sequence

- **3**. Heuristic approaches
- **4.** Conclusion

Online learning Against any sequence • Examples described using:

Number (1 or 2); *size* (small or large); *shape* (circle or square); *color* (red or green)

• They belong either to class '+' or to class '-'

Description	Your answer	True answer
1 large red square		-
1 large green square		

24 / 83

"Online" learning

• The scenario

- Performance criteria
 - Σ erreurs ; Mean error

	Expert_1	Expert_2	Expert_3	Expert_4	Expert_5	Expert_6
<i>t</i> ₁	1	0	0	1	0	1
<i>t</i> ₂	1	1	1	0	0	0
t ₃	1	0	0	0	1	1
t ₄	1	0	0	1	1	1
<i>t</i> ₅	1	1	0	1	1	1
<i>t</i> ₆	1	0	0	0	1	0

How to chose a decision at each time step *t*?

Algorithm to select one expert

• Choice of one expert a priori, and then no change

- Properties?
 - Possibility of a infinite loss

Can we do better?

Greedy deterministic algorithm

30₃₀ 83

Algorithm to select one expert

- Greedy deterministic algorithm
 - **Properties**?
 - Can be very good
 - Worst case?

Greedy deterministic algorithm: worst case

	Expert_1	Expert_2	Expert_3	Expert_4	Expert_5	Expert_6
J ₁		0	0	0	0	0
J ₂	0		0	0	0	0
J ₃	0	0		0	0	0
J ₄	0	0	0		0	0
J ₅	0	0	0	0		0
J ₆	0	0	0	0	0	

$$L \leq N(L^*) + N - 1$$
E.g. 6
Loss of the algo
Loss of the best expert $32\frac{1}{2}83$

Algorithm to select experts

- Greedy random algorithm
 - **Properties**?
 - Can be very good
 - Worst case?

$$L_{RG} \leq \left(\ln N + 1\right) \left(L^*\right) + \ln N$$

E.g.
$$N = 100 \& L^* = 1 \implies L_{RG} \le 11 !!$$

33, 83

The "realizable" case

- Binary classification
- \exists an unknown expert which does not make error: $h_{i,t}(x_t) = y_t \quad \forall t$

The "realizable" case

- Binary classification
- $\exists an unknown expert which does not make error: <math>h_{i,t}(x_t) = y_t \quad \forall t$
- Which strategy?

The "realizable" case

- **Binary classification** •
- ∃an unknown expert which does not make error: •

$$h_{i,t}(x_t) = y_t \quad \forall t$$

- Which strategy? •
 - We give **a weight** $w_t = 1$ to all experts
 - At each time step t
 - Take the **majority vote** as the decision: $H(x_t)$ •
 - **Compare** the predictions of each expert $h_{i,t}(x_t)$ with y_t •
 - Set **w**_t = **0** to all experts that **made an error** •

$$L_{CR} \leq \lfloor \log_2 N \rfloor$$
The "realizable" case: proof

- Initially: $W_0 = N$
- At each time step: $W_t \leq W_{t-1}/2$

 $L_{CR} \leq \lfloor \log_2 N \rfloor$

The "NON realizable" case

• At t = 0, $W_0 = N$ $0 < \beta < 1$

• For each *t* and expert *i*:
$$w_i(t+1) = \begin{cases} w_i(t) & \text{if } y(t) \neq h_{i,t}(\mathbf{x}_t) \\ \beta w_i(t) & \text{if } y(t) = h_{i,t}(\mathbf{x}_t) \end{cases}$$

$$\begin{array}{ll} \bigvee W(t) & \leq & W(t-1)/2 \ + \ \beta \, W(t-1)/2 & \quad \mbox{ If, at } \underline{t}, \mbox{ majority was} \\ W(t) & \leq & W_0 \, \frac{(1+\beta)^t}{2^t} & \quad \mbox{ making a mistake} \end{array}$$

And the best expert so far has weight $\beta^{L^*(t)}$ thus: $W(t) \geq \beta^{L^*(t)}$

 $eta^{L^*(t)} \leq W_0 \, (1+eta)^t / 2^m$ \triangleleft Nb of mistakes at tHence:

$$\frac{L_{CR}}{\log_2 N} \leq \left\lfloor \frac{\log_2 N + L^* \log_2(1/\beta)}{\log_2 \frac{2}{1+\beta}} \right\rfloor$$

mistake

Proof

$$2^{m} \beta^{L^{*}(t)} \leq W_{0} \left[\frac{1+\beta}{2}\right]^{m}$$
$$\beta^{L^{*}(t)} \leq W_{0} \left[\frac{1+\beta}{2}\right]^{m}$$
$$\log_{2}(\beta) L^{*}(t) \leq \log_{2}(W_{0}) + m \log_{2}\frac{1+\beta}{2}$$
$$m \log_{2}\frac{2}{1+\beta} \leq \log_{2}W_{0} + L^{*}(t) \log_{2}\frac{1}{\beta}$$
$$\log_{2}N + L^{*}(t) \log_{2}(\frac{1}{\beta})$$

$$m = L_{CR}(t) \leq \frac{\log_2 N + L^*(t) \log_2(\frac{1}{\beta})}{\log_2 \frac{2}{1+\beta}}$$

• Interpretation?

Interpretation

Another perspective on the problem

- At each time step, there exists a distribution P_t over the space H of hypotheses
- At each round of learning:
 - Receive instance $x_t \in X$
 - Choose h_t randomly according to the current distribution P_t over H
 - **Predict** $\dot{y}_t = h_t(x_t)$
 - Receive the true label y_t
 - Computes the new distribution P_{t+1} using the Multiplicative Weight algorithm

$$\mathbf{P}_{t+1} = \frac{\mathbf{P}_t(h)}{Z_t} \times \begin{cases} e^{(-\eta)} & \text{if } h(\mathbf{x}_t) \neq y_t \\ 1 & \text{otherwise} \end{cases}$$

414183

The multiplicative weight technique

 Provides theorems of the form:
bound on the learner's cumulative loss in terms of the cumulative loss of the best strategy in hindsight
+ an additional term which can be shown to be relatively insignificant for large T

Assessment on this type of analysis

• Allows one to get **theorems**!!

• But too demanding and not realistic

• Interesting idea: **committee of experts**

and multiplicative weights

Can you say what is the **difference** between:

- 1. Online learning with **expert advices**
- 2. Bandit problems

Outline

- 1. Online learning: motivation, scenario, measure of performance
- 2. Theoretical framework: learning against any sequence

3. Heuristic approaches

4. Conclusion

Concept changes

Types of concept changes

464683

Desirable properties of a system that handle concept drift

• Adapt to concept drift as soon as possible

- Distinguish **noise** from **true changes**
 - Robust to noise but adaptive to changes

• Recognize and react to **recurring contexts**

• Adapt with **limited resources** (time and memory)

On-line adaptation

- Assumption: the current hypothesis h_t is somewhat relevant to label x_{t+1}.
 - A kind of **transfer** between successive "tasks"

- How one should control and tune this transfer?
 - What should be the weight of the past?
 - The **plasticity** vs. **stability** dilemma

Two types of approaches

- 1. Either detect first
 - Adapt statistics (summaries) and retrain the model
 - Or adapt the current model
- 2. Adapt the model continuously
 - A single model
 - An ensemble of models

Outline

- **1**. Online learning: motivation, scenario, measure of performance
- 2. Theoretical framework: learning against any sequence

3. Heuristic approaches

4. Conclusion

Outline

- **1.** Online learning: motivation, scenario, measure of performance
- 2. Theoretical framework: learning against any sequence

3. Heuristic approaches

- 1. **Detection**-based methods
- 2. Adaptation-based methods

4. Conclusion

Heuristic approaches:

Detection-based methods

Variable training windows

detect a change

• Problem: how to detect a "true" change?

How to detect a drift

• <u>Main idea</u>: if the distributions of the "*current window*" and the "*reference window*" are significantly different, that means a drift is occurring

Definition of a change in a data stream?

• Statistical properties of the data **change more** than what can be attributed to **chance fluctuations**

Continual Learning

- the ability to learn continually from a stream of data
 - building on what was learned previously
 - and being able to **remember those learnt tasks**.

 What humans are capable of, and what is also the end goal for an artificially intelligent machine.

The CUSUM test

Designed to give an alarm when the mean of the input data significantly deviates from its previous value

- Given a sequence of observations $\{x_t\}_t$, define $z_t = (x_t \mu)/\sigma$, where μ is the expected value of and σ is their standard deviation in "normal" conditions
- If μ and σ are not known a priori, they are estimated from the sequence itself.
- The CUSUM computes the indices and alarm:

$$\begin{cases} g_0 = 0 & k \text{ and } h \text{ are} \\ g_t = \max(0, g_{t-1} + z_t - k) & parameters \text{ to} \\ \text{If } g_t > h, \text{ declare change and reset } g_t = 0, \text{ and } \mu \text{ and } \sigma & be given \end{cases}$$

How to detect concept drift?

Adapting to the Change

- **ADWIN** (average value in windows of training data)
- [A. Bifet. Adaptive learning and mining for data streams and frequent patterns. ACM SIGKDD Explorations Newsletter, 11(1):55–56, 2009.]

• **DDM** (monitor the <u>number of errors</u>)

[J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detection. In Advances in Artificial Intelligence–SBIA 2004, pages 286– 295. Springer, 2004.]

• **EDDM** (monitor the <u>distance between errors</u>)

[M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà, and R. Morales-Bueno. Early drift detection method. Fourth International Workshop on Knowledge Discovery from Data Streams, 2006.]

Concept change

• ... always the problem of controlling what to memorize

The dilemma *plasticity-stability*

Fixed sliding windows

How to choose the size?

- Small window size
 - Fast adaptability
 - Less precision
- Large window size
 - Good and stable learning results if the environment is stationary
 - Does **not react quickly** to concept changes

Fixed sliding windows

61,83

Variable training windows

Variable training windows

• Pb: how to select the right window size?

Concept drift: adaptive sliding windows

Principle:

WK96 G. Widmer and M. Kubat (1996) "Learning in the presence of concept drift ans hidden contexts" Machine Learning 23: 69–101, 1996. ∪+ d₄83

ADWIN: Adaptive Sliding WINdow

- Tries to optimize the trade-off between reacting quickly to changes and having few false alarms
 - Have **long window**s to have robust estimates
 - Have **short windows** to detect a change as soon as it happens
- ADWIN keeps a **variable-length window** of recently seen items, with the property that the window has the maximal length statistically consistent with the hypothesis "there has been no change in the average value inside the window"
 - An old fragment of the window is dropped if and only if there is enough evidence that its average value differs from that of the rest of the window
 - Two consequences:
 - 1. Change is reliably detected whenever the window shrinks
 - 2. At any time, **the average** over the current window can be used as a **reliable** estimate of the current average in the stream

ADWIN: Adaptive Sliding WINdow

The algorithm is parameterized by a test $T(W_0, W_1, \delta)$ (δ is a parameter of the algorithm) that compares the average of two windows W_0 and W_1 and decides whether they are likely to come from the same distribution. A good test should satisfy the following criteria:

- If W_0 and W_1 are generated from the same distribution (no change), then with probability at least $1 - \delta$ the test says "no change"
- If W_0 and W_1 were generated from two different distributions whose average differs by more than somme quantity $\epsilon(W_0, W_1, \delta)$, then with probability at least 1δ the test says "no change".

Let assume that the current stream of items x_t is stored as a sequence of b subsequences. For i in $1 \dots b-1$, let W_0 be formed by the i oldest subsequences, and W_1 be formed by the b-i most recent ones, then perform the test $T(W_0, W_1, \delta)$.

- If some test returns "change", it is assumed that change has occurred somewhere and **the oldest subsequence is dropped**; the window has shrunk by the size of the dropped subsequence.
- If no test returns "change", then no subsequence is dropped, so the window increases by 1.

ADWIN: Adaptive Sliding WINdow

W is the size of the longest window preceding the current item on which the test T is unable to detect any change.

The memory used by ADWIN is $O(\log W)$ and its update time is $O(\log W)$.

Often, the Hoeffding-based test T is used.

Instance weighting methods

- Examples are weighted depending on their age or relevance regarding the current concept
 - Store in memory sufficient statistics over all examples
- Recent examples are given more weight than past ones
 - Often an exponential weighting mechanism is used

=> decide on a decay factor λ

 $w(\mathbf{x}) = e^{-\lambda t_{\mathbf{x}}}$

Outline

- **1.** Online learning: motivation, scenario, measure of performance
- 2. Theoretical framework: learning against any sequence

3. Heuristic approaches

- **1**. Detection-based methods
- 2. Adaptation-based methods

4. Conclusion

Heuristic approaches:

Adaptation-based methods

Concept drift: ensemble methods

- Learn experts on various windows
- Weight the experts depending on their (recent) performance
- **Replace** the worst experts

Ensemble methods

Concept drift: ensemble methods

Dynamic weighted majority

- Classifiers in ensemble have initially a weight of 1
- For each new instance:
 - If a classifier predicts incorrectly, reduce its weight
 - If weight drops below threshold, remove classifier
 - If *ensemble* then *predicts incorrectly*, install new classifier
 - Finally, all classifiers are (incrementally) updated by considering new instance

KM03 Kolter, Maloof (2003) "Dynamic weighted majority: a new ensemble method for tracking concept drift" ICDM 2003, 123-130.

The drifting concept is a 10D linear separator.

G. Jaber, A. Cornuéjols & Ph. Tarroux (2013) *"Anticipative and adaptive adaptation to concept changes"*. Submitted to IJCAI-2013.

ļ

78 / 83

Heuristical approaches to online learning: assessment

- Effective in situations with some kind of regularities in the change of environment
- Need to set various parameters
 - Window size
 - Nb of experts
 - ...
- Rising interest

But a lack of solid theoretical foundations

A problem when **studying a new problem**

- Lack of agreed benchmark data bases
- Real data often difficult to get due to privacy or proprietary reasons

- Therefore forced to rely on controlled "artificial" data
 - Often cause for bad reviews in papers

The MOA plateform

- Massive Online Analysis (MOA)
 - <u>http://moa.cms.waikato.ac.nz/</u>
 - Set of implemented algorithms
 - Classification
 - Outlier detection
 - Online clustering
 - Frequent pattern mining
 - ...
 - MOA also provides:
 - data generators (e.g., AGRAWAL, Random Tree Generator, and SEA);
 - **evaluation methods** (e.g., periodic holdout, test-then-train, prequential);
 - and **statistics** (CPU time, RAM-hours, Kappa).
 - MOA can be used through a GUI (Graphical User Interface) or via command line, which facilitates running batches of tests.
 The implementation is in Java

81/83

Outline

- 1. Online learning: motivation, scenario, measure of performance
- 2. Theoretical framework: learning against any sequence
- **3.** Heuristic approaches

4. Conclusion

Online learning: conclusions

- Against any sequence, can we still say something?
 - YES!!!
 - Guarantees with **similarities** with the in-distribution learning
- But a too demanding scenario
 - Several types of "realistic" concept shifts
 - The stability-plasticity tradeoff
 - And several type of **approaches**
 - **Detect** then relearn
 - Adapt continuously