Course

Learning Theory and

Advanced Machine Learning

Antoine Cornuéjols
AgroParisTech — INRAE UMR MIA Paris-Saclay

antoine.cornuejols@agroparistech.fr



eroParisTech 2/143



The course

Algorithmes
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— The slides + information on:

https://antoinecornuejols.github.io/teaching/Master-AIC/M2-AlC-advanced-ML.html
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The focus of the course

m Out-Of Distribution learning (OOD)

Change of distribution between learning and testing
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The focus of the course

m Out-Of Distribution learning (OOD)

Change of distribution between learning and testing

. . ]

) 1S s | e y 5 e
3 A IR 1k s

.::gtft ! ) gt L |

BDD: Daytime BDD: Nighttime Tokyo: Daytime Tokyo: Nighttime

I Images lmagT Tmages Images
Learning Testing Learning Testing

eroParisTech 5/143



The focus of the course

m Out-Of Distribution learning (OOD)

— Change of domain between learning and testing: Transfer Learning

Photo

Learning ——

Cartoon

Testing —
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The focus of the course

m Out-Of Distribution learning (OOD)

— Change of domain between learning and testing: Transfer Learning

Learning ——

Testing —
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The focus of the course

m Out-Of Distribution learning (OOD)

— Change of domain between learning and testing: Transfer Learning

Learning ——

0 02 04 06 08 10
] 1 ' [ |

0 02 04 06 08B 10
1 ' 1 1

llllllllllllll
00 02 04 06 08 10 00 02 04 06 08 10

(a) Is it a zero or a one?

Testing —— !
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The focus of the course

m Out-Of Distribution learning (OOD)

Change of domain between learning and testing: Transfer Learning
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(b) Is it an eight or a seven?
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The focus of the course

m Out-Of Distribution learning (OOD)

— Change of tasks: Long Life Learning

Learning and testing (1) —

Curriculum

Learning and testing (2) —— learning

Learning and testing (3) ——

4__________
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The focus of the course

N N ,r'

theacher

Curriculum

and

on-line learning

Mstudent
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The focus of the course

m Out-Of Distribution learning (OOD)

— Zero-shot learning
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The focus of the course

m Out-Of Distribution learning (OOD)
Zero-shot learning

What you don’t want

. Pedestrian

=" pedestrian /6% B
pedestric.. 2<%y

3l 7 = Rcarog ‘, - L @ Truck
R L=l - oo
7 — ’ Model trained on BDD dataset
produces overconfident

predictions for unknown object
“helicopter”
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The focus of the course

m Out-Of Distribution learning (OOD)

CIFAR-10 The Internet

|

Slide from OpenAl
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The focus of the course

m In-Distribution learning (I.I.D. setting)

— Same domain and distribution between learning and testing

Learning ——

 ——_

Testing

eroParisTech

Is there any
difference with
Out-Of
Distribution?

Why?
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Issues that are the focus of the class

B Learning is about extrapolating predictions and regularities from limited data

— How to achieve this?
— What kind of guarantees can we hope?

— How can we obtain them? Under which assumptions?
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Issues that are the focus of the class

® In the case of non stationary environments, as in domain adaptation, transfer
learning or online learning. (Out-Of-Distribution learning)

— How to benefit (?) from learning in a different environment?
— Are there ways to order the tasks in the most beneficial way?
— Can we still hope to have guarantees?

— Under which assumptions? What are we ready to assume?
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Issues that are the focus of the class

B Learning is about extrapolating predictions and regularities from limited data

— How to achieve this?
— What kind of guarantees can we hope?

— How can we obtain them? Under which assumptions?

® In the case of non stationary environments, as in domain adaptation, transfer
learning or online learning. (Out-Of-Distribution learning)

— How to benefit (?) from learning in a different environment?
— Are there ways to order the tasks in the most beneficial way?
— Can we still hope to have guarantees?

— Under which assumptions? What are we ready to assume?

eroParisTech 18 /143



s it trivial to perform Out-Of-Distribution?

Standard model for Al

https://www.youtube.com/watch?v=QPSgM13hTK8&t=117
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Outline of the course

https://antoinecornuejols.github.io/teaching/Master-AIC/M2-AlC-advanced-ML.html

Tentative schedule:

[Dates : "T‘opies (tentative schedule) [i!efmnces, exercises and homeworks
(Antoine Cornuéjols)

11-01-2024 Learning as generalization

06h00 - 12hi5 (Salle B ~ The statistical theory of learning for a stationary world. (The In-Distribution assumption)

107)] . Why it does not seem to apply to deep learning.
(Antoine Cornuéjols)
‘When the distribution P_X is changed to better learn
ooy o When the learning agent modifies the input distribution: Boosting, bagging, Random
24 Forests. What they are. Theoretical approaches.
- a » Quiz No 1
09hoo - 12h15 (Sa“fol;) o Extension to other ble methods?
o The LUPI framework. Learning using a given input space, and being tested using another one.
Ilustration with Early Classification of Time Series
26-01-2024 (Antoine Cornuéjols)
09h00 - 12h15 (Salle B- No class!!
107)

(Antoine Cornuéjols)

Learning agents that communicate
Slides of the class

o Co-training. Having independent and compl tary views.

02022084 o A curiosity: blending.
09hoo - 12h15 (Salle B- » Quiz No 2

107) o Distillation. Two agents: one acting as a teacher, the other as a student. Modification of the

training examples. Points towards curriculum learning.
© Multi-task learning. Minimizing the differences between the learnt hypotheses.

o The MDLp (Minimum Description Length Problem). Communication between “agents”.
Application to analogy making.
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Course’s organization

6 Courses: 11/01;18/01; 25/01 (no class!) ;
01/02; 08/02 ; 15/02 ; 29/02

m 5 quizz (5x6=30%)

B Project: Trying to replicate the experiments of a scientific paper
:50 %
— 12/01/2021 : chosen project + team members (email)

— 23/02/2021 : final report (10 pages strict. Format article ICML)

m Critical review of the paper by same groups :20%

eroParisTech 21/143
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Questions?
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In-Distribution learning (I.1.D. setting)

Learning ——

Testing —

eroParisTech

Is there any
difference with
Out-Of
Distribution?

Why?
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Outline of today’s class

1. The mystery of in-distribution learning (standard induction)
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In-Distribution Supervised learning:

Obvious really?
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Supervised induction

B We want to be able to predict the class of unseen examples

ty

VH

—>» A decision function
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One example that tells a lot ...

m  Examples described using:
Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

m  They belong either to class ‘+" or to class ‘-’
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’
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Your answer

True answer
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1 large green square
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square

1 large green square
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square

1 large green square

2 small red squares
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square

1 large green square

2 small red squares
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)
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Tech

Description

Your answer

True answer

1 large red square
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2 large red circles

34/143



Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square

1 large green square

2 small red squares

2 large red circles
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m  Examples described using:

m They belong either to class ‘+’ or to class -

Noro

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

Description

Your answer

True answer

1 large red square

1 large green square

2 small red squares

2 large red circles

1 large green circle

Tech
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m  Examples described using:

m They belong either to class ‘+’ or to class -

Noro

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -

+

1 large green circle

Tech
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m  Examples described using:

m They belong either to class ‘+’ or to class -

Noro

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -

+

1 large green circle

1 small red circle

Tech
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +

Tech
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® When would you be certain about your guess?
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® What assumption are you making?
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Supervised learning

m A fraining set

S/
VR
S={0x1, y1), (X2 ¥2)y oo s (Xis Vi)s o s KXo Y}
W,
h

Prediction for new examples x—-h->y ?
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Supervised learning

m A fraining set

Prediction for new examples x—-h->y ?
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\,
h

® What assumption are you making?

L
L
|
.
|
|
|
.
|
|

\ |
X—h->y?

Is this assumption reasonable?

Is it sufficient?
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a'8r'o
=5

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +

1 small green square

Tech
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a'8r'o
=5

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +

1 small green square

Tech
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a'8r'o
=5

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +

1 small green square

1 small red square
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Noro

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Description

Your answer

True answer

1 large red square

Tech

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +
1 small green square -

i

1 small red square
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a'8r'o
=5

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +
1 small green square -
1 small red square +

2 large green squares
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a'8r'o
=5

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

They belong either to class ‘+’ or to class ‘-’

Tech

Description

Your answer

True answer

1 large red square

1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +
1 small green square -
1 small red square +
2 large green squares +
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One example that tells a lot ...

ero

Examples described using:
Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

Description Your prediction | True class
1 large red square -
1 large green square +
2 small red squares +
2 large red circles B
1 large green circle +
1 small red circle +

How many possible functions altogether from Xto Y ?

How many functions do remain after 9 training examples?

Tech

4
22 = 216 = 65,536
2° = 512
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® Are you not worried?
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One example that tells a lot ...

15

a'8r'o
=5

Examples described using:

Description Your prediction True class
1 large red square -
1 large green square +
2 small red squares +
2 large red circles -
1 large green circle +
1 small red circle +
1 small green square -
1 small red square +
2 large green squares +
2 small green squares +
2 small red circles +
1 small green circle -
2 large green circles -
2 small green circles +

1 large red circle

2 large red squares

Tech

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

How many
remaining
functions?
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One example that tells a lot ...

ero

Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

How many possible functions with 2 descriptors from Xto Y ?

How many functions do remain after 3 # training examples?

Tech

Description

Your prediction

True class

} large red square

1 large green sguare

2 small red sguares

2 large red eireles

1 large green eirele

1 small red eirele

small green 2> ?

2

22 = 24=16

21 =2
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Induction: an impossible game?

m A bias is need
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Induction: an impossible game?

m A bias is need

m Types of bias

-
-
-
-
-
-
-
-

— Representation bias (declarative)
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Induction: an impossible game?

m A bias is need

m Typesofbias  __-

— Representation bias (declarative)

— Research bias (procedural)

‘\
-~y
-~y
-~
~y
N.
-y
-~y
-~y
-~
-~y
~y
-~
-~y
-~y
-~
§~
L

5
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Interpretation — completion of percepts
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Interpretation — completion of percepts
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Interpretation — completion of percepts

ABC 12

12- AlBC
12 14
14
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Interprétation — complétion de percepts
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Optical illusions
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Induction and its illusions

Illustration
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Bias is what make you prefer some hypotheses over other

... g ... T &.d‘ xr
Under-fitting Appropriate-fitting Over-fitting
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The tradeoff

Erreur d'estimation

(Variance)
/ H
4 A )
Erreur d'approximation
{hS}S / (Biais)

Erreur totale
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Illustration

- - o f +++ B _
+ + + + +
—_ +.|. + —_— ++ ~ —
+ -
— + _
-+ + -
- = T4 __ - o= F - +___ .
4 - - - -+ 4 = Tl R -
) ++ +++ - +++++ _—_ +++++_‘ ++: . B -
oo+ = i B - ++ 2 - -
- + w2 + + - — + _ -
- + _ _ _+ + - - B
_ |+ + = - -
Over-fitting

Under-fitting Appropriate-fitting
66/ 143
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How to chose the architecture of a NN?

Shallow Neural Network Deep Neural Network
Ox— 0O
X, O X, O
B 4 oot \. .
X O—20—y X O— 00—y
P OGROQ ~ /
s O X, O
S, ,
T T T T 1 T
input hidden output input hidden output
layer layer layer layer layer layer
Shallow and Deep Neural Networks.
67 /143
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Over-fitting when learning

Error Rate
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Error versus Weight Updates (Example 1)

0.01 T - .
5

Training seterror o
Validation set ertor  +

0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

Error

0 5000 10000 15000 20000
Number of weight updates

Curves for 1 000 examples

* and for 2000 examples ?
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Clustering

Effects of the a priori bias

Birch

Ward

AgglomerativeClustering DBSCAN

SpectralClustering

MeanShift

.21s

MiniBatchKMeansAffinityPropagation

VRN

70/143
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Induction everywhere

eroParisTech
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The role of induction

m [Leslie Valiant, « Probably Approximately Correct. Nature’s Algorithms
for Learning and Prospering in a Complex World », Basic Books, 2013]

« From this, we have to conclude that generalization or induction is
a pervasive phenomenon (..). It is as routine and reproducible a
phenomenon as objects falling under gravity.
It is reasonable to expect a quantitative scientific explanation

of this highly reproducible phenomenon. »
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The role of induction

B [Edwin T. Jaynes, « Probability theory. The logic of science », Cambridge U.
Press, 2003], p.3

« We are hardly able to get through one waking hour without facing some

situation (e.g. will it rain or won’t it?) where we do not have enough

information to permit deductive reasoning; but still we must decide
immediately.

In spite of its familiarity, the formation of plausible conclusions is a very

subtle process. »
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Sequences

m1 1 2 3 5 8 13 21 ..
m1 2 3 5

m 111211211111 221312211...

eroParisTech 74 /143
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Sequences

m 11121121111 1221312211...
1

11

m 21

m 12 & 11

= 11 &12 & 21
=1 11 21 1211 111221 312211

— Comment?
— Pourquoi serait-il possible de faire de I'induction ?

— Est-ce gu’un exemple supplémentaire
doit augmenter la confiance dans la regle induite ?

— Combien faut-il d’exemples ?
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Supervised induction

m How to chose the decision function?

ty

O . o

2 o

o o . . . .
o o
. .’ ® " o
. ©
O
. O
xA
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Interrogations

Each time:

Specific cases => general law or adaptation to a new case

1. How this generalization is allowed?

2. Can we guarantee something?
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Outline of today’s class

1. The mystery of in-distribution learning (standard induction)

2. A 101 course on the statistical learning theory

3. Why does it fail to account for deep neural networks?

4. The no-free-lunch theorem

eroParisTech 781143
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What kind of theoretical guarantees

on induction can we get?

eroParisTech 79 /143
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A centuries-old question
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A centuries-old question

®m How do we know that the chosen hypothesis is correct?
® How many examples do you need to get a good result?
® Which hypothesis space to explore?

m |f the hypothesis space is very complex, can we expect to find the

global optimum? Or only a local optimum?

® How to avoid over-fitting?
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A centuries-old question

m The razor of Ockham (1288 — 1348)

— The MDLp (Minimum Description Length principle)

B The bayésian analysis

m The Empirical Risk Minimization (ERM)

— Minimization of a regularized empirical riskrégularisé
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PAC learning

Probably Approximatively Correct

NoroParisTech 83/143



Target class: rectangles in R?

B Sample
— Positive instances P+
X
— Negative instances —
g PX

eroParisTech
-_———

Yy

V><
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Target class: unknown

m What do we want to learn?

ty
o . ®
. o
® © . ®
® o
P
@ . ® ’
.’ ® 0' o
. ®
o
. o
xA

—» A decision fonction (prediction)
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Target class: unknown

m How to learn?

A y
o . ®
o o
: . s °* . o
o ®
$ ° Q' o
o °
o
. o
xA
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Target class: rectangles in R?

m How tolearn?

— If I know that the target concept is a rectangle

ty

o . o

- o

o e . . © .
o o
. .’ ® 0' o
. ©
o
. o
xA
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Target class: rectangles in R?

m How tolearn?

— If  know that the target concept is a rectangle

Ay
. o
PSS —'_'_'_'_'_'_i
o) |' ________________________________ -P ______
,} ° ° : i
| s e Most general
* * o, ... o, hypotheses
B
|__: ______________ —
O
x>
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Target class: rectangles in R?

m How tolearn?

— If  know that the target concept is a rectangle

Ay
. o
o
a O
A . Most specific
. ' ., ',' . hypotheses
P °
@)
O
O
x>
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Target class: rectangles in R?

m How tolearn?

— Choice of one hypothesis h

ty
= o
T T By
o | o ,
e . Version
\ i ;
l o I ®
N «
; ® e o : o space
i B Y ‘ i :
| |
| e
= a
o]
N X
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Target class: rectangles in R?

B Learning: choicede h

— Which performance to expect?

Ay
) . -
o
' l'_________________________I
| . e !
. ° . i o
o | e
| o o % o
x '=
ho - |
. )
X
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The statistical theory of learning

Which performance ?

m Cost for a prediction error

The loss function

((h(x),y)
®  Which expected cost if | choose h?

— The « real risk » (or true risk)

eroParisTech 92 /143
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The statistical theory of learning

B  Which expected cost when h is chosen?

Assuming that there is no training erroron S

Ay
et The « empirical risk »
/3 S | m =
o x=
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Statistical theory of learning: the ERM

® Learning strategy:
— Select an hypothesis with null empirical risk (no training error)

— Which generalization performance to expect for h ?

A A
Y Y
o . a o
e o | e .
&} 1 i e ! [}
| e °* | ° ; . Sl o
| . i i .
. O e ! . )
| © " i o i [} “ &}
| o : L]
: [ ] ! 1 L J
_________________________ '_ L________________________'_
o o .
(9]
X X,
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Statistical theory of learning: the ERM

— Select an hypothesis with null empirical risk (no training error)

— Which generalization performance to expect for h ?

— What is the risk of getting error R(h) > ¢ ?

eroParisTech
-_———

A N
Y y hA f
(&} " e @ o /////l
= 7 /
. IS
e ... e a - / 'f
. e [} Y - P '
o ! (] (¢] // /!
5 . Sl oo e 0 1o
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Central interrogation: the inductive principle

B The empirical risk minimization principle (ERM)

... is it sound?

If | chose h such that - ArgMin }?i(h)
heH

Is h good with respect to the real risk?

R(h) <= R(h)
Could I have done much better?

h* = ArgMin R(h)
heH

? ~

R(h*) «—— R(h)
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The statistical theory of learning

The 1° step

One hypothesis
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Statistical study for ONE hypothesis

— Chose one hypothesis of nul empirical risk
(no error on the training set S)

— Which performance can we expect for h?

— What is the risk of having R(h) > €7

A y N y
. o
o
o S—— o o
° E * . . ¢ i f . o
. . o ¢ | o
i . . .i o
e —
o
. X

x;

eroParisTech
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Statistical study for ONE hypothesis

B Assumethathst. R(h) > ¢ (his « bad »)

B What is the probability that nonetheless h have been selected?

R(h) = px(hAf)

After one example:  p(R(h) =0) < 1—¢ ty hA f

\

After m examples (i.i.d.) :

« falls » outside h A f

P (R(h) =0) < (1—e)™ - .

Wewant: Ve85 0,1]: p"(R(A) >¢c) < 6
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Statistical study for ONE hypothesis

= Wewant: Ve, 0€0,1]: p™(R(h)>¢e) < 6

Or:
(1 —e)™ < 0
y hA f
< 6—8m S 6 ]
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The statistical theory of learning

m For any hypothesis chosen when observing S

¢« 4 9
® What we really want: Realizable case

Ve, oel0,1]: ’”@R

\

VA
>,

* let'sassume: |H| < oc
Then: H| (1 — )™ < |H|]e "™ = 9§
—em < In(d) — In(|H|)
s LI
€ )
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The statistical theory of learning

The 2"d step

Which hypothesis in the crowd
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Statistical study for| #{| hypotheses

® What is the probability that | chose one hypothesis h,,, of real risk > € and
that | do not realize it after m examples?

® Probability of survival of h,,, after 1 example : (1—¢)
m  Probability of survival of h,,, after m examples: (1 — &)™

m Probability of survival of at least one hypothesis in 7 : |H\ (1 — €)m
We use the probability of the union P(AUB) < P(A) + P(B)

B We want that the probability that there remains at least one hypothesis of
real risk > € in the version space be bounded by o :

HI(1—e)™ < |H|el=™) < 6
log|H| —em < logé

m > —lo |H|
g ——
£ )
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The « PAC learning » analysis

B We get:
g
log |H| + log
VheH VS <1: P™|Ruaa(h) < Remo(h) + 22 ‘m I S

Realizable case: there exists at least one function h of risk 0

The Empirical Risk Minimization principle

is sound only if there are constraints on the hypothesis space
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m ATTENTION :

— This analysis makes a big assumption

about the relation between the “past” and the “future”
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B The world is stationnary

— The training examples (“ past”)

and the test examples (“future”) follow the same distribution

— The training and test examples are i.i.d.
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PAC learning: definition

[Valiant, 1984]

Given 0 < d,e < 1, a concept class C' is learnable by a polynomial time algorithm A if,
for any distribution P of samples and any concept ¢ € C,
there exists a polynomial p(-, -, -) such that
A will produce with probability at least 1 — § a hypothesis h € C whose error is < ¢

when given at least p(m,1/9, 1) independent random examples drawn according to P.

B Worst case analysis
Against all distributions P

For any target hypothesis in a class of hypotheses

® Notion of computational complexity

eroParisTech 107 / 143



The statistical theory of learning
Uniform convergence bounds

(for the unrealizable case)
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Generalizing the law of large numbers: uniform convergence

Théoréme 1 (Inégalité de Hoeffding). Si les &; sont des variables aléatoires,
tirées indépendamment et selon une méme distribution et prenant leur
valeur dans lintervalle [a,b], alors :

(7 s -m0] 24) = 2e(-5255)

Appliquée au risque empirique et au risque réel, cette inégalité nous donne :
2m e?

P(|Rgmp(h) — Rrea(h)] =€) < 2exp(—(b_ a)2) (1)

si la fonction de perte £ est définie sur 'intervalle |a, b|. .
P -] « H finite »

il
P™[3h € H : Rreer(h) — Remp(h) > ] < Y P™[Rpea(h’) — Rpmp(h') > €]
=1

< |H|exp(—2me?) = §

en supposant ici que la fonction de perte ¢ prend ses valeurs dans l'intervalle
[0, 1].
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Bounding the true risk with the empirical risk + ...

m Hfinite, realizable case

log |H| + log 5
m

> 1—9

Vhe HV6 <1: P™|Rpser(h) < Rpmp(h) +

m Hfinite, non realizable case

log |'H| +log%
2m

Vhe H,Vo<1: P™ > 1—-9

Rreei(h) < Remp(h) + \/

 —
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To sum up: for | H| finite

ero

Non realizable case

\/logH|—|—log(15
E =

2m

Realizable case

log |H| + log 5
m

Tech

and

and

log ['H| + log%

2 e2

1
- log |H| + log

€
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| H| infinite I!

m Effective dimension of = the Vapnik-Chervonenkis dimension

Combinatorial criterion

Size of the largest set of points (in general configuration) that can be

labeled in any way by hypotheses drawn from JH{

dyc(H) = max{m : IIy(m) = 2™}

Bound on the true risk

VhEH,V(SS 1: P™ RRée](h) < REmp(h) + > 1—-9

\/8 dve (M) log 7251 + 8log & ]
m
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VC dim: illustrations

B d\c(linear separator) =7

* dyc(rectangles) = ? @)

eroParisTech

(b)

(c) (d)
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Lesson

B You cannot guarantee anything about induction

® Even if you assume that the world is stationary

and examples are i.i.d.

m Unless there are (severe) constraints on the hypothesis space

But wait ... ?
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The statistical theory of learning

The 3" step

Which hypothesis space?
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SRM : Structural Risk Minimization

, Risque

Risque réel

m Stratification of the hypotheses
spaces

Intervalle
de confiance

Determined a priori
(independently of the data)

Risque
empirique

Using for instance the d,,
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The « PAC learning » or statistical analysis

log [H] + log L
VhEH, V6 <1: P™|Rpea(h) < L loefHitloss ) g s

m

A\ 4
~"~

Risque régularisé

m New inductive criteria:

— The regularized empirical risk
1. Satisfy as well as possible the constraints imposed by the training examples

2. Choose the best hypothesis space (capacity of H)
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The tradeoff

Erreur d'estimation

(Variance)
/ H
4 A )
Erreur d'approximation
{hS}S / (Biais)

Erreur totale



Learning becomes ...

1. The choice of the hypothesis space H

Which is constrained by necessity

2. The choice of an inductive criterion

Empirical Risk which must be regularized

3. An exploration strategy for H in order to minimize the regularized

empirical risk

It must be efficient
e Fast

e With only one optimum if possible (e.g. convex problem)
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Outline of today’s class

3.  Why does it fail to account for deep neural networks?
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The SuperVision network

Image classification with deep convolutional neural networks

http://image-net.org/challenges/LSVRC/2012/supervision.pdf

— 7 hidden “weight” layers
— 650K neurons

— 60M parameters

— 630M connections
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GoogleNet

B A mécano of neural networks

eroParisTech
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Troubling findings

A paper
— C.Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals (ICLR, May 2017).
“Understanding deep learning requires rethinking generalization”

Extensive experiments on the classification of images

— The AlexNet (> 1,000,000 parameters) + 2 other architectures

-, AN/ i
5 2048 \/ 204s \dense
i ik P
kY
derse| [dense
1000
152 187 128 plax
Max ,I'.'FGI:I“"'I'; 20dE 2048
pooling

— The CIFAR-10 data set:
* 60,000 images categorized in 10 classes (50,000 for training and 10,000 for testing)

* Images: 32x32 pixels in 3 color channels
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Troubling findings

Experiments

1. Original dataset without modification

e Results ?

— Training accuracy = 100% ; Test accuracy =89%
— Speed of convergence ~ 5,000 steps
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Troubling findings

Experiments

1. Original dataset without modification

e Results ?

— Training accuracy = 100% ; Test accuracy =89%
— Speed of convergence ~ 5,000 steps

Expected behavior if the capacity of the hypothesis space is limited

i.e. the system cannot fit any (arbitrary) training data

R(h) < R(h) + 3\/ln<;/5)] > 1-96
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Troubling findings

Experiments

Original dataset without modification

Training

2. Random labels "
— Training accuracy = 100‘VMSt accuracy = 9.8%

— Speed of convergence = similar behavior (~ 10,000 steps)
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Troubling findings

Experiments

Original dataset without modification

Training

2.  Random labels

— Training accuracy = 100‘VMSt accuracy = 9.8%
— Speed of convergence = similar behavior (~ 10,000 steps)

3.  Random pixels
— Training accuracy = 100% 177 ; st accuracy ~ 10%
— Speed of convergence = similar behavior (~ 10,000 steps)

eroParisTech
T

S

Now, we
are in

trouble!!
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Troubling findings

® Deep NNs can accommodate ANY training set

Can grow without limit!!

m

Vhe H,V§<1: P™|R(h) < R(h) + 2Radnm(H) + 3 1n(2/5)] >1-96

But then,

why are deep NNs so good on image classification tasks?
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Alternative explanations?

m See for example Nati Srebro

B The search bias would conduct the algorithm to first explore simple
(?) hypotheses
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https://www.youtube.com/playlist?list=PLGJm1x3XQeK0gmqfRkP-VmrEf4UYx5IDW&pbjreload=101
https://www.youtube.com/playlist?list=PLGJm1x3XQeK0gmqfRkP-VmrEf4UYx5IDW&pbjreload=101

Alternative explanations?

B See also explanations that stem from the information bottleneck
principle (Naftali Tishby et al.)
(several papers in ICLR-2020)
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Which garantees exactly?
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Statistical learning: which garantees?

B Link between empirique risk and real risk

Cost of using h (e.g. error rate)

Says nothing on:

" Valid only if - Intelligibility

Stationary environment .
Y - Fruitfulness

Examples i.i.d. .
- Place ina

D .
Questions i.i.d. !!: domain Theory
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Limits
®m Passive learning and data and questions supposedly i.i.d.

Situated agents: the world is not i.i.d. when you are acting in it

® Needs a lot of traning examples

We are far more efficient

We cannot help but « produce theories » constantly, testing them afterwards
® Not adapted to the search for causality relationships

® Not integrated with reasoning

Those learning machines are not thinking machines
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Outline of today’s class

1. The mystery of in-distribution learning (standard induction)

2. A 101 course on the statistical learning theory

3. Why does it fail to account for deep neural networks?

4.  The no-free-lunch theorem
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The no-free-lunch theorem

Théoréme 2.1 (No-free-lunch theorem (Wolpert, 1992))

Pour tout couple d’algorithmes d’apprentissage A1 et As, caractérisés par leur distribution de
probabilité a posteriori py(h|S) et py(h|S), et pour toute distribution dy des formes d’entrées x
et tout nombre m d’exemples d’apprentissage, les propositions suivantes sont vraies :

1. En moyenne uniforme sur toutes les fonctions cible f dans F :
E1[RRreel| f,m] — Eo[RReel| f,m] = 0.

2. Pour tout échantillon d’apprentissage S donné, en moyenne uniforme sur toutes les fonc-

tions cible f dans F : Ei[Rgreel|f,S] — Eo[RReel|f,S] = 0.

3. En moyenne uniforme sur toutes les distributions possibles P(f) :
E1[RRrsel|m] — Ea[Rreal|m] = 0.

4. Pour tout échantillon d’apprentissage S donné, en moyenne uniforme sur toutes les distri-
butions possibles p(f) : E1[Rpreel|S] — E2[RReel|S] = 0.
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The no-free-lunch theorem

Possible

eroParisTech
-——
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The no-free-lunch theorem

Possible

Impossible
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Deduction!

1.  All inductive learning algorithms are equivalent (to a random

guessing one)

2. There cannot be any guarantees on the inductions made

Let’s go to the beach or skying!!
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Lesson
m (Quasi) guarantees about the results

If the signal actually presents the properties assumed a priori

Then the method ensures that learning using this bias
will converge to the target function

if enough (i.i.d.) data is available

« Lampost » theorems
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How can we prove the validity

of a new inductive principle?
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Conclusions

1. Induction, which is at the center of learning is a under-constrained

problem.

2. There cannot be a validation of induction unrelated to the domain

3. Guarantees cannot only be obtained by making assumptions about the

world

— E.g. i.i.d. data and queries and a bias

B A theory of induction aims at

Proposing reasonable meta-assumptions

e E.g. the world is stationary and the data and queries are i.i.d.

)

Providing a formal framework where “lampost theorems’
can be obtained

e If the data obeys the assumptions about the world
Then it is possible to PAC guarantee that ...
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Conclusions: the statistical theory of learning

Performance measured :
the expectation of the cost of using the learned hypothesis
(i.e. but no concern for causality, intelligibility, the articulation with

reasoning, ...)

Only valid if stationary environment + i.i.d. data +i.i.d. queries
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How to select a bias?
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Conclusions: “new scenarios” are out of the statistical box

m Very few data points

— Very often, we learn with very little data

m Past history plays a role: education (curriculum)

— Sequence effects

m We learn in order to and because we (constantly) construct theories

— Both at the micro and the macro level
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