
Antoine Cornuéjols

AgroParisTech – INRAE UMR MIA Paris-Saclay

antoine.cornuejols@agroparistech.fr

Learning agents that communicate

Co-training
Distillation

Multi-task Learning
MDLp: Minimum Description Length Principle

2 / 92

We continue our journey about Out-Of-Distribution learning

3 / 92

n What can be gained ... or lost

By resorting to collaboration between learning algorithms?

4 / 92

Questions

• Which learning agents?

• How to combine their findings?

• What kind of information should they exchange?

• How to ensure the convergence of the collaboration?

• If convergence takes place, toward what?

5 / 92

Outline

1. Co-learning

2. Distillation

3. Multi-task learning

4. The Minimum Description Length principle (MDLP)

6 / 92

Co-learning

7 / 92

The co-learning scenario

• Suppose we want to classify web pages
as faculty member web pages or not

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-
training. In Proc. of the 11th annual conference on Computational Learning Theory (pp.
92-100).

8 / 92

The co-learning scenario

• Suppose we want to classify web pages
as faculty member web pages or not

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-
training. In Proc. of the 11th annual conference on Computational Learning Theory (pp.
92-100).

Co-training: Self-consistency

My Advisor Prof. Avrim Blum My Advisor Prof. Avrim Blum

x1- Text info x2- Link info x - Link info & Text info

x = h x1, x2 i

Agreement between two parts : co-training [Blum-Mitchell98].

- examples contain two sufficient sets of features, x = h x1, x2 i

For example, if we want to classify web pages:

- belief: the parts are consistent, i.e. 9 c1, c2 s.t. c1(x1)=c2(x2)=c*(x)

as faculty member homepage or not

9 / 92

The co-learning assumptions

• Examples are described using two sets of features: x = ‹ x1, x2›
– Each should be sufficient

– They can be made consistent, i.e.

Co-training: Self-consistency

My Advisor Prof. Avrim Blum My Advisor Prof. Avrim Blum

x1- Text info x2- Link info x - Link info & Text info

x = h x1, x2 i

Agreement between two parts : co-training [Blum-Mitchell98].

- examples contain two sufficient sets of features, x = h x1, x2 i

For example, if we want to classify web pages:

- belief: the parts are consistent, i.e. 9 c1, c2 s.t. c1(x1)=c2(x2)=c*(x)

as faculty member homepage or not

Co-training: Self-consistency

My Advisor Prof. Avrim Blum My Advisor Prof. Avrim Blum

x1- Text info x2- Link info x - Link info & Text info

x = h x1, x2 i

Agreement between two parts : co-training [Blum-Mitchell98].

- examples contain two sufficient sets of features, x = h x1, x2 i

For example, if we want to classify web pages:

- belief: the parts are consistent, i.e. 9 c1, c2 s.t. c1(x1)=c2(x2)=c*(x)

as faculty member homepage or not

10 / 92

Iterative co-learning

• Idea 1: Use small set of almost certain labeled examples to
learn initial hypotheses h1 and h2

– E.g. h1 = “My advisor” pointing to a page xxx
is a good indicator that xxx is a faculty home page

– E.g. h2 = “I am teaching” on a web page
is a good indicator that this web page is a faculty home page

• Idea 2: Use unlabeled data to propagate learned information

1. Look for unlabeled examples where
one hypothesis is confident AND the other is not

2. Have it label the examples so that the other learning
algorithm can use it

11 / 92

Iterative co-learning

n Repeat

1. Look through unlabeled data to find examples where
one of the hi is confident but the other is not

2. Have the confident hi label it for algorithm A3-i

Iterative Co-Training

• Have learning algos A1, A2 on each of the two views.
• Use labeled data to learn two initial hyp. h1, h2.

• Look through unlabeled data to find examples
where one of hi is confident but other is not.

• Have the confident hi label it for algorithm A3-i.

Repeat

+
+
+

X1
X2

Works by using unlabeled data to
propagate learned information.

 h
h1 2

h1 and h2 are initially learnt on a subset
of common examples where they find
consistent labeling

12 / 92

Illustration on Webpage classification

• 12 labeled examples

• 1000 unlabeled Results for 5-folds cross validation
Default prediction: negative (22% test error)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30 35 40

Pe
rc

en
t E

rr
or

 o
n

Te
st

 D
at

a

Co-Training Iterations

Hyperlink-Based
Page-Based

Default

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-training. In Proc. of the 11th

annual conference on Computational Learning Theory (pp. 92-100).

13 / 92

Original Application: Webpage classification
12 labeled examples, 1000 unlabeled

(sample run)

Classification of Webpages

Co-learning iterations

...

Pe
rc

en
t e

rr
or

 o
n

te
st

 d
at

a

14 / 92

Applied in many other settings

• Named-entity extraction [Collins & Singer, 99]

– “I arrived in London yesterday”

• Identifying objects in images using two different types of
preprocessing [Levin, Viola, Freund, 03]

Many Other Applications

E.g., [Levin-Viola-Freund03] identifying objects in images.
Two different kinds of preprocessing.

E.g., [Collins&Singer99] named-entity extraction.
– “I arrived in London yesterday”

…
Central to NELL!!!

…

15 / 92

Iterative co-learning: simple example

• Learning intervals
Iterative Co-Training

A Simple Example: Learning Intervals

c2

c1

Use labeled data to learn h1
1 and h2

1

Use unlabeled data to bootstrap

h1
1

h2
1

 Labeled examples
 Unlabeled examples

h1
2

h2
1

h1
2

h2
2

+
- -

16 / 92

Co-learning and multi-view Semi Supervised Learning

n Given

Find h1 and h2

Sl =
�
(x1, y1), . . . , (xml , yml)

Su =
�
(xml+1, yml+1), . . . , (xmu , ymu)

ArgMin
h1,h2

2X

l=1

mlX

i=1

`
�
hl(xi), yi

�
+ �

muX

j=ml+1

agreement
�
h1(xj), h2(xj)

�

Small labeling error Regularizer to encourage
agreement over unlabeled data

[Bartlett, Rosenberg, AISTATS-2007], [Sridharan, Kakade, COLT-2008]

17 / 92

Analysis

• Co-training is a method for using unlabeled data when
examples can be partitioned into two views such that:

1. each view in itself is at least roughly sufficient to achieve good
classification,

2. and yet the views are not too highly correlated.

[Blum & Mitchell, COLT-98]
1. Independence of examples given the labels
2. Algorithm for learning from random classification noise

[Balcan, Blum & Yang, NIPS-2004]
1. Property of distributional expansion on the examples
2. Algorithm for learning from positive data only

18 / 92

A curiosity: is it co-learning?

Blending

[Mark Turner, Gilles Fauconnier: The Way We Think. Conceptual Blending and the
Mind's Hidden Complexities. New York: Basic Books 2002]

19 / 92

Blending effect [Fauconnier & Turner]

The Riddle of the Buddhist Monk:

A Buddhist monk begins at dawn one day walking up a mountain, reaches

the top at sunset, meditates at the top overnight until, at dawn, he begins

to walk back to the foot of the mountain, which he reaches at sunset.

20 / 92

Blending effect [Fauconnier & Turner]

T

A Buddhist monk begins at dawn one day walking up a mountain, reaches

the top at sunset, meditates at the top overnight until, at dawn, he begins

to walk back to the foot of the mountain, which he reaches at sunset.

n Make no assumptions about his starting or stopping or about his pace during

the trips.

n Riddle: is there a place on the path that the monk occupies

at the same hour of the day on the two trips?

21 / 92

n As we went to press, Rich Wilson and Bill Biewenga, on Great America II,

their catamaran, were barely maintaining a 4.5 day lead over the clipper

Northern Light whose record run from San Francisco to Boston, in 1853, was

76 days and 8 hours.

Watch out, they are sailing in 1993, 140 years later,

and they have a 4.5 day lead!!?

(as if they were in a race!)

22 / 92

Outline

1. Co-learning

2. Distillation

3. Multi-task learning

4. The Minimum Description Length principle (MDLP)

23 / 92

Learning Neural Networks

using “distillation”

First example:

24 / 92

Motivation

1. We would like to deploy a classifier (NN) on a computationally
limited device (e.g. a smartphone)

– A deep NN cannot be used

2. The learning task is difficult and requires a large data set and a
sophisticated learning method (e.g. a deep NN)

Question: can we use the learned deep NN as a teacher to help the

student (i.e. the limited device) learn a simpler classifier?

25 / 92

Motivation

Example: A sophisticated learning technique - GoogLeNet

Quite a costly machine to train
AND to use for prediction

26 / 92

Motivation

…

27 / 92
…

28 / 92

Learning techniques for “distillation”

1. Gradually changing the targets

2. Gradually changing the inputs

3. Gradually changing the learning task

29 / 92
…

30 / 92

Learning techniques for “distillation”

1. Gradually changing the targets

2. Gradually changing the inputs

3. Gradually changing the learning task

31 / 92
…

32 / 92
…

33 / 92

Changing the target

1. Use the sophisticated learning method (teacher) to learn to
predict the target classes with a membership measure

2. Ask the student to learn to predict the membership measure
computed by the teacher instead of the hard classes (on the
training set)

34 / 92

Changing the target

1. The teacher uses a softmax function for the values of its output

T is the temperature (the highest T, the less different are the outputs)

2. The student learns to predict the membership measure first with T high,
and then, progressively, with T decreasing to 1.

qi =
e(zi/T)

P
j2classes e

(zj/T)

When the soft targets have high entropy, they provide much more information per
training case than hard targets and much less variance in the gradient between training
cases, so the small model can often be trained on much less data than the original
cumbersome model while using a much higher learning rate.

35 / 92

Changing the target

...

Teacher
Student alone

Student with distillation

36 / 92

Learning techniques for “distillation”

1. Gradually changing the targets

2. Gradually changing the inputs

3. Gradually changing the learning task

37 / 92

Changing the inputs

• Idea: friendly training vs. adversary learning

– Modifies the inputs so as to facilitate the training

• Modifies the descriptions of the examples

– According to the current training stage

– So as to minimize:

x̃i = xi + �i

L(B, w) =
1

|B|

|B|X

i=1

`
�
f(x̃i, w), yi

�

Marullo, S., Tiezzi, M., Gori, M., & Melacci, S. (2021). Being Friends Instead of
Adversaries: Deep Networks Learn from Data Simplified by Other
Networks. arXiv preprint arXiv:2112.09968.

38 / 92

Neural Friendly Training

• But the modifications are independently applied to all training examples

• We would rather like global deformations that help to learn the decision
function

Figure 1: Left-to-right, top-to-bottom: evolution of the deci-
sion boundary developed by a single hidden layer classifier
(5 neurons) in the 2-moon dataset, in Neural Friendly Train-
ing. Each plot is about a different training iteration (�); in
the last plot data are not transformed anymore.

trinsic coherence in the way data are altered in consecutive
training iterations, i.e., similar simplifications might be fine
in nearby stages of the training procedure. These considera-
tions are not exploited by FT, which applies an independent
perturbation to each example, estimated from scratch at each
training step. We propose to introduce an auxiliary multi-
layer network, that is responsible of altering data belonging
to the input space of the classifier. The auxiliary network is
trained jointly with the neural classifier, and it learns how
to transform the data to improve the learning process of the
classifier itself. The weights of the auxiliary net represent the
state of the alteration model, that is progressively updated by
the training procedure, thus letting the model evolve as long
as time passes. From an architectural perspective, the aux-
iliary network extends the classifier by adding a new set of
initial layers, thus increasing the “depth” of the model. The
effect of the auxiliary network is progressively reduced until
the end of training, when it is fully dropped and the classi-
fier is deployed for applications. We refer to this approach
as Neural Friendly Training (NFT), and Fig. 1 illustrates the
behaviour of NFT in a toy 2D classification problem.

Neural models to alter data samples have been proficiently
exploited by the Adversarial Machine Learning community
(Qiu et al. 2020; Xiao et al. 2018) with the goal of fool-
ing a classifier. When considering how to improve a clas-
sifier exploiting another network, it is immediate to trace
a connection also with Knowledge Distillation (KD) (Hin-
ton, Vinyals, and Dean 2015; Phuong and Lampert 2019),
although in KD the main network is supplied with output
probability distributions obtained from a pretrained large
model. The auxiliary network of NFT learns to transform
the input data, closer to what is done by Spatial Transformer
Networks (Jaderberg et al. 2015) (STN). However, STNs
deal with image data only and estimate the parameters of
a spatial transformation from a pre-defined family.

The contributions of this paper are: (1) we propose a
novel training strategy that allows the machine to simplify
the training data by means of an auxiliary network that pro-
gressively fades out; (2) we extend the experimental analysis
of the original FT to non-artificial data, and (3) we experi-
mentally compare it with the proposed NFT approach, using
convolutional and fully connected neural architectures with
different numbers of layers. Our results confirm that NFT
outperforms FT, proving that NFT is a feasible and effective

way to improve the generalization skills of the network and
to efficiently deal with noisy training data.

2 Neural Friendly Training

We consider a generic classification problem in which we
are given a training set X composed of n supervised pairs,
X = {(xk, yk), k = 1, . . . , n}, being xk 2 Rd a train-
ing example labeled with yk.1 Given some input data x,
we denote with f(x,w) the function computed by a neu-
ral network-based classifier with all its weights and biases
stored into vector w. When optimizing the model exploiting
a mini-batch based stochastic gradient descent procedure,
at each step of the training routine the following empirical
risk L measures the mismatch between predictions and the
ground truths,

L (B, w) = 1

|B|

|B|X

i=1

` (f (xi, w) , yi) , (1)

where B ⇢ X is a mini-batch of data of size |B| � 1,
(xi, yi) 2 B, and ` is the loss function. Notice that, while
we are aggregating the contributes of ` by averaging over
the mini-batch data, every other normalization is fully com-
patible with what we propose. In the most common case of
stochastic gradient optimization, a set of non-overlapping
mini-batches is randomly sampled at each training epoch,
in order to cover the whole set X . We will refer to what we
described so far as Classic Training (CT).

Friendly Training. CT provides data to the machine in-
dependently on the state of the network and on the informa-
tion carried by the examples in each B. However, data in X
might include heterogeneous examples with different prop-
erties. For instance, their distribution could be multi-modal,
it might include outliers or it could span over several disjoint
manifolds, and so on and so forth. Existing results in the con-
text of CL (Bengio et al. 2009; Wu, Dyer, and Neyshabur
2020) and SPL (Li and Gong 2017) (Section 1) show that
it might be useful to provide the network with examples
whose level of complexity progressively increases as long as
learning proceeds. However, it is very unlikely to have infor-
mation on the difficulty of the training examples and, more
importantly, if the complexity is determined by humans it
might not match the intrinsic difficulty that the machine will
face in processing such examples. Alternatively, the value `
could be used as an indicator to estimate the difficulty of the
data, to exclude the examples with largest loss values or to
reduce their contribution in Eq. (1), more closely related to
SPL (Kumar, Packer, and Koller 2010; Li and Gong 2017).

Differently from the aforementioned approach, Friendly
Training (FT) (Marullo et al. 2021) transforms the training
examples according to the state of the learner, with the aim
of discarding the parts of information that are too complex
to be handled by the network with the current weights, while
preserving what sounds more coherent with the expectations

1We consider the case of classification mostly for the sake of
simplicity. The proposed approach actually goes beyond classifica-
tion problems.

x̃i = s(xi, ✓)

39 / 92

Neural Friendly Training

...

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Main deep NN

Auxiliary NN

40 / 92

Neural Friendly Training

...

x � x̃ x � x̃
FT

x � x̃ x � x̃

N
FT

FC-A CNN-A

Figure 4: MNIST-BACK-IMAGE. Original data x , perturba-
tion � (normalized) and resulting “simplified” images x̃ for
FC-A and CNN-A at the end of the 1st epoch. Some simpli-
fications are hardly distinguishable. Top: FT. Bottom: NFT.

CNN-A model, for which NFT led to the most significant
improvements with respect to CT (Table 1). In Fig. 4 we
show how examples are affected when using an auxiliary
network (bottom - NFT) or when independent transforma-
tions are estimated for each example through a gradient-
based procedure (top - FT). Estimating the transformation
function with a neural model leads to qualitatively different
behavior. We observe that FT yields structured perturbations
only when paired with CNN-A, emphasizing the digit areas.
Differently NFT shows more natural perturbation patterns,
removing distracting cues (background). Basically, the con-
volutional auxiliary net leads to transformations with much
more detailed awareness of the visual structures.

In Fig. 5, we report the evolution of test error rate during
the training epochs (MNIST-BACK-IMAGE, CNN-A), com-
paring NFT and CT. The developmental plan reduces the
impact of the perturbation until epoch 175 (afterwards, data
are not altered anymore). The small bump right before such
epoch is due to the final transition from altered to original
data. The test error of NFT is higher than the one of CT
when data are altered, as expected, while it becomes lower
when the auxiliary network is dropped. On the other hand,
fitting training data is easier during the early epochs in NFT,
due to the simplification process.

We also evaluated the sensitivity of the system to some
hyper-parameters of NFT, keeping the main network fixed.
In Fig. 6, we report the test error of CNN-A, MNIST-
BACK-IMAGE dataset, for different configurations of ⌘max,
�max simp

�max
, nf , �. In particular, after having selected a sam-

ple run that is pretty representative of the general trend we
observed in the experiments, we changed one of the afore-
mentioned parameters and computed the error rate. Large
values of ⌘max reduce the freedom of auxiliary network in
learning the transformation function. Similarly, a short de-
velopmental plan with a small �max simp

�max
does not allow the

main network to benefit from the progressively simplified
data. In general, we did not experience a very significant
sensitivity to the variations of nf , and 64 features turned out

Figure 5: Training and test error rates for NFT and CT on a
single run – MNIST-BACK-IMAGE, CNN-A (best viewed in
colors). The auxiliary network is dropped at epoch 175. The
training error of NFT is initially lower than in the case of CT
since the auxiliary network simplifies the data. Differently,
the test error is initially larger, since the test set is not sim-
plified. As training proceeds, the simplification vanishes and
the test data become aligned with the training ones.

Figure 6: Test error under different configuration of the NFT
hyper-parameters, CNN-A architecture.

to be fine in most of the experiments, with some cases in
which moving to 96 was slightly preferable, as in the one
we are showing in Fig. 6. Although in a fine-grained grid
of values, we found that larger � helped the auxiliary net-
work to more quickly develop meaningful transformations.
As a side note, we report that NFT was ⇡ 1.5⇥ slower than
CT, on average–see Sec. 2; performance optimization was
outside the scope of this work.

4 Conclusions and Future Work

In this paper, we presented a novel approach to Friendly
Training, according to which training data are altered by
an auxiliary neural network in order to improve the learn-
ing procedure of a neural network-based classifier. Thanks
to a progressive developmental plan, the classifier implicitly
learns from examples that better match its current expec-
tations, reducing the impact of difficult examples or noisy

NFT: Neural Friendly Training

FT: Friendly Training

Independent transformation
for each example

Using an auxiliary NN

FC-A: Fully Connected MLP CNN-A: Convolutional NN Structured perturbations with
CNNs only, emphasizing the
digit areas

Perturbations removing
distracting cues

Globally more
satisfying

Really poor

41 / 92

Learning techniques for “distillation”

1. Gradually changing the targets

2. Gradually changing the inputs

3. Gradually changing the learning task

42 / 92

Changing the learning task

• The classical distillation scenario (adapted)

LKD = (1� ↵)H(y, qs(✓)) + ↵T
2
H(pt, qs(✓))

Classical cross-entropy between
output and target values

Cross-entropy between teacher
and student’s outputs

43 / 92

Changing the learning task

• Idea: train the student network through a sequence
of intermediate learning tasks.

• Question: how to choose the intermediate learning tasks?

1. They should be easily achievable by the student

2. Consequence: the teacher should be aware of the student’s progress

• Co-evolution between student and teacher

1. The teacher converges toward the goal,
but stay close to the learner

2. The student follows the teacher at each step

6 W. Shi et al.

make the training process unstable and hurt the convergence property during
the optimization [43].

Therefore, we propose to replace the discrete target sequence with a continuous
and dynamic one, whose targets are adjusted smoothly and dynamically according
to the status of student model. In continuous target sequence, targets in each
step are changed smoothly with ascending performance. In that case, if the
student learns the target well in current step, the target of the next step is
easier to learn because of the slight performance gap. The training process is
stable as well, because the training targets are improved smoothly. Specifically,
the optimization trajectories of the teacher model naturally o↵er continuous
supervision signals for the student. In our work, we propose to conduct the
optimization trajectories of teacher model as the continuous targets. Besides, to
ensure that intermediate teachers are kept easy to learn for students, we introduce
an explicit constraint in the objective of the teacher. This constraint dynamically
adjusts the updating path of the teacher according to learning progress of the
student. The key motivation of our method is illustrated in Fig. 1.

3.3 Progressive Knowledge Teaching

In this section, we firstly propose the SOKD adopting the optimization trajectories
of teacher as the continuous targets. The learning process is that every time the
teacher model updates one step towards the ground-truth, the student model
updates one step towards the new teacher. Then based on this, we propose the
Progressive Knowledge Teaching (ProKT), which modifies the updating objective
of the teacher by explicitly constraining it in the neighbourhood of student model.

To construct the target sequence with continuous ascending target distribu-
tions, a natural selection is the gradient flow of the optimization procedure of the
teacher distribution. With the student q✓s and teacher model p✓t initialized at the
same starting point (e.g., q✓0

s
(y|x) = p✓0

t
(y|x) = Uniform(1,K)), we iteratively

update the teacher model and the student model according to the following loss
functions:

✓
m+1
t = ✓

m
t � ⌘trLt(✓

m
t), Lt(✓t) = H(y, p✓t), (4)

✓
m+1
s = ✓

m
s � ⌘srLs(✓s, p✓m+1

t
), Ls(✓s) = H(p✓t , q✓s). (5)

Here, the ⌘t and ⌘s are learning rates of student and teacher models, re-
spectively. Starting with the same initialized distribution, the teacher model is
updated firstly by running a step of stochastic gradient descent. Then, the student
model learns from the updated teacher model. In this process, the student could
learn from the optimization trajectories of the teacher model, which provides the
knowledge of how the teacher model is optimized from a random classifier to a
good approximator. Compared with the discrete case such as RCO, the targets
are improved progressively and smoothly.

However, simply conducting iterative optimization following Eq. 4 with gra-
dient descent could not guarantee the teacher would stay close to the student

Follow Your Path: a Progressive Method for Knowledge Distillation 5

!!"#$%&"

!"%'()%*

Fig. 1: Mteacher and Mstudent refer to the output manifolds of student model
and teacher model. The lines between circles (,) to squares (,) imply the
learning trajectories in the distribution level. The intuition of ProKT is to avoid
bad local optimas (triangles ()) by conducting supervision signal projection.

Firstly, we generalize and formalize the knowledge distillation methods
with intermediate targets, named as sequential optimization knowledge distilla-
tion (SOKD) methods. Instead of conducting a static teacher model in vanilla
KD, the targets to the student model of SOKD methods are changed during the
training time. Without loss of generality, we denote the sequence of intermediate
target distributions as Pt = [p1t , p

2
t , · · · , pmt , · · ·]. Starting from a random initial-

ized parameters ✓0, the student model is optimized by gradient descent methods
to mimic its intermediate target pmt :

✓
m = ✓

m�1 � �r✓Lm(✓m�1), (2)

Lm(✓) = (1� ↵)H(y, qs(✓)) + ↵H (pmt , qs(✓))) . (3)

One choice to organize the intermediate targets is to split the training process
into intervals and adopt a fixed target in each intervals, named as discrete
targets. For example, the Route-Constraint Optimization (RCO) [16] saves the
un-convergent checkpoints of teacher during the teacher’s training to construct
the target sequence. The learning target of student is changed every few epochs.

However, the targets are changed discontinuously in the turning points between
discrete intervals, which would incur negative e↵ects on the dynamic knowledge
distillation. Firstly, switching to a target that is too di�cult for the student
model would undermine the advantages of curriculum learning. If the target
is changed sharply to a model with large complexity improvement, it is hard
for student to learn. Besides, the ineligible gap between adjacent targets would

Follow Your Path: a Progressive Method for Knowledge Distillation 7

Algorithm 1 ProKT

1: Input: Initialized student model q✓s and teacher model q✓t . Data set D.
2: while not converged do

3: Sample a batch of input (x, y) from the dataset D.
4: update teacher by ✓t ✓t � ⌘tr✓tL̂✓t .
5: update student by ✓s ✓s � ⌘sr✓sL(✓s).
6: end while

model even with a small update step. The gradient descent step of teacher in
Eq. 4 is equivalent to solving the following formulation:

✓
m+1
t = argmin

✓
L (✓mt) +r✓L(✓)> (✓ � ✓

m
t) +

1

2
⌘t k✓ � ✓

m
t k

2
,

which only seeks the solution in the neighborhood of current parameter ✓mt in
terms of the Euclidean distance. Unfortunately, there is no explicit constraint
that the target distribution p✓m+1

t
(y|x) stays close to p✓m

t
(y|x). Besides, because

the learning process of teacher model is ignorant of how the student model has
been trained, it is probably that the gap between student model and teacher
model grows cumulatively.

Therefore, in order to constrain the target distribution to be easy-to-learn
for the student, we modify the training objective of teacher model in Eq. 4 by
explicitly bounding the KL divergence between the teacher distribution and
student distribution:

✓
m+1
t = min

✓t
H(y, p✓t) s.t. DKL(q

m
✓s , p✓t) ✏. (6)

The ✏ controls the how close the teacher model for the next step to the student
model. In this case, we make an approximation that if the KL divergence of
target distribution and the current student distribution is small, this target is
easy for student to learn. By optimizing the Eq. 6, the teacher is chosen as the
best approximator of the teacher model’s family in the neighbour of student
distribution.

With slight variant of the Lagrangian formula of Eq. 6, the learning objective
of teacher model in ProKT is

L̂✓t = (1� �)H(y, p✓t) + �H(q✓s , p✓t), (7)

in which the hyper-parameter � controls the di�culty of teacher model compared
with student model. The overall algorithm is summarized in Algorithm 1. The
proposed method also ensemble the spirit of mirror descent [1] which we provide
a more detailed discussion in the Appendix.

Follow Your Path: a Progressive Method for Knowledge Distillation 7

Algorithm 1 ProKT

1: Input: Initialized student model q✓s and teacher model q✓t . Data set D.
2: while not converged do

3: Sample a batch of input (x, y) from the dataset D.
4: update teacher by ✓t ✓t � ⌘tr✓tL̂✓t .
5: update student by ✓s ✓s � ⌘sr✓sL(✓s).
6: end while

model even with a small update step. The gradient descent step of teacher in
Eq. 4 is equivalent to solving the following formulation:

✓
m+1
t = argmin

✓
L (✓mt) +r✓L(✓)> (✓ � ✓

m
t) +

1

2
⌘t k✓ � ✓

m
t k

2
,

which only seeks the solution in the neighborhood of current parameter ✓mt in
terms of the Euclidean distance. Unfortunately, there is no explicit constraint
that the target distribution p✓m+1

t
(y|x) stays close to p✓m

t
(y|x). Besides, because

the learning process of teacher model is ignorant of how the student model has
been trained, it is probably that the gap between student model and teacher
model grows cumulatively.

Therefore, in order to constrain the target distribution to be easy-to-learn
for the student, we modify the training objective of teacher model in Eq. 4 by
explicitly bounding the KL divergence between the teacher distribution and
student distribution:

✓
m+1
t = min

✓t
H(y, p✓t) s.t. DKL(q

m
✓s , p✓t) ✏. (6)

The ✏ controls the how close the teacher model for the next step to the student
model. In this case, we make an approximation that if the KL divergence of
target distribution and the current student distribution is small, this target is
easy for student to learn. By optimizing the Eq. 6, the teacher is chosen as the
best approximator of the teacher model’s family in the neighbour of student
distribution.

With slight variant of the Lagrangian formula of Eq. 6, the learning objective
of teacher model in ProKT is

L̂✓t = (1� �)H(y, p✓t) + �H(q✓s , p✓t), (7)

in which the hyper-parameter � controls the di�culty of teacher model compared
with student model. The overall algorithm is summarized in Algorithm 1. The
proposed method also ensemble the spirit of mirror descent [1] which we provide
a more detailed discussion in the Appendix.

44 / 92

Changing the learning task

...

Follow Your Path: a Progressive Method for Knowledge Distillation 5

!!"#$%&"

!"%'()%*

Fig. 1: Mteacher and Mstudent refer to the output manifolds of student model
and teacher model. The lines between circles (,) to squares (,) imply the
learning trajectories in the distribution level. The intuition of ProKT is to avoid
bad local optimas (triangles ()) by conducting supervision signal projection.

Firstly, we generalize and formalize the knowledge distillation methods
with intermediate targets, named as sequential optimization knowledge distilla-
tion (SOKD) methods. Instead of conducting a static teacher model in vanilla
KD, the targets to the student model of SOKD methods are changed during the
training time. Without loss of generality, we denote the sequence of intermediate
target distributions as Pt = [p1t , p

2
t , · · · , pmt , · · ·]. Starting from a random initial-

ized parameters ✓0, the student model is optimized by gradient descent methods
to mimic its intermediate target pmt :

✓
m = ✓

m�1 � �r✓Lm(✓m�1), (2)

Lm(✓) = (1� ↵)H(y, qs(✓)) + ↵H (pmt , qs(✓))) . (3)

One choice to organize the intermediate targets is to split the training process
into intervals and adopt a fixed target in each intervals, named as discrete
targets. For example, the Route-Constraint Optimization (RCO) [16] saves the
un-convergent checkpoints of teacher during the teacher’s training to construct
the target sequence. The learning target of student is changed every few epochs.

However, the targets are changed discontinuously in the turning points between
discrete intervals, which would incur negative e↵ects on the dynamic knowledge
distillation. Firstly, switching to a target that is too di�cult for the student
model would undermine the advantages of curriculum learning. If the target
is changed sharply to a model with large complexity improvement, it is hard
for student to learn. Besides, the ineligible gap between adjacent targets would

Follow Your Path: a Progressive Method for Knowledge Distillation 5

!!"#$%&"

!"%'()%*

Fig. 1: Mteacher and Mstudent refer to the output manifolds of student model
and teacher model. The lines between circles (,) to squares (,) imply the
learning trajectories in the distribution level. The intuition of ProKT is to avoid
bad local optimas (triangles ()) by conducting supervision signal projection.

Firstly, we generalize and formalize the knowledge distillation methods
with intermediate targets, named as sequential optimization knowledge distilla-
tion (SOKD) methods. Instead of conducting a static teacher model in vanilla
KD, the targets to the student model of SOKD methods are changed during the
training time. Without loss of generality, we denote the sequence of intermediate
target distributions as Pt = [p1t , p

2
t , · · · , pmt , · · ·]. Starting from a random initial-

ized parameters ✓0, the student model is optimized by gradient descent methods
to mimic its intermediate target pmt :

✓
m = ✓

m�1 � �r✓Lm(✓m�1), (2)

Lm(✓) = (1� ↵)H(y, qs(✓)) + ↵H (pmt , qs(✓))) . (3)

One choice to organize the intermediate targets is to split the training process
into intervals and adopt a fixed target in each intervals, named as discrete
targets. For example, the Route-Constraint Optimization (RCO) [16] saves the
un-convergent checkpoints of teacher during the teacher’s training to construct
the target sequence. The learning target of student is changed every few epochs.

However, the targets are changed discontinuously in the turning points between
discrete intervals, which would incur negative e↵ects on the dynamic knowledge
distillation. Firstly, switching to a target that is too di�cult for the student
model would undermine the advantages of curriculum learning. If the target
is changed sharply to a model with large complexity improvement, it is hard
for student to learn. Besides, the ineligible gap between adjacent targets would

45 / 92

Changing the learning task

...

Shi, W., Song, Y., Zhou, H., Li, B., & Li, L. (2021, September). Follow your path: a progressive
method for knowledge distillation. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (pp. 596-611). Springer.

KD : classical Knowledge Distillation
RCO : use intermediate models obtained during the teacher’s training process
ProKT : their method

of student of teacher

The divergence
between teacher
and student in
ProKT is smooth
and well bounded

Lower performance
of the teacher, but
better student in the
end

46 / 92

Changing the learning task

...

Shi, W., Song, Y., Zhou, H., Li, B., & Li, L. (2021, September). Follow your path: a progressive
method for knowledge distillation. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (pp. 596-611). Springer.

KD : classical Knowledge Distillation
RCO : use intermediate models obtained during the teacher’s training process
ProKT : their method where the teacher stays close to the student

Without distillation

Follow Your Path: a Progressive Method for Knowledge Distillation 9

Table 1: Top-1 test accuracy (%) of student networks distilled from teacher with
di↵erent network architectures on CIFAR100. Results except the RCO, ProKT
and CRD+ProKT are from [33].

Teacher
Student

vgg13
MobileNetV2

ResNet50
MobileNetV2

ResNet50
vgg8

resnet32x4
Shu✏eNetV1

resnet32x4
Shu✏eNetV2

WRN-40-2
Shu✏eNetV1

Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.6 64.6 70.36 70.5 71.82 70.5

KD⇤ 67.37 67.35 73.81 74.07 74.45 74.83
RCO 68.42 68.95 73.85 75.62 76.26 75.53
ProKT 68.79 69.32 73.88 75.79 75.59 76.02

CRD 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD 69.94 69.54 74.58 75.12 76.05 76.27
CRD+ProKT 69.59 69.93 75.14 76.0 76.86 76.76

fine-tuning TinyBERT with our ProKT. To fair comparison, we use the pre-
trained TinyBERT released by [15] when combing our ProKT with TinyBERT.
More experimental details are listed in the supplementary materials.
Baselines. We compare our method with following baselines: (1) BERT +
Finetune, fine-tune the BERT student on training set; (2) BERT/bi-LSTM +
KD, fine-tune the BERT student or train the bi-LSTM on training set using
the vanilla knowledge distillation loss [12]; (3) Route Constrained Optimization
(RCO) [16], use 4 un-convergent teacher checkpoints as intermediate training
targets; (4) bi-LSTM: train bi-LSTM in training set; (5) TinyBERT [15]: match
the attentions and representations of student model with teacher model on
the first stage and then fine-tune by the vanilla KD loss on the second stage.
For vanilla KD methods, we set the temperature as 1.0 and only use the KL
divergence with teacher outputs as loss. We also compare our method with the
results reported by [31] and [34].

4.2 Results

Results of image classification on CIFAR100 are shown in Tab. 1. The performance
is evaluated by top-1 accuracy. Results of text classification are shown in Tab. 2.
The accuracy or f1-score on test set are obtained by submitting to the GLUE [36]
website. Results on both text and image classification tasks show that ProKT
achieves the best performance under almost all model settings.

Results show that the continuous and dynamic targets are helpful to take
advantage of the knowledge from the teacher. Although adopting discrete targets
in RCO could improve the performance to vanilla KD, our ProKT with continuous
and dynamic targets is more e↵ective in teaching student. To further show the
e↵ectiveness of continuity and adaptiveness (i.e., the KL divergence term to
student in the update of teacher) in ProKT respectively, we test the results of
ProKT with � = 0, in which the targets are improved smoothly but without the
adjustment towards the student. As shown in Tab. 2, the continuous targets are

With distillation

Using Constrastive Representation Distillation (CRD) loss

Using Kullback-Leibler (KD)loss

47 / 92

Lessons

• Careful distillation is useful

• Points to the idea of curriculum learning

48 / 92

Distillation: other approaches

• Match intermediate weights

• Match intermediate features

• Match gradients (attention maps)

49 / 92

Outline

1. Co-learning

2. Distillation

3. Multi-task learning

4. The Minimum Description Length principle (MDLP)

50 / 92

What is Multi-Task learning (MTL)?

• As soon you try to optimize more than one loss function

– E.g. From someone’s picture, trying to guess both

• The gender
• The age
• The emotion

51 / 92

Why Multi-Task learning (MTL)?

• (IF) The tasks at hand are not unrelated

– E.g. From someone’s picture, trying to guess both
• The gender
• The age
• The emotion

• It may help to consider them all together:
better performance with less computing resources

– E.g. guessing the gender may help recognize the emotion and vice-versa

Rk: There are links with the LUPI framework

52 / 92

Assumption behind MTL

• The combined learning of multiple related tasks can outperform learning
each task in isolation

• MTL allows for common information shared between the tasks to be used in
the learning process, which leads to better generalization if the tasks are
related

• E.g. Learning to predict the ratings for several different critics (in different
countries) can lead to better performances for each separate task (predict the
restaurant ratings for a specific critic)

• Learning to recognize a face and the expression (fear, disgust, anger, …)

• Multi modality learning: e.g. vision and proprioception

53 / 92

Possible relations between tasks

• All functions to be learn are close to each other in some norm

– E.g. functions capturing preferences in users’ modeling problems

• Tasks that share a common underlying representation

– E.g. in human vision, all tasks use the same set of features learnt in the
first stages of the visual system (e.g. local filters similar to wavelets)

– Users may also prefer different types of things (e.g. books, movies, music)
based on the same set of features or score functions

54 / 92

Question

How do we choose to
model the shared information between the tasks?

• Idea: Some shared underlying constraints

– E.g. a low dimensional representation shared across multiple related
tasks

• By way of a shared hidden layer in a neural network

• By explicitly constraining the dimensionality of a shared representation

55 / 92

An approach for the linear case: minimizing the distance with a shared weight vector

• T binary classification tasks defined over X x Y

That share a weight vector

Linear hypotheses

56 / 92

MTL with deep neural networks

• Approaches

1. Sharing features (first layers) and have
multiple task-specific heads

1. Soft-features or parameters sharing

57 / 92

• Multi-Task Learning induces a bias that prefers hypotheses

that can “explain” all tasks

• Beware:

– Can lead to worse performance if the tasks are unrelated

or adversarially related

• Question: how to measure the relatedness of learning tasks?

58 / 92

• Do you think of a recent multi-task learning system?

59 / 92

• Do you think of a recent multi-task learning system?

Exploit universal representations across modalities

60 / 92

…

WU, Chengyue, WANG, Teng, GE, Yixiao, et al. $\pi $-Tuning: Transferring Multimodal
Foundation Models with Optimal Multi-task Interpolation. In International Conf. on
Machine Learning (ICML). PMLR, 2023. p. 37713-37727.

⇡-Tuning: Transferring Multimodal Foundation Models

with Optimal Multi-task Interpolation

Chengyue Wu
1 2

Teng Wang
1 2

Yixiao Ge
2

Zeyu Lu
3

Ruisong Zhou
4

Ying Shan
2

Ping Luo
1

Abstract

Foundation models have achieved great advances
in multi-task learning with a unified interface of
unimodal and multimodal tasks. However, the
potential of such multi-task learners has not been
exploited during transfer learning. In this work,
we present a universal parameter-efficient trans-
fer learning method, termed Predict-Interpolate
Tuning (⇡-Tuning), for vision, language, and
vision-language tasks. It aggregates the parame-
ters of lightweight task-specific experts learned
from similar tasks to aid the target downstream
task. The task similarities are predicted in a
unified modality-independent space, yielding a
scalable graph to demonstrate task relationships.
⇡-Tuning has several appealing benefits. First,
it flexibly explores both intra- and inter-modal
transferability between similar tasks to improve
the accuracy and robustness of transfer learn-
ing, especially in data-scarce scenarios. Sec-
ond, it offers a systematical solution for trans-
fer learning with multi-task prediction-and-then-
interpolation, compatible with diverse types of
parameter-efficient experts, such as prompt and
adapter. Third, an extensive study of task-level
mutual benefits on 14 unimodal and 6 multi-
modal datasets shows that ⇡-Tuning surpasses
fine-tuning and other parameter-efficient transfer
learning methods both in full-shot and low-shot
regimes. The task graph also enables an in-depth
interpretable analysis of task transferability across
modalities. The code will be available at https:
//github.com/TencentARC/pi-Tuning.

1Department of Computer Science, The University of Hong
Kong 2ARC Lab, Tencent PCG 3Shanghai Jiao Tong University
4School of Mathematical Sciences, Fudan University. Correspon-
dence to: Yixiao Ge <yixiaoge@tencent.com>.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

VL Tasks Vision Tasks Language Tasks

Figure 1. Heatmap of the predicted task similarities, composed of
both unimodal and multimodal tasks. Vision-language tasks are
more similar to vision tasks compared to language tasks. Best
viewed in color.

1. Introduction

With the development of Transformer architectures (Doso-
vitskiy et al., 2021; Devlin et al., 2018; Brown et al., 2020),
foundation models (Cho et al., 2021; Lu et al., 2022; Wang
et al., 2022) pre-trained with large-scale data are capable
of multiple tasks across modalities in a unified sequence-to-
sequence manner, taking one more step toward mimicking
the human brain. These foundation models are natural multi-
task learners with universal representation and I/O interfaces
for both unimodal and multimodal tasks. But unfortunately,
these properties have not been fully exploited in downstream
tasks, as few studies investigated how to properly transfer
these models.

In this work, we tackle the problem of transfer learning of
multimodal foundation models with unified sequence-to-
sequence interfaces. Most of our experiments are based on
OFA (Wang et al., 2022), an open-source model, without

1

61 / 92

• Idea of minimizing a distance between the “local” models

What kind of distance ?

62 / 92

Outline

1. Co-learning

2. Distillation

3. Multi-task learning

4. The Minimum Description Length principle (MDLP)

Kolmogorov’s complexity

Complexity of a sequence =
Size in bits of the smallest program

that can generate that sequence

Andreï Kolmogorov
(1903 – 1987)

x : the sequence
PM : program coded on machine M
l(p) : size of p

63

64 / 92

Kolmogorov’s complexity

• True randomness

– No structure

– Smallest program = the sequence itself

• Pi

– Lots of structure, very simple!

– Infinite sequence of integers à but a small program

65 / 92

Solomonoff’s induction

• Look for the smallest program
that can generate a given sequence

– Almost all induction problems can be cast as the prediction
of a binary sequence

• Unfortunately, this is NOT computable…

– Even if it exists, it is not possible to find it in the general case
(Gödel’s theorem, stopping problem, …)

• It is possible to approximate it

Ray Solomonoff
(1926 - …)

66 / 92

Minimum Description Length Principle (MDLP)

• The best hypothesis (given training data) is the one that minimize the sum of

1. The length in bits of the description of the hypothesis

2. The length in bits of the description of the data given the hypothesis

<latexit sha1_base64="r95nLah7tRISEqXjjqzOpXseJRU=">AAAIFHicjVXJbhNBEK0kgMOwJSBx4TIiIGIpsmwQi4SQIhCIo1mySHEUzYzb8SizaZaQMJnf4MQn8Am5Ia4cuCH4gHDiF3hVbiceBzseyz3VVfVedVVX99iR5yZpvf5zanrm3PkLldmLxqXLV65em5u/vpqEWeyoFSf0wnjdthLluYFaSd3UU+tRrCzf9tSavfOC7Wu7Kk7cMHif7kdq07e2A7fjOlYK1dbcq+Zi9yBvOZZnviuqZuup+YyHVie2nBw2qFLXV4nZXOx7HXSrRX4yrRaGYWzNLdRrdXnM00JDCwvLy3+PDm9+vtMM52c2qEVtCsmhjHxSFFAK2SOLEvw2qEF1iqDbpBy6GJIrdkUFGcBm8FLwsKDdwbiN2YbWBpgzZyJoB1E8/GMgTboLTAi/GDJHM8WeCTNrR3Hnwslr28fb1lw+tCl1oT0L1/ecHGfj55+RbUodeiJZusg6Eg3n7+g4mdSNczMH8k7BEEHHchv2GLIjyP5OmIJJpDpcfUvsR+LJWp472jejPzqPAJoPUk9fMgzAnkPPKAXGQmb93Dm/nN5Cy2vl1XLUe8KayFpsvfK2jhojEvOMj/YS9khiDUczYetHM3XMnreSHAPJaXTFc4yx1K4r3bg31new70Z77Q34LQ3IqWTPyNFYX/o2lR0MUYtxcRLobXSLi3kmOzKem1l36GOJs6/z8LalEjFOA3N3dUclE/k/wE5N4sfvXmaT8VrS76Hec2tsPSK8Oxi52umE/B1IbTlp20OI09V2pWsdqcs4z/LtsFTqh2Kgz/lU7OqdDo7PKefRw8awlbF8h25i5L1uQzKk4/lMnHh5ki2v1wK7kjWoEktONYz/w9j6Xhj2X0DcAifLOD5lg+hRuJbwdsC8OOQ/em0tcCnUkXckL9WhkNr181X6bih7TLaqWE5MF7gqc+JL1xj+rp0WVu/XGo9qD9/gk/eces8s3aLbyK1Bj2mZXlOTVhDpC/2gX/S78qlyWPla+dZznZ7SmBtUeirf/wHDcqqW</latexit>

P (h|S) =
P (h)⇥ P (S|h)

P (S)
Strong relationship with

<latexit sha1_base64="IOAcjw44zL5HgRksmDs+0xg88pY=">AAAIKnicjVXbbtNAEJ22QEq4pfCIhCyqilaqogTERUJIBYTUF0S59CLVJVo7m9iqb1pvesHyH/EVPPABvFW88gCP8AWcnTglTkkaR1nPzsw5szM7u3aSwE91o3EyMzt34eKlyvzl6pWr167fqC3c3ErjnnLlphsHsdpxRCoDP5Kb2teB3EmUFKETyG1n/6Wxbx9Ilfpx9EEfJ3IvFN3I7/iu0FC1arb30U61UNYzy44TqYSOVSRCeehrL/BDX6fZc9V9LY7yVuZZth9ltisCaz3PLfuptbHcn77HLPTbVQuPt9K3eCvVVm2xUW/wY50VmoWwuLb09c6bg9bJRrwwt0s2tSkml3oUkqSINOSABKX47VKTGpRAt0cZdAqSz3ZJOVWB7cFLwkNAu4+xi9luoY0wN5wpo11ECfBXQFq0BEwMPwXZRLPY3mNmox3HnTGnWdsx3k7BFUKryYP2PNzAc3qcg194TraaOvSEs/SRdcIak79bxOlx3Uxu1lDeGgwJdEZuw64gu4wc7ITFmJSrY6ov2P6TPY3WzN3Ct0e/ijwiaA65niFnGIE9g96gJBhzng1yN/ll9A5as1azWhP1HrOmvBanWHm7iKoQyfBMjvYK9oRjjUazYBtEs4qYfW/JOUac0/iKZxgV187jbjya6Dvcd+O9job8Vodkzdkb5HhsyH2reQdj1GJSnBR6B93iY97jHZnMbVj36VOJc6AL8Ha4EgqnwXB7RUelU/k/wE5N42fe/cym4xXc73Gx52JiPRK8OxhNtfWU/B1IbT5p3RHE2Wr73LUu12WSZ/l2WC31Qz7U5+ZUHBQ7HZ2eU5NHH6tgK2PNHbqH0ex1G1KVO96ciX9eAWdr1ivALnkNssSSUR3j/zBOcS+M+i8ibo6TVT09ZcPocTibeTtgXh7xH782G1wSdTQ7kpXqkHPtBvnK4m4oe0y3KsUnxgNuxXDiS9cc/a6dFbbu15uP6g/f4pP3gvrPPN2mu8itSY9pjdZpgzYR6Qvu1N/0p/K58q1yUvned52dKTC3qPRUfvwFpDSzzg==</latexit>

h? = ArgMax
h2H

P (S | h) P (h)

<latexit sha1_base64="YTWAm1EQWLmQf5Rgm2pVTIf1kf4=">AAAIQ3icjVXbbtNAEJ1QIMXl0sIjLxYVohVVlIC4SBVSASH1AaRy6UWqS2U7m3hV37S2ezP+Bl75Av6Ej0D8AIg3xCsSZydOiVOSxlF2Z2fmnNmZnbWd2JdJ2mx+rZ2bOn/hYn36kjFz+crVa7Nz1zeSKFOuWHcjP1Jbjp0IX4ZiPZWpL7ZiJezA8cWms/dc2zf3hUpkFL5Lj2KxE9jdUHaka6dQ7c5mpvc+t5LUVoVpLVvL5pPeZEWxUHYaqdAOxIFMPV8GMk3yp6r7SobFbu6ZlgzN3HJt31wtCsPkx3Jk17dy8+WCt2jexdRzeFt8wFoblVUYhrE7O99sNPkxTwutUphfWfx4HE9//rQWzU1tk0VtisiljAISFFIK2SebEvy2qUVNiqHboRw6BUmyXVBBBrAZvAQ8bGj3MHax2i61IdaaM2G0iyg+/gpIk24DE8FPQdbRTLZnzKy1o7hz5tR7O8LslFwBtCl50J6F63tOjnPwC87INqUOPeYsJbKOWaPzd8s4GddN52YO5J2CIYZOy23YFWSXkf2TMBmTcHV09W22f2dPrdVrt/TN6EeZRwjNAdcz4AxDsOfQa5QAY8Grfu46v5zeQKv3qnero95h1oT34pQ7b5dRFSJpnvHRXsAec6zhaCZs/WhmGbPnLTjHkHMaXfEco+LaedyNh2N9B/tutNfhgN/SgJxy9ho5Ghtw36Z8ghFqMS5OAr2DbpFYZ3wi47k16x4dVzj7Oh+zw5VQuA2a2ys7KpnI/z5OahI/Pfcym4zX5n6PyjO3x9YjxtzBqKudTsjfgdTmm9YdQpyutuSudbku4zyrb4elSj8UA32ub8V+edLhyT3VefSwCrYqVr9DdzDqs25DMrjj9Z345+Vztnq/NtgF70FUWHJqYPwfxinfC8P+84hb4GYZJ7dsED0KZzFvB8wLQ/6j92aBS6CO+kTySh0Krl0/X1G+G6oek+1K8Y3xgFvUnPjStYa/a6eFjXuN1sPGg9f45D2j3jNNN+kWcmvRI1qhVVqjdUT6VqvVjNpM/Uv9Z/1X/XfP9VytxNygylP/8xeO3Lk4</latexit>

h? = ArgMin
h2H

�
L(h) + L(S|h)

67 / 92

Example: regression

• Complexity of model:

– the degree of a polynomial (to be described up to a given precision)

• Error

– The size of the corrections wrt to the predictions

Example: Regression

Example: Regression

Example: Regression

Example: Regression

Example: Regression

68 / 92

Minimum Description Length Principle (MDLP)

You have to define a code with which to describe the hypothesis
and the data

a bias (prior knowkedge)

<latexit sha1_base64="ko7w1KdLYrnpKu9wLlxng7RkmSU=">AAAIR3icjVXLbtNAFL1pKQkG+oAlG4sK0YoqSkA8pAqpgJC6AKk8+pDqUtnOJB7VL42dvoy/gS1fwL/wCazYwoodYsmZG6fEKUnjKDN37pxz7tw7M7YT+zJJG41vlanpSzOXq7UrxtVr12fn5hdubCVRV7li0438SO04diJ8GYrNVKa+2ImVsAPHF9vOwQs9v30oVCKj8H16Eou9wO6Esi1dO4Vrf/7E9D5kVpLaKjetVWvVfNrrrCgWyk4jFdqBOJKp58tApkn2THVeyzDfzzzTkqGZWa7tm+t5bpj8WI7s+FZmvlryls176HqAdyAE+Uf4NEBZuWEY+/OLjXqDH/O80SyMxbXlT6dx7cvnjWhhepcsalFELnUpIEEhpbB9sinBb5ea1KAYvj3K4FOwJM8LyskAtwuUAMKG9wBtB6PdwhtirDUTZruI4uOvwDTpDjgRcAq2jmbyfJeVtXeUdsaaem0n6J1CK4A3JQ/ei3h95OQ8B7/ggmxTatMTzlIi65g9On+3iNPluunczIG8UyjE8Gm7hXkF22VmfydM5iRcHV19m+d/MFJ79dgtsF36WeQRwnPE9Qw4wxDqGfyaJaCY86ifu84vo7fw6rXq1eqod1k14bU4xcpbRVSFSFpnfLSXmI851nA0E3P9aGYRs4cWnGPIOY2ueIZWce08Po3HY7GD52406ngAtzJgp5y9Zo7mBnxuU97BCLUYFyeB38FpkRh3eUfGa2vVAzotafZ9PnqHK6FwG7S2V5yoZCL8A+zUJDjd9zKbTNfm8x4Ve26PrUeMvo1WVzudUL8Nq8U3rTPEOF9tyafW5bqMQ5bfDiul85APnHN9Kw6LnQ7P7qnOo8dVmCtz9Tt0D63e6xYsg0+8vhP/UD5nq9drQ13wGkRJJaM62v9xnOK9MIxfRNwcN8s4u2WD7FE8i3XbUF4awo9emwUtgTrqHclKdci5dv18RfFuKCMmW5XiG+OBt6w18aVrDn/Xzhtb9+vNR/WHb/DJe069p0a36DZya9JjWqN12qBNRPpemanMVuaqX6u/qr+rf3rQqUrBuUmlp1b5C/lQuiU=</latexit>

h? = ArgMin
h2H

�
L(h) + L(Sm|h)

69 / 92

• Multi-task learning

– Simultaneous learning phases

Maximizing the agreement between learners

• Transfer learning

– Successive learning phases

Maximizing the agreement (??) between learners

70 / 92

Analogy making

Copycat

• Mitchell & Hofstadter – 1993

a b c à a b d

k j i à ?

Douglas Hofstadter
(1945 – …)

a b c

a b d

i j k

?

71

72 / 92

• a b d

• i i j j k d

• i i j j k l

• i i j j k k

• ?

a b c

a b d

i i j j k k

?

Copycat

a b c à a b d

i j k à ?

k j i à ?

c à ?

a b c d e à ?

m à ?

x y z à ?

f p c à ?

i i j j k k à ?

a a b b c c à ?

i j j k k k à ?

a b b c c c à ?

73

74 / 92

a b c

a b d

a a b a b c

?

75 / 92

• Learn both :

– A good representation

• Of the source domain
• Of the target domain

– A good transformation rule

Domain adaptation & analogie

CS CT

x

y

x'

hx

Dictionnaires

Source Cible

CS CT

a b c a a b a b c

h
x

Dictionnaires

Source Cible

a b d

• lettre

• succ-lettre

• ...

• groupe

 (règle-construc)

• succ-groupe

• ...

??

76 / 92

Copycat

• Successor and predecessor

– a → b, b → a, 1 → 2, …

• Sequence

– abcd…

• Sequence of sequences

– aaabbbccc…

• First, last, …

• Opposite(first, last),
Opposite(successor, predecessor), …

Various solutions

a b c à a b d Comment

i j k à i j l Replace last letter by its successor

à i j k Replace c by d

à i j d Replace last letter by d

à i j Remove last letter
and if this a ‘c’ replace by d

à a b d Replace by a b d

à i j k l c=3, d=4, length(ijk)=3, length(ijkl)=4

à i j f Replace last letter by d if this a ‘c’ otherwise by f

77

Cornuéjols [1994 – 2020 - …]

• Minimum Description Length Principle + Copycat

– MDLp = approximation of Kolmogorov’s complexity for learning

• Analogy making:

1. Minimize the description of the known terms A:B :: C:? (production)
or A:B :: C:D (evaluation)

2. Choose the smallest description

78

79 / 92

An approach to analogy: using Kolmogorov complexity

[Cornuéjols, 1996, 1997, 1998, 2016]

xt xt+1

yt yt+1

Mt+1Mtft ft+1

80 / 92

Une formalisation

• Kolmogorov’s Complexity

– Uses a dictionary (with associated description lengths)

– Which depends on the a priori knowledge and the past experiences

[A. Cornuéjols (1996) « Analogie, principe d’économie et complexité algorithmique »]

K(Mt) +K(xt|Mt) +K(yt|Mt) +K(Mt+1|Mt) +K(xt+1|Mt+1) +K(ft+1|Mt+1)

xt xt+1

yt

Mt+1Mtft ft+1

?

81 / 92

An approach to analogy: using Kolmogorov complexity

xt xt+1

yt yt+1

Mt+1Mtft ft+1

aspects pertinents permettant de décrire les chaînes de caractères et leurs transformations
supposées (est-ce que abc => abd parce que la dernière lettre est remplacée par un d ? Ou
est-ce que la règle !S est de transformer tous les c par des d ?) ainsi que le transfert de la
source vers la cible (comment percevoir iijjkk ?, et quelle est la règle !C adéquate ?).

4.2 Théorie du domaine et longueurs de description

La théorie du domaine qui permet de décrire les différents aspects des objets du monde
inclut des primitives de représentation, ainsi que des structures de base. La table 1 ci-dessous
fournit la liste de celles que nous avons définies pour ce travail.

• Descripteurs utilisés dans la définition des structures :
- orientation (-> / <-) 1 bit
- cardinalité ou nombre d'éléments : n log2(n) + 1 bits
- type d'éléments (voir en-dessous)
- longueur : l log2(l) + 1 bits
- commençant ou se terminant par l'élément = x L(x) bits

• Lettre (1/2) -> 1 bit
Une lettre particulière (e.g. 'd') (1/2.26) -> 6 bits

• Chaîne (orientation,éléments) (1/8) -> 3 bits
L = 3 + L(orientation) + ! L(éléments)
e.g. L('a3bd' avec orientation = ->) = 3 + 1 + log2((1/2.26)3) + L(3)
 = 3 + 1 + 18 + 3 = 25 bits

• Ensemble (type d'éléments, cardinalité, éléments) (1/8) -> 3 bits
L = 3 + L(type) + L(cardinalité) + ! L(éléments)

• Groupe (type d'éléments, nombre d'éléments, éléments) (1/8) -> 3 bits
L = 3 + L(type) + L(nb él.) + ! L(éléments)

• Séquence (orientation, type d'éléments, loi de succession ou nombre
 d'éléments, longueur, commençant ou se terminant par) (1/8)

L = 3+ L(orient.) + L(type) + L(loi) or L(nb él.) + L(long) + L(début/fin)
• Description et longueur d'une loi de succession

succ(type-of-el.,n,x) ! le nième successeur de l'élément x du type type-of-el.
L = L(type) + L(n (voir ci-dessous)) + L(x)
L(n) = L(1/6) si n=1 ou -1 (1er successeur ou prédécesseur)
 L(1/3) si n=0 (même élément)
 L((1/3).(1/2)p) sinon (avec p=n si n"O, p=-n sinon)

• Premier / Dernier (par rapport à l'orientation définie) 1 bit
• nième n bits

Table 1 : Liste des primitives de représentation et de leur longueur de description associée.

Afin de pouvoir calculer les complexités algorithmiques associées aux formules définies
dans la section 3, il est nécessaire de définir la longueur de description associée à chaque
primitive de représentation. Le choix de ces longueurs est arbitraire et doit normalement
refléter la connaissance a priori du domaine par l'agent. Il y a donc là une possibilité
d'apprentissage et de test de divers biais correspondant à des contextes ou des connaissances
différents. Certaines contraintes pèsent cependant sur ce choix. En effet, la longueur de
description L associée à un concept doit idéalement correspondre à sa probabilité a priori P,
par la formule L=-log2(P) (Ainsi par exemple, la longueur de description du concept de
chaîne ci-dessous est de 3 bits car sa probabilité a priori est estimée à 1/8). Il est alors

82 / 92

An approach to analogy: using Kolmogorov complexity

xt xt+1

yt yt+1

Mt+1Mtft ft+1

[Cornuéjols, 1996, 1997, 1998, 2016]
impératif de respecter les contraintes du calcul des probabilités, c'est-à-dire en particulier que
la somme des probabilités d'événements exhaustifs et mutuellement exclusifs égale 1.

Ainsi l'objet 'abc' pourrait être représenté par :
'abc' ! Chaîne (1/8)

orientation : -> (1/2)

1er='A', 2ème='B', 3ème='C' (1/4.26)3

TOTAL (longueur) : 21 bits

ou bien par:
'abc' ! Ensemble (1/8)

{'A', 'B', 'C'} (1/4.26)3

TOTAL : 20 bits

ou encore par:
'abc' ! Séquence (1/8)

orientation : -> (1/2)

type d'éléments = lettres (1/2)

loi de succession :

successeur(élt(lettre=x)) = élt(succ(lettre,1,x))

 L(lettre) + L(1er succ) + L(x) = L(1/2 . 1/6 . 1)

= l(1/12) = 4 bits

longueur = 3 3 bits

commençant avec l'élément(lettre='A') (1/26)

TOTAL : 17 bits

Dans cet exemple, la dernière représentation est la plus économique alors même qu'elle
décrit plus complètement la structure de 'abc' que par exemple la seconde description qui n'en
retient que la perception d'un ensemble des trois lettres 'a', 'b' et 'c'.

4.3 Expériences

Les expériences réalisées manuellement ont consisté à prendre une série de tests avec
différentes solutions exposées dans [Mitchell,93], ainsi que d'autres, et à calculer pour chaque
problème et chaque solution proposée les valeurs de complexité algorithmique des formules
(1) et (2) de la section 3. L'espace limité ne permet ni de fournir la liste exhaustive des essais
réalisés, ni de donner le détail des calculs (se reporter à [Cornuéjols, 96, en préparation],
[Khedoucci,94]).

Brièvement, la méthode est la suivante. Pour chaque problème (ex: abc => abd ;
iijjkk => ?) et pour chaque solution proposée (ex: iijjkk => iijjll), la perception,
et donc la description, associée sont conjecturées. Ainsi, par exemple, le modèle MS ci-
dessous correspond à la perception de l'objet 'abc' comme une séquence avec une loi de
succession spécifique. Pour chacune des descriptions ainsi définies, les longueurs de
description associées, suivant les formules (1) et (2) sont calculées. On peut alors comparer la
valeur de chaque solution suivant les mesures définies en section 3.

impératif de respecter les contraintes du calcul des probabilités, c'est-à-dire en particulier que
la somme des probabilités d'événements exhaustifs et mutuellement exclusifs égale 1.

Ainsi l'objet 'abc' pourrait être représenté par :
'abc' ! Chaîne (1/8)

orientation : -> (1/2)

1er='A', 2ème='B', 3ème='C' (1/4.26)3

TOTAL (longueur) : 21 bits

ou bien par:
'abc' ! Ensemble (1/8)

{'A', 'B', 'C'} (1/4.26)3

TOTAL : 20 bits

ou encore par:
'abc' ! Séquence (1/8)

orientation : -> (1/2)

type d'éléments = lettres (1/2)

loi de succession :

successeur(élt(lettre=x)) = élt(succ(lettre,1,x))

 L(lettre) + L(1er succ) + L(x) = L(1/2 . 1/6 . 1)

= l(1/12) = 4 bits

longueur = 3 3 bits

commençant avec l'élément(lettre='A') (1/26)

TOTAL : 17 bits

Dans cet exemple, la dernière représentation est la plus économique alors même qu'elle
décrit plus complètement la structure de 'abc' que par exemple la seconde description qui n'en
retient que la perception d'un ensemble des trois lettres 'a', 'b' et 'c'.

4.3 Expériences

Les expériences réalisées manuellement ont consisté à prendre une série de tests avec
différentes solutions exposées dans [Mitchell,93], ainsi que d'autres, et à calculer pour chaque
problème et chaque solution proposée les valeurs de complexité algorithmique des formules
(1) et (2) de la section 3. L'espace limité ne permet ni de fournir la liste exhaustive des essais
réalisés, ni de donner le détail des calculs (se reporter à [Cornuéjols, 96, en préparation],
[Khedoucci,94]).

Brièvement, la méthode est la suivante. Pour chaque problème (ex: abc => abd ;
iijjkk => ?) et pour chaque solution proposée (ex: iijjkk => iijjll), la perception,
et donc la description, associée sont conjecturées. Ainsi, par exemple, le modèle MS ci-
dessous correspond à la perception de l'objet 'abc' comme une séquence avec une loi de
succession spécifique. Pour chacune des descriptions ainsi définies, les longueurs de
description associées, suivant les formules (1) et (2) sont calculées. On peut alors comparer la
valeur de chaque solution suivant les mesures définies en section 3.

impératif de respecter les contraintes du calcul des probabilités, c'est-à-dire en particulier que
la somme des probabilités d'événements exhaustifs et mutuellement exclusifs égale 1.

Ainsi l'objet 'abc' pourrait être représenté par :
'abc' ! Chaîne (1/8)

orientation : -> (1/2)

1er='A', 2ème='B', 3ème='C' (1/4.26)3

TOTAL (longueur) : 21 bits

ou bien par:
'abc' ! Ensemble (1/8)

{'A', 'B', 'C'} (1/4.26)3

TOTAL : 20 bits

ou encore par:
'abc' ! Séquence (1/8)

orientation : -> (1/2)

type d'éléments = lettres (1/2)

loi de succession :

successeur(élt(lettre=x)) = élt(succ(lettre,1,x))

 L(lettre) + L(1er succ) + L(x) = L(1/2 . 1/6 . 1)

= l(1/12) = 4 bits

longueur = 3 3 bits

commençant avec l'élément(lettre='A') (1/26)

TOTAL : 17 bits

Dans cet exemple, la dernière représentation est la plus économique alors même qu'elle
décrit plus complètement la structure de 'abc' que par exemple la seconde description qui n'en
retient que la perception d'un ensemble des trois lettres 'a', 'b' et 'c'.

4.3 Expériences

Les expériences réalisées manuellement ont consisté à prendre une série de tests avec
différentes solutions exposées dans [Mitchell,93], ainsi que d'autres, et à calculer pour chaque
problème et chaque solution proposée les valeurs de complexité algorithmique des formules
(1) et (2) de la section 3. L'espace limité ne permet ni de fournir la liste exhaustive des essais
réalisés, ni de donner le détail des calculs (se reporter à [Cornuéjols, 96, en préparation],
[Khedoucci,94]).

Brièvement, la méthode est la suivante. Pour chaque problème (ex: abc => abd ;
iijjkk => ?) et pour chaque solution proposée (ex: iijjkk => iijjll), la perception,
et donc la description, associée sont conjecturées. Ainsi, par exemple, le modèle MS ci-
dessous correspond à la perception de l'objet 'abc' comme une séquence avec une loi de
succession spécifique. Pour chacune des descriptions ainsi définies, les longueurs de
description associées, suivant les formules (1) et (2) sont calculées. On peut alors comparer la
valeur de chaque solution suivant les mesures définies en section 3.

83 / 92

An approach to analogy: using Kolmogorov complexity

[Cornuéjols, 1996, 1997, 1998, 2016]

MS ! Séquence 3

orientation : -> 1
type d'éléments = lettres 1
loi de succession :
 succes.(élt(lettre=x) = élt(succ(lettre,1,x)) 4

Dernier 1
TOTAL : 10 bits

Problème 1 : abc => abd ; iijjkk => ?
Solution 1 : "Remplacer groupe de droite par son successeur" iijjkk => iijjll
Solution 2 : "Remplacer lettre de droite par son successeur" iijjkk => iijjkl
Solution 3 : "Remplacer lettre de droite par D" iijjkk => iijjkd
Solution 4 : "Remplacer 3ème lettre par son successeur" iijjkk => iikjkk
Solution 5 : "Remplacer les C par D" iijjkk => iijjkk
Solution 6 : "Remplacer groupe de droite par la lettre D" iijjkk => iijjd

P1;S1 P1;S2 P1;S3 P1;S4 P1;S5 P1;S6
L(MS) 10 9 11 11 12 11
L(SS|MS) 8 18 18 18 22 15
L(!S|MS) 4 4 3 7 8 3
L(MC|MS) 5 0 0 0 0 17
L(SC|MC) 8 36 36 36 42 15
L(!C|MC) 6 4 3 7 8 3

Total-1 (bits) 41 71 71 79 93 65
Total-2 (bits) 35 67 68 72 85 62
Rang 1 3 4 4 6 2
Coût (bits) 19 13 14 18 20 31
Rang 5 1 2 3 4 6

Table 2 : Les complexités associées aux formules (1) et (2) pour chaque solution du problème 1 sont reportées
ici. On notera que, pour ce problème, les deux formules conduisent au même classement, et que l'analogie la
meilleure, selon le principe d'économie défini, correspond à la solution 1, ce qui est confirmé par des
expériences sur des sujets humains auxquels on demande de classer les solutions ci-dessus. La sous-table sur les
"coûts" est expliquée dans la section 5.

Les résultats obtenus sur ces exemples montrent d'une part que le deuxième volet de
l'hypothèse analogique _la coïncidence des optima des formules (1) et (2)_ semble justifié
dans de nombreux cas, au moins dans les cas simples étudiés ici. D'autre part, le classement
des différentes solutions semble correspondre, au moins intuitivement, au classement
privilégié par les sujets humains lorsqu'il leur est demandé d'évaluer la qualité des analogies
(voir [Khedoucci,94],[Mitchell,93]). Cependant, en dehors des critères normatifs tels que
ceux proposés dans ce papier pour définir leur qualité, l'évaluation des analogies est de nature
subjective et mérite d'être étudiée de plus près.

MS ! Séquence 3

orientation : -> 1
type d'éléments = lettres 1
loi de succession :
 succes.(élt(lettre=x) = élt(succ(lettre,1,x)) 4

Dernier 1
TOTAL : 10 bits

Problème 1 : abc => abd ; iijjkk => ?
Solution 1 : "Remplacer groupe de droite par son successeur" iijjkk => iijjll
Solution 2 : "Remplacer lettre de droite par son successeur" iijjkk => iijjkl
Solution 3 : "Remplacer lettre de droite par D" iijjkk => iijjkd
Solution 4 : "Remplacer 3ème lettre par son successeur" iijjkk => iikjkk
Solution 5 : "Remplacer les C par D" iijjkk => iijjkk
Solution 6 : "Remplacer groupe de droite par la lettre D" iijjkk => iijjd

P1;S1 P1;S2 P1;S3 P1;S4 P1;S5 P1;S6
L(MS) 10 9 11 11 12 11
L(SS|MS) 8 18 18 18 22 15
L(!S|MS) 4 4 3 7 8 3
L(MC|MS) 5 0 0 0 0 17
L(SC|MC) 8 36 36 36 42 15
L(!C|MC) 6 4 3 7 8 3

Total-1 (bits) 41 71 71 79 93 65
Total-2 (bits) 35 67 68 72 85 62
Rang 1 3 4 4 6 2
Coût (bits) 19 13 14 18 20 31
Rang 5 1 2 3 4 6

Table 2 : Les complexités associées aux formules (1) et (2) pour chaque solution du problème 1 sont reportées
ici. On notera que, pour ce problème, les deux formules conduisent au même classement, et que l'analogie la
meilleure, selon le principe d'économie défini, correspond à la solution 1, ce qui est confirmé par des
expériences sur des sujets humains auxquels on demande de classer les solutions ci-dessus. La sous-table sur les
"coûts" est expliquée dans la section 5.

Les résultats obtenus sur ces exemples montrent d'une part que le deuxième volet de
l'hypothèse analogique _la coïncidence des optima des formules (1) et (2)_ semble justifié
dans de nombreux cas, au moins dans les cas simples étudiés ici. D'autre part, le classement
des différentes solutions semble correspondre, au moins intuitivement, au classement
privilégié par les sujets humains lorsqu'il leur est demandé d'évaluer la qualité des analogies
(voir [Khedoucci,94],[Mitchell,93]). Cependant, en dehors des critères normatifs tels que
ceux proposés dans ce papier pour définir leur qualité, l'évaluation des analogies est de nature
subjective et mérite d'être étudiée de plus près.

Copycat + MDLp

a b c à a b d Length in bits

i i j j k k à i i j j l l 35

i i j j k k à i i j j k l 67

i i j j k k à i i j j k d 68

i i j j k k à i i k j k k 72

i i j j k k à i i j j k k 85

i i j j k k à i i j j d 62

84

85 / 92

Results

[A. Cornuéjols (1996) « Analogie, principe d’économie et complexité algorithmique »]

impératif de respecter les contraintes du calcul des probabilités, c'est-à-dire en particulier que
la somme des probabilités d'événements exhaustifs et mutuellement exclusifs égale 1.

Ainsi l'objet 'abc' pourrait être représenté par :
'abc' ≡ Chaîne (1/8)

orientation : -> (1/2)

1er='A', 2ème='B', 3ème='C' (1/4.26)3

TOTAL (longueur) : 21 bits

ou bien par:
'abc' ≡ Ensemble (1/8)

{'A', 'B', 'C'} (1/4.26)3

TOTAL : 20 bits

ou encore par:
'abc' ≡ Séquence (1/8)

orientation : -> (1/2)

type d'éléments = lettres (1/2)

loi de succession :

successeur(élt(lettre=x)) = élt(succ(lettre,1,x))

 L(lettre) + L(1er succ) + L(x) = L(1/2 . 1/6 . 1)

= l(1/12) = 4 bits

longueur = 3 3 bits

commençant avec l'élément(lettre='A') (1/26)

TOTAL : 17 bits

Dans cet exemple, la dernière représentation est la plus économique alors même qu'elle
décrit plus complètement la structure de 'abc' que par exemple la seconde description qui n'en
retient que la perception d'un ensemble des trois lettres 'a', 'b' et 'c'.

4.3 Expériences

Les expériences réalisées manuellement ont consisté à prendre une série de tests avec
différentes solutions exposées dans [Mitchell,93], ainsi que d'autres, et à calculer pour chaque
problème et chaque solution proposée les valeurs de complexité algorithmique des formules
(1) et (2) de la section 3. L'espace limité ne permet ni de fournir la liste exhaustive des essais
réalisés, ni de donner le détail des calculs (se reporter à [Cornuéjols, 96, en préparation],
[Khedoucci,94]).

Brièvement, la méthode est la suivante. Pour chaque problème (ex: abc => abd ;
iijjkk => ?) et pour chaque solution proposée (ex: iijjkk => iijjll), la perception,
et donc la description, associée sont conjecturées. Ainsi, par exemple, le modèle MS ci-
dessous correspond à la perception de l'objet 'abc' comme une séquence avec une loi de
succession spécifique. Pour chacune des descriptions ainsi définies, les longueurs de
description associées, suivant les formules (1) et (2) sont calculées. On peut alors comparer la
valeur de chaque solution suivant les mesures définies en section 3.

impératif de respecter les contraintes du calcul des probabilités, c'est-à-dire en particulier que
la somme des probabilités d'événements exhaustifs et mutuellement exclusifs égale 1.

Ainsi l'objet 'abc' pourrait être représenté par :
'abc' ≡ Chaîne (1/8)

orientation : -> (1/2)

1er='A', 2ème='B', 3ème='C' (1/4.26)3

TOTAL (longueur) : 21 bits

ou bien par:
'abc' ≡ Ensemble (1/8)

{'A', 'B', 'C'} (1/4.26)3

TOTAL : 20 bits

ou encore par:
'abc' ≡ Séquence (1/8)

orientation : -> (1/2)

type d'éléments = lettres (1/2)

loi de succession :

successeur(élt(lettre=x)) = élt(succ(lettre,1,x))

 L(lettre) + L(1er succ) + L(x) = L(1/2 . 1/6 . 1)

= l(1/12) = 4 bits

longueur = 3 3 bits

commençant avec l'élément(lettre='A') (1/26)

TOTAL : 17 bits

Dans cet exemple, la dernière représentation est la plus économique alors même qu'elle
décrit plus complètement la structure de 'abc' que par exemple la seconde description qui n'en
retient que la perception d'un ensemble des trois lettres 'a', 'b' et 'c'.

4.3 Expériences

Les expériences réalisées manuellement ont consisté à prendre une série de tests avec
différentes solutions exposées dans [Mitchell,93], ainsi que d'autres, et à calculer pour chaque
problème et chaque solution proposée les valeurs de complexité algorithmique des formules
(1) et (2) de la section 3. L'espace limité ne permet ni de fournir la liste exhaustive des essais
réalisés, ni de donner le détail des calculs (se reporter à [Cornuéjols, 96, en préparation],
[Khedoucci,94]).

Brièvement, la méthode est la suivante. Pour chaque problème (ex: abc => abd ;
iijjkk => ?) et pour chaque solution proposée (ex: iijjkk => iijjll), la perception,
et donc la description, associée sont conjecturées. Ainsi, par exemple, le modèle MS ci-
dessous correspond à la perception de l'objet 'abc' comme une séquence avec une loi de
succession spécifique. Pour chacune des descriptions ainsi définies, les longueurs de
description associées, suivant les formules (1) et (2) sont calculées. On peut alors comparer la
valeur de chaque solution suivant les mesures définies en section 3.

impératif de respecter les contraintes du calcul des probabilités, c'est-à-dire en particulier que
la somme des probabilités d'événements exhaustifs et mutuellement exclusifs égale 1.

Ainsi l'objet 'abc' pourrait être représenté par :
'abc' ≡ Chaîne (1/8)

orientation : -> (1/2)

1er='A', 2ème='B', 3ème='C' (1/4.26)3

TOTAL (longueur) : 21 bits

ou bien par:
'abc' ≡ Ensemble (1/8)

{'A', 'B', 'C'} (1/4.26)3

TOTAL : 20 bits

ou encore par:
'abc' ≡ Séquence (1/8)

orientation : -> (1/2)

type d'éléments = lettres (1/2)

loi de succession :

successeur(élt(lettre=x)) = élt(succ(lettre,1,x))

 L(lettre) + L(1er succ) + L(x) = L(1/2 . 1/6 . 1)

= l(1/12) = 4 bits

longueur = 3 3 bits

commençant avec l'élément(lettre='A') (1/26)

TOTAL : 17 bits

Dans cet exemple, la dernière représentation est la plus économique alors même qu'elle
décrit plus complètement la structure de 'abc' que par exemple la seconde description qui n'en
retient que la perception d'un ensemble des trois lettres 'a', 'b' et 'c'.

4.3 Expériences

Les expériences réalisées manuellement ont consisté à prendre une série de tests avec
différentes solutions exposées dans [Mitchell,93], ainsi que d'autres, et à calculer pour chaque
problème et chaque solution proposée les valeurs de complexité algorithmique des formules
(1) et (2) de la section 3. L'espace limité ne permet ni de fournir la liste exhaustive des essais
réalisés, ni de donner le détail des calculs (se reporter à [Cornuéjols, 96, en préparation],
[Khedoucci,94]).

Brièvement, la méthode est la suivante. Pour chaque problème (ex: abc => abd ;
iijjkk => ?) et pour chaque solution proposée (ex: iijjkk => iijjll), la perception,
et donc la description, associée sont conjecturées. Ainsi, par exemple, le modèle MS ci-
dessous correspond à la perception de l'objet 'abc' comme une séquence avec une loi de
succession spécifique. Pour chacune des descriptions ainsi définies, les longueurs de
description associées, suivant les formules (1) et (2) sont calculées. On peut alors comparer la
valeur de chaque solution suivant les mesures définies en section 3.

a b c

a b d

a a b a b c

?

86 / 92

Analogy making and MDLP

• Application to language analogies: how to end words
(conjugations, plurals, …)

Murena, P. A., Al-Ghossein, M., Dessalles, J. L., & Cornuéjols, A. (2020). Solving Analogies on
Words based on Minimal Complexity Transformation. In IJCAI (pp. 1848-1854).

The most important property of our language is that it can
generate any possible string on the alphabet A, and conse-
quently any possible analogy, be it valid or invalid. However,
despite this complete description ability, the language is triv-
ially not Turing-complete: This can be verified by consider-
ing that the halting problem can be solved for it.

4.2 Some Examples
As an illustration, we now propose some examples of instruc-
tions that generate language analogies.

apte : inapte :: élu : x x = inélu (Prefixation)
let,?0,:,‘i’,‘n’,?0,let,mem,0,‘apte’,::,mem,0,‘élu’

átír : átírunk :: kitart : x x = kitartunk (Suffixation)
let,?0,:,?0,’u’,‘n’,‘k’,let,mem,0,‘átír’,::,mem,0,‘kitart’
pati : patti :: olo : x x = olto (Insertion)
let,?0,?1,:,?0,‘t’,?1,let,mem,0,‘pa’,‘ti’,::,mem,0,‘ol’,‘o’

pria : pria-pria :: keju : x x = keju-keju (Repetition)
let,?0,:,?0,‘-’,?0,let,mem,0,‘pria’,::,mem,0,‘keju’

vantut : vanttu :: autopilotit : x x = autopilotti (Reduplication)
let,?0,?1,’t’,:,?0,‘t’,?1,let,mem,0,‘van’,‘tu’,::,mem,0,‘autopilot’,‘i’

Figure 1: Results found by our approach for different types of trans-
formations. We also provide the instruction chosen by our program.

In Figure 1, we present some analogical equations of var-
ious natures which are successfully solved by our algorithm,
and give for each of them the corresponding instruction in the
proposed language. For instance, the code of the first example
(“apte : inapte :: élu : inélu”) reads as follows: The content of
the let environment describes the domain by coding for the
two terms, the base word (the variable ?0) and its prefixed
version (prefix “in” followed by the variable). The remain-
der of the instruction aims to apply the rule to two possible
words: “apte” and “élu”.

4.3 Binary Coding of Instructions
In order to define the p.r. function φ, we must define a map-
ping B∗ → B∗. In our context, two codes (hence two map-
pings from a given alphabet to B∗) have to be made explicit:
the code of the alphabet Ā and the code of the programs p (ie.
the arguments of function φ).

In the context of this work, the code CĀ : Ā → B∗ of the
alphabet Ā can be arbitrarily chosen with the constraint that
it is uniquely decodable (which means that for each concate-
nation x1 . . . xn and y1 . . . yn, the produced binary strings
are distinct: CĀ(x1) . . . CĀ(xn) "= CĀ(y1) . . . CĀ(yn)). This
choice has no impact on our method since complexity mea-
sures the programs’ length and not the outputs’ length.

In order to propose a code for the instructions, we use the
language described above. We propose a code for the cor-
responding alphabet, as described in Table 1. By construc-
tion, the proposed code is prefix (which means that no code-
word is the prefix of another codeword), and consequently it
is uniquely decodable.

The choice of this code is an ad-hoc choice that can be
considered as the parameter of our method. In particular, it is
clear that the result of the analogy equations will depend on

gr 00 A 111
mem, n 01n+20 let 010

: 100 :: 101
?n 1101n0

Table 1: Binary code chosen for the proposed language. Bold values
correspond to codewords in the chosen code. The notation 1n stands
for a 1 repeated n times.

the choice of the code. The solution proposed in Table 1 is
motivated by several ideas.

A fundamental remark is that instruction words with small
description length will tend to be chosen more often than
words with larger description length. This might affect in par-
ticular the use of memory: if the memory instructions are too
costly, the optimal instructions will not use memory and will
prefer spelling the analogy directly. For this reason, all let-
ters have the same complexity: This choice is crucial since it
gives equal weight to any choice of letter and does not bias the
choice of an optimal solution toward instructions that would
be imbalanced in terms of displayed letters.

Since the number of variables in let parts is a priori un-
bounded, we propose to code all of them with a common pre-
fix 110. For variable ?n, this prefix is followed by n times
0 and a final 1. For instance, the instruction word ?2 will
be coded by 110110. This choice has two advantages: First,
it makes the code uniquely decodable and guarantees that an
arbitrary number of variables can be used. Secondly, it adds
a penalty for using too many variables by adding one bit for
each new variable added. This prevents from having too com-
plex instructions in a let. The same idea is applied to the
memory calls mem,n, with the prefix 011.

Since the code is uniquely decodable, each binary sequence
p ∈ B∗ corresponds to at most one instruction in our lan-
guage. We define function φ such that φ(p) is equal to the
output of the corresponding instruction if p can be decoded
into a valid instruction, and φ(p) = ∞ otherwise.

Since our language allows one to describe each word x ∈
Ā∗ letter by letter, the following proposition holds true:
Proposition 1. For each word x ∈ Ā∗, there exists p ∈ B∗

such that x = φ(p).

5 Two Algorithmic Approaches
In this section, we present the algorithm we used to solve the
analogy equations by minimizing complexity.

5.1 First Approach: Global Minimization
The most generic complexity minimization method in a gen-
eral context would consist in considering that the chosen so-
lution for the analogy equation a : b :: c : x is:

x∗ = argmin
x

K(a : b :: c : x) (1)

where K(.) is the approximation of Kolmogorov complex-
ity as presented in the previous section. This minimization
problem alone gives poor results though, because it includes
no restriction on the targeted solution: For many analogies,
the obtained solution would be empty with this minimization

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1851

87 / 92

Analogy making and MDLP

• Application to language analogies: how to end words
(conjugations, plurals, …)

Murena, P. A., Al-Ghossein, M., Dessalles, J. L., & Cornuéjols, A. (2020). Solving Analogies on
Words based on Minimal Complexity Transformation. In IJCAI-2020 (pp. 1848-1854).

Language #analogies NLG COMP NLG PROP NLG ALEA
Arabic 165,113 87.18% 93.33% 81.91%
Finnish 313,011 93.69% 92.76% 78.75%
Georgian 3,066,273 99.35% 97.54% 88.42%
German 730,427 98.84% 96.21% 95.42%
Hungarian 2,912,310 95.71% 92.61% 86.02%
Maltese 28,365 96.38% 84.72% 91.84%
Navajo 321,473 81.21% 86.87% 78.95%
Russian 552,423 96.41% 97.26% 95.46%
Spanish 845,996 96.73% 96.13% 94.42%
Turkish 245,721 89.45% 69.97% 70.06%
Total 9,181,112 96.41% 94.34% 87.93%

Table 2: Proportion of correct answers when solving analogies from
the dataset SIGMORPHON’16 using our method NLG COMP and two
state-of-the-art methods NLG PROP [Fam and Lepage, 2018] and
NLG ALEA [Langlais et al., 2009].

We now evaluate our approach on a large dataset of analo-
gies. We base our work on one of the largest datasets avail-
able for solving analogies on words that we denote by SIG-
MORPHON’16 and that is presented in [Lepage, 2017]. This
dataset is from the Track 1 Task 1 of SIGMORPHON 2016
Shared Task 2. Analogies were extracted from the original
dataset proposed in the context of the Shared Task. The data
includes ten languages (Table 2). As mentioned in [Cotterell
et al., 2018], considering these different languages covers a
variety of structures such as prefixes and consonant harmony
in Navajo, suffixes in Turkish, templatic morphology in Ara-
bic, and vowel harmony in Hungarian and Finnish.

The original dataset 3 contains around 65M analogy ques-
tions. It includes four questions for each original analogy,
where each of the analogy’s terms becomes the answer for
each question. We select one analogy for each set of four
questions and keep unique analogies by removing duplicate
questions. We thus obtain a dataset of around 9M analogies.

To assess the performance of our approach, we compare it
to the two state-of-the-art methods used for solving analogies
on words and based on proportional analogy: NLG PROP [Fam
and Lepage, 2018] and NLG ALEA [Langlais et al., 2009]. Re-
sults are presented, separately for each language, in Table 2.

The results show that our approach, NLG COMP, outper-
forms NLG PROP and NLG ALEA on the whole set of analo-
gies considered. Looking at the results obtained per lan-
guage, NLG COMP outperforms NLG PROP for Finnish, Geor-
gian, German, Hungarian, Maltese, Spanish, and Turkish,
but performs worse than NLG PROP for Arabic, Navajo, and
Russian. While NLG COMP outperforms NLG ALEA on all lan-
guages, NLG PROP performs better than NLG ALEA except for
Maltese and Turkish. We note that the different languages
are not equally represented in the original dataset SIGMOR-
PHON’16. It is worth mentioning that applying NLG ALEA
usually generates several candidate solutions, but we consider
here the most frequent solution given our setting.

General cases of transformations on which our ap-
proach cannot perform well include irregularities

2http://ryancotterell.github.io/sigmorphon2016/
3http://lepage-lab.ips.waseda.ac.jp/en/projects/kakenhi-

15k00317/

(work:worked::go:went), transformations of the radical
(tori:torilla::katu:kadulla) or conditional changes (rules con-
ditional to the radical of the word) such as vowel harmony
(hat:hatban::egy::egyben). While these cases cannot either be
solved by state-of-the-art methods, some other transforma-
tions that can be solved by NLG COMP but not by NLG PROP
and NLG ALEA are not included in SIGMORPHON’16 (see for
example the repetition transformation in Figure 1).

We also compared our approach to word embedding tech-
niques. For this purpose, we used pre-trained word embed-
dings [Grave et al., 2018]. We could observe a very poor
performance, with a proportion of correct answers ranging
from about 17% (for German) to less than 0.1% (for Maltese).
These results were expected: Not only the four words of the
analogy have to be present in the corpus on which the embed-
dings have been trained, but also in a statistically significant
proportion so that correct information can be acquired. This
is obviously not the case for most forms. These results tend
to indicate that using word embeddings is more effective to
solve semantic analogies than grammatical analogies.

To conclude, we point out a major advantage of our solu-
tion, which is its interpretability. The output of the algorithm
is not only the inferred fourth term of the analogy, but also
the description that justifies this choice. Such a description
could be exploited by an agent to explain its results to a user.

7 Conclusion
In this paper, we presented a novel algorithm for solving mor-
phological analogies on words. This approach differs from
most state-of-the-art methods in the fact that it does not obey
the axioms of analogical proportion. It follows a principle of
complexity minimization where complexity has to be under-
stood as the length of the shortest description of the analogy.
Although the idea of using complexity as a tool for solving
analogical equations has already been mentioned, our paper
is the first one to actually present an algorithm able to solve
this problem and to validate this assumption on large datasets.

Our algorithm explores a very large space of programs in
order to determine the minimal instruction that generates a
correct analogy. In order to bypass the difficulty of the task,
we focus on instructions of a grammatically plausible form.
We could validate our method on the benchmark dataset SIG-
MORPHON’16 on which we obtain competitive results. In
addition, our algorithms yields a description of its answer,
which is a major difference with existing methods in terms of
interpretability and explainability.

In this paper, we considered that each target is associated
with one source, which reduces the problem to finding the
fourth term of the analogy. To be more realistic, the source
should be found by the agent in a list of already known forms,
such as in case-based reasoning. This issue should pave the
way to more realistic models for language acquisition.

Acknowledgments
This work was supported by the Academy of Finland Flag-
ship programme: Finnish Center for Artificial Intelligence,
FCAI. We would like to thank the reviewers for their helpful
comments.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1853

The results using deep

NNs and learnt
embeddings were in the

range 0.1% to 17%!!

88 / 92

Overview: which communications?

• Ensemble learning (e.g. boosting)

– Communicating a new input distribution such as to learn ≠ hypotheses + vote

• Co-learning

– Benefit from different perspectives and exchange of pseudo-labeled examples

• Distillation

– Easing a student’s learning by modifying the outputs, the inputs or the task

• Multi-task learning

– Minimizing the disagreement between the learned hypotheses

• Transfer learning (analogy making)

– Minimizing a distance (not necessarily symmetrical) between successive models

89 / 92

Overview: which communications?

• Ensemble learning (e.g. boosting)

– Communicating a new input distribution such as to learn ≠ hypotheses + vote

• Co-learning

– Benefit from different perspectives and exchange of pseudo-labeled examples

• Distillation

– Easing a student’s learning by modifying the outputs, the inputs or the task

• Multi-task learning

– Minimizing the disagreement between the learned hypotheses

• Transfer learning (analogy making)

– Minimizing a distance (not necessarily symmetrical) between successive models

90 / 92

Cognitive tunnel effect

[A. Cornuéjols, A. Tiberghien, G. Collet. Tunnel Effects in Cognition: A new Mechanism for Scientific
Discovery and Education. Arxiv-1707.04903- Tue, 18 Jul 2017 00:00:00 GMT]

Ope rat ional conce pt ual
univ e rse s

Expe r ime nt a l se t t ing

T arge t concept ual
univ e rse

Adequation to
the world

Battery

Wire Bulb

Wire

Model(t)

?

Battery Bulb

Generator ResistanceConductors
energy = current

energy = current

Target constraints

Battery Environmentbulb

Reservoir ReservoirTransformerTransfer
(Energy)

Transfer
(Energy)

(Electrical work) (heat & radiation)

Experimental
setting

Conceptual interpretation
in terms of energy chain

91 / 92

Cognitive tunnel effect

WTM_electrical WTM_energy

Battery Bulb

Generator ResistanceConductors
energy = current

energy = current

Reservoir Transformator
Transfers

Energy
BulbBattery

Energy

Battery

Wire Bulb

Wire

...

92 / 92

Newton’s luggage

[Loup Verlet. La malle de Newton. Gallimard, NRF, 1993]

• How did Newton arrive to the theory of gravitation?

• What were the sources of his thoughts?

– Alchemy (among other things)

• What were the questions of the time?

– How transmutation of bread into the corpse of Jesus Christ can arise
simultaneously in all churches?

Action at distance

93 / 92

Some speculations

94 / 92

Transfer and sequence effects

...

a b c

a b d

a a b a b c

?
a b c

a b d

a a b a b c

?
i j j k k k

?

a b c
a a b a b c

?

1 2 3

1 2 4

?

95 / 92

Transfer and sequence effects

1. Which equations for the change of referential and for hypothesis transfer?

2. How to prove that these equations are optimal?

Referen&al_s

Referen&al_t

hypothesis_s

hypothesis_t

Referen&al_ts

96 / 92

Conclusions (1)

Transfer learning mostly heuristical approaches so far

1. Parallel transport is a natural way for looking at transfer learning

– The covariant derivative is then a measure of difference

• How to compute it?
– Pioneering works in computer vision

• What about when the source and target domains are different?
– TransBoost: a proposal

2. Transfer learning is path dependent in general

– The study of these path dependencies is important ...

• Curriculum learning

• Longlife learning

– ... and a wide open research question

97 / 92

Conclusions (2)

• The theoretical guarantees for transfer learning:

• Do not necessarily depend on the performance of the source hypothesis hS

But depend on the bias that hS determines

• Involve the capacity of the space of transformations

(and the path followed between source and target)

Still to be explored

98 / 92

Bibliography

• Ben-David, S., Lu, T., Luu, T., & Pál, D. (2010). Impossibility theorems for domain adaptation. In International Conference on
Artificial Intelligence and Statistics (pp. 129-136).

• Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains.
Machine learning, 79(1-2), 151-175.

• Cornuéjols A., Murena P-A. & Olivier R. “Transfer Learning by Learning Projections from Target to Source”.
Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany.

• Kuzborskij, I., & Orabona, F. (2013, February). Stability and hypothesis transfer learning. In International Conference on Machine
Learning (pp. 942-950).

• Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. arXiv preprint
arXiv:0902.3430.

• Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). Advances in Domain Adaptation Theory. Elsevier.

• H. Venkateswara, S. Chakraborty, and S. Panchanathan, “Deep-learning systems for domain adaptation in computer vision:
Learning transferable feature representations,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 117–129, 2017.

• Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. In Advances in neural
information processing systems (pp. 3320-3328).

• Zhang, C., Zhang, L., & Ye, J. (2012). Generalization bounds for domain adaptation. In Advances in neural information processing
systems (pp. 3320-3328).

