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B Here we investigate scenarios where the learning agent itself

manipulates the input distribution Py
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® How to change the input distribution Py?

® Why changing it?

® Why could it produce good learning performances?
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Boosting
® How to change the input distribution Py?

LUPI

® Why changing it?

® Why could it produce good learning performances?
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Outline

1. Ensemble methods: boosting

2. The LUPI framework

3. lllustration on Early Classification of Time Series

4. Conclusions
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® Find a better solution

by combining “weak” solutions

« Ensemble » methods
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Questions

1. Which agents ?

2. What kinds of communication between them if iterations?
3. How to combine their results?

4. How to ensure convergence ?

5. If convergence, towards what?
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Nothing new under the sun
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B « The wisdom of crowd »

[James Surowiecki, 2004]

— Estimate the weight of a bag in a local market

/787 participants

[Francis Galton?, 1906 (85 years old)]

Lanthropologue, explorateur, géographe, inventeur, météorologue, proto-généticien,
psychométricien et statisticien Collaborative learning 10



B « The wisdom of crowd »

[James Surowiecki, 2004]

— Estimate the weight of a bag in a local market
/787 participants
* Le best estimation = more than 1% error

e Mean of the estimates =lessthan 0.1% error

[Francis Galton?, 1906 (85 years old)]

Lanthropologist, explorer, geographer, inventor, meteorologist, proto-geneticist,
psychometrician and statistician Collaborative learning 11



B « Weak experts »

“Noisy” Estimations .
—Unbiased Simple combination:
-S trical i

ymmetrica the mean
—Independent

Collaborative learning 12



General framework: learning

Apprentissage : h,

Apprentissage : h,

\b‘ Apprentissage : hj }

Echantillon
d'apprentissage

Apprentissage : hy,

H = combine(hy, h,, ..., hy)

Collaborative learning 13



Boosting
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Given X an input space with 10 dimensions
Independent descriptors with gaussian distribution gaussienne

The target concept is defined by:

u = I S1 Ej=1,10x? > XIZO(O’S)
-1 sinon

With:  x.,0,5) = 9,34

2000 training examples (1000+;1000-)
10000 test examples

Learn decision trees
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0,5 1 Arbre a un noeud

0,4 -

0,3 + Arbre a 400 noeuds

0,1 + Arbres a un nceud avec boosting

0,0 | | | |
0 100 200 300 400
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Test error rate on 27 benchmark problems
X-axis: boosting; y-axis: base-line (C4.5)
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®# What is the best linear separator?
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m Error rate = 5/20=0.25
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m Error rate (hy) = 5/20 = 0.25

What if I could combine it with other separators?

And with many others/
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What if I could combine it with other linear separators?
Or with many others/

For instance using a weighted vote :
[
H(x) = sign Z a; hi(x)
i=1
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O T T S S & e T

N DU S D B T.

hs hq ho  hs hy

H(x) = sign{ 0.549 hy(x) + 0.347 h,(x) +
0.310 hs(x) + 0.406 hy(x) + 0.503 hs(x) }
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O A S ST o

I S S

hs hq ho  hs hy

H(x) =sign{ 0.549 h;(x) + 0.347 h,(x) + 0.310 h3(x) + 0.406 hy(x)
+ 0.503 hg(x) }

m How to find that kind of combination?

The boosting algorithm
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The boosting algorithm
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B « Strong » learning (PAC learning)

— A function class Fis learnable (in a strong sense) if there exists a learning
algorithm A which, for all distributions Dy on X, and for all functions fin F is
such that:

Ve, 0 :dm(e,0) st. Prob|R(hs) > <] < 6

B« vy weak » learning

— A function class Fis learnable (in a weak sense) if , for y > 0, there exists a
learning algorithm A which, for all distributions Dy on X, and for all functions f
in F is such that:

Vo :3dm(d) st. Prob|R(hs) >1/2—~] < §

B Are these two function classes different?
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® A historical recipe

—
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® A historical recipe

Sml STTLQ
' v
hq ho

Collaborative learning 27



® A historical recipe

Sm
A
( |
Sm
A
( |
| I I |
| [ l
Sml Sm2 Sm3
v v v
hq ho hs
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® How to generate uncorrelated weak learners?

® How to combine their predictions ?
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®m boosting = a general method that allows the conversion of

weak learning algorithms into a strong learning algorithm

® More precisely:

— Given a “weak” learning algorithm which can always produce an

hypothesis of error rate <1/2-y

— A boosting algorithm can build (in a proven way) a decision rule

(hypothesis) of error rate < ¢
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learning

Apprentissage : h,

? /‘ Apprentissage : h, )
\b‘ Apprentissage : hj }

Echantillon
d'apprentissage

H = combine(hy, h,, ..., hy)

Apprentissage : hy,
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How to select the weak learners at each step?

v Focus on the “hardest” examples

(Those on which the previous learners have been the less
efficient)

How to combine the weak prediction rules into a single one?

v Use a (weighted) vote

Collaborative learning 32



® Modifiy the learning sample after each learning iteration
— By lowering the weight of the correctly labeled examples

— By Increasing --------------------- incorrectly ---------------

— By how much?
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B Given the training set S ={(xy,y¥1),..., (X, Vm)}

m y,e{—1,+1} being the label of example x;e S

m Forallt=1,..,T:
Compute the current distribution D, over{l,...,m}
Find a weak hypothesis
h,:S—{-1,+1}

with small error &g.0n D;:

e, =Pr, [, (x) = y,]

m Return the final hypothesis H
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General scheme: prediction
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sgn

i a, . h(x)

[ —
~
]
o
| I

> Hfinale(x)

—_— h0 j

m  How to compute D,,, from D,?

>

m  How to compute the weight o, ?
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m Define D;: D, (i) = —

Given D,and h;:

Dt . e ™ ifyl. = ht(xi)
Tz, e ity = h(x)

S

5

rexp(—a, -y, " h,(x;))

N

t

where: Z,= normalization constant

o =lln(1_8f)>o

2 £

14

® Final hypothesis:
H g () = sgn( S ah <x>)
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hl

m Error rate = 5/20=0.25

1 1 —¢ 1 0.75
N — S =2 —0.54
b= g T 5 Mgy = Vot
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= New weights of the training examples

+ + + + F e e - - - + - - - - - * + +
T
hl
c I N (z) e ¢ e 0949 0.577
= Examples correctly pp(r) = — = = —
labeled Z Z Z
( ) e eV-549 1.732
T —m— — — e
= Examples incorrectly bm Z Z Z

labeled
15 x 0.577 Hhx 1.732 8.6060 + 8.660 17.32
g = 15X 0577) + (5x1.732) + - — 0.866
20 20 20
py(z) = 0.666 = 2/3 Pm(x) = 2
—--laborative learning 40



®= Nouvelle pondération des exemples d'apprentissage

2/3 2/3 2 2/3 2
R S S . . .

NE

hl

+ +

= Examples correctly labeled
1 1 1

2(1—¢) 2x0.75 1.5
= Examples incorrectly labeled

1| 1
2 2x0.25

pi(z) = =

1

Z =2¢el2(1—¢)l/?
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R . . T S . -

hq ho
| C10x2/3 1
Error rate: 2= = g
1. 1-e 1. 2/3
= — 1 = — 1 - — . 4
o n - 5 n 1/3 0.347
Sous-pondération | |
' s = = = - =0.75

des bien classés py(x) 215 " ax2/3 1
Sur-pondération | | 5
des mal classés : m = — = =—=1.5

Pal®) = 5 = 913 T 2
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2/3 2/3 2 2/3 2
R . S, . . . -
T
hi
®  Sous-pondération | ! 3

des bien classés:  pp(z) = Y00 —ox23 - 1° 0.75

®  Sur-pondération

1 1 3
des mal classés : m = — = =—=1.5
esmal classés:  pm(®) = 57 = 55773 = 2
1 1/2 1.5 1 1.5
+ + + + + - - - % . - - - = %+ <+ <+
+T- -T+
hq ho
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1 1/2 1.5 1 1.5

4 + + + - - - - -+ + - - - = = * + +
+ T- - T+ +T-
}2.1 }7,2 12.3
, (bx1/2)+(3x15) 7
T d . — pr— p— .
aux derreur £3 50 50 0.35
1 1—52 0.65
= —1 1 — = 0.310
T, T 2035

Sous-pondération
1 1

des bien classés : = = = = 0.769
| ) = ) T ax065 13

Sur-pondération . ! !

des mal classés:  p,,(x) = = = — = 1.429

2¢e 2 x 0.35 0.7
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1 1/2 1.5 1 1.5

+  + + + + - - - = -+ + - - - - - * + <+
+ T - - T + + T -
h.l hQ }13
®  Sous-pondération
des bien classés : (x) ! ! ! 0.769
. €Tr) — p— = — = .
b 2(1—¢) 2x065 13
®  Sur-pondération
des mal classés () ! ! ! 1.429
; m\T) = — = — = 1.
& 2c  2x035 0.7
0.769 0.714 1.154 0.769 2.144
+ + + + + - - - = -+ + - - - - = % + +
+ T - - T + + T -
h-l }12 h3
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Toy example
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Step 1

hy Dy
o +
D @ + 4+
_— . -
_ + _
€ =0.30
ot=0.42
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Step 2

€=0.21
0,=0.65
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Step 3

€3=0.14
03=0.92
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Final Hypothesis

H
final

=sign}{ 0.42

+ 0.65

+ 0.92
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illustration du boosting
ID density sugar ripe
1 0.697 0.460 true
2 0.774 0.376 true
3 0.634 0.264 true
4 0.608 0.318 true
5 0.556 0.215 true
6 0.403 0.237 true
7 0.481 0.149 true
8 0.437 0.211 true
9 0.666 0.091 false
10 0.243 0.267 false
11 0.245 0.057 false
12 0.343 0.099 false
13 0.639 0.161 false
14 0.657 0.198 false
15 0.360 0.370 false
16 0.593 0.042 false
17 0.719 0.103 false

sugar

0.6 |-

02

+ ripe
— unripe

-+

0

|
0.2

| | |
0.4 0.6 0.8

density

>

Apprentissage par

arbre de décisions
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sugar

0.6

0.2

illustration

boosting

+ ripe + ripe + ripe
— unripe 0.6 | — unripe 0.6 [| — unripe
+ — — +
©
500.4 500.4
_ + 3 _ + = +
+ 2 + 2 = +
- + - |+ - +
+ +
* - 02 + 02 =
B |+ + -
1 _ | _I | > | _ | _I | 1 — 1 _I | >
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
density density density

(c) 11 base learners.

(a) 3 base learners. (b) 5 base learners.

Here “base learner” = decision stump

+ ripe
— unripe

sugar
[=]
N
T

2 02

Arbre de décisions

1 i
0 0.2 0.4 0.6 0.8
density

From [Zhi-Hua ZHOU « Machine Learning ». Springer, 2021]
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Sepal width

Boosting sur jeu de donnees « Iris

4.0

35

3.0

25

2.0

°
°
.
.
.
°
° e
. LN Y
oo o °
) ) e o o . .
o0 .
. o0 . . . .
) e e . .
LI Y LI I} . L} . . ° e
. oo oo 0 . .
° . . .
. . . .
° oo
. e .
° °
° . ° .
. .
.
T T T T T T
4.5 5.0 55 6.0 6.5 7.0
Sepal length

Effet du nombre d’itérations

Sepal width

Sepal width

» (Setosa vs. Versicolor)

4.5

AdaBoost for Iris data, maxdepth=1,B =1

AdaBoost for Iris data, maxdepth =1, B =10

5.0 55

Sepal length

AdaBoost for Iris data, maxdepth = 1, B =50
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.o g
« . &
. .
T T
65 70

Sepal length

AdaBoost for Iris data, maxdepth = 1, B = 100

Sepal width

Sepal length

Sepal width

4.0

@
o

«
o

25

20

Sepal length

AdaBoost for Iris data, maxdepth = 1, B = 500

Sepal length
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Sepal width

Boosting sur jeu de données « Iris » (Versicolor vs. Virginica)

3.5

3.0

25

2.0

Effet de la profondeur des arbres | -
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35

3.0

Sepal width

25

o

5.0

AdaBoost for Iris data, maxdepth = 2, B = 500

55 6.0 6.5 7.0 75 8.0

Sepal length

AdaBoost for Iris data, maxdepth = 4, B = 500

Sepal length

Sepal width

Sepal width

for Iris data,

=3,B =500

Sepal length

for Iris data,

=5,B =500

Sepal length
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Theoretical analysis of boosting
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Derivation of the boosting algorithm
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® Another derivation of boosting

— By choosing a surrogate loss function with an ’

exponential form

Soit : HT_1 = 1 hl (X) “+ hg (X) + ... t+ar_q hT_l(X) 5 0 05 1 15
On veut ajouter : ar hp(x) ((h(x),y) = o—Y-h(x)
REmp(HT) _ Z oY [HT—l(xi)+OéT hT(Xi)]
1=1
— Z e~ Yi Hr—1(xi) | g—aryi hr(x:)
1=1

_ Z Wr_1(x;) - e T Vi ho(xi)
1=1

ORgmp(Hr)

—& o .
x e 1—ep +e ET 1 1l —ep
Oa (H/—Z —— —_— o = — ]Qg
poids des exemples poids des exemples 2 ET
correctement prédits incorrectement prédits
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learning

Apprentissage : h,

? /‘ Apprentissage : h, }
\b‘ Apprentissage : hj }

Echantillon
d'apprentissage

H = combine(hy, h,, ..., hy)

Apprentissage : hy,
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® [terative construction of the redescription space
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Bounds on training error
and

On generalization error
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the training error

e [ heorem:
o write €; as 1/2 — v, [ v¢ = "edge” ]
o then

training error(Hgpa) < H [2 \/et(l — et)]

t

= J]y1-472
t
(o)
t

T

IA

e so: ifVEt: v >~y >0
then training error(Hgpal) < =27
e AdaBoost is adaptive:
» does not need to know ~ or T a priori
o can exploit v; > v
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Evolution of the error curves

Percent error

25

15

10

Rounds of boosting

= '\‘\\
P N N P S S N P ‘:“Pg_‘
1 10 100 1000
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C4.5 test error

Iror

— . :

v

test

20 40 60 80 100 0 C\Ltrain

# ot rounds @) ;foof 1‘0und150(()ﬂ o

m The test error does not increase, even after 1000 steps (2.10°
test nodes !!)

— Boosting C4.5 on the « letter » dataset
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Arguments to explain

the properties of boosting

(the unreasonable power of boosting)
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® |dea:

— The test error is a rough indicator of the prediction performance
— One should also take into account the confidence of the prediction

— |t is possible to estimate this confidence by the margin

= weights of the classifiers with correct predictions

(on the training examples)

- weights of the classifiers with incorrect predictions

high conf. ‘ high conf.
m(forrect low conf. coxirect
I
|<—H~ - H . —>|
final final
—1 incorrect 0 correct +1
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E 1.0:
g
2
'q';) 0.5:
test b=
: E
o . \train s
10 100 1000 4 0.5 .
# of rounds (7)) margin
# rounds
5 100 | 1000
train error 0.0 0.0 0.0
test error 8.4 3.3 3.1

% margins <05 | 7.7 | 0.0 0.0
minimum margin | 0.14 | 0.52 | 0.55
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m At each step, AdaBoost would put more weight on the
examples x; with small margin while continuing to improve the

margin on the other examples

® The final hypothesis would be a complex one but with a large
margin

(and so with generalization error close to the training one)
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The argument of the margin maximization

—

Margin =y - f(x)

Histogram of functional margin for ensemble just after achieving zero training error
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The argument of the margin maximization

= a

—
|~

-
»

-

— ,
Margin

No examples
with small
margins!!

Even after zero training error the margin of examples increases.
This is one reason that the generalization error may continue decreasing.
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RRéel < REmp + O (\/

T - dy

)
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e with high probability, V6 > 0 :

generalization error < Pr[margin < 6] + O ( 9

)

(Pr[] = empirical probability)
» bound depends on
m = # training examples
d = "complexity” of weak classifiers
entire distribution of margins of training examples
o Pr[margin < 6] — 0 exponentially fast (in T) if
(error of hy on D;) < 1/2 — 6 (Vt)
» so: if weak learning assumption holds, then all examples
will quickly have “large” margins
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AdaBoost produit des hypothéses bien plus diverses
que les autres méthodes d'ensemble [Dietterich, 2000] :

04 T T T T 04
035 4 035
03 | 4 03
025 + 4 025 +
.
: :
g 02} ; 02}
0.15 E 015
01 4 01
0.05 + 4 0.05 +
N
0 3 3 1 1 o 1 1 1 1
-0.2 0 02 04 0.6 08 1 -0.2 0 02 04 0.6 08 1
Kappa Kappa

Poursuivre sur cette piste :

@ méthode favorisant la diversité [Melville and Mooney, 2004],
@ mesures de la diversité [Kuncheva and Whitaker, 2003],
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Assessment
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Low computational cost

Easy to use

A single parameter: the number of steps: T

Can be (and has been) applied in very numerous domains

No overfitting (in general) because of the margin maximization

Can be adapted to regression problems h,: X »> R;
the class is defined by the sign of hi(x) and the confidence by | h¢(x) |

Can be adapted to the multi-class case where y; € {1,..,c}

Allows one to uncover outliers
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®m Reminder: No-free-lunch-theorem

B Boosting is NOT recommended when
— There is not enough data
— The set of weak learners is too limited
— The weak learners are too stable (but more true for bagging)

— The weak learners are too strong!

* They can overfit

— Noise in the data (but ...)
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Applications using boosting
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real-time face detection

Images 384 x 288 (grey level)
Detect visages at every scale

In real time (15 images / s) on a smartphone!!

Problems

— |dentify the relevant descriptors
— Compute them fastly

— Use (combine) them in an very efficient way

e Llow FN rate

e Low FP rate
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==

-
A B
C D

Figure 1. Example rectangle features shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B). Figure
(C) shows a three-rectangle feature, and (D) a four-rectangle feature.

®m More than 3 000 000 000!

— All scales

— Thresholds to be defined
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® Using AdaBoost

— Descriptors are found as decision stumps

— Le boosting select them

* 200 in this study

Still computationally

too costly: ~0.7s

correct detection rate

@
-
5

07F
085

0.6
0

ROC curve for 200 feature classifier

1
0.5

3.5 4
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. ® [ 1
Eliminate the negative

as soon as possible

Further

Processing

Reject Sub-window

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.
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Gradient Tree Boosting
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For classification or regression
Using decision trees

The successive trees are found (and weighted) using boosting

In general: more powerful than Random Forests

— E.g. the AldIindustry challenge (2021)

* Regression for predictive maintenance

* Won the challenge before deep NNs and Random Forests
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—
() PY Classifier 2\\I e .

Increased

® .. N .. Weigl /./.
[ @ | . Weak L -.—4—'

Original dataset

® ) . Weight o ™Y .
@ A Increased <@ \ ="
Weak ——_ @ '@ | \'. —> [
Classifier 2 . ® .
_> . |
L LR N ]
AUC for ensemble model

Weak

Classifier T .. .. :
h \ \

Final classifier is
a combination of
weak classifiers

AUC for each classifier

https://datascience.eu/fr/apprentissage-automatique/gradient-boosting-ce-que-vous-devez-savoir/
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Other algorithms
(Xgboost or Tree Boosting)
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®m Characteristics
— Gradient Tree Boosting
— Optimized to be very efficient

— Lots of parameters (good and bad)
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B Modifying the input distribution during learning

yields a richer diversity of (weak) learners

B Boosting makes the learners dependent upon each other

Better than bagging
— All are used in the final prediction

— In co-learning, we will see another method of changing the input

distribution, using only the final classifiers to make the prediction
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http://www.boosting.org/papers/MeiRae03.pdf

Outline

1. Ensemble methods: boosting

2. | The LUPI framework

3. lllustration on Early Classification of Time Series

4. Conclusions
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L U P /

Inspired by learning at school

®m The goal is to learn a function h:xe X — Y € {_17 _|_1}

B Suppose that at learning time there is more available information

than at test time /

St = {(X’ia X;Fa yz)}1§1§m
| X/ )

B Can we then improve the generalization performance

wrt. the one obtained with S only?

V. Vapnik and A. Vashist (2009) “A new learning paradigm: Learning using privileged information”.
Neural Networks, vol. 22, no. 5, pp. 544-557, 2009
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L U P /

lllustration in computer vision

X . image T . image

2™ 1 attributes

black: yes jﬂféﬂﬁ’zﬁﬁg o Sambal crab, cah
white: yes , QQZEQZ%ZD kangkung and deep
brown: no e 1 | || |[1TRE fried gourami fish in
patches: yes the Sundanese tra-
water: no ditional restaurant.
slow: yes

V. Sharmanska, N. Quadrianto, and Ch. Lamper (2014) “Learning to transfer privileged information™.
ArXiv preprint arXiv:1410.0389, 2014
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real risk empirical
risk

m Hfinite, realisable case

Vhe H,W6 <1: P™|Rpser(h) < Rpmp(h) +

log | H| + log 4
og | +0g5]>15
m

m H finite, non realisable case /

log |H| + log +
Rrea(h) < Rem(h) - \/ [H] + log ;

Vhe H,¥0<1: P™

2m

]>15

instead of 600.10° training examples, same performance wit|
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m “At the core of our work lies the insight that privileged information

allows us to distinguish between easy and hard examples in the
training set.

B Assuming that examples that are easy or hard with respect to the
privileged information will also be easy or hard with respect to the

original data, we enable information transfer from the privileged to
the original data modality.

m More specifically, we first define and identify which samples are easy
and which are hard for the classification task, and incorporate the
privileged information into the sample weights that encodes its

easiness or hardness.” (more weight on the easy examples)
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® The classical optimization problem

min%(w,w) —I—C’;@

s.t. y;[{w, ;) +b] > 1 =&,

- 1

is changed into min g [(w,w) + (", W) +C

Intuition:

Identify the difficult examples (outliers)

Thus coming back to the realizable case

and obtain convergence rates of 1/n instead of 1/sqrt(n)

S.t. yi[<w,$i> + b] >1— [<W*7x;<
[(w* z]) +0"1 >0, i=1,...,m,

1=1,...,m.

m

Z [(w*, z*) + b*]

) + b, i=1,...,m,

C and y are hyperparameters
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Suppose that in X”, there exists a good hypothesis space H’ with very limited
capacity (otherwise, why would the teacher be interested?), then the student
is expected to identify easily a good hypothesis b’ : X’ — ). And the whole

problem is thus to “project” this hypothesis in X — Y
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Can you imagine other applications where privileged information

could be available at training time (and not at testing time)?
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Outline

1. Ensemble methods: boosting

2. The LUPI framework

3. | lllustration on Early Classification of Time Series

4. Conclusions
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Training set

ing 103
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Standard

B What is the class of the new time series x;?

x(t) 4

® Monitoring of consumer actions on a web site: will buy or not

m Monitoring of a patient state: critical or not

®m Prediction of daily electrical consumption: high or low
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Early

B What is the class of the new incomplete time series x,?

x(t) 4
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early classification

Data stream
Classification task
As early as possible

A trade-off
— Classification performance (bettery

— Cost of delaying prediction (lower if t
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Early

B Whatis the class of the new incomplete time series x,?

x(t)

| | ; T
X \ J
|

*
X Collaborative learning 107



Early

B What is the class of the new incomplete time series x,?

e A LUPI framework
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® Thisis a LUPI setting

* How to take advantage of this?
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Online decision problem

® With option to defer at each time step

— |If the expected future gain in performance overcomes

the cost of delaying decision

=
—~

=~
N—
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Online decision problem

® With option to defer at each time step

— |If the expected future gain in performance overcomes

the cost of delaying decision

=
—~

=~
N—
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® Given anincoming sequence x; = (xq,Ta,...,T¢) where z; € R
® And given:

— A miss-classification cost function Ci(gly) : Y xY — R

— Adelaying decision cost function C(t):N— R

® What is the optimal time to make a decision?

Expected cost for a decision at time t

fxe) = > Plylx) Y P(ily,x:) Ci(gly) + C(t)

yey yey

-
expected miss-classification cost given x;

7
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® Given anincoming sequence x; = (xq,Ta,...,T¢) where z; € R
® And given:

— A miss-classification cost function

Ce(gly) : Y xY —R
— A delaying decision cost function
C(t):N— R

® What is the optimal time to make a decision?

Expected cost for a decision at time t

fxe) = > Plylx) Y P(ily,x:) Ci(gly) + C(t)

yey yey

-
expected miss-classification cost given x;

7

Optimal time: t* = ArgMin f(x;)
te{l,....T} Collaborative learning 113



1. During training:

—_ identify meaningful subsets of time sequences in the training set: ¢,

P(y|x;) — P(y|ck) QM

Fig. 1: (a) Given an incomplete time series x¢, the objective is to try to guess the
“envelope” of its foreseeable futures. Various methods can be used to do so. (b)
The incoming time series x: is viewed as a member of or close to some group(s)
of times series, and this is used to guess the “envelope” of its foreseeable futures.
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1. During training:
— identify meaningful subsets of time sequences in the training set: ¢,

— For each of these subsets c,, and for each time step t

e Estimate the confusion matrices
Clustering @

— Tclassifiers are learnt h,(x;) : X} — )

— And their confusion matrices P;(y|y, ¢;) are estimated on a test set
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The principle

During training:

identify meaningful subsets of time sequences in the training set: ¢,

For each of these subsets c,, and for each time step t

Estimate the confusion matrices

Pi(gly. <1 o
Clustering @

2. Testing: For any new incomplete incoming sequence x,

— ldentify the most likely subset: the closer class of shapes to x;
—_—>
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During training:

identify meaningful subsets of time sequences in the training set: ¢,

For each of these subsets ¢;, and for each time step t @@

Estimate the confusion matrices
Pi(yly, ck)

Clustering @

2. Testing: For any new incomplete incoming sequence x;

— ldentify the most likely subset: the closer shape to x;

— Compute the expected cost of decision for all future time steps

> Pleklxi) Y Pyler) D P (@ly, k) C(gly) + C(t+7)

cr€C yey yey
~ WV
expected miss-classification cost given x;

S
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non myopic

m Optimal estimated time relative to currenttimet 7" = ArgMin [, (x;)
7€{0,....T—t}
X 4 .
t T
f’r(xt)A
W Continue
> L

monitoring

0 T Tt
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non myopic

m Optimal estimated time relative to currenttimet 7" = ArgMin [, (x;)
7€{0,....T—t}
X A /’—&\
t+1
fT(Xt+1)
Continue
T\ — L
monitoring
0 "z
(t+1)
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non myopic

m Optimal estimated time relative to currenttimet 7" = ArgMin [, (x;)
7€{0,....,T—t}

>

X 4

FEVRY -
frixe) w2 T
fT(Xt+2)
Take
(L+1) decision
™= T-(t42)
0
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m  Control of
— The time-dependent information provided: the slopes of the classes
— The shapes of time series within each class

— The noise level

x¢ = U xslope X class + Xmao sin(w; Xt + ;) +  7(t)

o

hd ~N~
information gain sub shape within class noise factor

A {wz% ,p=0,m=0.01,y=+1}

Ap i {w =281 »—=0,m=001,y=+1}

C{w=2 . 0o=0 m=0,y==+1} By {w=1%30 »—0,m=-001,y=—1}

By:{w=22 »=0,m=-001,y=—1}
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noise level

+b 0.02 0.05 0.07
e(t) T  o(r*) AUC T  o(r*) AUC T o(r*) AUC

0.2 | 9.01 240 099 | 9.0
0.5 |13.0! 440 0.98 |13.0
001 | 1.5 |24.0! 10.02 098 |32.0
5.0 [26.0; 7.78 0.84 |30.0

240 099 [10.01 0.0  1.00
440 098 [15.0! 0.18  1.00
2.56  1.00 |30.0!12.79  0.99
18.91 0.87 |30.0'19.14 0.88
10.0 38.0! 18.89 0.70 |48.01 1.79  0.74 46.0i 527  0.75
15.0 |23.01 1588 0.61 |32.0113.88 0.64 [29.0117.80 0.62
/ 20.0 | 7.0¥ 899 052 |11.0V11.38 055 | 4.0V 122 052

pd

Increasing the noise 02 | 80 200 098 |80 200 098 |90 00  1.00
05 |10.0 280 096 | 80 40 098 |140 041  0.99

0.05 1.5 5.0 0.40 0.68 | 20.0 0.42 0.95 | 14.0 4.80 0.88

level increases the 50 | 80 387 068 | 60 136 064 | 50 050  0.65
100 | 40 029 056 | 40 025 056 | 40 034 057
waiting time, and then 15.0 | 40 0.0 054 | 40 025 056 | 40 0.0 0.55

20.0 | 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

., .
it’s no longer worth it 02 | 60 080 095 | 7.0 160 094 | 80 040  0.96

0.5 6.0 0.80 0.84 | 9.0 240 0.93 |10.0 0.0 0.95
0.10 1.5 4.0 0.0 0.67 | 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 | 40 0.05 0.64 | 40 0.11 0.64
10.0 | 4.0 0.0 0.56 |48.0 1.79 0.74 | 40 0.22 0.56
15.0 | 4.0 0.0 0.55 4.0 0.0 0.55 | 4.0 0.0 0.55
20.0 | 4.0 0.0 0.52 |11.0 11.38 0.55 | 4.0 0.0 0.52

Table 1. Experimental results in function of the waiting cost C'(t) = {0.01,0.05,0.1} x
t, the noise level () and the trend parameter b.
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waiting cost

+b 0.02 0.05 0.07
e(t) 77 o(t*) AUC 77 o(r*) AUC 77  o(r*) AUC

0.2 9.0 240 0.99 9.0 240 0.99 [10.0 0.0 1.00
0.5 |13.0 4.40 0.98 | 13.0 4.40 0.98 [15.0 0.18 1.00
0.01 15 |24.0 10.02 098 |32.0 2.56 1.00 |30.0 12.79  0.99
5.0 |26.0 7.78 0.84 |30.0 1891 0.87 [30.0 19.14 0.88
10.0 | 38.0 18.89 0.70 |48.0 1.79 0.74 |46.0 5.27 0.75
15.0 | 23.0 1588 0.61 |32.0 13.88 0.64 |[29.0 17.80  0.62
200 | 7.0 899 0.52 |11.0 11.38 0.55 | 4.0 1.22 0.52

Increasing the 02 | 80 200 098 | 80 200 098 | 9.0 00  1.00
. 05 | 100 280 096 | 80 40 098 |14.0 041  0.99
walting cost 0.05 1.5 | 50 040 0.68 |20.0 0.42 095 |14.0 4.80 0.88
50 | 80 3.87 068 | 6.0 136 0.64 | 5.0 050 0.65

reduces the waiting 100 | 40 029 056 | 40 025 056 | 4.0 0.34  0.57
150 | 40 00 054 | 40 025 056 | 4.0 00  0.55

time 20.0 | 40 00 052 | 40 00 052 |40 00  0.52

0.2 6.0 0.80 0.95 7.0 1.60 094 | 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 240 0.93 [10.0 0.0 0.95
0.10 1.5 4.0 0.0 0.67 5.0 043 0.68 | 6.0 0.80 0.74
5.0 4.0  0.07 0.64 4.0 0.05 0.64 | 4.0 0.11 0.64
v 10.0 | 4.0 0.0 0.56 |48.0 1.79 0.74 | 4.0 0.22 0.56
15.0 | 4.0 0.0 0.55 4.0 0.0 0.55 | 4.0 0.0 0.55
20.0 | 4.0 0.0 0.52 | 11.0 11.38 0.55 | 4.0 0.0 0.52

Table 2. Experimental results in function of the waiting cost C'(¢) = {0.01,0.05,0.1} x
t, the noise level £(¢) and the trend parameter b.
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difference between
classes slope

+b 0.02 0.05 0.07
e(t) 77  o(r*) AUC T o(t*) AUC 77 o(r*) AUC

>
7

Increase of the

i 0.2 9.0  2.40 0.99 | 9.0 240 0.99 | 10.0 0.0 1.00
dlfference between 0.5 | 13.0 4.40 0.98 | 13.0 4.40 0.98 |15.0 0.18 1.00

0.01 1.5 |24.0 10.02 098 |320 2.56 1.00 |30.0 12.79  0.99
5.0 [26.0 7.78 0.84 |30.0 1891 0.87 |30.0 19.14 0.88
10.0 | 38.0 18.89 0.70 |48.0 1.79 0.74 | 46.0 5.27 0.75
15.0 | 23.0 1588 0.61 |32.0 13.88 0.64 |29.0 17.80 0.62
200 | 7.0 899 0.52 | 11.0 11.38 0.55 4.0 1.22 0.52

classes

The performance 02 |80 200 098 |80 200 098 |90 00 100

0.5 |10.0 2.80 0.96 | 8.0 4.0 0.98 | 14.0 041 0.99
0.05 1.5 5.0 040 0.68 | 20.0 0.42 0.95 | 14.0 4.80 0.88
5.0 8.0  3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 | 4.0 0.29 0.56 4.0 0.25 0.56 | 4.0 0.34 0.57
15.0 | 4.0 0.0 0.54 | 40 0.25 0.56 | 4.0 0.0 0.55

i 0.2 6.0 0.80 0.95 7.0 1.60 094 | 8.0 0.40 0.96
mUCh ChangEd n these 0.5 6.0 0.80 0.84 | 9.0 2.40 0.93 |10.0 0.0 0.95

0.10 1.5 4.0 0.0 0.67 | 5.0 0.43 0.68 | 6.0 0.80 0.74
5.0 4.0  0.07 0.64 | 4.0 0.05 0.64 | 4.0 0.11 0.64
10.0 | 4.0 0.0 0.56 | 48.0 1.79 0.74 | 40 0.22 0.56
15.0 | 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 | 4.0 0.0 0.52 | 11.0 11.38 0.55 4.0 0.0 0.52

increases (AUC)

experiments

Table 3. Experimental results in function of the waiting cost C(t) = {0.01,0.05,0.1} x
t, the noise level £(t) and the trend parameter b.

Collaborative learning 124



0.003

i
[

a=

0.005

a4
[

a=

0.008

:
[

a=

a=0.01

:
[

a=0.02

p
[

15000
12500
10000
7500 A
5000 1
2500 4

15000 -
12500
10000 -
7500 1
5000 A

2500 1

15000
12500
10000
7500 1
5000 1
2500 A

15000 -
12500
10000 -
7500 A
5000 A

2500 1

Distribution of decision moments
of the Economy-y method

04
0.0 0.2 0.4 0.6 0.8 1.0
Earliness

oA
0.0 0.2 0.4 0.6 0.8 1.0
Earliness

0.0 0.2 0.4 0.6 0.8 1.0
Earliness

0.0 0.2 0.4 0.6 0.8 1.0
Earliness

0.0 0.2 0.4 0.6 0.8 1.0
Earliness

Distribution of the post optimal

moments of the Economy-y method

15000

12500 A
10000 A
7500 A
5000 -
2500 A

04

0.

15000

o 0.2 0.4 0.6 0.8 1.0
Earliness

12500 A
10000
7500
5000 A
2500 1

0

15000
12500 A
10000 A
7500 1
5000
2500 A

.0 0.2 0.4 0.6 0.8 1.0

Earliness

.0 0.2 0.4 0.6 0.8 1.0

Earliness

15000
12500 A
10000
7500 A
5000 A

2500 1

.0 0.2 0.4 0.6 0.8 10

Earliness

.0 0.2 0.4 0.6 0.8 1.0

Earliness

FIGURE B.2: The distribution of decision moments (left column)
and post optimal moments (right column) for ECONOMY-y with
« € {0.003,0.005,0.008,0.01,0.02}
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Outline

1. Ensemble methods: boosting

2. The LUPI framework

3. lllustration on Early Classification of Time Series

A.| Conclusions

Collaborative learning 126



® Having more information at training time than at testing time

might be useful

— This information is not directly available in the test examples

— But the learnt hypothesis  (LUPI a la Vapnik)

or the decision rule (ECTS) can use it

A kind of transfer learning
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Ensemble methods

for unsupervised learning?
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for clustering

® What scenario could motivate collaborative clustering?

— Same descriptors but # examples that you can not communicate

->  horizontal scenario

— Same examples but # descriptors ->  vertical scenario

— Hybrid scenario

®m Goals

— Consensus clustering (vertical scenario)

— Look for improved local clusterings

® What kind of information can be exchanged?
— The number of clusters
— The centers or prototypes of the clusters

— Variance
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for clustering

® Why should that work?  (bring better local clusterings)

— More confidence in your results

e Asif you had more information

— If disagreement ...
e Escape local minima

* Modifies your local bias

® In which circumstances, this should bring an improvement in performance?

— Are we certain that collaborative clustering methods are better?
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for clustering

B Assumption

— fortuitous and not meaningful solutions will cancel each other out

— the real structure in the data should emerge

[ A.P. Topchy, A.K. Jain, W.F. Punch, Combining multiple weak clusterings, in
International Conference on Data Mining (ICDM), IEEE Computer Society, 2003,
pp. 331-338. ] proves this if the clusterings are noisy versions of the “true”

clustering
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for clustering

m True state of the research

Largely an open problem still

Cornuéjols, A., Wemmert, C., Gancarski, P., & Bennani, Y. (2018). Collaborative clustering:
Why, when, what and how. Information Fusion, 39, 81-95.
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How to select “experts”?

— What is an expert?

— What is a good panel of experts?

How to weight them?

How to combine their results?
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