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We continue our journey about Out-Of-Distribution learning
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B What can be gained ... or lost

By resorting to collaboration between learning algorithms?
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Questions

Which learning agents?

How to combine their findings?

What kind of information should they exchange?

How to ensure the convergence of the collaboration?

If convergence takes place, toward what?

4 /92



2.

3.

Outline

Co-learning

Distillation

Multi-task learning

The Minimum Description Length principle (MDLP)
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Co-learning
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The co-learning scenario

* Suppose we want to classify web pages

as faculty member web pages or not

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-
training. In Proc. of the 11t annual conference on Computational Learning Theory (pp.
92-100). 7792



The co-learning scenario

* Suppose we want to classify web pages

as faculty member web pages or not

Prof. Avrim Blum My Advisor Prof. Avrim Blum My Advisor

e

x - Link info & Text info x,- Text info X,- Link info

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-
training. In Proc. of the 11t annual conference on Computational Learning Theory (pp.
92-100). 8 /92



The co-learning assumptions

* Examples are described using two sets of features: x = ( x;, x;,?

— Each should be sufficient

— They can be made consistent, i.e. 3¢y, € 8.1 ¢ci(X)=ca(Xz)=c"(x)
Prof. Avrim Blum My Advisor Prof. Avrim Blum My Advisor
e
x - Link info & Text infqg x,- Text info X,- Link info
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lterative co-learning

* |dea 1: Use small set of almost certain labeled examples to

learn initial hypotheses h, and h,

— E.g. hy=“My advisor” pointing to a page xxx
is a good indicator that xxx is a faculty home page

— E.g. h,="“lam teaching” on a web page
is a good indicator that this web page is a faculty home page

* |dea 2: Use unlabeled data to propagate learned information

1. Look for unlabeled examples where
one hypothesis is confident AND the other is not

2. Have it label the examples so that the other learning

algorithm can use it
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lterative co-learning

B Repeat

1. Look through unlabeled data to find examples where
one of the h, is confident but the other is not

2. Have the confident h, label it for algorithm A,

X4

h, and h, are initially learnt on a subset

of common examples where they find h,

consistent labeling

-----
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lllustration on Webpage classification

12 labeled examples

« 1000 unlabeled Results for 5-folds cross validation

Default prediction: negative (22% test error)

Page-based classifier | Hyperlink-based classifier | Combined classifier
Supervised training 12.9 12.4 11.1
Co-training 6.2 11.6 5.0

Table 2: Error rate in percent for classifying web pages as course home pages. The top row shows errors when training
on only the labeled examples. Bottom row shows errors when co-training, using both labeled and unlabeled examples.

Blum, A., & Mitchell, T. (1998, July). Combining labeled and unlabeled data with co-training. In Proc. of the 11th
annual conference on Computational Learning Theory (pp. 92-100).
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Percent error on test data

Classification of Webpages
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Applied in many other settings

 Named-entity extraction [Collins & Singer, 99]

— “l'arrived in London yesterday”

* |dentifying objects in images using two different types of
preprocessing [Levin, Viola, Freund, 03]

14 / 92



Iterative co-learning: simple example

* Learning intervals

* Labeled examples
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Co-learning and multi-view Semi Supervised Learning

B Given S = {(Xl,yl),---,(xmmyml)}

Su — {(Xml—l—h yml—l—l)a s ey (Xmua ymu)}

Find h; and h,

2 my M,
ArgMin > O(hy(xi), ) + A Y agreement(hi(x;), ha(x;))
ke =1 i= L gEmul l
!' Y
Small labeling error Regularizer to encourage

agreement over unlabeled data
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Analysis

Co-training is a method for using unlabeled data when
examples can be partitioned into two views such that:

1. eachview in itself is at least roughly sufficient to achieve good

classification,

2. and yet the views are not too highly correlated.

1. Independence of examples given the labels

2. Algorithm for learning from random classification noise

1. Property of distributional expansion on the examples

2. Algorithm for learning from positive data only
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A curiosity: is it co-learning?

Blending

[Mark Turner, Gilles Fauconnier: The Way We Think. Conceptual Blending and the
Mind's Hidden Complexities. New York: Basic Books 2002]
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Blending effect [Fauconnier & Turner]

The Riddle of the Buddhist Monk:

A Buddhist monk begins at dawn one day walking up a mountain, reaches
the top at sunset, meditates at the top overnight until, at dawn, he begins

to walk back to the foot of the mountain, which he reaches at sunset.

19 /92



Blending effect [Fauconnier & Turner]

A Buddhist monk begins at dawn one day walking up a mountain, reaches
the top at sunset, meditates at the top overnight until, at dawn, he begins

to walk back to the foot of the mountain, which he reaches at sunset.

B Make no assumptions about his starting or stopping or about his pace during

the trips.

B Riddle: is there a place on the path that the monk occupies

at the same hour of the day on the two trips”?
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B As we went to press, Rich Wilson and Bill Biewenga, on Great America ll,
their catamaran, were barely maintaining a 4.5 day lead over the clipper

Northern Light whose record run from San Francisco to Boston, in 1853, was

76 days and 8 hours.

Watch out, they are sailing in 1993, 140 years later,
and they have a 4.5 day lead!!?

(as if they were in a race!)
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First example:

Learning Neural Networks

using “distillation”
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Motivation

1. We would like to deploy a classifier (NN) on a computationally

limited device (e.g. a smartphone)

— A deep NN cannot be used

2. The learning task is difficult and requires a large data set and a
sophisticated learning method (e.g. a deep NN)

Question: can we use the learned deep NN as a teacher to help the

student (i.e. the limited device) learn a simpler classifier?
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Motivation

Example: A sophisticated learning technique - GooglLeNet

1 1
f
o 1 n b ek Mgyt
pefaafaligily it 80THET,y W0 WA
TR ggiiﬂé iaa

Convolution
Pooling

Other

Quite a costly machine to train

AND to use for prediction
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Motivation

“Cloud Al Tiny Al

Computation (fp32) 19.5 TFLOPS MFLOPs
Memory 80GB 256kB
ResNet MCUNet

Neural Network ViT-Large MobileNetV2-Tiny

Neural network must be tiny to run efficiently on tiny edge devices.
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Training curve for ResNet50 Training curve for MobileNetV2-Tiny

- Train. Acc. Val. Acc. -~ Train. Acc. Val. Acc.
/ 50 %f VAR
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76 |
.6/
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70 42
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Question: Can we help the training of tiny models with large models?
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Learning techniques for “distillation”

1. Gradually changing the targets

2. Gradually changing the inputs

3. Gradually changing the learning task
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|

Distillation
Loss

|

Ex

Student Network l

[ Classification
Loss J
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Learning techniques for “distillation”

1. Gradually changing the targets

30/92



Matching prediction probabilities between teacher and student

Logits Probabilities

Cat 5 0.982 )
a : exp(5) + exp(1)

Dog 1 0.017

Logits Probabilities

Cat 3 0.731

Dog 2 0.269

Student Network
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exp(5/1)

exp(5/1) + exp(1/1)

Logits (

Probabilities

(T=1)

Probabilities

(T=10)

Cat

5\

0.982

0.599
N\

Dog

Teacher Network

0.017

0.401 )

exp(5/10)

exp(5/10) + exp(1/10)

A larger temperature smooths the output probability distribution.
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Changing the target

1. Use the sophisticated learning method (teacher) to learn to
predict the target classes with a membership measure

2. Ask the student to learn to predict the membership measure
computed by the teacher instead of the hard classes (on the

training set)

stats lo

@ o
%a_, &) & 888_>
_____ ol o

train in datacenter release with reconstruct a deploy in
with original data metadata dataset smartphone

TN

--------------
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Changing the target

1. The teacher uses a softmax function for the values of its output

o(zi/T)

q; = .
zj Eclasses 6(z3 /)

Tis the temperature (the highest T, the less different are the outputs)

2. The student learns to predict the membership measure first with T high,

and then, progressively, with T decreasing to 1.

When the soft targets have high entropy, they provide much more information per
training case than hard targets and much less variance in the gradient between training
cases, so the small model can often be trained on much less data than the original
cumbersome model while using a much higher learning rate.
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Accuracy

Changing the target

Teacher
Student alone

Teacher Student

Student with distillation
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Learning techniques for “distillation”

2. Gradually changing the inputs
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Changing the inputs

e |dea: friendly training vs. adversary learning

— Modifies the inputs so as to facilitate the training

* Modifies the descriptions of the examples

— According to the current training stage jfz = X -+ 52
1 | B
— So as to minimize: L(B, w) — @ Z é(f(ii,w),yi)
1=1

Marullo, S., Tiezzi, M., Gori, M., & Melacci, S. (2021). Being Friends Instead of
Adversaries: Deep Networks Learn from Data Simplified by Other
Networks. arXiv preprint arXiv:2112.09968. 37 /92



Neural Friendly Training

* But the modifications are independently applied to all training examples

 We would rather like global deformations that help to learn the decision
function

S
Figure 1: Left-to-right, top-to-bottom: evolution of the deci- ]
sion boundary developed by a single hidden layer classifier

(5 neurons) in the 2-moon dataset, in Neural Friendly Train-

ing. Each plot is about a different training iteration (vy); in

the last plot data are not transformed anymore.
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Neural Friendly Training

A

Main deep NN

Auxiliary NN
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Neural Friendly Training

FC-A: Fully Connected MLP  CNN-A: Convolutional NN Structured perturbations with
CNNs only, emphasizing the

digit areas
FT: Friendly Training

- 5‘ Independent transformation
| o for each example

Really poor

Globally more NFT: Neural Friendly Training
satisfying

Using an auxiliary NN

Perturbations removing

Figure 4: MNIST-BACK-IMAGE. Original data x , perturba.  distracting cues
tion ¢ (normalized) and resulting “simplified” images z fo:

FC-A and CNN-A at the end of the 1st epoch. Some simpli-

fications are hardly distinguishable. Top: FT. Bottom: NFT. 40/ 92



Learning techniques for “distillation”

3. Gradually changing the learning task
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Changing the learning task

* The classical distillation scenario (adapted)

Lip = (1-0a) H(y,q,(0)) + a T H(pr,44(6)

~ \

Classical cross-entropy between Cross-entropy between teacher
output and target values and student’s outputs
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Changing the learning task

Idea: train the student network through a sequence
of intermediate learning tasks.

Question: how to choose the intermediate learning tasks?
1. They should be easily achievable by the student

2. Consequence: the teacher should be aware of the student’s progress

Co-evolution between student and teacher

1. The teacher converges toward the goal, /

but stay close to the learner

07" =min H(y,ps,) st Dxi(ay,.ps,) <€
t

ﬁet — (1 - )\)H(y7p0t> + )\H(qes7p9t)
2. The student follows the teacher at each step

07t =07 — VL (05, gm+1),  Ls(05) = Hlpo,,a0,)




Changing the learning task

~ N P

theacher

——
3
DA 4
~
<\ ¥
N =

M student

Fig. 1: Micacher and Mgy gent refer to the output manifolds of student model
and teacher model. The lines between circles (®,8) to squares (H,8) imply the
learning trajectories in the distribution level. The intuition of ProKT is to avoid
bad local optimas (triangles (A)) by conducting supervision signal projection. 44 /92



Changing the learning task

KD
RCO :use intermediate models obtained during the teacher’s training process
ProKT : their method

: classical Knowledge Distillation

Lower performance
of the teacher, but
better student in the

end
é :
' ¥ - = —
v . : 5 e
m 4 B JO ’f"-
° © :
The divergence cC c 60
between teacher o2 o
. b 4‘: 40 |
and studentin &5 [, |
ProKT is smooth U0 100 150 200 250 2050100 130 200 250
and well bounded epoch epoch
(a) Train loss of student (b) Train accuracy Of teacher

Shi, W., Song, Y., Zhou, H., Li, B., & Li, L. (2021, September). Follow your path: a progressive
_method for knowledge distillation. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (pp. 596-611). Springer.
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Changing the learning task

KD :classical Knowledge Distillation
RCO :use intermediate models obtained during the teacher’s training process
ProKT : their method where the teacher stays close to the student

Using Kullback-Leibler (KD)loss

L 4

Teacher vggl3d ResNetb0 ResNetb0 resnet32x4  resnet32x4  WRN-40-2

Student MobileNetV2 MobileNetV2  vgg8  ShuffleNetV1 ShuffleNetV2 ShuffieNetV1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Without distillation == Student 64.6 64.6 70.36 70.5 71.82 70.5
- KD* 67.37 67.35 73.81 74.07 74.45 74.83
RCO 68.42 68.95 73.85 75.62 76.26 75.53
ProKT 68.79 69.32 73.88 75.79 75.59 76.02

With distillation =

CRD 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD 69.94 69.54 74.58 75.12 76.05 76.27
CRD+ProKT 69.59 69.93 75.14 76.0 76.86 76.76

Using Constrastive Representation Distillation (CRD) loss

Shi, W.,, Song, Y., Zhou, H., Li, B., & Li, L. (2021, September). Follow your path: a progressive
_method for knowledge distillation. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (pp. 596-611). Springer. 46 / 92



Lessons

e Careful distillation is useful

* Points to the idea of curriculum learning
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Distillation: other approaches

 Match intermediate weights

e Match intermediate features

 Match gradients (attention maps)

input image attention map

48 / 92



1.

2.

Outline

Co-learning

Distillation

Multi-task learning

The Minimum Description Length principle (MDLP)

49 / 92



What is Multi-Task learning (MTL)?

* As soon you try to optimize more than one loss function

— E.g. From someone’s picture, trying to guess both

 The gender
* The age

e The emotion
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Why Multi-Task learning (MTL)?

* (IF) The tasks at hand are not unrelated

— E.g. From someone’s picture, trying to guess both

 The gender
* The age
* The emotion

* It may help to consider them all together:

better performance with less computing resources

— E.g. guessing the gender may help recognize the emotion and vice-versa

Rk: There are links with the LUPI framework
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Assumption behind MTL

The combined learning of multiple related tasks can outperform learning
each task in isolation

MTL allows for common information shared between the tasks to be used in
the learning process, which leads to better generalization if the tasks are
related

E.g. Learning to predict the ratings for several different critics (in different
countries) can lead to better performances for each separate task (predict the
restaurant ratings for a specific critic)

Learning to recognize a face and the expression (fear, disgust, anger, ...)

Multi modality learning: e.g. vision and proprioception
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Possible relations between tasks

 All functions to be learn are close to each other in some norm

— E.g. functions capturing preferences in users’ modeling problems

e Tasks that share a common underlying representation

— E.g.in human vision, all tasks use the same set of features learnt in the

first stages of the visual system (e.g. local filters similar to wavelets)

— Users may also prefer different types of things (e.g. books, movies, music)

based on the same set of features or score functions
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Question

How do we choose to

model the shared information between the tasks?

* |dea: Some shared underlying constraints

— E.g. a low dimensional representation shared across multiple related
tasks

* By way of a shared hidden layer in a neural network

* By explicitly constraining the dimensionality of a shared representation
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An approach for the linear case: minimizing the distance with a shared weight vector

* T binary classification tasks defined over Xx Y

S = {{(x11,¥11), (%21, 921)s - - - s (Xim1, Ym1) }s - - - { X1z, yar), (Xor, Y2r)s - -+ s (X Ymr) } }

hij(x) = w;-X Linear hypotheses

That share a weight vector W, = Wq + V;

T m T
* * . )\
g = Argmm{ZZ&ﬁ% 2. |\Vj|!2+>\2!|wo|\2}
j=1

WO,Vj,fij jZl i=1
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MTL with deep neural networks

 Approaches

[ -
1. Sharing features (first layers) and have
multiple task-specific heads
1.  Soft-features or parameters sharing =
T 1
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Multi-Task Learning induces a bias that prefers hypotheses

that can “explain” all tasks

Beware:

— Can lead to worse performance if the tasks are unrelated

or adversarially related

Question: how to measure the relatedness of learning tasks?
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* Do you think of a recent multi-task learning system?
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* Do you think of a recent multi-task learning system?

Exploit universal representations across modalities
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Caption
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Food101
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Y Y Y

VL Tasks Vision Tasks Language Tasks

Figure 1. Heatmap of the predicted task similarities, composed of
both unimodal and multimodal tasks. Vision-language tasks are
more similar to vision tasks compared to language tasks. Best
viewed in color.

WU, Chengyue, WANG, Teng, GE, Yixiao, et al. S\pi $-Tuning: Transferring Multimodal

Foundation Models with Optimal Multi-task Interpolation. In International Conf. on

Machine Learning (ICML). PMLR, 2023. p. 37713-37727. 60 /92



* Idea of minimizing a distance between the “local” models

What kind of distance ?
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Kolmogorov’s complexity

e .

Andrei Kolmogorov
(1903 — 1987)

Complexity of a sequence =
Size in bits of the smallest program

that can generate that sequence

Ky(z) = min{i(p), s(p) = z}

" PEP\s
X : the sequence
Py : program coded on machine M

l(p) : size of p

63



Kolmogorov’s complexity

True randomness

— No structure

— Smallest program = the sequence itself

Pi

— Lots of structure, very simple!

”_i1(4—2_1_1)
4~ 16k \8k+1 8k+4 8k+5 8k+6

k=0

— Infinite sequence of integers = but a small program
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Solomonoff’s induction

Look for the smallest program

that can generate a given sequence Ray Solomonoff

(1926 - ...)
— Almost all induction problems can be cast as the prediction

of a binary sequence

Unfortunately, this is NOT computable...

— Even if it exists, it is not possible to find it in the general case
(Godel’s theorem, stopping problem, ...)

It is possible to approximate it
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Minimum Description Length Principle (MDLP)

* The best hypothesis (given training data) is the one that minimize the sum of

1. The length in bits of the description of the hypothesis

2. The length in bits of the description of the data given the hypothesis

h* = ArgMin{L(h) —I—IL(S‘h)},

P(h) x P(S|h)
P(S)

h* = ArgMax P(S | h) P(h)
heH

Strong relationship with P(h|8) _
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Example: regression

Complexity of model:

— the degree of a polynomial (to be described up to a given precision)

*  Error

— The size of the corrections wrt to the predictions

507 501 507
40 40
304 30

20 ° © o 20

501

40

304

201




Minimum Description Length Principle (MDLP)

You have to define a code with which to describe the hypothesis
and the data

a bias (prior knowkedge)

h* = ArgMin{L(h) + L(S|h)}

heH — - ' )
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* Multi-task learning

— Simultaneous learning phases

Maximizing the agreement between learners

* Transfer learning

— Successive learning phases

Maximizing the agreement (??) between learners
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Analogy making
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Copycat

* Mitchell & Hofstadter — 1993 1
Douglas Hofstadter

(1945 -...)
=be| > [abd
Kii > 2
aIc ijk
abd .19

71



abc

abd

iijjkk

™~

abd
iijjkd
iijjkl

iijjkk
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ijJjkk
abbcc
j J k k k
bbccec

Copycat

>

V280 8 U B 0 8 0 2 2 2
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abc aababc

abd
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Domain adaptation & analogie

e Learn both: Dictionnaires
— A good representation ; \
* Of the source domain CS" CT

e Of the target domain

— A good| transformation rule

Source Cible

??

Dictionnaires

1 \

* lettre * groupe

o succ-lettre (régle-construc)
* succ-groupe
L]

Source Cible

75/92



Copycat

Successor and predecessor
—a—>bb—>a,1->2,..
Sequence

— abcd...

Sequence of sequences

— aaabbbccc...
First, last, ...

Opposite(first, last),
Opposite(successor, predecessor), ...

76 /92



Various solutions

I I

Replace /last letter by its successor

- i j k Replacecbyd
- i j d Replace last letterby d
> ij Remove last letter
and if this a ‘¢’ replace by d
> abd Replacebyabd
2 i j k 1 c=3,d=4,length(ijk)=3, length(ijkl)=4

> i j £ Replace last letter by d if this a ‘¢’ otherwise by f

77



Cornuéjols [1994 — 2020 - ...]

Minimum Description Length Principle + Copycat

— MDLp = approximation of Kolmogorov’s complexity for learning

Analogy making:

1. Minimize the description of the known terms A:B :: C:? (production)
or A:B :: C:D (evaluation)

2. Choose the smallest description

78



An approach to analogy: using Kolmogorov complexity

fto «<—My — M1 —> fiqq

v v
Yt Yt+1

K(M;) + K(xi|My) + K(fi| Me) + K(Mya|My) K (%041 Migr) + K(frg1[Miga)

Change of system of reference

[Cornuéjols, 1996, 1997, 1998, 2016]
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Une formalisation

Kolmogorov’s Complexity
— Uses a dictionary (with associated description lengths)

— Which depends on the a priori knowledge and the past experiences

T

fi «<—M; —» M;1 —>ft+1§

v v
Yt ?

K (M) + K (x¢|My) + K (ye| My) + K(Myga|Me) + K (%41 [ Mig1) + K (fe1 [ Miga)

[A. Cornuéjols (1996) « Analogie, principe d’économie et complexité algorithmique » ]
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An approach to analogy: using Kolmogorov complexity

Descripteurs utilisés dans la définition des structures :

- orientation (-> / <-) 1 bit
- cardinalité ou nombre d'éléments : n log,(n) + 1 bits
- type d'éléments (voir en-dessous)
- longueur : 1 logy(1) + 1 bits
- commengant ou se terminant par 1l'élément = x L(x) bits
Lettre (1/2) -> 1 bit
Une lettre particuliére (e.g. 'd') (1/2.26) -> 6 bits
Chaine (orientation,éléments) (1/8) -> 3 bits

L = 3 + L(orientation) + ) L(éléments)
e.g. L('a3bd' avec orientation = ->) = 3 + 1 + log,((1/2.26)3) + L(3)

=34+ 1+ 18 + 3 = 25 bits

Ensemble (type d'éléments, cardinalité, éléments) (1/8) -> 3 bits
L = 3 + L(type) + L(cardinalité) + )] L(éléments)
Xy . X4l Groupe (type d'éléments, nombre d'éléments, éléments) (1/8) -> 3 bits
L =3 + L(type) + L(nb €l.) + ) L(éléments)
\\\\\ +  Séquence (orientation, type d'éléments, loi de succession ou nombre
d'éléments, longueur, commengant ou se terminant par) (1/8)

jk A4% Ait*l_—>j}+1 L = 3+ L(orient.) + L(type) + L(loi) or L(nb él.) + L(long) + L(début/fin)

Description et longueur d'une loi de succession

v succ (type-of-el.,n,x) = le niéme successeur de 1'élément x du type type-of-el.
Yt Yt+1 L = L(type) + L(n (voir ci-dessous)) + L(x)
L(n) = L(1/6) si n=1 ou -1 (ler successeur ou prédécesseur)
L(1/3) si n=0 (méme élément)
L((1/3).(1/2)P) sinon (avec p=n si nz0, p=-n sinon)
Premier / Dernier (par rapport a l'orientation définie) 1 bit
nieme n bits

K (M) + K (x¢| M) + K(ft| M) + K (M| M;) + K (xt41|Mit1) + K(fr41[Miy1)
Change of syézz}n of reference
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An approach to analogy: using Kolmogorov complexity

[Cornuéjols, 1996, 1997, 1998, 2016]

'abc' = Chaine (1/8)
orientation : -> (1/2)
Xt > Xf+1 ler='A', 2éme='B', 3éme='C' (1/4.26)3
\\\\ ; TOTAL (longueur) : 21 bits
Jt <—DM, “‘—"A4£+1——>f}+1§
i 'abc' = Ensemble (1/8)
Yt Yi+1 {'a', 'B', 'C'} (1/4.26)3

TOTAL : 20 bits

'abc' = Séquence (1/8)
orientation : -> (1/2)
type d'éléments = lettres (1/2)

loi de succession :
successeur (élt(lettre=x)) = élt(succ(lettre,l,x))
L(lettre) + L(ler succ) + L(x) = L(1/2 . 1/6 . 1)
= 1(1/12) = 4 bits
longueur = 3 3 bits
commencgant avec 1'élément(lettre='A') (1/26)

TOTAL : 17 bits
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approach to analogy

Probleme 1 :

abc => abd ; iijjkk => ?

—3 Solution 1 : "Remplacer groupe de droite par son successeur" iijjkk => iijjll
Solution 2 : "Remplacer lettre de droite par son successeur" iijjkk => 1iijjkl
Solution 3 : "Remplacer lettre de droite par D" iijjkk => iijjkd
Solution 4 : "Remplacer 3éme lettre par son successeur" iijjkk => iikjkk
Solution 5 : "Remplacer les C par D" iijjkk => iijjkk
Solution 6 : "Remplacer groupe de droite par la lettre D" iijjkk => iijjd

P1;S1 P1;S2 P1;S3 P1;S4 P1;S5 P1;S6
L(Mg) 10 9 11 11 12 11
L(SsIMs) 8 18 18 18 22 15
L(psIMs) 4 3
L(MC\Mg) 5 0 0 17
L(SciMc) 8 36 36 36 42 15
L(pcMc) 6 4 3 7 8 3
Total-1 (bits) 41 71 71 79 93 65
Total-2 (bits) 35 67 68 72 85 62
Rang 1 3 4 4 6 2




iijjkk

iijjkk

iijjkk

iijjkk

iijjkk

iijjkk

Copycat + MDLp

iijjll

iijikl

iijjkd

iikjkk

iijjkk

iijjd

34

67

68

72

85

62



abc

abd

aababc

'abc' = Chaine (1/8)
orientation : -> (1/2)
ler='A', 2&me='B', 3éme='C' (1/4.26)3

TOTAL (longueur) : 21 bits

'abc' = Ensemble (1/8)

{'a', 'B', 'C'} (1/4.26)3
TOTAL : 20 bits

'abc' = Séquence (1/8)
orientation : -> (1/2)
type d'éléments = lettres (1/2)
loi de succession :

successeur (élt(lettre=x)) = élt(succ(lettre,l1,x))
L(lettre) + L(ler succ) + L(x) = L(1/2 . 1/6 . 1)
= 1(1/12) = 4 bits
longueur = 3 3 bits
commencant avec 1l'élément(lettre='A'") (1/26)
TOTAL : 17 bits




Analogy making and MDLP

* Application to language analogies: how to end words

(conjugations, plurals, ...)

apte : inapte :: élu : x X = inélu (Prefixation)
let,?0,:,"1",'n’,?0,let,mem,0, 'apte’,::,mem,0, 'élu’
atir : atirunk :: kitart : x x = kitartunk | (Suffixation)
let,?0,:,70,'u’,'n", 'k’ ,let,mem,0, ‘atir’,::,mem,0, ‘kitart’
pati : patti :: olo : x x = olto (Insertion)

let,70,71,:,70,'t",?71,let,mem,0,

‘pa’,'ti’,::,mem,0,’ol’,’0’

pria : pria-pria :: keju : x x = keju-keju | (Repetition)
let,?0,:,70,'-",70,let,mem,0, pria’,::,mem,0, ‘keju’
vantut : vanttu :: autopilotit : x |x = autopilotti | (Reduplication)

let,?70,71,'t’,:,70,'t’,?1,let,mem,0,'van’,'tu’,::,mem,0, ‘autopilot’, i’

Murena, P. A., Al-Ghossein, M., Dessalles, J. L., & Cornuéjols, A. (2020). Solving Analogies on
Words based on Minimal Complexity Transformation. In /[JCA/ (pp. 1848-1854).
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Analogy making and MDLP

* Application to language analogies: how to end words

(conjugations, plurals, ...)

Language | #analogies | NLG_COMP | NLG_PROP | NLG_ALEA
Arabic 165,113 87.18% 93.33% 81.91%
Finnish 313,011 93.69 % 92.76% 78.75%

Georgian 3,066,273 99.35% 97.54% 88.42%

German | 730427 | 98.84% | 9621% | 9542% The results using deep
Hungarian | 2,912,310 | 95.71% | 92.61% | 86.02%

Maltese 28.365 96.38% | 84.72% | 91.84% NNs and learnt

Navajo 321473 | 8121% | 86.87% | 78.95% . .

Russian | 552423 | 96.41% | 97.26% | 95.46% embeddings were in the

Spanish | 845996 | 9673% | 96.13% | 94.42% range 0.1% to 17%!!

Turkish 245,721 89.45% 69.97% 70.06%
Total 9,181,112 96.41 % 94.34% 87.93%

Table 2: Proportion of correct answers when solving analogies from
the dataset SIGMORPHON’ 16 using our method NLG_COMP and two
state-of-the-art methods NLG_PROP [Fam and Lepage, 2018] and
NLG_ALEA [Langlais et al., 2009].

Murena, P. A., Al-Ghossein, M., Dessalles, J. L., & Cornuéjols, A. (2020). Solving Analogies on
Words based on Minimal Complexity Transformation. In [JJCAI-2020 (pp. 1848-1854). 87 /92



Overview: which communications?

Ensemble learning (e.g. boosting)

Co-learning

Distillation

Multi-task learning

Transfer learning (analogy making)
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Overview: which communications?

Ensemble learning (e.g. boosting)

— Communicating a new input distribution such as to learn # hypotheses + vote

Co-learning

— Benefit from different perspectives and exchange of pseudo-labeled examples

Distillation

— Easing a student’s learning by modifying the outputs, the inputs or the task

Multi-task learning

— Minimizing the disagreement between the learned hypotheses

Transfer learning (analogy making)

— Minimizing a distance (not necessarily symmetrical) between successive models
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Cognitive tunnel effect

[A. Cornuéjols, A. Tiberghien, G. Collet. Tunnel Effects in Cognition: A new Mechanism for Scientific
Discovery and Education. Arxiv-1707.04903- Tue, 18 Jul 2017 00:00:00 GMT]

Target conceptual V; - S
universe J

Target constraints

Model(t)

universes

} Operational conceptual

Battbery
Bulb
Experimental setting Experimental Wire
setting
Wire
Contack
f . Reservoir Transfer prapsformer Transfer pegservoir
Conceptual interpretation (Energy) (Energy)
i i & Envionment
in terms of energy chain —> Environment
(Electrical work) (heat & radliation)
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Cognitive tunnel effect

Target conceptual domain

® =

>

. Models
Adaptation

& learning

T

WTM_electrical WTM_ energy
Generator Conductors Resistance
. Transfers
energy = current Reservoir Transformator
Energy
Battery '_‘ Battery [g— #(_ Bulb )
energy = current Energy
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Newton’s luggage

[Loup Verlet. La malle de Newton. Gallimard, NRF, 1993]

 How did Newton arrive to the theory of gravitation?

 What were the sources of his thoughts?

— Alchemy (among other things)

 What were the questions of the time?

— How transmutation of bread into the corpse of Jesus Christ can arise

simultaneously in all churches?

==#  Action at distance
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Some speculations
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Transfer and sequence effects

abec aababc ?

abd abce R .. aababec

e L - L
abd\ijjkkk 9
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Transfer and sequence effects

hypothesis t

hypatheSiS_S ﬂ
0 Referential_t

Referential ts

1. Which equations for the change of referential and for hypothesis transfer?

2. How to prove that these equations are optimal?
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Conclusions (1)

Transfer learning -5 mostly heuristical approaches so far

1. Parallel transport is a natural way for looking at transfer learning

— The covariant derivative is then a measure of difference

* How to compute it?

— Pioneering works in computer vision

* What about when the source and target domains are different?

— TransBoost: a proposal

2. Transfer learning is path dependent in general

— The study of these path dependencies is important ...

e Curriculum learning

* Longlife learning

— ...and a wide open research question

TOTTTI=



Conclusions (2)

* The theoretical guarantees for transfer learning:

* Do not necessarily depend on the performance of the source hypothesis he

But depend on the bias that hg determines

* Involve the capacity of the space of transformations

(and the path followed between source and target)

Still to be explored
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