Learning agents that **communicate**

Co-training Distillation Multi-task Learning MDLp: Minimum Description Length Principle

Antoine Cornuéjols

AgroParisTech – INRAE UMR MIA Paris-Saclay

antoine.cornuejols@agroparistech.fr

We continue our journey about Out-Of-Distribution learning

What can be gained ... or lost

By resorting to **collaboration** between learning algorithms?

Questions

- Which **learning agents**?
- How to **combine** their findings?
- What kind of **information** should they **exchange**?
- How to ensure the **convergence** of the collaboration?
- If convergence takes place, **toward what**?

Outline

1. Co-learning

- **2.** Distillation
- 3. Multi-task learning
- 4. The Minimum Description Length principle (MDLP)

Co-learning

The **co-learning** scenario

Suppose we want to **classify web pages** as faculty member web pages or not

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co*training*. In Proc. of the 11th annual conference on Computational Learning Theory (pp. 92-100).

The **co-learning** scenario

Suppose we want to classify web pages as faculty member web pages or not

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co*training*. In Proc. of the 11th annual conference on Computational Learning Theory (pp. 92-100).

The **co-learning** assumptions

- Examples are described using two sets of features: x = < x₁, x₂
 - Each should be sufficient
 - They can be made consistent, i.e.

 $\exists c_1, c_2 s.t. c_1(x_1)=c_2(x_2)=c^*(x)$

Iterative co-learning

- Idea 1: Use small set of almost certain labeled examples to
 Iearn initial hypotheses h₁ and h₂
 - E.g. h₁ = "My advisor" pointing to a page xxx
 is a good indicator that xxx is a *faculty home page*
 - E.g. h₂ = "I am teaching" on a web page
 is a good indicator that this web page is a faculty home page
- Idea 2: Use unlabeled data to propagate learned information
 - Look for unlabeled examples where one hypothesis is confident AND the other is not
 - 2. Have it **label the examples** so that the other learning algorithm can use it

Iterative co-learning

Repeat

- 1. Look through **unlabeled** data to find examples where one of the h_i is **confident** but the other **is not**
- 2. Have the confident h_i label it for algorithm A_{3-i}

 h_1 and h_2 are initially learnt on a subset of common examples where they find consistent labeling

Illustration on Webpage classification

- 12 **labeled** examples
- 1000 unlabeled

Results for 5-folds cross validation

Default prediction: negative (22% test error)

	Page-based classifier	Hyperlink-based classifier	Combined classifier
Supervised training	12.9	12.4	11.1
Co-training	6.2	11.6	5.0

Table 2: Error rate in percent for classifying web pages as course home pages. The top row shows errors when training on only the labeled examples. Bottom row shows errors when co-training, using both labeled and unlabeled examples.

Blum, A., & Mitchell, T. (1998, July). *Combining labeled and unlabeled data with co-training*. In Proc. of the 11th annual conference on Computational Learning Theory (pp. 92-100).

Classification of Webpages

•••

13 / 92

Applied in many other settings

- Named-entity extraction [Collins & Singer, 99]
 - "I arrived in London yesterday"

 Identifying objects in images using two different types of preprocessing [Levin, Viola, Freund, 03]

Iterative **co-learning**: simple example

• Learning intervals

Use unlabeled data to bootstrap

2

Co-learning and multi-view Semi Supervised Learning

Given
$$S_l = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_{m_l}, y_{m_l})\}$$

 $S_u = \{(\mathbf{x}_{m_l+1}, y_{m_l+1}), \dots, (\mathbf{x}_{m_u}, y_{m_u})\}$

[Bartlett, Rosenberg, AISTATS-2007], [Sridharan, Kakade, COLT-2008]

16 / 92

Analysis

- Co-training is a method for **using unlabeled data** when examples **can be partitioned into two views** such that:
 - 1. each **view** in itself is **at least roughly sufficient** to achieve good classification,
 - 2. and yet the views are **not too highly correlated**.

[Blum & Mitchell, COLT-98]

- 1. Independence of examples given the labels
- 2. Algorithm for learning from random classification noise

[Balcan, Blum & Yang, NIPS-2004]

- 1. Property of distributional expansion on the examples
- 2. Algorithm for learning from positive data only

A curiosity: is it co-learning?

Blending

[Mark Turner, Gilles Fauconnier: *The Way We Think. Conceptual Blending and the Mind's Hidden Complexities*. New York: Basic Books 2002]

Blending effect [Fauconnier & Turner]

The **Riddle** of the Buddhist Monk:

A Buddhist monk begins **at dawn** one day **walking up a mountain**, reaches the top **at sunset**, meditates at the top overnight until, **at dawn**, he begins to **walk back** to the foot of the mountain, which he reaches **at sunset**.

Blending effect [Fauconnier & Turner]

A Buddhist monk begins **at dawn** one day **walking up a mountain**, reaches the top **at sunset**, meditates at the top overnight until, **at dawn**, he begins to **walk back** to the foot of the mountain, which he reaches **at sunset**.

Make no assumptions about his starting or stopping or about his pace during the trips.

Riddle: is there a place on the path that the monk occupies at the same hour of the day on the two trips? As we went to press, Rich Wilson and Bill Biewenga, on *Great America II*, their catamaran, were barely **maintaining a 4.5 day lead** over the clipper
 Northern Light whose record run from San Francisco to Boston, in 1853, was
 76 days and 8 hours.

Watch out, they are sailing in **1993**, 140 years later, and they have a **4.5 day lead**!!?

(as if they were in a race!)

Outline

1. Co-learning

2. Distillation

- 3. Multi-task learning
- **4.** The Minimum Description Length principle (MDLP)

First example:

Learning Neural Networks

using "distillation"

- We would like to deploy a classifier (NN) on a computationally limited device (e.g. *a smartphone*)
 - A deep NN cannot be used
- 2. The learning task is difficult and requires a large data set and a sophisticated learning method (e.g. a deep NN)

Question: can we use the learned deep NN as a **teacher** to help the **student** (i.e. the limited device) learn a simpler classifier?

Motivation

Example: A sophisticated learning technique - GoogLeNet

Motivation

	Cloud Al	Tiny Al
Computation (fp32)	19.5 TFLOPS	MFLOPs
Memory	80GB	256kB
Neural Network	ResNet ViT-Large	MCUNet MobileNetV2-Tiny
Nourol potwork		

• • •

Learning techniques for "distillation"

1. Gradually changing the targets

2. Gradually changing the inputs

3. Gradually changing the learning task

...

Learning techniques for "distillation"

1. Gradually changing the targets

2. Gradually changing the inputs

3. Gradually changing the learning task

Matching prediction probabilities between teacher and student

Song Han

Changing the **target**

- 1. Use the sophisticated learning method (teacher) to learn to predict the target classes with a **membership measure**
- 2. Ask the student to *learn to predict the membership measure* computed by the teacher instead of the hard classes (on the training set)

Changing the target

1. The teacher uses a softmax function for the values of its output

$$q_i = \frac{e^{(z_i/T)}}{\sum_{j \in \text{classes}} e^{(z_j/T)}}$$

T is the temperature (the highest *T*, the less different are the outputs)

2. The student *learns to predict the membership measure* first with *T* high, and then, progressively, with *T* decreasing to 1.

When the soft targets have high entropy, they **provide much more information per training case** than hard targets and **much less variance in the gradient** between training cases, so the small model can often be trained on much less data than the original cumbersome model while using a much higher learning rate.

Changing the target

Learning techniques for "distillation"

- 1. Gradually changing the targets
- 2. Gradually changing the inputs
- 3. Gradually changing the learning task
Changing the **inputs**

- Idea: friendly training vs. adversary learning
 - Modifies the inputs so as to facilitate the training
- Modifies the descriptions of the examples
 - According to the current training stage $ilde{x}_i = x_i + \delta_i$

- So as to minimize:
$$L(\mathcal{B}, w) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \ell(f(\tilde{x}_i, w), y_i)$$

37 / 92

Marullo, S., Tiezzi, M., Gori, M., & Melacci, S. (2021). Being Friends Instead of Adversaries: Deep Networks Learn from Data Simplified by Other Networks. *arXiv preprint arXiv:2112.09968*.

Neural Friendly Training

- But the modifications are **independently** applied to all training examples
- We would rather like global deformations that help to learn the decision function

Figure 1: Left-to-right, top-to-bottom: evolution of the decision boundary developed by a single hidden layer classifier (5 neurons) in the 2-moon dataset, in Neural Friendly Training. Each plot is about a different training iteration (γ); in the last plot data are not transformed anymore.

 $\tilde{x}_i = s(x_i, \theta)$

Neural Friendly Training

$$L(\mathcal{B}, w, \theta) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \left(\ell\left(f(\underbrace{s(x_i, \theta)}_{\tilde{x}_i}, w), y_i\right) + \eta \|\underbrace{s(x_i, \theta) - x_i}_{\delta_i} \|^2\right),$$

39 / 92

Neural Friendly Training

fications are hardly distinguishable. Top: FT. Bottom: NFT.

40 / 92

Learning techniques for "distillation"

1. Gradually changing the targets

- 2. Gradually changing the inputs
- 3. Gradually changing the learning task

• The **classical** distillation scenario (adapted)

$$\mathcal{L}_{KD} = (1 - \alpha) H(y, q_s(\theta)) + \alpha T^2 H(p_t, q_s(\theta))$$
Classical cross-entropy between
output and target values
Cross-entropy between teacher
and student's outputs

- Idea: train the student network through a sequence of intermediate learning tasks.
- Question: **how to choose** the intermediate learning tasks?
 - 1. They should be **easily achievable** by the student
 - 2. Consequence: the **teacher should be aware** of the student's progress
- Co-evolution between student and teacher

1. The teacher converges toward the goal,
but stay close to the learner

$$\theta_t^{m+1} = \min_{\theta_t} H(y, p_{\theta_t})$$
 s.t. $D_{\mathrm{KL}}(q_{\theta_s}^m, p_{\theta_t}) \leq \epsilon$
 $\hat{\mathcal{L}}_{\theta_t} = (1 - \lambda)H(y, p_{\theta_t}) + \lambda H(q_{\theta_s}, p_{\theta_t})$

2. The student follows the **teacher** at each step

$$\theta_s^{m+1} = \theta_s^m - \eta_s \nabla \mathcal{L}_s(\theta_s, p_{\theta_t^{m+1}}), \quad \mathcal{L}_s(\theta_s) = H(p_{\theta_t}, q_{\theta_s})$$

$$43 / 92$$

Fig. 1: $\mathcal{M}_{teacher}$ and $\mathcal{M}_{student}$ refer to the output manifolds of student model and teacher model. The lines between circles (\bullet, \bullet) to squares $(\blacksquare, \blacksquare)$ imply the learning trajectories in the distribution level. The intuition of ProKT is to avoid bad local optimas (triangles (\blacktriangle)) by conducting supervision signal projection.

...

Shi, W., Song, Y., Zhou, H., Li, B., & Li, L. (2021, September). Follow your path: a progressive method for knowledge distillation. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases* (pp. 596-611). Springer.

45 / 92

- **KD** : classical **K**nowledge **D**istillation
- **RCO** : use intermediate models obtained during the teacher's training process
- **ProKT** : their method where the teacher stays close to the student

Using Kullback-Leibler (KD)loss

			LJ				
	Teacher Student	vgg13 MobileNetV2	ResNet50 MobileNetV2	ResNet50 vgg8	resnet32x4 ShuffleNetV1	resnet32x4 ShuffleNetV2	WRN-40-2 ShuffleNetV1
Without distillation>	Teacher Student	$74.64 \\ 64.6$	$79.34 \\ 64.6$	$79.34 \\ 70.36$	$79.42 \\ 70.5$	79.42 71.82	$75.61 \\ 70.5$
With distillation	KD* RCO ProKT	67.37 68.42 68.79	67.35 68.95 69.32	73.81 73.85 73.88	74.07 75.62 75.79	74.45 76.26 75.59	74.83 75.53 76.02
	CRD CRD+KD CRD+ProKT	69.73 69.94 69.59	69.11 69.54 69.93	74.30 74.58 75.14	75.11 75.12 76.0	75.65 76.05 76.86	76.05 76.27 76.76

Using Constrastive Representation Distillation (CRD) loss

Shi, W., Song, Y., Zhou, H., Li, B., & Li, L. (2021, September). Follow your path: a progressive method for knowledge distillation. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases* (pp. 596-611). Springer.

46 / 92

Lessons

• Careful distillation is useful

• Points to the idea of **curriculum** learning

Distillation: **other** approaches

• Match intermediate **weights**

• Match intermediate **features**

• Match gradients (attention maps)

Outline

- 1. Co-learning
- 2. Distillation
- 3. Multi-task learning
- 4. The Minimum Description Length principle (MDLP)

What is Multi-Task learning (MTL)?

• As soon you try to optimize more than one loss function

- E.g. From someone's picture, trying to guess both
 - The **gender**
 - The age
 - The emotion

Why Multi-Task learning (MTL)?

- (IF) The tasks at hand are **not unrelated**
 - E.g. From someone's picture, trying to guess both
 - The **gender**
 - The age
 - The emotion
- It may help to consider them all together:
 better performance with less computing resources
 - E.g. guessing the *gender* may help recognize the *emotion* and vice-versa

Rk: There are links with the LUPI framework

Assumption behind MTL

- The combined learning of multiple related tasks can outperform learning each task in isolation
- MTL allows for common information shared between the tasks to be used in the learning process, which leads to better generalization if the tasks are related
- E.g. Learning to **predict the ratings for several different critics** (in different countries) can lead to better performances for **each separate task** (predict the restaurant ratings for a specific critic)
- Learning to **recognize a face and** the **expression** (fear, disgust, anger, ...)
- Multi modality learning: e.g. vision and proprioception

Possible relations between tasks

- All functions to be learn are **close** to each other **in some norm**
 - E.g. functions capturing preferences in users' modeling problems

- Tasks that share a **common underlying representation**
 - E.g. in *human vision*, all tasks use the same set of features learnt in the first stages of the visual system (e.g. local filters similar to wavelets)
 - Users may also *prefer* different types of things (e.g. books, movies, music) based on the same set of features or score functions

Question

How do we choose to

model the shared information between the tasks?

- Idea: Some shared underlying constraints
 - E.g. a low dimensional representation shared across multiple related tasks
 - By way of a **shared hidden layer** in a neural network
 - By explicitly constraining the **dimensionality of a shared representation**

An approach for the linear case: minimizing the distance with a shared weight vector

• **T** binary classification tasks defined over $X \times Y$

$$\mathcal{S} = \{\{(\mathbf{x}_{11}, y_{11}), (\mathbf{x}_{21}, y_{21}), \dots, (\mathbf{x}_{m1}, y_{m1})\}, \dots, \{(\mathbf{x}_{1T}, y_{1T}), (\mathbf{x}_{2T}, y_{2T}), \dots, (\mathbf{x}_{mT}, y_{mT})\}\}$$

 $h_j(\mathbf{x}) = \mathbf{w}_j \cdot \mathbf{x}$ Linear hypotheses

That share a weight vector $\mathbf{w}_j = \mathbf{w}_0 + \mathbf{v}_j$

$$h_{1}^{\star}, \dots, h_{T}^{\star} = \operatorname{Argmin}_{\mathbf{w}_{0}, \mathbf{v}_{j}, \xi_{ij}} \left\{ \sum_{j=1}^{T} \sum_{i=1}^{m} \xi_{ij} + \frac{\lambda_{1}}{T} \sum_{j=1}^{T} ||\mathbf{v}_{j}||^{2} + \lambda_{2} ||\mathbf{w}_{0}||^{2} \right\}$$

MTL with deep neural networks

- Approaches
 - 1. Sharing **features** (first layers) and have multiple task-specific heads

1. **Soft**-features or parameters sharing

 Multi-Task Learning induces a bias that prefers hypotheses that can "explain" all tasks

- Beware:
 - Can lead to worse performance if the tasks are unrelated or adversarially related
- Question: *how to measure the relatedness of learning tasks*?

• Do you think of a **recent** multi-task learning system?

• Do you think of a **recent** multi-task learning system?

Exploit universal representations across modalities

Figure 1. Heatmap of the predicted task similarities, composed of both unimodal and multimodal tasks. Vision-language tasks are more similar to vision tasks compared to language tasks. Best viewed in color.

. . .

WU, Chengyue, WANG, Teng, GE, Yixiao, et al. **\$\pi \$-Tuning: Transferring Multimodal Foundation Models with Optimal Multi-task Interpolation**. In *International Conf. on Machine Learning* (ICML). PMLR, 2023. p. 37713-37727.

60 / 92

• Idea of minimizing a **distance** between the "local" models

What kind of distance ?

Outline

- 1. Co-learning
- 2. Distillation
- 3. Multi-task learning
- 4. The Minimum Description Length principle (MDLP)

Kolmogorov's complexity

Andreï Kolmogorov (1903 – 1987)

Complexity of a sequence =

Size in bits of the smallest program

that can generate that sequence

$$K_M(x) = \min_{p \in P_M} \{l(p), s(p) = x\}$$

- x : the sequence
- P_M : program coded on machine M
- l(p) : size of p

Kolmogorov's complexity

- True randomness
 - No structure
 - Smallest program = the sequence itself

- Pi
 - Lots of structure, very simple!

$$\pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right)$$

- Infinite sequence of integers \rightarrow but a small program

Solomonoff's induction

Look for the smallest program
 that can generate a given sequence

- Almost all induction problems can be cast as the prediction of a binary sequence
- Unfortunately, this is **NOT computable**...
 - Even if it exists, it is not possible to find it in the general case (Gödel's theorem, stopping problem, ...)
- It is possible to approximate it

65 / 92

Minimum Description Length Principle (MDLP)

- The **best hypothesis** (given training data) is the one that **minimize** the sum of
 - 1. The **length** in bits of the description of the **hypothesis**
 - 2. The **length** in bits of the description of the **data given the hypothesis**

$$h^{\star} = \operatorname{ArgMin}_{h \in \mathcal{H}} \{ L(h) + L(\mathcal{S}|h) \}$$

Strong relationship with
$$P(h|S) = \frac{P(h) \times P(S|h)}{P(S)}$$

 $h^* = \underset{h \in \mathcal{H}}{\operatorname{ArgMax}} P(S \mid h) P(h)$

Example: regression

- **Complexity** of model:
 - the **degree** of a polynomial (to be described up to a given precision)
- Error
 - The size of the **corrections** wrt to the predictions

Minimum Description Length Principle (MDLP)

You have to define a code with which to describe the hypothesis and the data

a bias (prior knowkedge)

$$h^{\star} = \operatorname{ArgMin}_{h \in \mathcal{H}} \{ L(h) + L(\mathcal{S}_m|h) \}$$

- Multi-task learning
 - Simultaneous learning phases

Maximizing the agreement between learners

- Transfer learning
 - Successive learning phases

Maximizing the agreement (??) between learners

Analogy making

Copycat

Douglas Hofstadter (1945 – ...)

abc	\rightarrow	a b d
kji	\rightarrow	?

Copycat

a b c	\rightarrow	a b d
i j k	\rightarrow	?
kji	\rightarrow	?
С	\rightarrow	?
a b c d e	\rightarrow	?
m	\rightarrow	?
x y z	\rightarrow	?
fpc	\rightarrow	?
iijjkk	\rightarrow	?
ааbbсс	\rightarrow	?
ijjkkk	\rightarrow	?
abbccc	\rightarrow	?

Domain adaptation & analogie

- Learn both :
 - A good representation
 - Of the source domain
 - Of the target domain
 - A good transformation rule ??

abc

a b d

Source

•

 h_{x}

Copycat

- Successor and predecessor
 - $-a \rightarrow b, b \rightarrow a, 1 \rightarrow 2, ...$
- Sequence
 - abcd…
- Sequence of sequences
 - aaabbbccc...
- First, last, ...
- Opposite(first, last),
 Opposite(successor, predecessor), ...

Various solutions

a b c	>	a b d	Comment
ijk	\rightarrow	i j l	Replace last letter by its successor
	\rightarrow	i j k	Replace c by d
	\rightarrow	ijd	Replace <i>last letter</i> by d
	→	ij	Remove last letter and if this a ' c' replace by d
	\rightarrow	a b d	Replace by a b d
	\rightarrow	ijkl	<pre>c=3, d=4, length(ijk)=3, length(ijkl)=4</pre>
	→	ijf	Replace last letter by d if this a ' c ' otherwise by f

Cornuéjols [1994 – 2020 - ...]

- *Minimum Description Length Principle* + Copycat
 - MDLp = approximation of Kolmogorov's complexity for learning
- Analogy making:
 - Minimize the description of the known terms A:B :: C:? (production) or A:B :: C:D (evaluation)
 - 2. Choose the smallest description

 $K(M_t) + K(\mathbf{x}_t|M_t) + K(f_t|M_t) + \underbrace{K(M_{t+1}|M_t)}_{K(t+1)} + K(\mathbf{x}_{t+1}|M_{t+1}) + K(f_{t+1}|M_{t+1})$

Change of system of reference

Une formalisation

- Kolmogorov's Complexity
 - Uses a **dictionary** (with associated description lengths)
 - Which depends on the a priori knowledge and the past experiences

 $K(M_t) + K(\mathbf{x}_t|M_t) + K(y_t|M_t) + K(M_{t+1}|M_t) + K(\mathbf{x}_{t+1}|M_{t+1}) + K(f_{t+1}|M_{t+1})$

[A. Cornuéjols (1996) « Analogie, principe d'économie et complexité algorithmique »]

$$K(M_t) + K(\mathbf{x}_t|M_t) + K(f_t|M_t) +$$

 $\underbrace{K(M_{t+1}|M_t)}_{K(t+1)} + K(\mathbf{x}_{t+1}|M_{t+1}) + K(f_{t+1}|M_{t+1})$

Change of system of reference

[Cornuéjols, 1996, 1997, 1998, 2016]

L/	/	1	1	8	8	3	1
L		/	/	/	/8	/8	/8

orientation : -> (1/2)

ler='A', 2ème='B', 3ème='C' (1/4.26)³

- TOTAL (longueur) : 21 bits
- 'abc' = Ensemble (1/8) {'A', 'B', 'C'} $(1/4.26)^3$

TOTAL : 20 bits

'abc' = Séquence (1/8)

- orientation : -> (1/2)
- type d'éléments = lettres (1/2)

loi de succession :

successeur(élt(lettre=x)) = élt(succ(lettre,1,x))

$$L(lettre) + L(ler succ) + L(x) = L(1/2 . 1/6 . 1)$$

= 1(1/12) = 4 bits

longueur = 3 3 bits

commençant avec l'élément(lettre='A') (1/26)

TOTAL : 17 bits

[Cornuéjols, 1996, 1997, 1998, 2016]

Pro	oblème 1 :	abc	=>	abd ;	iijjkk	=>	?			
→	Solution 1 : ".	Remplacer	groupe	de droite p	ar son succes	seur"	i	ijjkk	=>	iijjll
	Solution 2 : ".	Remplacer	lettre d	e droite par	son successe	ur" ii	jjkk	=> i	Lijjk	1
	Solution 3 : ".	Remplacer	lettre d	e droite par	D"		i	ijjkk	=>	iijjkd
	Solution 4 : ".	Remplacer	3ème le	ettre par son	n successeur"		i	ijjkk	=>	iikjkk
	Solution 5 : ".	Remplacer	les C pe	ar D"			i	ijjkk	=>	iijjkk
	Solution 6 : ".	Remplacer	groupe	de droite p	ar la lettre D	"	i	ijjkk	=>	iijjd

	P1;S1	P1;S2	P1;S3	P1;S4	P1;S5	P1;S6
$L(M_S)$	10	9	11	11	12	11
$L(S_S M_S)$	8	18	18	18	22	15
$L(\beta_S M_S)$	4	4	3	7	8	3
$L(M_C M_S)$	5	0	0	0	0	17
$L(S_C M_C)$	8	36	36	36	42	15
$L(\beta_C M_C)$	6	4	3	7	8	3
Total-1 (bits)	41	71	71	79	93	65
Total-2 (bits)	35	67	68	72	85	62
Rang	1	3	4	4	6	2

Copycat + MDLp

a b c	\rightarrow	a b d	Length in bits
i i j j k k	\rightarrow	iijjll	35
i i j j k k	\rightarrow	iijjkl	67
i i j j k k	\rightarrow	i i j j k d	68
i i j j k k	\rightarrow	i i k j k k	72
i i j j k k	\rightarrow	i i j j k k	85
i i j j k k	\rightarrow	iijjd	62

Results

[A. Cornuéjols (1996) « Analogie, principe d'économie et complexité algorithmique »]

Analogy making and MDLP

• Application to **language analogies**: how to end words (conjugations, plurals, ...)

apte : inapte :: élu : x	x = inélu	(Prefixation)		
let,?0,:,'i','n',?0,let,mem,0,	'apte',::,mem,0,	'élu'		
átír : átírunk :: kitart : x	x = kitartunk	(Suffixation)		
let,?0,:,?0,'u','n','k',let,mem,0),'átír',::,mem,0,	'kitart'		
pati : patti :: olo : x	x = olto	(Insertion)		
let,?0,?1,:,?0,'t',?1,let,mem,0,	'pa','ti',::,mem,(),'ol','o'		
pria : pria-pria :: keju : x	x = keju-keju	(Repetition)		
let,?0,:,?0,'-',?0,let,mem,0,	'pria',::,mem,0,'	keju'		
vantut : vanttu :: autopilotit : x	x = autopilotti	(Reduplication)		
let,?0,?1,'t',:,?0,'t',?1,let,mem,0,'van','tu',::,mem,0,'autopilot','i'				

Murena, P. A., Al-Ghossein, M., Dessalles, J. L., & Cornuéjols, A. (2020). Solving Analogies on Words based on Minimal Complexity Transformation. In *IJCAI* (pp. 1848-1854).

Analogy making and MDLP

 Application to language analogies: how to end words (conjugations, plurals, ...)

Language	#analogies	NLG_COMP	NLG_PROP	NLG_ALEA
Arabic	165,113	87.18%	93.33%	81.91%
Finnish	313,011	93.69%	92.76%	78.75%
Georgian	3,066,273	99.35%	97.54%	88.42%
German	730,427	98.84%	96.21%	95.42%
Hungarian	2,912,310	95.71%	92.61%	86.02%
Maltese	28,365	96.38%	84.72%	91.84%
Navajo	321,473	81.21%	86.87%	78.95%
Russian	552,423	96.41%	97.26 %	95.46%
Spanish	845,996	96.73%	96.13%	94.42%
Turkish	245,721	89.45%	69.97%	70.06%
Total	9,181,112	96.41%	94.34%	87.93%

The **results** using **deep NNs** and learnt embeddings were in the range 0.1% to 17%!!

Table 2: Proportion of correct answers when solving analogies from the dataset SIGMORPHON'16 using our method NLG_COMP and two state-of-the-art methods NLG_PROP [Fam and Lepage, 2018] and NLG_ALEA [Langlais *et al.*, 2009].

Murena, P. A., Al-Ghossein, M., Dessalles, J. L., & Cornuéjols, A. (2020). Solving Analogies on Words based on Minimal Complexity Transformation. In *IJCAI-2020* (pp. 1848-1854).

Overview: which **communications**?

• **Ensemble** learning (e.g. boosting)

• **Co**-learning

• Distillation

• Multi-task learning

• **Transfer** learning (analogy making)

Overview: which **communications**?

- Ensemble learning (e.g. boosting)
 - Communicating a new input distribution such as to learn ≠ hypotheses + vote
- **Co**-learning
 - Benefit from **different perspectives** and exchange of **pseudo-labeled** examples
- Distillation
 - Easing a student's learning by **modifying** the **outputs**, the **inputs** or the **task**
- Multi-task learning
 - Minimizing the disagreement between the learned hypotheses
- **Transfer** learning (analogy making)
 - Minimizing a distance (not necessarily symmetrical) between successive models

Cognitive tunnel effect

[A. Cornuéjols, A. Tiberghien, G. Collet. *Tunnel Effects in Cognition: A new Mechanism for Scientific Discovery and Education*. Arxiv-1707.04903- Tue, 18 Jul 2017 00:00:00 GMT]

Cognitive tunnel effect

[Loup Verlet. La malle de Newton. Gallimard, NRF, 1993]

- How did Newton arrive to **the theory of gravitation**?
- What were the **sources** of his thoughts?
 - Alchemy (among other things)
- What were the **questions of the time**?
 - How transmutation of bread into the corpse of Jesus Christ can arise simultaneously in all churches?
 - Action at distance

Some speculations

Transfer and sequence effects

Transfer and sequence effects

- **1.** Which equations for the change of referential and for hypothesis transfer?
- 2. How to prove that these equations are optimal?

Conclusions (1)

Transfer learning \longrightarrow mostly heuristical approaches so far

- 1. Parallel transport is a natural way for looking at transfer learning
 - The **covariant derivative** is then a measure of difference
 - **How** to compute it?
 - Pioneering works in computer vision
 - What about when the **source** and **target** domains are **different**?
 - TransBoost: a proposal
- 2. Transfer learning is **path dependent** in general
 - The study of these path dependencies is **important** ...
 - Curriculum learning
 - Longlife learning
 - ... and a wide open research question

Conclusions (2)

- The **theoretical guarantees** for transfer learning:
 - Do not necessarily depend on the performance of the source hypothesis h_s
 But depend on the bias that h_s determines
 - Involve the capacity of the space of transformations

(and the path followed between source and target)

Still to be explored

Bibliography

- Ben-David, S., Lu, T., Luu, T., & Pál, D. (2010). Impossibility theorems for domain adaptation. In *International Conference on Artificial Intelligence and Statistics* (pp. 129-136).
- Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. *Machine learning*, 79(1-2), 151-175.
- Cornuéjols A., Murena P-A. & Olivier R. *"Transfer Learning by Learning Projections from Target to Source"*. Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany.
- Kuzborskij, I., & Orabona, F. (2013, February). Stability and hypothesis transfer learning. In *International Conference on Machine Learning* (pp. 942-950).
- Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. *arXiv preprint arXiv:0902.3430*.
- Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). Advances in Domain Adaptation Theory. Elsevier.
- H. Venkateswara, S. Chakraborty, and S. Panchanathan, "Deep-learning systems for domain adaptation in computer vision: Learning transferable feature representations," *IEEE Signal Processing Magazine*, vol. 34, no. 6, pp. 117–129, 2017.
- Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. In Advances in neural information processing systems (pp. 3320-3328).
- Zhang, C., Zhang, L., & Ye, J. (2012). Generalization bounds for domain adaptation. In *Advances in neural information processing systems* (pp. 3320-3328).