Learning agents that communicate

Co-training
Distillation
Multi-task Learning
MDLp: Minimum Description Length Principle

Antoine Cornuéjols
AgroParisTech - INRAE UMR MIA Paris-Saclay
antoine.cornuejols@agroparistech.fr

We continue our journey about Out-Of-Distribution learning

■ What can be gained ... or lost
By resorting to collaboration between learning algorithms?

Questions

- Which learning agents?
- How to combine their findings?
- What kind of information should they exchange?
- How to ensure the convergence of the collaboration?
- If convergence takes place, toward what?

Outline

1. Co-learning
2. Distillation
3. Multi-task learning
4. The Minimum Description Length principle (MDLP)

Co-learning

The co-learning scenario

- Suppose we want to classify web pages as faculty member web pages or not

Blum, A., \& Mitchell, T. (1998, July). Combining labeled and unlabeled data with cotraining. In Proc. of the $11^{\text {th }}$ annual conference on Computational Learning Theory (pp. 92-100).

The co-learning scenario

- Suppose we want to classify web pages as faculty member web pages or not

Blum, A., \& Mitchell, T. (1998, July). Combining labeled and unlabeled data with cotraining. In Proc. of the $11^{\text {th }}$ annual conference on Computational Learning Theory (pp. 92-100).

The co-learning assumptions

- Examples are described using two sets of features: $x=\left\langle x_{1}, x_{2}\right\rangle$
- Each should be sufficient
- They can be made consistent, i.e. $\quad \exists c_{1}, c_{2}$ s.t. $c_{1}\left(x_{1}\right)=c_{2}\left(x_{2}\right)=c^{*}(x)$

Iterative co-learning

- Idea 1: Use small set of almost certain labeled examples to learn initial hypotheses h_{1} and h_{2}
- E.g. $h_{1}=$ "My advisor" pointing to a page $x x x$ is a good indicator that $\mathbf{x x x}$ is a faculty home page
- E.g. $h_{2}=$ "I am teaching" on a web page is a good indicator that this web page is a faculty home page
- Idea 2: Use unlabeled data to propagate learned information

1. Look for unlabeled examples where one hypothesis is confident AND the other is not
2. Have it label the examples so that the other learning algorithm can use it

Iterative co-learning

- Repeat

1. Look through unlabeled data to find examples where one of the h_{i} is confident but the other is not
2. Have the confident h_{i} label it for algorithm $\mathrm{A}_{3-\mathrm{i}}$
h_{1} and h_{2} are initially learnt on a subset of common examples where they find consistent labeling

Illustration on Webpage classification

- 12 labeled examples
- 1000 unlabeled

Results for 5 -folds cross validation

Default prediction: negative (22\% test error)

	Page-based classifier	Hyperlink-based classifier	Combined classifier
Supervised training	12.9	12.4	11.1
Co-training	6.2	11.6	5.0

Table 2: Error rate in percent for classifying web pages as course home pages. The top row shows errors when training on only the labeled examples. Bottom row shows errors when co-training, using both labeled and unlabeled examples.

Blum, A., \& Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-training. In Proc. of the 11 ${ }^{\text {th }}$ annual conference on Computational Learning Theory (pp. 92-100).

Classification of Webpages

Applied in many other settings

- Named-entity extraction [Collins \& Singer, 99]
- "I arrived in London yesterday"
- Identifying objects in images using two different types of preprocessing [Levin, Viola, Freund, 03]

Iterative co-learning: simple example

- Learning intervals

Use unlabeled data to bootstrap

Co-learning and multi-view Semi Supervised Learning

■ Given

$$
\begin{aligned}
\mathcal{S}_{l} & =\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m_{l}}, y_{m_{l}}\right)\right\} \\
\mathcal{S}_{u} & =\left\{\left(\mathbf{x}_{m_{l}+1}, y_{m_{l}+1}\right), \ldots,\left(\mathbf{x}_{m_{u}}, y_{m_{u}}\right)\right\}
\end{aligned}
$$

Find h_{1} and h_{2}

Small labeling error

Regularizer to encourage agreement over unlabeled data

Analysis

- Co-training is a method for using unlabeled data when examples can be partitioned into two views such that:

1. each view in itself is at least roughly sufficient to achieve good classification,
2. and yet the views are not too highly correlated.

[Blum \& Mitchell, COLT-98]

1. Independence of examples given the labels
2. Algorithm for learning from random classification noise

[Balcan, Blum \& Yang, NIPS-2004]

1. Property of distributional expansion on the examples
2. Algorithm for learning from positive data only

A curiosity: is it co-learning?

Blending

[Mark Turner, Gilles Fauconnier: The Way We Think. Conceptual Blending and the Mind's Hidden Complexities. New York: Basic Books 2002]

Blending effect [Fauconnier \& Turner]

The Riddle of the Buddhist Monk:

A Buddhist monk begins at dawn one day walking up a mountain, reaches the top at sunset, meditates at the top overnight until, at dawn, he begins to walk back to the foot of the mountain, which he reaches at sunset.

Blending effect [Fauconnier \& Turner]

A Buddhist monk begins at dawn one day walking up a mountain, reaches the top at sunset, meditates at the top overnight until, at dawn, he begins to walk back to the foot of the mountain, which he reaches at sunset.

- Make no assumptions about his starting or stopping or about his pace during the trips.
- Riddle: is there a place on the path that the monk occupies at the same hour of the day on the two trips?
- As we went to press, Rich Wilson and Bill Biewenga, on Great America II, their catamaran, were barely maintaining a 4.5 day lead over the clipper Northern Light whose record run from San Francisco to Boston, in 1853, was 76 days and 8 hours.

Watch out, they are sailing in 1993, 140 years later, and they have a 4.5 day lead!!?
(as if they were in a race!)

Outline

1. Co-learning
2. Distillation
3. Multi-task learning
4. The Minimum Description Length principle (MDLP)

First example:

Learning Neural Networks
 using "distillation"

Motivation

1. We would like to deploy a classifier (NN) on a computationally limited device (e.g. a smartphone)

- A deep NN cannot be used

2. The learning task is difficult and requires a large data set and a sophisticated learning method (e.g. a deep NN)

Question: can we use the learned deep NN as a teacher to help the student (i.e. the limited device) learn a simpler classifier?

Motivation

Example: A sophisticated learning technique - GoogLeNet

Motivation

Learning techniques for "distillation"

1. Gradually changing the targets
2. Gradually changing the inputs
3. Gradually changing the learning task

Learning techniques for "distillation"

1. Gradually changing the targets

Matching prediction probabilities between teacher and student

A larger temperature smooths the output probability distribution.

Changing the target

1. Use the sophisticated learning method (teacher) to learn to predict the target classes with a membership measure
2. Ask the student to learn to predict the membership measure computed by the teacher instead of the hard classes (on the training set)

Changing the target

1. The teacher uses a softmax function for the values of its output

$$
q_{i}=\frac{e^{\left(z_{i} / T\right)}}{\sum_{j \in \operatorname{classes}} e^{\left(z_{j} / T\right)}}
$$

T is the temperature (the highest T, the less different are the outputs)
2. The student learns to predict the membership measure first with T high, and then, progressively, with T decreasing to 1.

When the soft targets have high entropy, they provide much more information per training case than hard targets and much less variance in the gradient between training cases, so the small model can often be trained on much less data than the original cumbersome model while using a much higher learning rate.

Changing the target

Learning techniques for "distillation"

2. Gradually changing the inputs

Changing the inputs

- Idea: friendly training vs. adversary learning
- Modifies the inputs so as to facilitate the training
- Modifies the descriptions of the examples
- According to the current training stage $\quad \tilde{x}_{i}=x_{i}+\delta_{i}$
- So as to minimize: $\quad L(\mathcal{B}, w)=\frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \ell\left(f\left(\tilde{x}_{i}, w\right), y_{i}\right)$

Marullo, S., Tiezzi, M., Gori, M., \& Melacci, S. (2021). Being Friends Instead of Adversaries: Deep Networks Learn from Data Simplified by Other

Neural Friendly Training

- But the modifications are independently applied to all training examples
- We would rather like global deformations that help to learn the decision function

Figure 1: Left-to-right, top-to-bottom: evolution of the decision boundary developed by a single hidden layer classifier
 (5 neurons) in the 2 -moon dataset, in Neural Friendly Training. Each plot is about a different training iteration (γ); in the last plot data are not transformed anymore.

Neural Friendly Training

$$
\begin{aligned}
L(\mathcal{B}, w, \theta)=\frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|}(\ell(f(\underbrace{s\left(x_{i}, \theta\right)}_{\tilde{x}_{i}}, w), y_{i})+ \\
\eta\|\underbrace{s\left(x_{i}, \theta\right)-x_{i}}_{\delta_{i}}\|^{2}),
\end{aligned}
$$

Neural Friendly Training

FC-A: Fully Connected MLP CNN-A: Convolutional NN

Learning techniques for "distillation"

3. Gradually changing the learning task

Changing the learning task

- The classical distillation scenario (adapted)

$$
\mathcal{L}_{K D}=(1-\alpha) \underbrace{H\left(y, q_{s}(\theta)\right)}+\alpha T^{2} H\left(p_{t}, q_{s}(\theta)\right)
$$

Changing the learning task

- Idea: train the student network through a sequence of intermediate learning tasks.
- Question: how to choose the intermediate learning tasks?

1. They should be easily achievable by the student
2. Consequence: the teacher should be aware of the student's progress

- Co-evolution between student and teacher

1. The teacher converges toward the goal,

$$
\begin{array}{ll}
& \text { but stay close to the learner } \\
\theta_{t}^{m+1}=\min _{\theta_{t}} H\left(y, p_{\theta_{t}}\right) & \text { s.t. } D_{\mathrm{KL}}\left(q_{\theta_{s}}^{m}, p_{\theta_{t}}\right) \leq \epsilon
\end{array}
$$

2. The student follows the teacher at each step

$$
\theta_{s}^{m+1}=\theta_{s}^{m}-\eta_{s} \nabla \mathcal{L}_{s}\left(\theta_{s}, p_{\theta_{t}^{m+1}}\right), \quad \mathcal{L}_{s}\left(\theta_{s}\right)=H\left(p_{\theta_{t}}, q_{\theta_{s}}\right)
$$

Changing the learning task

Fig. 1: $\mathcal{M}_{\text {teacher }}$ and $\mathcal{M}_{\text {student }}$ refer to the output manifolds of student model and teacher model. The lines between circles $(\mathbf{\bullet}, \boldsymbol{\bullet})$ to squares ($\square, \boxed{\square}$) imply the learning trajectories in the distribution level. The intuition of ProKT is to avoid bad local optimas (triangles ($\mathbf{\Delta}$)) by conducting supervision signal projection.

Changing the learning task

Shi, W., Song, Y., Zhou, H., Li, B., \& Li, L. (2021, September). Follow your path: a progressive method for knowledge distillation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 596-611). Springer.

Changing the learning task

KD : classical Knowledge Distillation
RCO : use intermediate models obtained during the teacher's training process
ProKT : their method where the teacher stays close to the student

Using Kullback-Leibler (KD)loss

	Teacher Student	$\begin{gathered} \operatorname{vgg} 13 \\ \text { MobileNetV } \end{gathered}$	ResNet50 MobileNetV2	$\begin{gathered} \text { ResNet50 } \\ \operatorname{vgg} 8 \end{gathered}$	$\begin{gathered} \text { resnet32x4 } \\ \text { ShuffleNetV1 } \end{gathered}$	$\begin{gathered} \text { resnet32x4 } \\ \text { ShuffleNetV2 } \end{gathered}$	WRN-40-2 ShuffleNetV1
	Teacher	74.64	79.34	79.34	79.42	79.42	75.61
Without distillation	Student	64.6	64.6	70.36	70.5	71.82	70.5
	KD*	67.37	67.35	73.81	74.07	74.45	74.83
	RCO	68.42	68.95	73.85	75.62	76.26	75.53
	ProKT	68.79	69.32	73.88	75.79	75.59	76.02
With distillation	CRD	69.73	69.11	74.30	75.11	75.65	76.05
	CRD+KD	69.94	69.54	74.58	75.12	76.05	76.27
	$\underline{\text { CRD }+ \text { ProKT }}$	69.59	69.93	75.14	76.0	76.86	76.76

Using Constrastive Representation Distillation (CRD) loss

Shi, W., Song, Y., Zhou, H., Li, B., \& Li, L. (2021, September). Follow your path: a progressive method for knowledge distillation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 596-611). Springer.

Lessons

- Careful distillation is useful
- Points to the idea of curriculum learning

Distillation: other approaches

- Match intermediate weights
- Match intermediate features
- Match gradients (attention maps)

Outline

1. Co-learning
2. Distillation
3. Multi-task learning
4. The Minimum Description Length principle (MDLP)

What is Multi-Task learning (MTL)?

- As soon you try to optimize more than one loss function
- E.g. From someone's picture, trying to guess both
- The gender
- The age
- The emotion

Why Multi-Task learning (MTL)?

- (IF) The tasks at hand are not unrelated
- E.g. From someone's picture, trying to guess both
- The gender
- The age
- The emotion
- It may help to consider them all together:
better performance with less computing resources
- E.g. guessing the gender may help recognize the emotion and vice-versa

Rk: There are links with the LUPI framework

Assumption behind MTL

- The combined learning of multiple related tasks can outperform learning each task in isolation
- MTL allows for common information shared between the tasks to be used in the learning process, which leads to better generalization if the tasks are related
- E.g. Learning to predict the ratings for several different critics (in different countries) can lead to better performances for each separate task (predict the restaurant ratings for a specific critic)
- Learning to recognize a face and the expression (fear, disgust, anger, ...)
- Multi modality learning: e.g. vision and proprioception

Possible relations between tasks

- All functions to be learn are close to each other in some norm
- E.g. functions capturing preferences in users' modeling problems
- Tasks that share a common underlying representation
- E.g. in human vision, all tasks use the same set of features learnt in the first stages of the visual system (e.g. local filters similar to wavelets)
- Users may also prefer different types of things (e.g. books, movies, music) based on the same set of features or score functions

Question

How do we choose to model the shared information between the tasks?

- Idea: Some shared underlying constraints
- E.g. a low dimensional representation shared across multiple related tasks
- By way of a shared hidden layer in a neural network
- By explicitly constraining the dimensionality of a shared representation
- T binary classification tasks defined over $X \times Y$

$$
\begin{aligned}
& \mathcal{S}=\left\{\left\{\left(\mathbf{x}_{11}, y_{11}\right),\left(\mathbf{x}_{21}, y_{21}\right), \ldots,\left(\mathbf{x}_{m 1}, y_{m 1}\right)\right\}, \ldots,\left\{\left(\mathbf{x}_{1 T}, y_{1 T}\right),\left(\mathbf{x}_{2 T}, y_{2 T}\right), \ldots,\left(\mathbf{x}_{m T}, y_{m T}\right)\right\}\right\} \\
& h_{j}(\mathbf{x})=\mathbf{w}_{j} \cdot \mathbf{x} \quad \text { Linear hypotheses }
\end{aligned}
$$

$$
\text { That share a weight vector } \mathbf{w}_{j}=\mathbf{w}_{0}+\mathbf{v}_{j}
$$

$$
h_{1}^{\star}, \ldots, h_{T}^{\star}=\underset{\mathbf{w}_{0}, \mathbf{v}_{j}, \xi_{i j}}{\operatorname{Argmin}}\left\{\sum_{j=1}^{T} \sum_{i=1}^{m} \xi_{i j}+\frac{\lambda_{1}}{T} \sum_{j=1}^{T}\left\|\mathbf{v}_{j}\right\|^{2}+\lambda_{2}\left\|\mathbf{w}_{0}\right\|^{2}\right\}
$$

MTL with deep neural networks

- Approaches

1. Sharing features (first layers) and have multiple task-specific heads

2. Soft-features or parameters sharing

- Multi-Task Learning induces a bias that prefers hypotheses that can "explain" all tasks
- Beware:
- Can lead to worse performance if the tasks are unrelated or adversarially related
- Question: how to measure the relatedness of learning tasks?
- Do you think of a recent multi-task learning system?
- Do you think of a recent multi-task learning system?

Exploit universal representations across modalities

Figure 1. Heatmap of the predicted task similarities, composed of both unimodal and multimodal tasks. Vision-language tasks are more similar to vision tasks compared to language tasks. Best viewed in color.

WU, Chengyue, WANG, Teng, GE, Yixiao, et al. \$\pi \$-Tuning: Transferring Multimodal Foundation Models with Optimal Multi-task Interpolation. In International Conf. on Machine Learning (ICML). PMLR, 2023. p. 37713-37727.

- Idea of minimizing a distance between the "local" models

What kind of distance ?

Outline

1. Co-learning
2. Distillation
3. Multi-task learning
4. The Minimum Description Length principle (MDLP)

Kolmogorov's complexity

Andreï Kolmogorov
(1903-1987)
Complexity of a sequence $=$
Size in bits of the smallest program that can generate that sequence

$$
K_{M}(x)=\min _{p \in P_{M}}\{l(p), s(p)=x\}
$$

x : the sequence
$\mathrm{P}_{\mathrm{M}} \quad$: program coded on machine M
I(p) : size of p

Kolmogorov's complexity

- True randomness
- No structure
- Smallest program = the sequence itself
- Pi
- Lots of structure, very simple!

$$
\pi=\sum_{k=0}^{\infty} \frac{1}{16^{k}}\left(\frac{4}{8 k+1}-\frac{2}{8 k+4}-\frac{1}{8 k+5}-\frac{1}{8 k+6}\right)
$$

- Infinite sequence of integers \rightarrow but a small program

Solomonoff's induction

- Look for the smallest program that can generate a given sequence
- Almost all induction problems can be cast as the prediction of a binary sequence
- Unfortunately, this is NOT computable...
- Even if it exists, it is not possible to find it in the general case (Gödel's theorem, stopping problem, ...)
- It is possible to approximate it

Minimum Description Length Principle (MDLP)

- The best hypothesis (given training data) is the one that minimize the sum of

1. The length in bits of the description of the hypothesis
2. The length in bits of the description of the data given the hypothesis

$$
h^{\star}=\underset{h \in \mathcal{H}}{\operatorname{ArgMin}}\{\underbrace{L(h)}+\underbrace{L(\mathcal{S} \mid h)}\}
$$

$$
\begin{array}{ll}
\text { Strong relationship with } & P(h \mid \mathcal{S})=\frac{P(h) \times P(\mathcal{S} \mid h)}{P(\mathcal{S})} \\
& h^{\star}=\underset{h \in \mathcal{H}}{\operatorname{ArgMax}} P(\mathcal{S} \mid h) P(h)
\end{array}
$$

Example: regression

- Complexity of model:
- the degree of a polynomial (to be described up to a given precision)
- Error
- The size of the corrections wrt to the predictions

Minimum Description Length Principle (MDLP)

You have to define a code with which to describe the hypothesis and the data
\longleftrightarrow a bias (prior knowkedge)

$$
h^{\star}=\underset{h \in \mathcal{H}}{\operatorname{ArgMin}}\left\{L(h)+L\left(\mathcal{S}_{m} \mid h\right)\right\}
$$

- Multi-task learning
- Simultaneous learning phases

> Maximizing the agreement between learners

- Transfer learning
- Successive learning phases

Maximizing the agreement (??) between learners

Analogy making

- Mitchell \& Hofstadter - 1993

abc	\rightarrow	abd
kji	\rightarrow	$?$

- abd
- iijjkd
- iijjkl
- iijjkk
- ?

Copycat

a b c	\rightarrow	a b d
i j k	\rightarrow	?
k j i	\rightarrow	?
c	\rightarrow	?
$a \mathrm{~b}$ c de	\rightarrow	?
m	\rightarrow	?
$x \mathrm{y}$ z	\rightarrow	?
f p c	\rightarrow	?
i $\mathbf{i} \mathbf{j} \mathbf{j} \mathbf{k} \mathbf{k}$	\rightarrow	?
$a \mathrm{abb} \mathrm{b}$ c	\rightarrow	?
i $\mathbf{j} \mathbf{j} \mathbf{k} \mathbf{k} \mathbf{k}$	\rightarrow	?
$\mathrm{a} \mathrm{b} b \mathrm{c}$ c c	\rightarrow	?

Domain adaptation \& analogie

- Learn both :
- A good representation
- Of the source domain
- Of the target domain
- A good transformation rule

??

Copycat

- Successor and predecessor
$-a \rightarrow b, b \rightarrow a, 1 \rightarrow 2, \ldots$
- Sequence
- abcd...
- Sequence of sequences
- aaabbbccc...
- First, last, ...
- Opposite(first, last), Opposite(successor, predecessor), ...

Various solutions

a b c	\rightarrow	a b d	Comment
i j k	\rightarrow	i ${ }^{\text {l }}$	Replace last letter by its successor
	\rightarrow	i j k	Replace ct by
	\rightarrow	i j d	Replace last letter by \mathbf{d}
	\rightarrow	i j	Remove last letter and if this a ' \mathbf{c} ' replace by \mathbf{d}
	\rightarrow	a b d	Replace by $\mathbf{a b d}$
	\rightarrow	i ${ }^{\text {j } k} 1$	$\mathbf{c}=3, \mathrm{~d}=4$, length $(\mathrm{ijk})=3$, length $(\mathrm{ijk})=4$
	\rightarrow	i ${ }^{\text {f }}$	Replace last letter by dif this a 'c' otherwise by \mathbf{f}

Cornuéjols [1994-2020-...]

- Minimum Description Length Principle + Copycat
- MDLp = approximation of Kolmogorov's complexity for learning
- Analogy making:

1. Minimize the description of the known terms $A: B:: C: ?$ (production) or $A: B$:: C:D (evaluation)
2. Choose the smallest description

An approach to analogy: using Kolmogorov complexity

$$
K\left(M_{t}\right)+K\left(\mathrm{x}_{t} \mid M_{t}\right)+K\left(f_{t} \mid M_{t}\right)+\underbrace{K\left(M_{t+1} \mid M_{t}\right)}_{\text {Change of system of reference }}+K\left(\mathbf{x}_{t+1} \mid M_{t+1}\right)+K\left(f_{t+1} \mid M_{t+1}\right)
$$

Une formalisation

- Kolmogorov's Complexity
- Uses a dictionary (with associated description lengths)
- Which depends on the a priori knowledge and the past experiences

$$
K\left(M_{t}\right)+K\left(\mathbf{x}_{t} \mid M_{t}\right)+K\left(y_{t} \mid M_{t}\right)+K\left(M_{t+1} \mid M_{t}\right)+K\left(\mathbf{x}_{t+1} \mid M_{t+1}\right)+K\left(f_{t+1} \mid M_{t+1}\right)
$$

[A. Cornuéjols (1996) «Analogie, principe d'économie et complexité algorithmique »]

An approach to analogy: using Kolmogorov complexity

Descripteurs utilisés dans la définition des structures :

- orientation (-> / <-)

1 bit

- cardinalité ou nombre d'éléments : n
- type d'éléments
$\log _{2}(n)+1$ bits
- longueur : 1
- commençant ou se terminant par l'élément $=\mathrm{x}$

Lettre

(1/2) -> 1 bit
Une lettre particulière (e.g. 'd')
(1/2.26) -> 6 bits (1/8) -> 3 bits
$\mathrm{L}=3+\mathrm{L}$ (orientation) $+\sum \mathrm{L}$ (éléments)
e.g. L('a3bd' avec orientation $=->)=3+1+\log _{2}\left((1 / 2.26)^{3}\right)+L(3)$

$$
=3+1+18+3=25 \text { bits }
$$

Ensemble (type d'éléments, cardinalité, éléments)
(1/8) -> 3 bits
$L=3+L$ (type) $+L$ (cardinalité) $+\sum L$ (éléments)
Groupe (type d'éléments, nombre d'éléments, éléments) (1/8) -> 3 bits $L=3+L$ (type) $+L\left(n b\right.$ él.) $+\sum L$ (éléments)
Séquence (orientation, type d'éléments, loi de succession ou nombre

> d'éléments, longueur, commençant ou se terminant par)
$L=3+L$ (orient.) $+L($ type $)+L(l o i)$ or $L(n b$ él.) $+L(l o n g)+L(d e ́ b u t / f i n)$
Description et longueur d'une loi de succession
succ(type-of-el., $n, x) \equiv$ le nième successeur de l'élément x du type type-of-el. $L=L($ type $)+L(n$ (voir ci-dessous)) $+L(x)$
$L(n)=L(1 / 6) \quad$ si $\mathrm{n}=1$ ou $-1 \quad$ (1er successeur ou prédécesseur) $L(1 / 3)$ si $\mathrm{n}=0$ (même élément)
$L\left((1 / 3) \cdot(1 / 2)^{p}\right)$ sinon (avec $p=n$ si $n \geq 0, p=-n$ sinon)
Premier / Dernier (par rapport à l'orientation définie) 1 bit
nième
n bits
$K\left(M_{t}\right)+K\left(\mathbf{x}_{t} \mid M_{t}\right)+K\left(f_{t} \mid M_{t}\right)+\underbrace{K\left(M_{t+1} \mid M_{t}\right)}_{\text {Change of system of reference }}+K\left(\mathbf{x}_{t+1} \mid M_{t+1}\right)+K\left(f_{t+1} \mid M_{t+1}\right)$

An approach to analogy: using Kolmogorov complexity

[Cornuéjols, 1996, 1997, 1998, 2016]

An approach to analogy: using Kolmogorov complexity

[Cornuéjols, 1996, 1997, 1998, 2016]

Problème 1: abc => abd ; iijjkk => ?
\longrightarrow Solution 1: "Remplacer groupe de droite par son successeur" iijjkk => iijjll
Solution 2: "Remplacer lettre de droite par son successeur" iijjkk \Rightarrow iijjkl
Solution 3: "Remplacer lettre de droite par D" iijjkk => iijjkd
Solution 4 : "Remplacer 3ème lettre par son successeur" iijjkk => iikjkk
Solution 5: "Remplacer les C par $D^{\prime} \quad$ iijjkk \Rightarrow iijjkk
Solution 6 : "Remplacer groupe de droite par la lettre $D " \quad$ iijjkk $\quad \Rightarrow$ iijjd

	$\mathrm{P} 1 ; \mathrm{S} 1$	$\mathrm{P} 1 ; \mathrm{S} 2$	$\mathrm{P} 1 ; \mathrm{S} 3$	$\mathrm{P} 1 ; \mathrm{S} 4$	$\mathrm{P} 1 ; \mathrm{S} 5$	$\mathrm{P} 1 ; \mathrm{S} 6$
$L\left(M_{S}\right)$	10	9	11	11	12	11
$L\left(S_{S} \mid M_{S}\right)$	8	18	18	18	22	15
$L\left(\beta S^{\mid} M_{S}\right)$	4	4	3	7	8	3
$L\left(M_{C} \mid M_{S}\right)$	5	0	0	0	0	17
$L\left(S_{C} \mid M_{C}\right)$	8	36	36	36	42	15
$L\left(\beta_{C} \mid M_{C}\right)$	6	4	3	7	8	3
Total-1 (bits)	$\mathbf{4 1}$	$\mathbf{7 1}$	$\mathbf{7 1}$	$\mathbf{7 9}$	$\mathbf{9 3}$	$\mathbf{6 5}$
Total-2 (bits)	$\mathbf{3 5}$	$\mathbf{6 7}$	$\mathbf{6 8}$	$\mathbf{7 2}$	$\mathbf{8 5}$	$\mathbf{6 2}$
Rang	1	3	4	4	6	2

Copycat + MDLp

a b c	\rightarrow	a b d	Length in bits
iijjkk	\rightarrow	iijjı	35
iijjkk	\rightarrow	iijjkl	67
iijjkk	\rightarrow	iijjkd	68
iijjkk	\rightarrow	iikjkk	72
iijjkk	\rightarrow	iijjkk	85
iijjkk	\rightarrow	iijjd	62

Results

'abc' \equiv Chaîne	$(1 / 8)$
orientation $: ~->~$	$(1 / 2)$
ler='A', 2ème='B', 3ème='C'	$(1 / 4.26)^{3}$
	TOTAL (longueur)

	'abc' \equiv Ensemble	(1/8)	
\{'A', 'B', 'C'\}			/4
	TOTAL	:	20

[A. Cornuéjols (1996) «Analogie, principe d'économie et complexité algorithmique »]

Analogy making and MDLP

- Application to language analogies: how to end words (conjugations, plurals, ...)

apte : inapte :: élu : x	$x=$ inélu	(Prefixation)
let, ?0, :, 'i', 'n', ?0, let, mem, 0 , 'apte',::, mem, 0 , 'élu'		
átír : átírunk :: kitart : x	$x=$ kitartunk	(Suffix
let, ?0, :, ?0, 'u', 'n', 'k', let, mem, 0, 'átír',::, mem, 0 , 'kitart'		
pati : patti : olo : x	$x=$ olto	(Insertion)
let,?0,?1,:, ?0, 't', ?1,let,mem,0,'pa','ti',: $2, \mathrm{mem}, 0,{ }^{\text {'ol', 'o' }}$		
pria : pria-pria :: keju : x	$x=$ keju-keju	(Repetition)
vantut : vanttu :: autopilotit : x	$x=$ autopilotti	(Reduplication)
let,?0,?1,'t',:, ?0, 't', , ${ }^{\text {, }}$, let, mem, 0 , 'van', 'tu',::,mem, 0 , 'autopilot', 'i'		

Murena, P. A., Al-Ghossein, M., Dessalles, J. L., \& Cornuéjols, A. (2020). Solving Analogies on Words based on Minimal Complexity Transformation. In IJCAI (pp. 1848-1854).

Analogy making and MDLP

- Application to language analogies: how to end words (conjugations, plurals, ...)

Language	\#analogies	NLG_COMP	NLG_PROP	NLG_ALEA
Arabic	165,113	87.18%	$\mathbf{9 3 . 3 3 \%}$	81.91%
Finnish	313,011	$\mathbf{9 3 . 6 9 \%}$	92.76%	78.75%
Georgian	$3,066,273$	$\mathbf{9 9 . 3 5 \%}$	97.54%	88.42%
German	730,427	$\mathbf{9 8 . 8 4 \%}$	96.21%	95.42%
Hungarian	$2,912,310$	$\mathbf{9 5 . 7 1 \%}$	92.61%	86.02%
Maltese	28,365	$\mathbf{9 6 . 3 8 \%}$	84.72%	91.84%
Navajo	321,473	81.21%	$\mathbf{8 6 . 8 7 \%}$	78.95%
Russian	552,423	96.41%	$\mathbf{9 7 . 2 6 \%}$	95.46%
Spanish	845,996	$\mathbf{9 6 . 7 3 \%}$	96.13%	94.42%
Turkish	245,721	$\mathbf{8 9 . 4 5 \%}$	69.97%	70.06%
Total	$9,181,112$	$\mathbf{9 6 . 4 1 \%}$	$\mathbf{9 4 . 3 4 \%}$	87.93%

The results using deep
NNs and learnt
embeddings were in the
range 0.1% to 17% !!

Table 2: Proportion of correct answers when solving analogies from the dataset Sigmorphon' 16 using our method NLG_COMP and two state-of-the-art methods NLG_PROP [Fam and Lepage, 2018] and nLG_ALEA [Langlais et al., 2009].

Murena, P. A., Al-Ghossein, M., Dessalles, J. L., \& Cornuéjols, A. (2020). Solving Analogies on Words based on Minimal Complexity Transformation. In IJCAI-2020 (pp. 1848-1854).

Overview: which communications?

- Ensemble learning (e.g. boosting)
- Co-learning
- Distillation
- Multi-task learning
- Transfer learning (analogy making)

Overview: which communications?

- Ensemble learning (e.g. boosting)
- Communicating a new input distribution such as to learn \neq hypotheses + vote
- Co-learning
- Benefit from different perspectives and exchange of pseudo-labeled examples
- Distillation
- Easing a student's learning by modifying the outputs, the inputs or the task
- Multi-task learning
- Minimizing the disagreement between the learned hypotheses
- Transfer learning (analogy making)
- Minimizing a distance (not necessarily symmetrical) between successive models

Cognitive tunnel effect

[A. Cornuéjols, A. Tiberghien, G. Collet. Tunnel Effects in Cognition: A new Mechanism for Scientific Discovery and Education. Arxiv-1707.04903- Tue, 18 Jul 2017 00:00:00 GMT]

Cognitive tunnel effect

Newton's luggage

[Loup Verlet. La malle de Newton. Gallimard, NRF, 1993]

- How did Newton arrive to the theory of gravitation?
- What were the sources of his thoughts?
- Alchemy (among other things)
- What were the questions of the time?
- How transmutation of bread into the corpse of Jesus Christ can arise simultaneously in all churches?

Action at distance

Some speculations

Transfer and sequence effects

Transfer and sequence effects

1. Which equations for the change of referential and for hypothesis transfer?
2. How to prove that these equations are optimal?

Conclusions (1)

Transfer learning \Longrightarrow mostly heuristical approaches so far

1. Parallel transport is a natural way for looking at transfer learning

- The covariant derivative is then a measure of difference
- How to compute it?
- Pioneering works in computer vision
- What about when the source and target domains are different?
- TransBoost: a proposal

2. Transfer learning is path dependent in general

- The study of these path dependencies is important ...
- Curriculum learning
- Longlife learning
- ... and a wide open research question

Conclusions (2)

- The theoretical guarantees for transfer learning:
- Do not necessarily depend on the performance of the source hypothesis h_{S}

But depend on the bias that h_{S} determines

- Involve the capacity of the space of transformations
(and the path followed between source and target)

Bibliography

- Ben-David, S., Lu, T., Luu, T., \& Pál, D. (2010). Impossibility theorems for domain adaptation. In International Conference on Artificial Intelligence and Statistics (pp. 129-136).
- Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., \& Vaughan, J. W. (2010). A theory of learning from different domains. Machine learning, 79(1-2), 151-175.
- Cornuéjols A., Murena P-A. \& Olivier R. "Transfer Learning by Learning Projections from Target to Source". Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany.
- Kuzborskij, I., \& Orabona, F. (2013, February). Stability and hypothesis transfer learning. In International Conference on Machine Learning (pp. 942-950).
- Mansour, Y., Mohri, M., \& Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. arXiv preprint arXiv:0902.3430.
- Redko, I., Morvant, E., Habrard, A., Sebban, M., \& Bennani, Y. (2019). Advances in Domain Adaptation Theory. Elsevier.
- H. Venkateswara, S. Chakraborty, and S. Panchanathan, "Deep-learning systems for domain adaptation in computer vision: Learning transferable feature representations," IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 117-129, 2017.
- Yosinski, J., Clune, J., Bengio, Y., \& Lipson, H. (2014). How transferable are features in deep neural networks?. In Advances in neural information processing systems (pp. 3320-3328).
- Zhang, C., Zhang, L., \& Ye, J. (2012). Generalization bounds for domain adaptation. In Advances in neural information processing systems (pp. 3320-3328).

