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Where to learn better, PX is changed

Ensemble methods: boosting, bagging, 
random forests, and Co

LUPI: Learning Using Privileged Information



Collaborative learning 2



Collaborative learning 3

n Here we investigate scenarios where the learning agent itself 

manipulates the input distribution PX
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Questions

n How to change the input distribution PX?

n Why changing it?

n Why could it produce good learning performances?
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Questions

n How to change the input distribution PX?

n Why changing it?

n Why could it produce good learning performances?

Boosting

LUPI
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Outline

1. Ensemble methods: boosting

2. The LUPI framework

3. Illustration on Early Classification of Time Series

4. Conclusions
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n Find a better solution

by combining “weak” solutions

« Ensemble » methods
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Questions

1. Which agents ?

2. What kinds of communication between them if iterations? 

3. How to combine their results?

4. How to ensure convergence ?

5. If convergence, towards what?
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Nothing new under the sun
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Motivation

n « The wisdom of crowd »

[James Surowiecki, 2004]

– Estimate the weight of a bag in a local market 
787 participants 

• Le meilleur = plus d’un centième d’erreur

• Moyenne : moins d’un millième d’erreur

 [Francis Galton1, 1906 (85 years old)]

1 anthropologue, explorateur, géographe, inventeur, météorologue, proto-généticien, 
   psychométricien et statisticien
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Motivation

n « The wisdom of crowd »

[James Surowiecki, 2004]

– Estimate the weight of a bag in a local market 
787 participants 

• Le best estimation = more than 1% error

• Mean of the estimates = less than    0.1% error

[Francis Galton1, 1906 (85 years old)]

1 anthropologist, explorer, geographer, inventor, meteorologist, proto-geneticist, 
psychometrician and statistician
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n « Weak experts »

“Noisy” Estimations

–Unbiased

–Symmetrical

–Independent 

Simple combination:
the mean
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General framework: learning

Apprentissage : h1

Apprentissage : h2

Apprentissage : h3

Apprentissage : hN

H = combine(h1, h2, ..., hN)

Échantillon 
d'apprentissage
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Boosting
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n Given X an input space with 10 dimensions

n Independent descriptors with gaussian distribution gaussienne

n The target concept is defined by:

n 2000 training examples (1000+;1000-)

n 10000 test examples

n Learn decision trees

Illustration

u  =  
   1     si  xj

2  >  χ1 0
2 (0,5)

j=1,1 0∑
−1     sinon                              

⎧ 
⎨ 
⎩ 

χ1 0
2 (0, 5) =  9, 34With:
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Illustration

0,5
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0,3
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0,0
0 100 200 300 400

Arbre à un noeud

Arbre à 400 noeuds

Arbres à un nœud avec boosting
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Performances using boosting
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Simple example

n What is the best linear separator?
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Simple example

n Error rate = 5/20 = 0.25



Collaborative learning 20

Simple example

n Error rate (h1) = 5/20 = 0.25

What if I could combine it with other separators?

And with many others!
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Simple example

What if I could combine it with other linear separators?  
Or with many others!

For instance using a weighted vote :

H(x) = sign

{ l
∑

i=1

αi hi(x)

}
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Simple example

H(x) = sign{ 0.549 h1(x) + 0.347 h2(x) + 

       0.310 h3(x) + 0.406 h4(x) + 0.503 h5(x) }
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Simple example

H(x) =sign{ 0.549 h1(x) + 0.347 h2(x) + 0.310 h3(x) + 0.406 h4(x) 

            + 0.503 h5(x) }

n How to find that kind of combination?

The boosting algorithm
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The boosting algorithm
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A theoretical question

n « Strong » learning (PAC learning)
– A function class F is learnable (in a strong sense) if there exists a learning  

algorithm A which, for all distributions DX on X, and for all functions f in F is 
such that: 

n « g weak » learning
– A function class F is learnable (in a weak sense) if , for g > 0, there exists a 

learning  algorithm A which, for all distributions DX on X, and for all functions f 
in F is such that: 

n Are these two function classes different?
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How to generate learners?

n A historical recipe
Sm

Sm

Sm1

h1
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Sm

Sm1

h1 h2

Sm2

How to generate learners?

n A historical recipe
Sm
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Sm

Sm1

h1 h2

Sm2
Sm3

h3

How to generate learners?

n A historical recipe
Sm

H(x) = sign

(

h1(x) + h2(x) + h3(x)

)
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Questions 

n How to generate uncorrelated weak learners?

n How to combine their predictions ?
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Boosting

n boosting = a general method that allows the conversion of 
weak learning algorithms into a strong learning algorithm

n More precisely:

– Given a “weak” learning algorithm which can always produce an 
hypothesis of error rate £1/2-g

– A boosting algorithm can build (in a proven way) a decision rule 
(hypothesis) of error rate £ e
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General schema: learning

Apprentissage : h1

Apprentissage : h2

Apprentissage : h3

Apprentissage : hN

H = combine(h1, h2, ..., hN)

Échantillon 
d'apprentissage
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Questions

n How to select the weak learners at each step?
å Focus on the “hardest” examples 

(Those on which the previous learners have been the less 
efficient)

n How to combine the weak prediction rules into a single one? 
å Use a (weighted) vote
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How to generate learners?

n Modifiy the learning sample after each learning iteration

– By lowering the weight of the correctly labeled examples

– By Increasing --------------------- incorrectly ---------------

– By how much?
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n Given the training set S = {(x1,y1),…,(xm,ym)}
n yiÎ{-1,+1} being the label of example xiÎ S

n For all t = 1,…,T:
Compute the current distribution Dt over{1,…,m}

Find a weak hypothesis

ht : S® {-1,+1}

with small error et on Dt:

n Return the final hypothesis H

Boosting: formal view

])([Pr iitDt yxh
t

≠=ε
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General scheme: prediction

h1(x)

x

h2(x)

h3(x)

hN(x)

H(x) =
N∑

i=1

wi hi(x)
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General principle

X h0D0

X h1D1

X h2D2

X hTDT

Hfinale(x) =  sgn   αt  . ht(x)
t= 0

T

∑⎡ 
⎣ ⎢ 

⎤ 

⎦ ⎥ 

n How to compute Dt+1 from Dt?

n How to compute the weight at ?
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AdaBoost [Freund&Schapire ’97]

n Define Dt:

Given Dt and ht:

where: Zt = normalization constant

n Final hypothesis:

))(exp( itit
t

t xhy
Z
D

⋅⋅−⋅= α

⎩
⎨
⎧

≠

=
⋅=

−

+ )(if
)(if

1
iti

iti

t

t
t xhye

xhye
Z
D

D
t

t

α

α

m
iD 1)(1 =

01ln
2
1
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AdaBoost
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Simple example

n Error rate = 5/20 = 0.25

αi =
1

2
ln

1 − ε

ε

=
1

2
ln

0.75

0.25
= 0.549
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Simple example
n New weights of the training examples

n Examples correctly 
labeled

n Examples incorrectly 
labeled

pb(x) =
e−α

Z
=

e−0.549

Z
=

0.577

Z

pm(x) =
eα

Z
=

e0.549

Z
=

1.732

Z

Z =
(15 × 0.577) + (5 × 1.732)

20
=

8.660 + 8.660

20
=

17.32

20
= 0.866

pb(x) = 0.666 = 2/3 pm(x) = 2
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Simple example
n Nouvelle pondération des exemples d’apprentissage

n Examples correctly labeled

n Examples incorrectly labeled

pb(x) =
1

2 (1 − ε)
=

1

2 × 0.75
=

1

1.5
=

2

3

pm(x) =
1

2 ε
=

1

2 × 0.25
=

1

0.5
= 2

Z = 2 ε
1/2 (1 − ε)1/2
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Simple example

n Error rate: 

α2 =
1

2
ln

1 − ε2

ε2

=
1

2
ln

2/3

1/3
= 0.347

ε2 =
10 × 2/3

20
=

1

3

n Sous-pondération 
des bien classés : 

n Sur-pondération 
des mal classés : 

pb(x) =
1

2 (1 − ε)
=

1

2 × 2/3
=

3

4
= 0.75

pm(x) =
1

2 ε
=

1

2 × 1/3
=

3

2
= 1.5
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Simple example

n Sous-pondération 
des bien classés : 

n Sur-pondération 
des mal classés : 

pb(x) =
1

2 (1 − ε)
=

1

2 × 2/3
=

3

4
= 0.75

pm(x) =
1

2 ε
=

1

2 × 1/3
=

3

2
= 1.5
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Simple example

n Taux d’erreur : 

n Sous-pondération 
des bien classés : 

n Sur-pondération 
des mal classés : 

ε3 =
(5 × 1/2) + (3 × 1.5)

20
=

7

20
= 0.35

α3 =
1

2
ln

1 − ε2

ε2

=
1

2
ln

0.65

0.35
= 0.310

pb(x) =
1

2 (1 − ε)
=

1

2 × 0.65
=

1

1.3
= 0.769

pm(x) =
1

2 ε
=

1

2 × 0.35
=

1

0.7
= 1.429
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Simple example

n Sous-pondération 
des bien classés : 

n Sur-pondération 
des mal classés : 

pb(x) =
1

2 (1 − ε)
=

1

2 × 0.65
=

1

1.3
= 0.769

pm(x) =
1

2 ε
=

1

2 × 0.35
=

1

0.7
= 1.429
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Toy example
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Step 1
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Step 2
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Step 3
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Final Hypothesis
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Autre illustration du boosting sur jeu de données

4

96 Chapter 4 · Decision Trees

. Tab. 4.5 The watermelon data set 3.0α

ID density sugar ripe

1 0.697 0.460 true
2 0.774 0.376 true
3 0.634 0.264 true
4 0.608 0.318 true
5 0.556 0.215 true
6 0.403 0.237 true
7 0.481 0.149 true
8 0.437 0.211 true

9 0.666 0.091 false
10 0.243 0.267 false
11 0.245 0.057 false
12 0.343 0.099 false
13 0.639 0.161 false
14 0.657 0.198 false
15 0.360 0.370 false
16 0.593 0.042 false
17 0.719 0.103 false

Fig. 4.9 The decision tree generated from. Table 4.5

For example, . Figure 4.9 shows the decision tree trained
on the watermelon data set 3.0α in. Table 4.5, and the corre-
sponding decision boundaries are shown in . Figure 4.10.

The watermelon data set 3.0α is
a copy of the watermelon data
set 3.0 excluding discrete
features.

From . Figure 4.10, we can observe that every segment
is parallel to the axis. Since every segment corresponds to
a specific value of a feature, such decision boundaries make
the learning outcome easy to interpret. In practice, the deci-
sion boundaries often need many segments for good approxi-
mations, e.g., . Figure 4.11. However, such complex decision
trees are often slow to make predictions since they contain
many feature tests.

4.5 Multivariate Decision Trees
97 4

Fig. 4.10 The decision boundaries of the decision tree in. Figure 4.9

Fig. 4.11 The piecewise approximation of complex decision boundaries

If we can make the decision boundaries oblique, as shown
by the red line in. Figure 4.11, then thedecision treemodel can
be significantly simplified. Multivariate decision tree enables

Also known as oblique decision
tree.

oblique partitions or even more complicated decision bound-
aries.With oblique boundaries, each non-leaf node is no longer
a test for a particular feature but a linear combination of
features. In other words, each non-leaf node is a linear clas-
sifier in the form of

∑d
i=1 wiaa = t, where wi is the weight of

Apprentissage par 
arbre de décisions
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Autre illustration du boosting sur jeu de données
8.3 Bagging and Random Forest

189 8

Fig. 8.3 AdaBoost on the watermelon data set 3.0α with ensemble sizes 3, 5,
and 11. The decision boundaries of the ensemble and base learners are shown
in red and black, respectively

8.3 Bagging and Random Forest

From Sect. 8.1, we know that the generalization ability of
an ensemble depends on the independence of base learners.
Though strict independence is not possible in practice, we can
still make the learners as different as possible. One way of cre-
ating different base learners is to partition the original training
set into several non-overlapped subsets and use each subset to
train a base learner. Because the training subsets are differ-
ent, the trained base learners are likely to be different as well.
However, if the subsets are totally different, then it implies that
each subset contains only a small portion of the original train-
ing set, possibly leading to poor base learners. Since a good
ensemble requires each base learner to be reasonably good,
we often allow the subsets to overlap such that each of them
contains sufficient samples.

8.3 Bagging and Random Forest
189 8

Fig. 8.3 AdaBoost on the watermelon data set 3.0α with ensemble sizes 3, 5,
and 11. The decision boundaries of the ensemble and base learners are shown
in red and black, respectively

8.3 Bagging and Random Forest

From Sect. 8.1, we know that the generalization ability of
an ensemble depends on the independence of base learners.
Though strict independence is not possible in practice, we can
still make the learners as different as possible. One way of cre-
ating different base learners is to partition the original training
set into several non-overlapped subsets and use each subset to
train a base learner. Because the training subsets are differ-
ent, the trained base learners are likely to be different as well.
However, if the subsets are totally different, then it implies that
each subset contains only a small portion of the original train-
ing set, possibly leading to poor base learners. Since a good
ensemble requires each base learner to be reasonably good,
we often allow the subsets to overlap such that each of them
contains sufficient samples.

From [Zhi-Hua ZHOU « Machine Learning ». Springer, 2021]

Here “base learner” =  decision stump

4.5 Multivariate Decision Trees
97 4

Fig. 4.10 The decision boundaries of the decision tree in. Figure 4.9

Fig. 4.11 The piecewise approximation of complex decision boundaries

If we can make the decision boundaries oblique, as shown
by the red line in. Figure 4.11, then thedecision treemodel can
be significantly simplified. Multivariate decision tree enables

Also known as oblique decision
tree.

oblique partitions or even more complicated decision bound-
aries.With oblique boundaries, each non-leaf node is no longer
a test for a particular feature but a linear combination of
features. In other words, each non-leaf node is a linear clas-
sifier in the form of

∑d
i=1 wiaa = t, where wi is the weight of

Arbre de décisions



Collaborative learning 53

Boosting sur jeu de données « Iris » (Setosa vs. Versicolor)

14/41

AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)

4.5 5.0 5.5 6.0 6.5 7.0

2.0

2.5

3.0

3.5

4.0

AdaBoost for Iris data, maxdepth = 1, B = 1

Sepal length

Se
pa

l w
id

th

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

14/41

AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)
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AdaBoost (Iris data, “setosa” vs. “versicolor”)
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Boosting sur jeu de données « Iris » (Versicolor vs. Virginica)

14/41

AdaBoost (Iris data, “versicolor” vs. “virginica”)
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Boostingdemo of Richard Stapenhurst
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Theoretical analysis of boosting
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Derivation of the boosting algorithm
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Derivation of the boosting algorithm
n Another derivation of boosting

– By choosing a surrogate loss function with an 
exponential form

!(h(x), y) = e−y·h(x)

∂REmp(HT )

∂α
∝ e

−α (1 − εT )
︸ ︷︷ ︸

poids des exemples
correctement prédits

+ e
α

εT
︸ ︷︷ ︸

poids des exemples
incorrectement prédits

αT =
1

2
log

1 − εT

εT

Soit : HT−1 = α1 h1(x) + α2 h2(x) + . . . + αT−1 hT−1(x)

On veut ajouter : αT hT (x)

REmp(HT ) =
m

∑

i=1

e
−yi

[

HT−1(xi)+αT hT (xi)
]

=
m

∑

i=1

e
−yi HT−1(xi)

· e
−αT yi hT (xi)

=
m

∑

i=1

WT−1(xi) · e
−αT yi hT (xi)
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General scenario: learning

Apprentissage : h1

Apprentissage : h2

Apprentissage : h3

Apprentissage : hN

H = combine(h1, h2, ..., hN)

Échantillon 
d'apprentissage
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Boosting and redescription

n Iterative construction of the redescription space
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H(x) = sign
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SVM and kernel methods
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∑
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α!

i yi κ(xi , x) + w!

0

}



Collaborative learning 62

Bounds on training error
and

On generalization error



Collaborative learning 63

Bound on the training error
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Evolution of the error curves (learning & test)
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How to explain the evolution of the generalization error?

n The test error does not increase, even after 1000 steps (2.106 
test nodes !!)

– Boosting C4.5 on the « letter » dataset
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Arguments to explain 

the properties of boosting

(the unreasonable power of boosting)
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The “margin” explanation

n Idea:

– The test error is a rough indicator of the prediction performance 

– One should also take into account the confidence of the prediction

– It is possible to estimate this confidence by the margin
= weights of the classifiers with correct predictions 

(on the training examples) 

- weights of the classifiers with incorrect predictions
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Margin distribution on the xi
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The argument of the margin maximization

n At each step, AdaBoost would put more weight on the 

examples xi with small margin while continuing to improve the 

margin on the other examples

n The final hypothesis would be a complex one but with a large 

margin

(and so with generalization error close to the training one)
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The argument of the margin maximization
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The argument of the margin maximization
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Generalization bounds

RRéel ≤ REmp + O

(

√

T · dH

m

)
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Formally
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...
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Assessment
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Advantages of AdaBoost

n Low computational cost

n Easy to use

n A single parameter: the number of steps: T

n Can be (and has been) applied in very numerous domains

n No overfitting (in general) because of the margin maximization

n Can be adapted to regression problems  ht : X®R ; 
the class is defined by the sign of ht(x) and the confidence by | ht(x) |

n Can be adapted to the multi-class case where yi Î {1,..,c}

n Allows one to uncover outliers
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When is boosting not appropriate?

n Reminder: No-free-lunch-theorem

n Boosting is NOT recommended when

– There is not enough data

– The set of weak learners is too limited

– The weak learners are too stable (but more true for bagging)

– The weak learners are too strong!
• They can overfit

– Noise in the data (but ...)
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Applications using boosting
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Robust real-time face detection [Viola & Jones, 2004]

n Images 384 x 288 (grey level)

n Detect  visages at every scale

n In real time (15 images / s) on a smartphone!!

n Problems 
– Identify the relevant descriptors

– Compute them fastly

– Use (combine) them in an very efficient way

• Low FN rate

• Low FP rate
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Les descripteurs

n More than 3 000 000 000! 

– All scales

– Thresholds to be defined

Robust Real-Time Face Detection 139

together yield an extremely reliable and efficient face
detector. Section 5 will describe a number of experi-
mental results, including a detailed description of our
experimental methodology. Finally Section 6 contains
a discussion of this system and its relationship to re-
lated systems.

2. Features

Our face detection procedure classifies images based
on the value of simple features. There are many moti-
vations for using features rather than the pixels directly.
The most common reason is that features can act to en-
code ad-hoc domain knowledge that is difficult to learn
using a finite quantity of training data. For this system
there is also a second critical motivation for features:
the feature-based system operates much faster than a
pixel-based system.

The simple features used are reminiscent of Haar
basis functions which have been used by Papageorgiou
et al. (1998). More specifically, we use three kinds of
features. The value of a two-rectangle feature is the
difference between the sum of the pixels within two
rectangular regions. The regions have the same size
and shape and are horizontally or vertically adjacent
(see Fig. 1). A three-rectangle feature computes the
sum within two outside rectangles subtracted from the
sum in a center rectangle. Finally a four-rectangle fea-
ture computes the difference between diagonal pairs of
rectangles.

Given that the base resolution of the detector is
24 × 24, the exhaustive set of rectangle features is

Figure 1. Example rectangle features shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B). Figure
(C) shows a three-rectangle feature, and (D) a four-rectangle feature.

quite large, 160,000. Note that unlike the Haar basis,
the set of rectangle features is overcomplete.3

2.1. Integral Image

Rectangle features can be computed very rapidly using
an intermediate representation for the image which we
call the integral image.4 The integral image at location
x, y contains the sum of the pixels above and to the left
of x, y, inclusive:

i i(x, y) =
∑

x ′≤x,y′≤y

i(x ′, y′),

where i i(x, y) is the integral image and i(x, y) is the
original image (see Fig. 2). Using the following pair of
recurrences:

s(x, y) = s(x, y − 1) + i(x, y) (1)

i i(x, y) = i i(x − 1, y) + s(x, y) (2)

(where s(x, y) is the cumulative row sum, s(x, −1) =
0, and i i(−1, y) = 0) the integral image can be com-
puted in one pass over the original image.

Using the integral image any rectangular sum can be
computed in four array references (see Fig. 3). Clearly
the difference between two rectangular sums can be
computed in eight references. Since the two-rectangle
features defined above involve adjacent rectangular
sums they can be computed in six array references,
eight in the case of the three-rectangle features, and
nine for four-rectangle features.

One alternative motivation for the integral im-
age comes from the “boxlets” work of Simard et al.

Figure 2. The value of the integral image at point (x, y) is the sum
of all the pixels above and to the left.
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Useful Features Learned by Boosting
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Example of the training set

148 Viola and Jones

5. Results

This section describes the final face detection system.
The discussion includes details on the structure and
training of the cascaded detector as well as results on
a large real-world testing set.

5.1. Training Dataset

The face training set consisted of 4916 hand labeled
faces scaled and aligned to a base resolution of 24 by
24 pixels. The faces were extracted from images down-
loaded during a random crawl of the World Wide Web.
Some typical face examples are shown in Fig. 8. The
training faces are only roughly aligned. This was done
by having a person place a bounding box around each
face just above the eyebrows and about half-way be-
tween the mouth and the chin. This bounding box was
then enlarged by 50% and then cropped and scaled to
24 by 24 pixels. No further alignment was done (i.e.
the eyes are not aligned). Notice that these examples
contain more of the head than the examples used by

Figure 8. Example of frontal upright face images used for training.

Rowley et al. (1998) or Sung and Poggio (1998). Ini-
tial experiments also used 16 by 16 pixel training im-
ages in which the faces were more tightly cropped,
but got slightly worse results. Presumably the 24 by
24 examples include extra visual information such as
the contours of the chin and cheeks and the hair line
which help to improve accuracy. Because of the nature
of the features used, the larger sized sub-windows do
not slow performance. In fact, the additional informa-
tion contained in the larger sub-windows can be used
to reject non-faces earlier in the detection cascade.

5.2. Structure of the Detector Cascade

The final detector is a 38 layer cascade of classifiers
which included a total of 6060 features.

The first classifier in the cascade is constructed us-
ing two features and rejects about 50% of non-faces
while correctly detecting close to 100% of faces. The
next classifier has ten features and rejects 80% of non-
faces while detecting almost 100% of faces. The next
two layers are 25-feature classifiers followed by three
50-feature classifiers followed by classifiers with a

Positive instances
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Selection of the useful descriptors

n Using AdaBoost

– Descriptors are found as decision stumps

– Le boosting select them

• 200 in this study

Robust Real-Time Face Detection 143

on feature variance. They demonstrated good results se-
lecting 37 features out of a total 1734 features. While
this is a significant reduction, the number of features
evaluated for every image sub-window is still reason-
ably large.

Roth et al. (2000) propose a feature selection process
based on the Winnow exponential perceptron learning
rule. These authors use a very large and unusual feature
set, where each pixel is mapped into a binary vector of d
dimensions (when a particular pixel takes on the value
x , in the range [0, d − 1], the x-th dimension is set to
1 and the other dimensions to 0). The binary vectors
for each pixel are concatenated to form a single binary
vector with nd dimensions (n is the number of pixels).
The classification rule is a perceptron, which assigns
one weight to each dimension of the input vector. The
Winnow learning process converges to a solution where
many of these weights are zero. Nevertheless a very
large number of features are retained (perhaps a few
hundred or thousand).

3.2. Learning Results

While details on the training and performance of the
final system are presented in Section 5, several sim-
ple results merit discussion. Initial experiments demon-

Figure 4. Receiver operating characteristic (ROC) curve for the 200 feature classifier.

strated that a classifier constructed from 200 features
would yield reasonable results (see Fig. 4). Given a
detection rate of 95% the classifier yielded a false pos-
itive rate of 1 in 14084 on a testing dataset. This is
promising, but for a face detector to be practical for
real applications, the false positive rate must be closer
to 1 in 1,000,000.

For the task of face detection, the initial rectangle
features selected by AdaBoost are meaningful and eas-
ily interpreted. The first feature selected seems to focus
on the property that the region of the eyes is often darker
than the region of the nose and cheeks (see Fig. 5). This
feature is relatively large in comparison with the detec-
tion sub-window, and should be somewhat insensitive
to size and location of the face. The second feature se-
lected relies on the property that the eyes are darker
than the bridge of the nose.

In summary the 200-feature classifier provides ini-
tial evidence that a boosted classifier constructed from
rectangle features is an effective technique for face de-
tection. In terms of detection, these results are com-
pelling but not sufficient for many real-world tasks. In
terms of computation, this classifier is very fast, re-
quiring 0.7 seconds to scan an 384 by 288 pixel im-
age. Unfortunately, the most straightforward tech-
nique for improving detection performance, adding

Still computationally 
too costly: ~0.7s
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Detectors are organized in cascade

n Eliminate the negative 
as soon as possible

144 Viola and Jones

Figure 5. The first and second features selected by AdaBoost. The
two features are shown in the top row and then overlayed on a typ-
ical training face in the bottom row. The first feature measures the
difference in intensity between the region of the eyes and a region
across the upper cheeks. The feature capitalizes on the observation
that the eye region is often darker than the cheeks. The second feature
compares the intensities in the eye regions to the intensity across the
bridge of the nose.

features to the classifier, directly increases computation
time.

4. The Attentional Cascade

This section describes an algorithm for constructing a
cascade of classifiers which achieves increased detec-
tion performance while radically reducing computation
time. The key insight is that smaller, and therefore more
efficient, boosted classifiers can be constructed which
reject many of the negative sub-windows while detect-
ing almost all positive instances. Simpler classifiers are
used to reject the majority of sub-windows before more
complex classifiers are called upon to achieve low false
positive rates.

Stages in the cascade are constructed by training
classifiers using AdaBoost. Starting with a two-feature
strong classifier, an effective face filter can be obtained
by adjusting the strong classifier threshold to mini-
mize false negatives. The initial AdaBoost threshold,
1
2

∑T
t=1 αt , is designed to yield a low error rate on the

training data. A lower threshold yields higher detec-
tion rates and higher false positive rates. Based on per-
formance measured using a validation training set, the
two-feature classifier can be adjusted to detect 100% of
the faces with a false positive rate of 50%. See Fig. 5 for
a description of the two features used in this classifier.

The detection performance of the two-feature clas-
sifier is far from acceptable as a face detection system.
Nevertheless the classifier can significantly reduce the

number of sub-windows that need further processing
with very few operations:

1. Evaluate the rectangle features (requires between 6
and 9 array references per feature).

2. Compute the weak classifier for each feature (re-
quires one threshold operation per feature).

3. Combine the weak classifiers (requires one multiply
per feature, an addition, and finally a threshold).

A two feature classifier amounts to about 60 mi-
croprocessor instructions. It seems hard to imagine
that any simpler filter could achieve higher rejection
rates. By comparison, scanning a simple image tem-
plate would require at least 20 times as many operations
per sub-window.

The overall form of the detection process is that of
a degenerate decision tree, what we call a “cascade”
(Quinlan, 1986) (see Fig. 6). A positive result from
the first classifier triggers the evaluation of a second
classifier which has also been adjusted to achieve very
high detection rates. A positive result from the second
classifier triggers a third classifier, and so on. A negative
outcome at any point leads to the immediate rejection
of the sub-window.

The structure of the cascade reflects the fact that
within any single image an overwhelming majority of
sub-windows are negative. As such, the cascade at-
tempts to reject as many negatives as possible at the
earliest stage possible. While a positive instance will

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.
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Face detection using boosting
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Gradient Tree Boosting
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Boosted Trees

n For classification or regression

n Using decision trees

n The successive trees are found (and weighted) using boosting

n In general: more powerful than Random Forests

– E.g. the AI4Industry challenge (2021)

• Regression for predictive maintenance

• Won the challenge before deep NNs and Random Forests
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Boosted Regression Trees

https://datascience.eu/fr/apprentissage-automatique/gradient-boosting-ce-que-vous-devez-savoir/

Boosted Trees
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Other algorithms
(Xgboost or Tree Boosting)
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Xgboost  aka.  Extreme Gradient boosting

n Characteristics

– Gradient Tree Boosting

– Optimized to be very efficient

– Lots of parameters (good and bad)
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Conclusions on Ensemble Methods

n Modifying the input distribution during learning 

yields a richer diversity of (weak) learners

n Boosting makes the learners dependent upon each other

Better than bagging

– All are used in the final prediction

– In co-learning, we will see another method of changing the input 

distribution, using only the final classifiers to make the prediction
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Outline

1. Ensemble methods: boosting

2. The LUPI framework

3. Illustration on Early Classification of Time Series

4. Conclusions
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Learning Using Privileged Information 

Inspired by learning at school

n The goal is to learn a function 

n Suppose that at learning time there is more available information

than at test time

n Can we then improve the generalization performance

wrt. the one obtained with S only?

V. Vapnik and A. Vashist (2009) “A new learning paradigm: Learning using privileged information”. 
Neural Networks, vol. 22, no. 5, pp. 544–557, 2009

S⇤ = {(xi,x
⇤
i , yi)}1im

h : x 2 X ! y 2 {�1,+1}

<latexit sha1_base64="A1ERcYbssmhVKMSPYaWGsgcyrn8="></latexit>

X 0
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Learning Using Privileged Information 
Illustration in computer vision

V. Sharmanska, N. Quadrianto, and Ch. Lamper (2014) “Learning to transfer privileged information”.
 ArXiv preprint arXiv:1410.0389, 2014

imagex :

attributesx⇤ :

black:      yes
white:      yes
brown:      no
patches:    yes
water:      no
slow:       yes

bounding boxx⇤ :

Sambal crab, cah 
kangkung and deep 
fried gourami fish in 
the Sundanese tra- 
ditional restaurant.

imagex :

textx⇤ :

imagex :

Figure 1: Three di↵erent forms of privileged information that can help learning better object
recognition systems: attributes, object bounding boxes, and textual descriptions.

In the standard learning setting, we are given input–output training pairs about the task
we want to learn, for example, images and category labels for object classification. In the
LUPI setting, we have the input–output training pairs plus additional information for each
training pair that is only available during training. There is no direct limitation on the form
of privileged information, i.e. it could be yet another feature representation, or completely
di↵erent modality like text or hand annotation in addition to image data, that is specific for
each training instance.

LUPI in its original formulation does not tell us which kind of privileged information is
useful, i.e. will lead to better performance, and how to measure the quality of it. In this
work, which extends our original publication [2], we examine the three di↵erent types of
privileged information in the context of object classification task: attributes that describe
semantic properties of an object, bounding boxes that specify the exact localization of the
target object in an image, and image tags that describe the context of an image in textual
form. Figure 1 illustrates these three modalities.

Approach and contribution In order to do LUPI, we have to understand how to make
use of the data modality that is not available at test time. For example, training a classifier
on the privileged data is useless, since there is no way to evaluate the resulting classifier on
the test data. At the core of our work lies the insight that privileged information allows us
to distinguish between easy and hard examples in the training set. Assuming that examples
that are easy or hard with respect to the privileged information will also be easy or hard
with respect to the original data, we enable information transfer from the privileged to the
original data modality. More specifically, we first define and identify which samples are easy
and which are hard for the classification task, and incorporate the privileged information into
the sample weights that encodes its easiness or hardness.

2
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Bounds between the real risk and the empirical
risk

n H finite, realisable case

n H finite, non realisable case 

97 / 62

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

�
log |H|+ log 1

�

2 m

�
> 1� �

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

log |H|+ log 1
�

m

�
> 1� �

Example: instead of 600.106 training examples, same performance with ~ 775!!!
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First approach to LUPI

n “At the core of our work lies the insight that privileged information 
allows us to distinguish between easy and hard examples in the 
training set. 

n Assuming that examples that are easy or hard with respect to the 
privileged information will also be easy or hard with respect to the 
original data, we enable information transfer from the privileged to 
the original data modality. 

n More specifically, we first define and identify which samples are easy 
and which are hard for the classification task, and incorporate the 
privileged information into the sample weights that encodes its 
easiness or hardness.”     (more weight on the easy examples)
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One solution: SVM+

n The classical optimization problem

n is changed into

n Intuition:
– Identify the difficult examples (outliers)

– Thus coming back to the realizable case

and obtain convergence rates of 1/n instead of 1/sqrt(n)

Understanding LUPI
(Learning using Privileged Information)

Ahmadreza Momeni, Kedar Tatwawadi
Stanford University,
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{amomenis,kedart}@stanford.edu

I. INTRODUCTION

The idea of using privileged information was first sug-
gested by V. Vapnik and A. Vashist in [1], in which they
tried to capture the essence of teacher-student based learning
which is very effective in case of human beings learning.
More specifically, when a human is learning a novel notion,
he exploits his teacher’s comments, explanations, and ex-
amples to facilitate the learning procedure. Vapnik proposed
the following framework : assume that we want to build a
decision rule for determining some labels y based on some
features X , but in the training stage in addition to X , we are
also provided with some additional information, denoted as
the ”privileged information” x⇤ which is not present in the
testing stage.

In such a scenario how can we utilize X⇤ to improve
the learning? In this project report, we try to understand
the framework of LUPI using a variety of experiments. We
also try to propose a new algorithm based on priviledged
information for Neural Networks based on the intuition
obtained from the experiments.

A. LUPI Framework

We first briefly describe the mathematical framework of
LUPI: In the classical binary classification problems we are
given m number of pairs (xi, yi), i = 1, . . . ,m where xi 2
X , yi 2 {�1,+1}, and each pair is independently generated
by some underlying distribution PXY , which is unknown.
The goal here is to find a function f : X ! {�1,+1} in the
function class F to assign the labels with the lowest error
possible averaged over the unknown distribution PXY .

In the LUPI framework, the model is slightly different,
as we are provided with triplets (xi, x⇤

i , yi), i = 1, . . . ,m
where xi 2 X , x⇤

i 2 X ⇤, yi 2 {�1,+1} with each triplet
is independently generated by some underlying distribution
PXX⇤Y , which is again unknown. However, the goal is the
same as before: we still aim to find a function f : X !
{�1,+1} in the function class F to assign the labels with
the lowest error possible.

The important question which Vapnik asks is: can the
generalization performance be improved using the privileged
information? Vapnik also showed this is true in the case of
SVM. We will next briefly describe the SVM and the SVM+
LUPI based framework proposed by Vapnik.

B. SVM and SVM+

We briefly describe the SVM and SVM+ methods that we
solve for classification, which in this case is finding some
! 2 X and b 2 R to build the following predictor:

f(x) = sgn [h!, xi+ b] .

1) SVM: The SVM learning method (non-separable
SVM) to find ! and b is equivalent to solving the following
optimization problem:

min
1

2
h!,!i+ C

mX

i=1

⇠i

s.t. yi[h!, xii+ b] � 1� ⇠i, i = 1, . . . ,m.

As a short remark, we should mention that C is a parameter
that needs tuning. In addition, if the slacks ⇠i are all equal
to zero then we call the set of given examples separable,
otherwise they are non-separable.

2) SVM+: In order to take into account the privileged
information X⇤ Vapnik modified the SVM formulation as
follows:

min
1

2
[h!,!i+ �h!⇤,!⇤i] + C

mX

i=1

[h!⇤, x⇤i+ b⇤]

s.t. yi[h!, xii+ b] � 1� [h!⇤, x⇤
i i+ b⇤], i = 1, . . . ,m,

[h!⇤, x⇤
i i+ b⇤] � 0, i = 1, . . . ,m,

where !⇤ 2 X ⇤ and b⇤ 2 R. In this problem C and � are
hyper parameters to be tuned.

Intuitively, we can think of [h!⇤, x⇤
i i+ b⇤]’s as some

estimators for the slacks ⇠i’s in the previous optimization
problem. However, the reduced freedom and better prediction
of the slacks using the privileged information improves the
learning. Another intuition here is that, in some sense the
margins [h!⇤, x⇤

i i+ b⇤] capture the difficulty of the training
examples in the privileged space. This difficulty information
is then used to relax/tighten the SVM constraints to improve
the learning.

We next describe some methodologies which capture this
intuition relating to difficulty of examples to construt LUPI
based frameworks.
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the following framework : assume that we want to build a
decision rule for determining some labels y based on some
features X , but in the training stage in addition to X , we are
also provided with some additional information, denoted as
the ”privileged information” x⇤ which is not present in the
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In such a scenario how can we utilize X⇤ to improve
the learning? In this project report, we try to understand
the framework of LUPI using a variety of experiments. We
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PXX⇤Y , which is again unknown. However, the goal is the
same as before: we still aim to find a function f : X !
{�1,+1} in the function class F to assign the labels with
the lowest error possible.

The important question which Vapnik asks is: can the
generalization performance be improved using the privileged
information? Vapnik also showed this is true in the case of
SVM. We will next briefly describe the SVM and the SVM+
LUPI based framework proposed by Vapnik.

B. SVM and SVM+

We briefly describe the SVM and SVM+ methods that we
solve for classification, which in this case is finding some
! 2 X and b 2 R to build the following predictor:

f(x) = sgn [h!, xi+ b] .

1) SVM: The SVM learning method (non-separable
SVM) to find ! and b is equivalent to solving the following
optimization problem:

min
1

2
h!,!i+ C

mX

i=1

⇠i

s.t. yi[h!, xii+ b] � 1� ⇠i, i = 1, . . . ,m.

As a short remark, we should mention that C is a parameter
that needs tuning. In addition, if the slacks ⇠i are all equal
to zero then we call the set of given examples separable,
otherwise they are non-separable.

2) SVM+: In order to take into account the privileged
information X⇤ Vapnik modified the SVM formulation as
follows:

min
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[h!,!i+ �h!⇤,!⇤i] + C

mX

i=1

[h!⇤, x⇤i+ b⇤]

s.t. yi[h!, xii+ b] � 1� [h!⇤, x⇤
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where !⇤ 2 X ⇤ and b⇤ 2 R. In this problem C and � are
hyper parameters to be tuned.

Intuitively, we can think of [h!⇤, x⇤
i i+ b⇤]’s as some

estimators for the slacks ⇠i’s in the previous optimization
problem. However, the reduced freedom and better prediction
of the slacks using the privileged information improves the
learning. Another intuition here is that, in some sense the
margins [h!⇤, x⇤

i i+ b⇤] capture the difficulty of the training
examples in the privileged space. This difficulty information
is then used to relax/tighten the SVM constraints to improve
the learning.

We next describe some methodologies which capture this
intuition relating to difficulty of examples to construt LUPI
based frameworks.

C and g are hyperparameters
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Second approach to LUPI

…

<latexit sha1_base64="hu8PE0gqkEAEtwG7StNAinn7//Y="></latexit>

Suppose that in X
0, there exists a good hypothesis spaceH

0 with very limited

capacity (otherwise, why would the teacher be interested?), then the student

is expected to identify easily a good hypothesis h0 : X 0
! Y. And the whole

problem is thus to “project” this hypothesis in X ! Y
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Can you imagine other applications where privileged information

could be available at training time (and not at testing time)?
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Outline

1. Ensemble methods: boosting

2. The LUPI framework

3. Illustration on Early Classification of Time Series

4. Conclusions
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Classification of time series

x(t)

T

Training set

…
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Standard classification of time series
n What is the class of the new time series xT?

x(t)

!

T
n Monitoring of consumer actions on a web site: will buy or   not

n Monitoring of a patient state: critical     or   not

n Prediction of daily electrical consumption: high         or   low
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Early classification of time series
n What is the class of the new incomplete time series xt?

x(t)

T

!

t
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New decision problems: early classification

n Data stream

n Classification task

n As early as possible

n A trade-off

– Classification performance  (better if t )

– Cost of delaying prediction  (lower if t )
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Early classification of time series
n What is the class of the new incomplete time series xt?

x(t)

T

!

t
<latexit sha1_base64="5YG29h7+2hyrRIZBIJHxfzfyHIM="></latexit>

X
<latexit sha1_base64="/ZMc8c6VS9elLyQl/0CRiBd5kAI="></latexit>

X ?
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Early classification of time series
n What is the class of the new incomplete time series xt?

x(t)

T

!

t

• A LUPI framework 
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Early classification and LUPI

n This is a LUPI setting

x(t)

T

!

t

• How to take advantage of this?



Collaborative learning 110

Early classification of time series

Online decision problem

n With option to defer at each time step

– If the expected future gain in performance overcomes

the cost of delaying decision

x(t)

T

!

t
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Early classification of time series

Online decision problem

n With option to defer at each time step

– If the expected future gain in performance overcomes

the cost of delaying decision

x(t)

T

!

t

Role of LU P I
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Decision making (1) 

n Given an incoming sequence

n And given:
– A miss-classification cost function

– A delaying decision cost function

n What is the optimal time to make a decision? 

Expected cost for a decision at time t
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Decision making (1) 

n Given an incoming sequence

n And given:
– A miss-classification cost function

– A delaying decision cost function

n What is the optimal time to make a decision? 

Expected cost for a decision at time t

Optimal time: 
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The principle
1. During training: 

– identify meaningful subsets of time sequences in the training set: ck

Clustering

…
 

Early Classification of Time Series 7

and if ⌧⇤ = 0 the decision is instantly requested, and bt⇤ = t denotes the trigger
time. The problem now is how to predict xt+⌧ from the knowledge of xt. Can the
LUPI framework help? Yes it can. Figure 1a provides an overview of the principle
in the case of a univariate time series. The “envelope” of its foreseeable futures can
be learned using the training dataset of complete time series S = {(xi

T , yi)}1im.
Importantly, the solution chosen to guess the “envelope” of the xt+⌧ will also

provide a way to estimate the terms Pt+⌧ (ŷ|y,xt+⌧ ) because a confusion matrix
can be learned on this envelope.

However, estimating the likely outcomes of the incoming time series using a
probabilistic forecasting model involves making assumptions (e.g. assuming that
the residuals distribution is Gaussian). Another way to facilitate the use of this
cost-based formalism is taken in (Dachraoui et al., 2015) which consists in learning
typical groups of time series from the training set, and then in predicting the likely
continuations of xt with regard to these groups (see Figure 1b).

0 t T

xt

xj

(a)

0 t T

xt

xj

(b)

Fig. 1: (a) Given an incomplete time series xt, the objective is to try to guess the
“envelope” of its foreseeable futures. Various methods can be used to do so. (b)
The incoming time series xt is viewed as a member of or close to some group(s)
of times series, and this is used to guess the “envelope” of its foreseeable futures.

Let us note gk the k-th typical groups of time series, Equation (1) then can be
re-expressed as:

f(xt) =
X

gk2G
Pt(gk|xt)

X

y2Y
Pt(y|gk)

X

ŷ2Y
Pt(ŷ|y, gk)Cm(ŷ|y) + Cd(t) (5)

And similarly, for Equation (3):

f⌧ (xt) =
X

gk2G
Pt(gk|xt)

X

y2Y
Pt(y|gk)

X

ŷ2Y
Pt+⌧ (ŷ|y, gk) Cm(ŷ|y) + Cd(t+ ⌧) (6)

Equation (6) can be easily interpreted by splitting it into two parts. The first
term Pt(gk|xt) estimates the posterior probabilities of each group given xt. This
term is estimated at time t and assumed to be constant over the time interval [t, t+
⌧ ]. The next term expresses the expectations of the cost of misclassification over
future possible continuations of xt. Namely, the second term Pt(y|gk) corresponds
to the prior probabilities of class values within each group estimated at time t.
And the third term Pt+⌧ (ŷ|y, gk) estimates the probabilities of misclassification
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The principle
1. During training: 

– identify meaningful subsets of time sequences in the training set: ck

– For each of these subsets ck, and for each time step t

• Estimate the confusion matrices

Clustering

…
 

– T classifiers are learnt

– And their confusion matrices                         are estimated on a test set   

…
 

0 … T…t
c1

ck
0 … T… 
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The principle
1. During training: 

– identify meaningful subsets of time sequences in the training set: ck

– For each of these subsets ck, and for each time step t

• Estimate the confusion matrices

2. Testing: For any new incomplete incoming sequence xt

– Identify the most likely subset: the closer class of shapes to xt

Clustering

…
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The principle
1. During training: 

– identify meaningful subsets of time sequences in the training set: ck

– For each of these subsets ck, and for each time step t

• Estimate the confusion matrices

2. Testing: For any new incomplete incoming sequence xt
– Identify the most likely subset: the closer shape to xt

– Compute the expected cost of decision for all future time steps

Clustering

…
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A non myopic decision process

n Optimal estimated time relative to current time t

0 T-t

t T

X

Continue
monitoring
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A non myopic decision process

n Optimal estimated time relative to current time t

t+1 T

X

0 T-ti

T-
(t+1)

0

Continue
monitoring
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A non myopic decision process

n Optimal estimated time relative to current time t

X

0 T-ti

T-
(t+1)

0

t+2 T

=
0

T-(t+2)

Take
decision
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Experiments: Controlled data
n Control of

– The time-dependent information provided: the slopes of the classes
– The shapes of time series within each class

– The noise level

xt = t⇥ slope⇥ class| {z }
information gain

+ xmax sin(!i ⇥ t + 'j)| {z }
sub shape within class

+ ⌘(t)|{z}
noise factor
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Results: effect of the noise level

Increasing the noise 

level increases the 

waiting time, and then 

it’s no longer worth it

12 Asma Dachraoui et al.

±b 0.02 0.05 0.07
C(t)

⇤(t) ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC

0.01

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 0.99
5.0 26.0 7.78 0.84 30.0 18.91 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

0.05

0.2 8.0 2.00 0.98 8.0 2.00 0.98 9.0 0.0 1.00
0.5 10.0 2.80 0.96 8.0 4.0 0.98 14.0 0.41 0.99
1.5 5.0 0.40 0.68 20.0 0.42 0.95 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

0.10

0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 2.40 0.93 10.0 0.0 0.95
1.5 4.0 0.0 0.67 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 4.0 0.0 0.56 48.0 1.79 0.74 4.0 0.22 0.56
15.0 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 4.0 0.0 0.52 11.0 11.38 0.55 4.0 0.0 0.52

Table 1. Experimental results in function of the waiting cost C(t) = {0.01, 0.05, 0.1}�
t, the noise level ⇤(t) and the trend parameter b.
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Results: effect of the waiting cost

Increasing the 
waiting cost
reduces the waiting 
time

Early Classification of Time Series 13

E�ect of the waiting cost

±b 0.02 0.05 0.07
C(t)

⇤(t) ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC

0.01

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 0.99
5.0 26.0 7.78 0.84 30.0 18.91 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

0.05

0.2 8.0 2.00 0.98 8.0 2.00 0.98 9.0 0.0 1.00
0.5 10.0 2.80 0.96 8.0 4.0 0.98 14.0 0.41 0.99
1.5 5.0 0.40 0.68 20.0 0.42 0.95 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

0.10

0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 2.40 0.93 10.0 0.0 0.95
1.5 4.0 0.0 0.67 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 4.0 0.0 0.56 48.0 1.79 0.74 4.0 0.22 0.56
15.0 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 4.0 0.0 0.52 11.0 11.38 0.55 4.0 0.0 0.52

Table 2. Experimental results in function of the waiting cost C(t) = {0.01, 0.05, 0.1}�
t, the noise level ⇤(t) and the trend parameter b.
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Results: effect of the difference between 
classes

Increase of the 
difference between 
classes

The performance 
increases (AUC)

The waiting time is not 
much changed in these 
experiments

14 Asma Dachraoui et al.

E�ect of the di�erence between the classes

±b 0.02 0.05 0.07
C(t)

⇤(t) ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC

0.01

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 0.99
5.0 26.0 7.78 0.84 30.0 18.91 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

0.05

0.2 8.0 2.00 0.98 8.0 2.00 0.98 9.0 0.0 1.00
0.5 10.0 2.80 0.96 8.0 4.0 0.98 14.0 0.41 0.99
1.5 5.0 0.40 0.68 20.0 0.42 0.95 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

0.10

0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 2.40 0.93 10.0 0.0 0.95
1.5 4.0 0.0 0.67 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 4.0 0.0 0.56 48.0 1.79 0.74 4.0 0.22 0.56
15.0 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 4.0 0.0 0.52 11.0 11.38 0.55 4.0 0.0 0.52

Table 3. Experimental results in function of the waiting cost C(t) = {0.01, 0.05, 0.1}�
t, the noise level ⇤(t) and the trend parameter b.

slope
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Are the decision times optimal?

...

B.1. Distribution of decision moments and post optimal decision moments for all

values of a
129

FIGURE B.2: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-g with

a 2 {0.003, 0.005, 0.008, 0.01, 0.02}

B.1. Distribution of decision moments and post optimal decision moments for all

values of a
129

FIGURE B.2: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-g with

a 2 {0.003, 0.005, 0.008, 0.01, 0.02}
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Outline

1. Ensemble methods: boosting

2. The LUPI framework

3. Illustration on Early Classification of Time Series

4. Conclusions
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n Having more information at training time than at testing time 
might be useful 

– This information is not directly available in the test examples

– But the learnt hypothesis (LUPI à la Vapnik) 

or the decision rule          (ECTS)                     can use it

A kind of  transfer learning
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Ensemble methods

for unsupervised learning?
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Collaborative methods for clustering

n What scenario could motivate collaborative clustering?
– Same descriptors but ≠ examples that you can not communicate

->     horizontal scenario

– Same examples but ≠ descriptors ->       vertical scenario

– Hybrid scenario 

n Goals
– Consensus clustering (vertical scenario)

– Look for improved local clusterings

n What kind of information can be exchanged?
– The number of clusters

– The centers or prototypes of the clusters

– Variance
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Collaborative methods for clustering

n Why should that work?      (bring better local clusterings) 

– More confidence in your results
• As if you had more information

– If disagreement ...
• Escape local minima

• Modifies your local bias

n In which circumstances, this should bring an improvement in performance? 

– Are we certain that collaborative clustering methods are better?
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Collaborative methods for clustering

n Assumption
– fortuitous and not meaningful solutions will cancel each other out

– the real structure in the data should emerge

[ A.P. Topchy, A.K. Jain, W.F. Punch, Combining multiple weak clusterings, in 
International Conference on Data Mining (ICDM), IEEE Computer Society, 2003, 
pp. 331–338. ] proves this if the clusterings are noisy versions of the “true” 
clustering
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Collaborative methods for clustering

n True state of the research

Largely an open problem still

Cornuéjols, A., Wemmert, C., Gançarski, P., & Bennani, Y. (2018). Collaborative clustering: 
Why, when, what and how. Information Fusion, 39, 81-95.
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Ingredients?

1. How to select “experts”?

– What is an expert?

– What is a good panel of experts?

2. How to weight them?

3. How to combine their results?
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