
Antoine Cornuéjols

AgroParisTech – INRAE MIA Paris-Saclay

EKINOCS research group

When the learning distribution differs

from the target (true) distribution

Imbalanced data sets

Learning from positive examples only
Semi-supervised learning

Active Learning
Domain adaptation

2 / 97

When PX(train) ≠ PX(test)

3 / 97

PX(train) ≠ PX(test)

• In which scenarios?

4 / 97

PX(train) ≠ PX(test)

In which scenarios?

1. Classes are severely unbalanced

2. Learning from positive examples only

3. Semi-supervised learning

4. Active learning

5 / 97

Outline

1. Classes severely unbalanced

2. Learning from positive examples only

3. Semi-supervised learning

4. Active learning

5. Domain adaptation

6. Tracking

6 / 97

Illustrations

• Rare pathologies

• Anomaly detection

• Fraud

• Rare species

– E.g. Pl@ntNet: 46,000 species, but only ~1000 well represented

7 / 97

Remedies

8 / 97

Remedies

• If enough data

– undersample the over-represented classes

9 / 97

Remedies

• If enough data
– undersample the over-represented classes

• If not enough data
– oversample the under-represented classes

• Create noisy clones of the data points

• Create new data points generated by well chosen transformations
– E.g. respecting invariances (E.g. translations, rotations, change of luminosity, …)

• Modify the loss function
– Penalize more the errors on the under-represented class

10 / 97

Remedies

• If enough data
– undersample the over-represented classes

• If not enough data
– oversample the under-represented classes

• Create noisy clones of the data points

• Create new data points generated by well chosen transformations
– E.g. respecting invariances (E.g. translations, rotations, change of luminosity, …)

• Modify the loss function
– Penalize more the errors on the under-represented class

11 / 97

Remedies

• If enough data
– undersample the over-represented classes

• If not enough data
– oversample the under-represented classes

• Create noisy clones of the data points

• Create new data points generated by well chosen transformations
– E.g. respecting invariances (E.g. translations, rotations, change of luminosity, …)

• Modify the loss function
– Penalize more the errors on the under-represented class

<latexit sha1_base64="sAARnElcDPkE1nT4OxyQxOHOsmI=">AAAILHicjVVbaxNREJ60amqs2ir6oshiKyqWkCheHosiiFBoxV6gKWV3c9Is3Ru7J7V1WfDFv+Nzf4gvIr4WxT/hN5OTmk3dmA05Ozsz3zeXM2fXiX0v1Y3Gt8rU9LnzF6ozF2uXZi9fuTo3f20jjXqJq9bdyI+SLcdOle+Fal172ldbcaLswPHVprP/iu2bBypJvSh8r49itRPYe6HX8VxbQ7U796mlfH83a2l1qLPFVtfWRl7J88WlIM+t1bHWR1YZQcAuK2UEA2ttd26hUW/IZZ0VmkZYWL59vPb7853j1Wh++i21qE0RudSjgBSFpCH7ZFOK3zY1qUExdDuUQZdA8sSuKKcasD14KXjY0O5j3cPTttGGeGbOVNAuovj4J0BadA+YCH4JZI5mib0nzKwt486Ek3M7wt0xXAG0mrrQ/g838JwUx7Vo6tALqcFDTbFouDrXsPSkK5y5NVSVBkMMHctt2BPIriAHfbYEk0rt3Ftb7D/Fk7X87BrfHv0yWYbQfJBuBZJ/CPYMekYpMObyNKjMwS+jd9ByrpwtR70vrKnk4pjM2yZqgkjMMz7aa9hjiTUazYJtEM0yMfveSmoMpaby6cmwJtK7rsza4Vjf4akq9zoc8lsakrVUz8hybCBTqWUHI/RiXJwUegfT4uG5JzsynptZ9+ljgXOg83F3pBMJZp25u2ai0on8n2CnJvHje7+yyXhtmffI7Lk9th8x7h2s3G09IX8HUltO2t4I4my3PZlaV/oyzrN49pcK85APzTmfigOz0+HpOeU6+tgEtiKW35A7WHmv25BqMvF8Jv56+VIt52uDXUkOqsCSUR3rvzCOeS+M+i8gbo6TVTs9ZcPoMlxLeDtgfjDiX55bC1wKfeQdyQp9yKV3g3qVeTcUPSbLKpET0wXuIXPiO9Yc/WqdFTYe15vP6k/X8EF7Sf1rhm7RXdTWpOe0TG9oldYR6aQyW7lRuVn9Uv1a/V790XedqhjMdSpc1ZM/3wS9mw==</latexit>

`M̂,mPM̂,m + `m̂,MPm̂,M
<latexit sha1_base64="2JS8WJTVgPztFjq0EpZQkAczN/U=">AAAIAnicjVVLb9NAEJ62QEp4tXAEIYsWAVIVJSAep6oCISEkpBbRh9RUle1sGqt+yd70geWe4M9wQ1x66B/hyglUfgTfTDYlTnGIo+zOzn7zzWNnbSf2vVTX698nJqcuXLxUmb5cvXL12vUbM7M319Kom7hq1Y38KNlw7FT5XqhWtad9tREnyg4cX607u694f31PJakXhR/0Yay2Ansn9Nqea2uotmfWmlod6Gzf0x3r6Ogot5rK97eznna+2bG1kd/l+fxCkOfW4qJVCgoYBKS1PTNXr9Xlsc4LDSPMLd05Xjn9fPd4OZqdektNalFELnUpIEUhacg+2ZTit0kNqlMM3RZl0CWQPNlXlFMVtl2gFBA2tLsYd7DaNNoQa+ZMxdqFFx//BJYW3YdNBFwCmb1Zst8VZtaWcWfCybEdYnYMVwCtpg60/7PrI8e141w0temF5OAhp1g0nJ1rWLpSFY7cGshKgyGGjuUW9hPIrlj262yJTSq5c21t2f8pSNby2jXYLv0yUYbQ7Eu1Aok/BHsGPVspMOay6mfm4JfRe2g5Vo6WvT4Q1lRicUzkLeM1gSfmGe3tNfZj8TXszcJe35tlfPbQSnIMJafy7skwJlK7jvTawUjsYFeVow4GcAsDspbs2bLcNpCu1HKCEWoxyk8KvYNu8bDuyomM5mbWXfpY4OzrfMyOVCJBrzN3x3RUOhb+CU5qHBzPvczG47Wl3yNz5vbIesSY2xi52npM/jaklty0nSGL89X2pGtdqcsoZPHuLxT6IR/oc74Ve+akw7N7ynn0bBPsFW35DbmFkc+6BakqHc934i/Kl2w5XhvsSmJQBZaMahj/ZeOY98Iwfg5+c9ys6tktG7Qus2sKbxvMD4fw5bE1waVQRz6RrFCHXGrXz1eZd0MRMV5UidyYDuweMSe+Y43hr9Z5Ye1xrfGs9nQFH7SX1Hum6TbdQ24Nek5L9IaWaRWeTugHndLvyqfKl8rXyrcedHLC2NyiwlM5+QNoVa6a</latexit>

with `M̂,m >> `m̂,M

Proportion of all points where points of the minority class are misclassified as from the Majority one

12 / 97

Outline

1. Classes severely unbalanced

2. Learning from positive examples only

3. Semi-supervised learning

4. Active learning

5. Domain adaptation

6. Tracking

13 / 97

Scenarios for learning from positive examples only

• ???

14 / 97

Scenarios for learning from positive examples only

• Collaborative science
– Biodiversity

– E.g. Pl@ntNet
• The users take pictures of plants: positive examples
• That does not say: “these other plants were not present”

• Medicine

– Reports of subjects with some disease does not say
how many and which ones do not have the disease

• Adds on web pages

– Pages that have not been visited are not necessarily
uninteresting

15 / 97

Scenarios for learning from positive examples only

• In general

– Detecting absence can be more difficult

than detecting presence

Possibly lots of
false negative

16 / 97

The fully observable case

• We look for a hypothesis
where L is the number of possible
classes (labels)

• We want to minimize the risk
with loss function
(e.g. binary cross-entropy)

• Given a dataset
we want to find a hypothesis that
minimizes the empirical risk

<latexit sha1_base64="Ab60zx7pj3FYV7/2aqijbBkpIfo=">AAAHz3icjVXbbtNAEJ22QEq4tfDIi0WEAKmKEu7iqQIhIcRDi2gbqQnIdjaJFce21uumxQritV/DK3wKfwB/wZnJpsQpCXGU3dnZM2cuO2t7SRikplb7ubK6duHipdL65fKVq9eu39jYvLmfxpn21Z4fh7FueG6qwiBSeyYwoWokWrkDL1QHXv8V7x8cKZ0GcfTBnCSqNXC7UdAJfNdA9Wmj0nNeOHnTd0OnMXKaOuj2jKt1PHQOa1tOvfXxXbkMVK1ak8c5L9StUCH77MSba2+pSW2KyaeMBqQoIgM5JJdS/A6pTjVKoGtRDp2GFMi+ohGVYZsBpYBwoe1j7GJ1aLUR1syZirUPLyH+GpYO3YVNDJyGzN4c2c+EmbXzuHPh5NhOMHuWawCtoR60/7ObIJe141wMdei55BAgp0Q0nJ1vWTKpCkfuTGVlwJBAx3Ib+xqyL5aTOjtik0ruXFtX9n8JkrW89i02o982ygiaoVRrIPFHYM+hZysFxpGsJpl5+OX0HlqOlaNlr/eENZVYPBt523rV8MQ8i729xn4ivma9OdibeHOszzFaSY6R5DS/e3KMWmrXk147Xoid7qr5qOMp3NaUbCR7tpxvO5CuNHKCMWqxyE8KvYduCbDO5EQWczNrnz4XOCe6ELMnldDodebu2Y5Kl8I/wkktg+N5nNlyvK70e2zP3F1YjwRzByNX2yzJ34HUlpvWnbE4X+1AutaXuixCFu/+VqEfRlN9zrfiyJ50dHZPOY+xrcZe0ZbfkC2MfNZtSGXpeL4Tf1GhZMvxumBXEoMqsORUxfgvG8++F2bxFfgd4WaVz27ZtPU8u6bwdsB8fwY/P7YmuBTqyCeSF+owktpN8lX23VBELBeVlhvTg90D5sR3rD771Tov7D+s1p9Wn+w+rmy/tF+0dbpNd5BbnZ7RNr2hHdqDp1P6Rt/pR2m3NCx9KX0dQ1dXrM0tKjyl0z/J4ZKO</latexit>

h : X ! [0, 1]L

<latexit sha1_base64="dKEzIq5crK1q/04JNSx05jZazOQ=">AAAIGXicjVXLbtNAFL1pgZTwaAtLNhYVIpFClIB4SAipAiohVqWiD6mpKtuZ1Fb9ku2UFstfwhfwGewQEquukPgA+AAW7Dj3ZlLslIQ4ysydO+ee+5g7thV5bpK2298qc/MXLl6qLlyuXbl67fri0vKNrSQcxLbatEMvjHcsM1GeG6jN1E09tRPFyvQtT21bhy94f/tIxYkbBm/Tk0jt+eZB4PZd20yh2l/yN+pOw3hmdH0zdSwrW8v3s/pw0c+O8+ZIPMkb3cT1jWjCZm50n9a6yvPqTgHRaBoFTK22v7TSbrXlMc4LHS2srDZ+fb338vvH9XB5/jV1qUch2TQgnxQFlEL2yKQEv13qUJsi6PYogy6G5Mq+opxqsB0ApYAwoT3EeIDVrtYGWDNnItY2vHj4x7A06A5sQuBiyOzNkP2BMLN2EncmnBzbCWZLc/nQpuRA+z+7EXJWO84lpT49kRxc5BSJhrOzNctAqsKRG4WsUjBE0LHcw34M2RbLUZ0NsUkkd66tKfs/BMlaXtsaO6CfOsoAmndSLV/iD8CeQc9WCoy5rEaZWfhltAEtx8rRste7wppILJaOvKe9xvDEPNO9rWE/El/j3gzsjbwZ2ucQrSTHQHKa3D0Zxlhq50ivHU/FFrtqMuq4gGsW5FSyZ8vJtr50ZSonGKIW0/wk0FvoFhfrgZzIdG5mPaT3Jc6RzsNsSSVi9DpzO7qjkpnwD3BSs+B4HmY2G68p/R7qMzen1iPC3MfI1U5n5O9D6slNOxizOF9tV7rWlrpMQ5bvfrPUD3mhz/lWHOmTDs7uKecxtI2xV7blN+QeRj7rHqSadDzfib8oT7LleE2wK4lBlVgyamH8l42l3wvj+BX4zXGzame3rGg9ya4rvH0w18fwk2PrgkuhjnwiWakOudRulK/S74YyYraoYrkxDuwazInvWGf8q3Ve2Lrf6jxqPXyDD9pzGj4LdItuI7cOPaZVekXrtAlPp/S7MleZr36ofqp+rn4ZQucq2uYmlZ7q6R++4LP7</latexit>

R(h) = E(x,y)⇠p(x,y) `(h(x),y)
<latexit sha1_base64="HWTHafY2S4HUMNzJh4vAK2I7GGY=">AAAH6nicjVVLb9NAEJ62QEp4tXDkYrVCgIiiBMRDHFAFQkKIQ6noA9UB2c4mseqX1us+sPInEBfEtb+GK1z6D+Bf8M3EKXFKQhxld3Z2vm8eO2u7SeCnptE4mZtfOHf+QmXxYvXS5StXry0tX99K40x7atOLg1jvuE6qAj9Sm8Y3gdpJtHJCN1Db7t4L3t/eVzr14+idOUpUK3S6kd/xPcdA9XHpma2CwHpq7TZqVrP14Y1l1yzb+KFKWcptzwms933L1n63Zxyt4wPLDh3Tc918o1+tflxabdQb8lhnhWYhrK6t2Pe+nKwdrcfLC6/JpjbF5FFGISmKyEAOyKEUv11qUoMS6FqUQ6ch+bKvqE9VYDNYKVg40O5h7GK1W2gjrJkzFbQHLwH+GkiLbgETw05DZm+W7GfCzNpJ3LlwcmxHmN2CK4TWUA/a/+GGlrPiOBdDHXoiOfjIKRENZ+cVLJlUhSO3RrIyYEigY7mNfQ3ZE+SwzpZgUsmda+vI/i+xZC2vvcI2o99FlBE0B1KtUOKPwJ5DzygFxr6shpm5+OW0AS3HytGy19vCmkosbhF5u/Cq4Yl5pnt7if1EfI17s7A39GYVPgfWSnKMJKfJ3ZNj1FK7nvTa4VTb0a6abHU4YlcbkY1kz8jJ2FC60sgJxqjFND8p9C66xcc6kxOZzs2se/SpxDnUBZhdqYRGrzN3r+iodCb7BzipWex4HmQ2G68j/R4XZ+5MrUeCuYORq21m5O9AastN644hzlbbl671pC7TLMt3v1bqh/5In/Ot2C9OOjq9p5zHAKuxV8byG7KFkc+6DakqHc934q9VINlyvA7YlcSgSiw51TH+C+MW74Vx+1X47eNmVU9v2Sh6Es4W3g6Y74zZT47NBpdCHflE8lId+lK7Yb6qeDeULWaLSsuN6QF3lznxHWuOf7XOClv3681H9Ydv8UF7ToNnkW7SCnJr0mNao1e0TpvwdEzf6Qf9rASVz5WvlW8D0/m5AnODSk/l+A9745/7</latexit>

` : [0, 1]L ⇥ Y ! R

<latexit sha1_base64="s7vQjJZDyEkI0w4wKy/x5B9v4v0=">AAAH8HicjVVLb9NAEJ62QEp4pXDkYlEQrVRFCYjHBaniISEOqDz6kOoqsp1NY9Uv1k5psXzgX3BDXPtrOHApJ44g8SP4ZrIpcUpCHGV3dna+bx47a7tJ4KdZo3E8Mzt35uy5yvz56oWLly5fqS1c3UjjnvbUuhcHsd5ynVQFfqTWMz8L1FailRO6gdp0957w/ua+0qkfR2+zw0TthM5u5Hd8z8mgatWe5rbnBNabwl6xHlkY7HzJDp2s63byg6IVQWFWh1gt20Urb1p2oN5ZUX96WVSrrdpio96QxzotNI2wuHrz4+9vR7Ufa/HC3AuyqU0xedSjkBRFlEEOyKEUv21qUoMS6HYoh05D8mVfUUFVYHuwUrBwoN3DuIvVttFGWDNnKmgPXgL8NZAW3QImhp2GzN4s2e8JM2vHcefCybEdYnYNVwhtRl1o/4cbWE6L41wy6tBDycFHToloODvPsPSkKhy5NZRVBoYEOpbb2NeQPUEO6mwJJpXcubaO7P8US9by2jO2PfplooygeS/VCiX+COw59IxSYCxkNcjMxS+n19ByrBwte70trKnE4prI28arhifmmeztGfYT8TXqzcLewJtlfPatleQYSU7juyfHqKV2Xem1g4m2w1013upgyG5lSM4ke0aOx4bSlZmcYIxaTPKTQu+iW3yse3Iik7mZdY8+lDgHugCzK5XQ6HXm7pqOSqeyv4uTmsaO535m0/E60u+xOXNnYj0SzB2MXO1sSv4OpLbctN0RxOlq+9K1ntRlkmX57q+U+qEY6nO+FfvmpKOTe8p59LEae2UsvyF3MPJZtyFVpeP5Tvy1CiRbjtcBu5IYVIklpzrGf2Fc814YtV+E3wI3q3pyy4bR43C28HbAvDRiPz42G1wKdeQTyUt1KKR2g3yVeTeULaaLSsuN6QK3zJz4jjVHv1qnhY079eb9+r1X+KA9pv4zT9fpBnJr0gNapee0RuvwdERf6Zi+V3TlU+Vz5UvfdHbGYK5R6akc/QGyx6RJ</latexit>

S = {(xn,yn)}1nN

<latexit sha1_base64="k5hU7ZBIjObwYX17BaRwkT88Dlo=">AAAImnicjVVZb9NAEJ60HCFcLTzCg0WESEUaxdwvlapWlbgeCuol1U1kO5vEqi+t1yWt8RP8Sf4BvPAbmJlsSpyQEEfZnf125ptjZ20n9r1ENZs/SkvLV65eu16+Ubl56/aduyur9w6SKJWu2HcjP5JHjp0I3wvFvvKUL45iKezA8cWhc7pN+4dnQiZeFO6p81icBHYv9LqeayuE2iu/LeH77cxSYqCyre2dPK/1a1Zgq77TzQZ5O1yrG6PlOS0Nq25s0FBZt7rSdjMzzz7mBFhJGrQzb8PMW4Ts1sbtWogbX40Cs2H5Uc9yvJ4/4bPlrREs2dlTGqbImnPIzPUZdJVKe6XabDT5MaYFUwtV0M9utLr8HizoQAQupBCAgBAUyj7YkODvGExoQozYCWSISZQ83heQQwVtU9QSqGEjeopjD1fHGg1xTZwJW7voxce/REsDHqNNhHoSZfJm8H7KzITO4s6Yk2I7x9nRXAGiCvqI/s9upLmoHeWioAtvOAcPc4oZoexczZJyVShyYywrhQwxYiR3cF+i7LLlqM4G2yScO9XW5v2frEkorV2tm8IvHWWIyBeuVsDxh8ieIU5WAhlzXo0yc/CXwWdEKVaKlrw+YdaEY3F05B3tVaIn4pnvbQf3Y/Y16c3AvZE3Q/scagvOMeScZndPhqPk2vW51wZzdce7arbWYEyvPiYrzp4sZ9sG3JWKTzDCWszzkyDuYLd4uE75ROZzE+spXBQ4R5iPs8OVkNjrxN3XHZUspP8cT2oRPZqHmS3Ga3O/R/rM7bn1iHHu4kjVVgvyd1Hq8E3rTVhMV9vjrnW5LvM0i3e/XuiHfKzP6Vac6ZMOL+8p5TG0lbhXtKU35AmOdNYdlCrc8XQn/mr5nC3FayO74BhEgSWDBo7/snH0e2FSv4p+c7xZlctbNm49y85i3i4y1yb0Z8dmIZfAOtKJZIU65Fy7Ub5CvxuKGotFJfnG9NFujTjxO2ZOfrWmhYNnDfNV4+WnF9XNLf1FK8MDeIS5mfAaNuEt7MI+uKW90kXpW+l7+WF5q/yu/GGoulTSNveh8JT3/gCnKdpX</latexit>

`BCE(h(xn),yn) = � 1

L

LX

i=1

P (yi
n = 1|xn) log

�
h(xi

n)
�
+ P (yi

n = 0|xn) log
�
1� h(xi

n)
�

<latexit sha1_base64="/oe3dpQWT/WqVPC1KU4O9aWOagI=">AAAIRnicjVVLb9NAEJ60QEp4tXDkYlEBrVSVBMTjUqmAQBUSVUH0IdUlsp1NbHX90HrdJqzMD+HC3+HOiX9QLtwQJyRmJk6JUxLiKLuzs/N989hZ201kkOp6/VtlZvbc+QvVuYu1S5evXL02v3B9J40z5YltL5ax2nOdVMggEts60FLsJUo4oSvFrnv4nPZ3j4RKgzh6p3uJOAidThS0A8/RqGrOf7J9Rxs/bxpbi6427UzKXp5b9oq1RoMdJ0I5OlaRE4rjQPsyCAOdmqeq8zqIEOZbdhBZxvYcaW0QsK0czzRys5nXCJ9mYdNEa438/aZlCyltN+jIJX/JDh3tu23TzZvRMtoVyx4uyUQt15rzi/XVOj/WWaFRCIvrL09+f/4af9yKF2ZfgQ0tiMGDDEIQEIFGWYIDKf72oQF1SFB3AAZ1CqWA9wXkUENshlYCLRzUHuLYwdV+oY1wTZwpoz30IvGvEGnBbcTEaKdQJm8W72fMTNpx3IY5KbYezm7BFaJWg4/a/+EGltPiKBcNbXjCOQSYU8Iays4rWDKuCkVuDWWlkSFBHckt3Fcoe4wc1NliTMq5U20d3j9hS9LS2itsM/heRBmh5pirFXL8EbIb1BNKIGPOq0FmLv4MvEUtxUrRkte7zJpyLG4ReavwqtAT8Uz29gL3E/Y16s3CvYE3q/DZtxacY8Q5je8eg6Pi2vnca92JtsNdNd6qO2S3MiRrzp6Q47Ehd6XmE4yxFpP8pKh3sVsCXGd8IpO5ifUQPpQ4BzqJs8uVUNjrxO0XHZVOZf8AT2oaO5r7mU3H63C/x8WZOxPrkeDcxpGqrafkb6PU4pvWGUGcrXbAXetxXSZZlu/+Sqkf8qE+p1txVJx0dHpPKY8+VuFeGUtvyAMc6axbKNW44+lO/LWSnC3F6yC74BhEicXAKo7/wrjFe2HUfhH95nizaqe3bBg9DmczbxuZl0bsx8dmI5fAOtKJmFIdcq7dIF9RvBvKFtNFpfjG+IhbJk78jjVGv1pnhZ37q41Hqw/f4AftGfSfObgJtzC3BjyGddiALdgGrwKVO5V7lXr1S/VH9Wf1V990plJgbkDpmYM/WszFeQ==</latexit>

ĥfully = ArgMin
h2H

1

N

NX

n=1

`
�
h(xn),yn

�

A vector of predictions

17 / 97

The partially observable case

• We look for a hypothesis

• During training, we observe

where

and only one

• Given a dataset

we want to find a hypothesis that

minimizes the empirical risk

<latexit sha1_base64="hAB0FFWJkYoLIpIvfBDByZEqPss=">AAAH4HicjVVLb9NAEJ62QEoKtIUjF4uCAKmKEt7iVIGQEOJQEH1ITahsZ5NYdWxrvekDy3duiGt/CGckTvAP+AfwA+DMN5NNiVMS4ii7s7PzffPYWdtLwiA11er3mdm5M2fPlebPlxcuXLy0uLR8eTONe9pXG34cxnrbc1MVBpHaMIEJ1Xaildv1QrXl7T3l/a19pdMgjt6Yo0Q1um47ClqB7xqodpfudXazulGHJktcbQI3zHPnsZPVfTd0tnOnroN2x7haxwfOTnXVqTXeviyXd5dWqpWqPM5poWaFlbXrvz592V/4vR4vz72gOjUpJp961CVFERnIIbmU4rdDNapSAl2DMug0pED2FeVUBrYHKwULF9o9jG2sdqw2wpo5U0H78BLir4F06AYwMew0ZPbmyH5PmFk7jjsTTo7tCLNnubrQGupA+z/cwHJaHOdiqEWPJIcAOSWi4ex8y9KTqnDkzlBWBgwJdCw3sa8h+4Ic1NkRTCq5c21d2f8hlqzltW9te/TTRhlBcyDV6kr8Edgz6BmlwJjLapCZh19Gr6HlWDla9npTWFOJxbORN61XDU/MM9nbM+wn4mvUm4O9gTfH+uxbK8kxkpzGd0+GUUvtOtJrhxNth7tqvNXhkN3qkGwke0aOx3alK42cYIxaTPKTQu+hWwKse3Iik7mZdY/eFTgHuhCzJ5XQ6HXm7tiOSqeyv4uTmsaO535m0/G60u+xPXN3Yj0SzC2MXG0zJX8LUlNuWnsEcbragXStL3WZZFm8+6uFfsiH+pxvxb496ejknnIefazGXhHLb8gGRj7rJqSydDzfib9WoWTL8bpgVxKDKrBkVMH4L4xn3wuj9ivwm+NmlU9u2TB6HK4uvC0w3xqxHx9bHVwKdeQTyQp1yKV2g3yVfTcULaaLSsuN6QB3mznxHauNfrVOC5t3KrUHlfuv8EF7Qv1nnq7SNeRWo4e0Rs9pnTbg6Zg+01f6VvJK70sfSh/7prMzFnOFCk/p+A/u5J7a</latexit>

hpartial : X ! [0, 1]L

<latexit sha1_base64="p6hI4NmDDSV11Ig6NrKFTGBichs=">AAAH5HicjVVLb9NAEJ62QEp4tXDksmqFABFFCQjoBakCISHEoSD6EHWpbGfdWPVLtlPaWv4H3IBrfw1XuPcfwL/gm8mmxCkJcZTd2dn5vnnsrO0kgZ/lrdbpzOzchYuXavOX61euXrt+Y2Hx5kYW91JXr7txEKdbjp3pwI/0eu7ngd5KUm2HTqA3nf0XvL95oNPMj6P3+VGid0J7L/I937VzqHYXVqzQzruOVxyXu5Gy/EgVlmsH6kOprIZ6xoNVtBqqjTnOAjvrKqv8+KZe311YbjVb8qjzQtsIy6tL1oOvp6tHa/Hi3GuyqEMxudSjkDRFlEMOyKYMv21qU4sS6HaogC6F5Mu+ppLqwPZgpWFhQ7uPcQ+rbaONsGbOTNAuvAT4p0AqugNMDLsUMntTst8TZtaO4y6Ek2M7wuwYrhDanLrQ/g83sJwWx7nk5NGK5OAjp0Q0nJ1rWHpSFY5cDWWVgyGBjuUO9lPIriAHdVaCySR3rq0t+7/EkrW8do1tj36bKCNoPkm1Qok/AnsBPaM0GEtZDTJz8CvoHbQcK0fLXu8KayaxOCbyjvGawhPzTPb2EvuJ+Br1prA38KaMz761lhwjyWl89xQYU6ldV3rtcKLtcFeNtzocsmsMyblkz8jx2FC6MpcTjFGLSX4y6B10i491T05kMjez7tNxhXOgCzA7UokUvc7cXdNR2VT2j3BS09jx3M9sOl5b+j02Z25PrEeC2cPI1c6n5PcgdeSm7Y0gzlfbl651pS6TLKt3v1Hph3Koz/lWHJiTjs7uKefRx6bYq2L5DbmDkc+6A6kuHc934q9VINlyvDbYtcSgKywFNTH+C+OY98Ko/TL8lrhZ9bNbNoweh7OE1wPzvRH78bFZ4NKoI59IUalDKbUb5KvNu6FqMV1UqdyYLnD3mRPfsfboV+u8sPGw2X7SfPwWH7Tn1H/m6TYtIbc2PaVVekVrtA5PJ/SdftDPmlf7XPtS+9Y3nZ0xmFtUeWonfwD+mZ09</latexit>

zn 2 Z = {0, 1,↵}L
<latexit sha1_base64="bilNsy2pLgeZjzaL07dH9ZTVWxk=">AAAHxnicjVXbbtNAEJ22QEq4tfAGL1YrRJGqKAFBeUGqQEgVTwXRi9SUynY2iVXftF73ZkXqf/DOK/wGn4DgA+AvODPZlDglIY6yOzs758xlZ20vDYPM1OvfZ2bnrly9Vpm/Xr1x89btOwuLd7ezJNe+2vKTMNG7npupMIjVlglMqHZTrdzIC9WOd/ia93eOlM6CJP5gTlO1H7mdOGgHvmugOli434xc0/XaxVnvIP4YOC+dZpKFbtatVg8Wluu1ujzOZaFhheX1pZWfP9a+fdpMFufeUpNalJBPOUWkKCYDOSSXMvz2qEF1SqHbpwI6DSmQfUU9qgKbw0rBwoX2EGMHqz2rjbFmzkzQPryE+GsgHXoITAI7DZm9ObKfCzNrx3EXwsmxnWL2LFcEraEutP/DDSynxXEuhtr0QnIIkFMqGs7Otyy5VIUjd4ayMmBIoWO5hX0N2RfkoM6OYDLJnWvryv4vsWQtr31rm9NvG2UMzbFUK5L4Y7AX0DNKgbEnq0FmHn4FvYeWY+Vo2esjYc0kFs9G3rJeNTwxz2Rvb7Cfiq9Rbw72Bt4c67NvrSTHWHIa3z0FRi2160qvnUy0He6q8VYnQ3arQ7KR7Bk5HhtJVxo5wQS1mOQng95DtwRY53Iik7mZ9ZDOSpwDXYjZk0po9Dpzd21HZVPZP8VJTWPHcz+z6Xhd6ffEnrk7sR4p5jZGrraZkr8NqSU3rTOCuFztQLrWl7pMsizf/dVSP/SG+pxvxZE96fjinnIefazGXhnLb8h9jHzWLUhV6Xi+E3+tQsmW43XBriQGVWIpqIbxXxjPvhdG7Zfht4ebVb24ZcPocbim8LbBvDJiPz62JrgU6sgnUpTq0JPaDfJV9t1QtpguKi03pgvcY+bEd6wx+tW6LGw/qTWe1569wwftFfWfeXpAS8itQWu0Thu0SVvwdE6f6Qt9rWxU4kpeOe6bzs5YzD0qPZXzP7xvlHE=</latexit>

zin = ↵

<latexit sha1_base64="0wei45bAZavGxXU1ztKGuzvWqGE=">AAAH8XicjVVLb9NAEJ62QEp4pXDkYlEQrVRFCYjHBakCVUIcUHn0IdVVZDubxKpf+FHaWj7wM7ghjvTXIHEBLhxB4kfwzWRT4pSEOMru7Ox83zx21rYjz03SRuPrzOzcmbPnKvPnqxcuXrp8pbZwdTMJs9hRG07ohfG2bSXKcwO1kbqpp7ajWFm+7akte+8J72/tqzhxw+B1ehipXd/qBm7HdawUqlZtLTcdyzNeFeaK8cjAYOZLpm+lPbuTHxStAAq9OsJq2SxaedMwPfXGCPrT86JarbZqi416Qx7jtNDUwuLqzXe/v3yq/VgPF+aekUltCsmhjHxSFFAK2SOLEvx2qEkNiqDbpRy6GJIr+4oKqgKbwUrBwoJ2D2MXqx2tDbBmzkTQDrx4+MdAGnQLmBB2MWT2Zsh+JsysHcedCyfHdojZ1lw+tCn1oP0fbmA5LY5zSalDDyUHFzlFouHsHM2SSVU4cmMoqxQMEXQst7EfQ3YEOaizIZhEcufaWrL/UyxZy2tH22b0S0cZQPNWquVL/AHYc+gZpcBYyGqQmY1fTi+h5Vg5WvZ6W1gTicXWkbe11xiemGeytzXsR+Jr1JuBvYE3Q/vsWyvJMZCcxndPjjGW2vWk1w4m2g531XirgyG7lSE5lewZOR7rS1emcoIhajHJTwK9jW5xsc7kRCZzM+seHZU4BzoPsy2ViNHrzN3THZVMZX8XJzWNHc/9zKbjtaTfQ33m1sR6RJg7GLna6ZT8HUhtuWndEcTparvStY7UZZJl+e6vlPqhGOpzvhX7+qSDk3vKefSxMfbKWH5D7mLks25DqkrH8534a+VJthyvBXYlMagSS051jP/C2Pq9MGq/CL8Fblb15JYNo8fhTOHtgHlpxH58bCa4FOrIJ5KX6lBI7Qb5Kv1uKFtMF1UsN6YH3DJz4jvWHP1qnRY279Sb9+v3XuCD9pj6zzxdpxvIrUkPaJWe0jptwNMxfaZv9L2SVN5XPlQ+9k1nZzTmGpWeyvEfRWakXg==</latexit>

S = {(xn, zn)}1nN

<latexit sha1_base64="fX29NopmSqbWuKWaOw/qiBQqWv0=">AAAHwHicjVXbbtNAEJ22QEq4tcAbL1YrRJGqKAFBeUGqipAQTwXRi9SUynY2iVXfWK9LGytfwguv8Cd8AoIPgL/gzGRT4pSEOMru7OycM5edtb00DDJTr3+fm1+4dPlKZfFq9dr1GzdvLS3f3s2SXPtqx0/CRO97bqbCIFY7JjCh2k+1ciMvVHve8Qve3ztROguS+J05S9Vh5HbioB34roHqaOluM3JN12sXvf5R/D5wnjuNavVoabVeq8vjXBQaVljdXFn7+WPj26ftZHnhNTWpRQn5lFNEimIykENyKcPvgBpUpxS6Qyqg05AC2VfUpyqwOawULFxojzF2sDqw2hhr5swE7cNLiL8G0qH7wCSw05DZmyP7uTCzdhJ3IZwc2xlmz3JF0BrqQvs/3NByVhznYqhNzySHADmlouHsfMuSS1U4cmckKwOGFDqWW9jXkH1BDuvsCCaT3Lm2ruz/EkvW8tq3tjn9tlHG0HyUakUSfwz2AnpGKTD2ZTXMzMOvoLfQcqwcLXt9IKyZxOLZyFvWq4Yn5pnu7SX2U/E17s3B3tCbY30OrJXkGEtOk7unwKildl3ptdOptqNdNdnqdMRufUQ2kj0jJ2Mj6UojJ5igFtP8ZNB76JYA61xOZDo3sx5Tr8Q51IWYPamERq8zd9d2VDaT/WOc1Cx2PA8ym43XlX5P7Jm7U+uRYm5j5GqbGfnbkFpy0zpjiIvVDqRrfanLNMvy3V8v9UN/pM/5VpzYk47P7ynnMcBq7JWx/IY8xMhn3YJUlY7nO/HXKpRsOV4X7EpiUCWWgmoY/4Xx7Hth3H4Vfvu4WdXzWzaKnoRrCm8bzGtj9pNja4JLoY58IkWpDn2p3TBfZd8NZYvZotJyY7rAPWROfMca41+ti8Luo1rjae3JG3zQtmjwLNI9WkFuDdqgTXpF27QDTz36TF/oa2Wr0q0klQ8D0/k5i7lDpafS+wPSc5GA</latexit>

zin = 1
indicates that the ith
label is unobserved

<latexit sha1_base64="SuxlrmIX/P9JHA5i9qd9hoNWsf0=">AAAISHicjVVLb9NAEJ6kQEp4tXDkYlEhUqmK4iIel0oFBKqQqAqiD6ku0drZxKv6pfWmTWuZX4LE/+HKiX9QbtwQByRmJk5JUhLiKLuzs/N989hZ200ClZpG41upPHfp8pXK/NXqtes3bt5aWLy9k8Zd7cltLw5iveeKVAYqkttGmUDuJVqK0A3krnv4gvZ3j6ROVRy9NyeJPAhFJ1Jt5QmDqubCJ8cXJvPzZuYY2TNZIrRRIshzy1mx1mhw4kRqYWIdiVAeK+MHKlQmzZ7pzhsVIdC3HBVZmeOJwNogYFsLL7PzbDOvEj7ths0sWrPzD5uWI4PAcVUnqPk1JxTGd9tZL29Gy2hXLE9xSSZ6udpcWGrUG/xYFwW7EJbWX539/vw1/rgVL869BgdaEIMHXQhBQgQG5QAEpPjbBxsakKDuADLUaZQU70vIoYrYLlpJtBCoPcSxg6v9QhvhmjhTRnvoJcC/RqQF9xETo51GmbxZvN9lZtJO4s6Yk2I7wdktuELUGvBR+z/cwHJWHOVioA1POQeFOSWsoey8gqXLVaHIraGsDDIkqCO5hfsaZY+RgzpbjEk5d6qt4P0ztiQtrb3Ctgvfiygj1BxztUKOP0L2DPWEksiY82qQmYu/DN6hlmKlaMnrA2ZNORa3iLxVeNXoiXime3uJ+wn7Gvdm4d7Am1X47FtLzjHinCZ3T4aj5tr53Gu9qbbDXTXZqjdktzIkG86ekJOxIXel4ROMsRbT/KSod7FbFK67fCLTuYn1EE5HOAe6AGeXK6Gx14nbLzoqncn+IZ7ULHY09zObjVdwv8fFmYup9UhwbuNI1TYz8rdRavFN64whLlZbcdd6XJdplqN3f2WkH/KhPqdbcVScdHR+TymPPlbj3iiW3pAHONJZt1CqcsfTnfhrFXC2FK9AdskxyBGWDOo4/gvjFu+Fcfsl9Jvjzaqe37Jh9CScw7xtZK6N2U+OzUEuiXWkE8lG6pBz7Qb5yuLdMGoxW1Sab4yPuGXixO+YPf7VuijsrNbtx/VHb/GD9hz6zzzchXuYmw1PYB02YAu2wSuVS7WSXVqtfKn8qPys/OqblksF5g6MPPPlP611xk8=</latexit>

ĥpartial = ArgMin
h2H

1

N

NX

n=1

`
�
h(xn), zn

�

18 / 97

Approach “assume unobserved are negative”

<latexit sha1_base64="P0zrMPUiuOll+9uDF7Y+JJWRJXk=">AAAIBnicjVXbbtNAEJ22QEq4tIVHXqxWiFZUUQLiIlWVKhAS4qkgehF1qWxn01h1bMvelKQmeeYD+A7eEK/9jf4Agif4BM5MNiVOSYij7M7Onjlz2VnbjQM/1eXy2dT0zKXLVwqzV4vXrt+4OTe/cGs7jZqJp7a8KIiSXddJVeCHakv7OlC7caKchhuoHffoOe/vHKsk9aPwrW7Har/hHIZ+zfccDdXB/LvNZbvh6Lpby9qdg/C9v16xPlp9VQuqFcuyV611HsqWvWavWbZWLZ11u36t2+2cY0/EnIFRGjhpvXgwv1QuleWxLgoVIyxtLNr3P59ttDejhZlXZFOVIvKoSQ1SFJKGHJBDKX57VKEyxdDtUwZdAsmXfUUdKsK2CZQCwoH2COMhVntGG2LNnKlYe/AS4J/A0qK7sImASyCzN0v2m8LM2lHcmXBybG3MruFqQKupDu3/7PrISe04F001eio5+MgpFg1n5xmWplSFI7cGstJgiKFjuYr9BLInlv06W2KTSu5cW0f2fwiStbz2DLZJP02UITQfpFoNiT8EewY9WykwdmTVz8zFL6M30HKsHC17vSesqcTimsirxmsCT8wz3tsL7Mfia9ibhb2+N8v47KGV5BhKTqO7J8OYSO3q0mutsdjBrhqNag3gVgdkLdmz5WjbhnSllhOMUItxflLoXXSLj3VTTmQ8N7Me0UmOs68LMLtSiQS9ztx101HpRPiHOKlJcDz3MpuM15F+j8yZO2PrEWOuYeRq6wn5a5CqctMOhywuVtuXrvWkLuOQ+bu/muuHzkCf8604Nicdnt9TzqNnm2Avb8tvyH2MfNZVSEXpeL4Tf1GBZMvxOmBXEoPKsWRUwvgvG9e8F4bxS/Dbwc0qnt+yQetRdrbw1sC8PIQfHZsNLoU68olkuTp0pHb9fJV5N+QRk0WVyI2pw26FOfEdqwx/tS4K2w9KlcelR6/xQXtGvWeW7tAicqvQE9qgl7RJW/B0St/pF/0ufCp8KXwtfOtBp6eMzW3KPYXTPx3GrE4=</latexit>

P (yi
n = 1|xn) = 0 if zin = ↵

<latexit sha1_base64="X4aR7iUYQp3Ill9u1EYhDi50jg0=">AAAIvHicjVXZbtNQEJ1QlhC2Fh55sagQrUijGMTyUlRACB4QKqibFKeR7dwkVrwE2ylpjZ/ga/gj/gBe+AbOTOwSpySNo1zPnXvOmTtzF1sD14niev1n6cLSxUuXr5SvVq5dv3Hz1vLK7b0oGIa22rUDNwgPLDNSruOr3diJXXUwCJXpWa7at/qveXz/SIWRE/g78fFANT2z6zsdxzZjuFrLfwzluq3EiNUoTl5+SNO13prhmXHP6iSjtOWvV7W8e8xdzahqm9xUNoxOaNqJnibvU3YY0dBrJc6mnh6KR1iWB0AraeQaJ9A4BKYJgBt0DcvpulMRD511docS6iGayjwpw1eftaKcvqHNUKxUWsur9VpdHu2soWfG6tZb7YfR+trdDlaWGmRQmwKyaUgeKfIphu2SSRF+DdKpTgP4mpTAF8JyZFxRShVwh0ApIEx4+2i76DUyr48+a0bCthHFxT8EU6P74ATAhbA5mibjQ1Fm7yztRDR5bsd4W5mWB29MPXjP4+XIxXkWft452cbUoeeSpYOsB+Lh/O0szlDqxrlpE3nHUBjAx3Yb4yFsW5j5SmjCiaQ6XH1Txn8Jkr3ctzPskH5nefjwfJF6epKhD/UEfmYpKKbSy3Pn/BL6BC/PlWfLUR+IaiRzsbKZt7OoISKxzvxobzA+kFjT0TSM5dG0LOYYrSRHX3KaXfEEbSi168luHM3FTu672ajRBK46YceSPTNncz3Zt7GsYIBazIsTwW9htzjoD2VF5muzap9OCpq5z8XbkkqEOA2s3ct2VLQQ/jFWahEcv8eZLaZryn4PsjU359ZjgHcHLVc7XlC/A6stJ607xThbbUd2rS11mYcs3g7Vwn5IJ/Y5n4qjbKX903PKeYy5IcaKXL5Dm2h5rduwKrLj+Uz8Q7mSLc/XhLqSOaiCSkI1tP/jWNm9MI1fRdwUJ6tyesom2bN4huh2oLw2hZ89NwNaCnXkFUkKdUildnm+KrsbiojFZhXKiemBt86a+NLp09+1s8beo5r+tPbkIz55r2j8lOku3UNuOj2jLXpH27RLdmmndFL6VvpeflFul/tlbwy9UMo4d6jwlI/+ArdF5gg=</latexit>

`AN(h(xn),yn) = � 1

L

LX

i=1

[zi
n=1] log

�
h(xi

n)
�
+ [zi

n 6=1] log
�
1� h(xi

n)
�

• Assume that all unobserved labels are
negative

• The resulting loss is

• We expect false negatives

<latexit sha1_base64="UTPHyqLKsyYyUtqfPDc1cf+PbYE=">AAAILnicjVVLb9NAEJ62QEp4tXDksqJCgBRFMYjHpVJFhcQJFUQfIgnBdjaJVb9kb/qy3N/EjX/AT0DigLgWiSuc+XayaeOUpHEUe3b2+77ZmZ21ndj3UlWrfZ+bX7h0+Upp8Wr52vUbN28tLd/eSqN+4spNN/KjZMexU+l7odxUnvLlTpxIO3B8ue3sruv57T2ZpF4UvleHsWwGdjf0Op5rK7haS58aga16jhNkVt7K6oNRJzvKW+FHb9Vq5mJVWKKh5IHKjo+F1xH5OOZs1g7bolYRkerJZN9LZS7K5dbSSq1a40ucNyxjrKxVPrw5+rK1vhEtL9SpQW2KyKU+BSQpJAXbJ5tS/OpkUY1i+JqUwZfA8nheUk5lcPtASSBseHdx72JUN94QY62ZMttFFB//BExB98GJgEtg62iC5/usrL2TtDPW1Gs7xNMxWgG8inrwXsQbImfnOfgFF2SrqEMvOEsPWcfs0fm7Jk6f66ZzEyN5KyjE8Gm7jfkEtsvM4U4I5qRcHV19m+dPGKm9euwabJ9+mTxCePa5ngFnGEI9g1+zJBRzHg1z1/ll9A5evVa9Wh31AaumvBbHrLxtoiaIpHWmR3uF+ZhjjUcTmBtGEybmAC05x5BzmlzxDPeEa9fjbjyYih3tu8mogxFcZcRWnL1mTuYG3LeKdzBCLabFSeF30C0exn3ekenaWnWXjgqaQ5+Pp8OVSHAatHbPdFQ6E/4JdmoWnH4OMptN1+Z+j8ye21PrEePZwV1XW82o34HV5pPWHWOcr7bHXetyXaYhi2+HSqEf8pE+16diz+x0eHpOdR4DboK5Ile/Q5u4671uwypzx+szcYbyOVu9XhvqktcgCyoZVXH/H8cx74Vx/Ari5jhZ5dNTNsqexGuwbgfKD8fwk9fWgJZEHfWOZIU65Fy7Yb7SvBuKiNlWlfCJ6YH3SGviS2eNf9fOG1uPq9az6tO3+OS9pMG1SHfpHnKz6Dmt0WvaoE1E+kq/6Q/9LX0ufSv9KP0cQOfnDOcOFa7SyT9Ckbde</latexit>

[zi
n=1] = 1 if zin = 1 and 0, otherwise

19 / 97

Approach “assume unobserved are negative” + smoothing

<latexit sha1_base64="P0zrMPUiuOll+9uDF7Y+JJWRJXk=">AAAIBnicjVXbbtNAEJ22QEq4tIVHXqxWiFZUUQLiIlWVKhAS4qkgehF1qWxn01h1bMvelKQmeeYD+A7eEK/9jf4Agif4BM5MNiVOSYij7M7Onjlz2VnbjQM/1eXy2dT0zKXLVwqzV4vXrt+4OTe/cGs7jZqJp7a8KIiSXddJVeCHakv7OlC7caKchhuoHffoOe/vHKsk9aPwrW7Har/hHIZ+zfccDdXB/LvNZbvh6Lpby9qdg/C9v16xPlp9VQuqFcuyV611HsqWvWavWbZWLZ11u36t2+2cY0/EnIFRGjhpvXgwv1QuleWxLgoVIyxtLNr3P59ttDejhZlXZFOVIvKoSQ1SFJKGHJBDKX57VKEyxdDtUwZdAsmXfUUdKsK2CZQCwoH2COMhVntGG2LNnKlYe/AS4J/A0qK7sImASyCzN0v2m8LM2lHcmXBybG3MruFqQKupDu3/7PrISe04F001eio5+MgpFg1n5xmWplSFI7cGstJgiKFjuYr9BLInlv06W2KTSu5cW0f2fwiStbz2DLZJP02UITQfpFoNiT8EewY9WykwdmTVz8zFL6M30HKsHC17vSesqcTimsirxmsCT8wz3tsL7Mfia9ibhb2+N8v47KGV5BhKTqO7J8OYSO3q0mutsdjBrhqNag3gVgdkLdmz5WjbhnSllhOMUItxflLoXXSLj3VTTmQ8N7Me0UmOs68LMLtSiQS9ztx101HpRPiHOKlJcDz3MpuM15F+j8yZO2PrEWOuYeRq6wn5a5CqctMOhywuVtuXrvWkLuOQ+bu/muuHzkCf8604Nicdnt9TzqNnm2Avb8tvyH2MfNZVSEXpeL4Tf1GBZMvxOmBXEoPKsWRUwvgvG9e8F4bxS/Dbwc0qnt+yQetRdrbw1sC8PIQfHZsNLoU68olkuTp0pHb9fJV5N+QRk0WVyI2pw26FOfEdqwx/tS4K2w9KlcelR6/xQXtGvWeW7tAicqvQE9qgl7RJW/B0St/pF/0ufCp8KXwtfOtBp6eMzW3KPYXTPx3GrE4=</latexit>

P (yi
n = 1|xn) = 0 if zin = ↵

• Assume that all unobserved labels are
negative

• And give more weight to the observed
examples. The resulting loss is

<latexit sha1_base64="ubLhPT8dQv5Dtm2GWIQIO7IGKrA=">AAAIzXicjVXZbtNQEJ1QlhC2Fh55sagQrUijBFSWh0oFhOChgrJ0keo0sp2bxKqX4KWkdc0rD7zCT/BH/AF8BZyZOCVOmzSOcj137jln7sxdbHYdO4yq1V+FczPnL1y8VLxcunL12vUbs3M3N0M/Diy1YfmOH2ybRqgc21MbkR05arsbKMM1HbVl7r3g8a19FYS2732MDrqq7hptz27ZlhHB1Zj9qyvHaSR6pHpR8uzN0tqHNF3oLOiuEXXMVtJLG95iWRt0D7ir6WVthZvSkt4KDCuppclayg49jN1GYq/U0l3xCMt0E+5XK0+X00ayM5A6hNQuoHXgHL+tm3bbGQm8ay+yO5CI99GURhSrpyjqnvqk5VVrS9oY4VKpMTsPHXm0k0YtM+ZXX2k/9cZRe92fm9khnZrkk0UxuaTIowi2QwaF+O1QjarUha9OCXwBLFvGFaVUAjcGSgFhwLuHto3eTub10GfNUNgWojj4B2BqdBccH7gANkfTZDwWZfaO005Ek+d2gLeZabnwRtSB9yzeADk9z8TPPSPbiFr0RLK0kXVXPJy/lcWJpW6cmzaUdwSFLnxsNzEewLaEOVgJTTihVIerb8j4b0Gyl/tWho3pT5aHB89nqacrGXpQT+BnloJiKr1B7pxfQu/h5bnybDnqPVENZS5mNvNmFjVAJNaZHO0lxrsSazSahrFBNC2L2UcrydGTnMZXPEEbSO06sht7E7HD+248qjeEKw/ZkWTPzPFcV/ZtJCvooxaT4oTwm9gtNvqxrMhkbVbdo8Oc5sDn4G1KJQKcBtbuZDsqnAr/ECs1DY7f/cym0zVkv/vZmhsT69HFu4WWqx1Nqd+C1ZST1h5hnKy2LbvWkrpMQuZvh3JuP6RD+5xPxX620t7xOeU8+twAY3ku36F1tLzWTVgl2fF8Jv6jHMmW52tAXckcVE4loQra0zhmdi+M4ucRN8XJKh2fsmH2OJ4uui0oL4zgx89Nh5ZCHXlFklwdUqndIF+V3Q15xHSzCuTEdMBbZE186Wqj37WTxuaDSu1RZfkdPnnPqf8U6TbdQW41ekyr9JrWaYOsgip8K3wv/Ci+LcbFo+KXPvRcIePcotxT/PoPOALruQ==</latexit>

`AN-LS(h(xn),yn) = � 1

L

LX

i=1

0.95
[zi

n=1] log
�
h(xi

n)
�
+ 0.05

[zi
n 6=1] log

�
1� h(xi

n)
�

Observed as positive No observation reported
Hence assumed as negative

20 / 97

Intuitively

• But by how much?

• In the case of “assume
unobserved = negative”

<latexit sha1_base64="JhyQ3Qq3FQjAz7/FuDDAkVn+wrM=">AAAH7nicjVXbbtNAEJ22QEq4tfDIi0WEaKUqSrg/VkVIiKdS0YvUVJXtbBKrjm3W69Ji+Td4Q7z2a3gF/gD+gjOTTYkTEuIou7OzZ85cdtb2kjBITaPxc2Fx6crVa5Xl69UbN2/dvrOyencvjTPtq10/DmN94LmpCoNI7ZrAhOog0crte6Ha905e8f7+qdJpEEfvzXmijvpuNwo6ge8aqI5XtnbWWj3X5L3iOG8ZdWbyThaG50Wx7rQ2nFaoPvA8AUpcbQI3BKxaPV6pNeoNeZxJoWmFGtlnO15dekstalNMPmXUJ0URGcghuZTid0hNalAC3RHl0GlIgewrKqgK2wwoBYQL7QnGLlaHVhthzZypWPvwEuKvYenQQ9jEwGnI7M2R/UyYWTuNOxdOju0cs2e5+tAa6kH7P7shcl47zsVQh15KDgFySkTD2fmWJZOqcOTOSFYGDAl0LLexryH7YjmssyM2qeTOtXVl/5cgWctr32Iz+m2jjKD5KNXqS/wR2HPo2UqBsZDVMDMPv5x2oOVYOVr2+khYU4nFs5G3rVcNT8wz29tr7Cfia9ybg72hN8f6HKCV5BhJTtO7J8eopXY96bWzmdjRrpqOOhvBbYzIRrJny+m2felKIycYoxaz/KTQe+iWAOtMTmQ2N7Oe0KcS51AXYvakEhq9ztw921HpXPgnOKl5cDwPMpuP15V+j+2ZuzPrkWDuYORqmzn5O5DactO6YxaT1Q6ka32pyyxk+e5vlPqhGOlzvhWn9qSjy3vKeQxsNfbKtvyGPMLIZ92GVJWO5zvxFxVKthyvC3YlMagSS051jP+y8ex7YRxfg98CN6t6ectGrafZtYS3A+a1Mfz02FrgUqgjn0heqkMhtRvmq+y7oYyYLyotN6YHu3XmxHesOf7VmhT2Htebz+vP3j2tbW7ZL9oy3acHyK1JL2iT3tA27cLTBX2j7/SjklQ+V75Uvg6giwvW5h6VnsrFHws3oVE=</latexit>

R(ĥfully)  R(ĥpartial)

21 / 97

Intuitively

• But by how much?

• In the case of “assume
unobserved = negative”

<latexit sha1_base64="JhyQ3Qq3FQjAz7/FuDDAkVn+wrM=">AAAH7nicjVXbbtNAEJ22QEq4tfDIi0WEaKUqSrg/VkVIiKdS0YvUVJXtbBKrjm3W69Ji+Td4Q7z2a3gF/gD+gjOTTYkTEuIou7OzZ85cdtb2kjBITaPxc2Fx6crVa5Xl69UbN2/dvrOyencvjTPtq10/DmN94LmpCoNI7ZrAhOog0crte6Ha905e8f7+qdJpEEfvzXmijvpuNwo6ge8aqI5XtnbWWj3X5L3iOG8ZdWbyThaG50Wx7rQ2nFaoPvA8AUpcbQI3BKxaPV6pNeoNeZxJoWmFGtlnO15dekstalNMPmXUJ0URGcghuZTid0hNalAC3RHl0GlIgewrKqgK2wwoBYQL7QnGLlaHVhthzZypWPvwEuKvYenQQ9jEwGnI7M2R/UyYWTuNOxdOju0cs2e5+tAa6kH7P7shcl47zsVQh15KDgFySkTD2fmWJZOqcOTOSFYGDAl0LLexryH7YjmssyM2qeTOtXVl/5cgWctr32Iz+m2jjKD5KNXqS/wR2HPo2UqBsZDVMDMPv5x2oOVYOVr2+khYU4nFs5G3rVcNT8wz29tr7Cfia9ybg72hN8f6HKCV5BhJTtO7J8eopXY96bWzmdjRrpqOOhvBbYzIRrJny+m2felKIycYoxaz/KTQe+iWAOtMTmQ2N7Oe0KcS51AXYvakEhq9ztw921HpXPgnOKl5cDwPMpuP15V+j+2ZuzPrkWDuYORqmzn5O5DactO6YxaT1Q6ka32pyyxk+e5vlPqhGOlzvhWn9qSjy3vKeQxsNfbKtvyGPMLIZ92GVJWO5zvxFxVKthyvC3YlMagSS051jP+y8ex7YRxfg98CN6t6ectGrafZtYS3A+a1Mfz02FrgUqgjn0heqkMhtRvmq+y7oYyYLyotN6YHu3XmxHesOf7VmhT2Htebz+vP3j2tbW7ZL9oy3acHyK1JL2iT3tA27cLTBX2j7/SjklQ+V75Uvg6giwvW5h6VnsrFHws3oVE=</latexit>

R(ĥfully)  R(ĥpartial)

COLE, Elijah, MAC AODHA, Oisin, LORIEUL, Titouan, et al. Multi-label learning from single positive labels.
In : Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 933-
942.

With 20 times fewer labeled examples, the performance is not
that bad on this dataset compared to the fully observable case

22 / 97

Lessons

1. Fomalize the assumptions about your problem

– The labelling process

– The type of target (and hypothesis) function

2. Design a loss function appropriate for the problem

– Able to explore efficiently the hypothesis space
and to find a good minimum of the empirical risk

3. Design a good evaluation scheme

23 / 97

Learning from positive examples only: lots of approaches

• Approaches

– Assume that the missing labels are negative

– Ignore the missing labels

– Perform label matrix reconstruction

– Learn label correlations

– Learn generative probabilistic models

– Train label cleaning networks

– Related to learning with label noise
• Here, some unobserved labels are incorrectly treated as being absent

– Related to learning from a set of positive examples
and a set of unlabeled ones (PU learning)

24 / 97

Outline

1. Classes severely unbalanced

2. Learning from positive examples only

3. Semi-supervised learning

4. Active learning

5. Domain adaptation

6. Tracking

25 / 97

The idea

…

26 / 97

Semi-supervised learning

• Unsupervised learning

• Supervised learning

<latexit sha1_base64="WPI2xAxrjeBWkQi6TOVweIZLUrY=">AAAH4XicjVVLb9NAEJ62QEp4tVTiwsWiQoBURQmIx7EqQuLYIvqQmqqynU1jxS+t16XF8g/ghrhy4AoH/gV/ggtn+Bd8M9mUOCVpHGU9OzvfN4+dXXtpGGSm2fw5N79w6fKV2uLV+rXrN27eWlq+vZMlufbVtp+Eid7z3EyFQay2TWBCtZdq5UZeqHa9/kte3z1WOguS+K05TdVB5B7FQTfwXQPV4dJKO3JNz+sWm+Vh0fbd0NkrD5dWm42mPM55oWWF1fU7W7+C7xs/NpPlhX1qU4cS8imniBTFZCCH5FKG3z61qEkpdAdUQKchBbKuqKQ6sDmsFCxcaPsYjzDbt9oYc+bMBO3DS4i/BtKh+8AksNOQ2Zsj67kws3YSdyGcHNsp3p7liqA11IP2ItzQcnach190QbaGuvRCsgyQdSoazt+3fnKpG+fmjORtwJBCx3IH6xqyL8jhTjiCyaQ6XH1X1n+LJWt57lvbnP7YPGJo3kk9I8kwBnsBPaMUGEuZDXPn/Ap6Ay3HytGy1wfCmkksno28Y71qeGKe6d5eYT0VX+PeHKwNvTnW58BaSY6x5DS54gVGLbXrSTeeTLUd7bvJVicjdmsjspHsGTkZG0nfGtnBBLWY5ieD3kO3BJjnsiPTuZm1T+8rnENdiLcnldA4Dczdsx2VzWT/BDs1ix2/B5nNxutKvyd2z92p9Ujx7mLkapsZ+buQOnLSjsYQ56sdSNf6UpdpltXbYa3SD+VIn/OpOLY7HZ+dU85jgNVYq2L5Dj3AyHvdgVSXjucz8c8qlGw5XhfsSmJQFZaCGhj/h/HsvTBuvwq/JU5W/eyUjaIn4drC2wXzwzH7ybG1waVQR96RolKHUmo3zFfZu6FqMVtUWk5MD7hHzIkvXWv8u3Ze2HncaD1rPN3CJ2+DBs8i3aV7yK1Fz2mdXtMmbcPTKX2hr/St5tc+1D7WPg1M5+csZoUqT+3zX1b8mXk=</latexit>

PX

<latexit sha1_base64="42o37M/mfpHXZfYXEm9QKZw4Yk4=">AAAH7HicjVXLbtNAFL1tgZTwSmGJhCwqBJVKlIB4LCseEsuC6AM1VWU7k8SKX7LHpcV4xyewQ2yRYAu/wQcg8QHwAew592ZS4pSkcZTxnTv3nPuYO2Mn9r1UNxo/5uYXTp0+U1k8Wz13/sLFS7Wly5tplCWu2nAjP0q2HTtVvheqDe1pX23HibIDx1dbTv8xr2/tqyT1ovClPozVbmB3Q6/jubaGaq92rRXYuud08vViL89bru1br4q3A2G7KPZqy416Qx7ruNA0wvLayp/vt5/8/LweLS3sUIvaFJFLGQWkKCQN2SebUvx2qEkNiqHbpRy6BJIn64oKqgKbwUrBwoa2j7GL2Y7RhpgzZypoF158/BMgLboBTAS7BDJ7s2Q9E2bWTuLOhZNjO8TbMVwBtJp60J6EG1rOjnPwC07IVlOHHkqWHrKORcP5u8ZPJnXj3KyRvDUYYuhYbmM9gewKcrgTlmBSqQ5X35b1X2LJWp67xjaj3yaPEJrXUs9AMgzBnkPPKAXGQmbD3Dm/nF5Ay7FytOz1prCmEotjIm8brwk8Mc90b0+xHouvcW8W1obeLONzYK0kx1BymlzxHGMitetJNx5MtR3tu8lWByN2qyOyluwZORkbSN9q2cEItZjmJ4XeQbd4mGeyI9O5mbVPb0qcQ52PtyOVSHAamLtnOiqdyf4udmoWO34PMpuN15Z+j8ye21PrEePdwcjV1jPydyC15aR1xxDHq+1J17pSl2mW5dthtdQPxUif86nYNzsdHp1TzmOATbBWxvIduouR97oNqSodz2fin5Uv2XK8NtiVxKBKLDnVMf4P45h7Ydx+GX4LnKzq0SkbRU/CtYS3A+ZbY/aTY2uBS6GOvCN5qQ6F1G6YrzJ3Q9litqgSOTE94FaYE1+65vh37biweafevF+/9xyfvEc0eBbpKl1Hbk16QGv0jNZpA57e0Rf6St8qYeV95UPl48B0fs5grlDpqXz6CyXCntg=</latexit>

PY|X

27 / 97

Semi-supervised learning

• Unsupervised learning

• Supervised learning

When can unsupervised learning help supervised learning?

<latexit sha1_base64="WPI2xAxrjeBWkQi6TOVweIZLUrY=">AAAH4XicjVVLb9NAEJ62QEp4tVTiwsWiQoBURQmIx7EqQuLYIvqQmqqynU1jxS+t16XF8g/ghrhy4AoH/gV/ggtn+Bd8M9mUOCVpHGU9OzvfN4+dXXtpGGSm2fw5N79w6fKV2uLV+rXrN27eWlq+vZMlufbVtp+Eid7z3EyFQay2TWBCtZdq5UZeqHa9/kte3z1WOguS+K05TdVB5B7FQTfwXQPV4dJKO3JNz+sWm+Vh0fbd0NkrD5dWm42mPM55oWWF1fU7W7+C7xs/NpPlhX1qU4cS8imniBTFZCCH5FKG3z61qEkpdAdUQKchBbKuqKQ6sDmsFCxcaPsYjzDbt9oYc+bMBO3DS4i/BtKh+8AksNOQ2Zsj67kws3YSdyGcHNsp3p7liqA11IP2ItzQcnach190QbaGuvRCsgyQdSoazt+3fnKpG+fmjORtwJBCx3IH6xqyL8jhTjiCyaQ6XH1X1n+LJWt57lvbnP7YPGJo3kk9I8kwBnsBPaMUGEuZDXPn/Ap6Ay3HytGy1wfCmkksno28Y71qeGKe6d5eYT0VX+PeHKwNvTnW58BaSY6x5DS54gVGLbXrSTeeTLUd7bvJVicjdmsjspHsGTkZG0nfGtnBBLWY5ieD3kO3BJjnsiPTuZm1T+8rnENdiLcnldA4Dczdsx2VzWT/BDs1ix2/B5nNxutKvyd2z92p9Ujx7mLkapsZ+buQOnLSjsYQ56sdSNf6UpdpltXbYa3SD+VIn/OpOLY7HZ+dU85jgNVYq2L5Dj3AyHvdgVSXjucz8c8qlGw5XhfsSmJQFZaCGhj/h/HsvTBuvwq/JU5W/eyUjaIn4drC2wXzwzH7ybG1waVQR96RolKHUmo3zFfZu6FqMVtUWk5MD7hHzIkvXWv8u3Ze2HncaD1rPN3CJ2+DBs8i3aV7yK1Fz2mdXtMmbcPTKX2hr/St5tc+1D7WPg1M5+csZoUqT+3zX1b8mXk=</latexit>

PX

<latexit sha1_base64="42o37M/mfpHXZfYXEm9QKZw4Yk4=">AAAH7HicjVXLbtNAFL1tgZTwSmGJhCwqBJVKlIB4LCseEsuC6AM1VWU7k8SKX7LHpcV4xyewQ2yRYAu/wQcg8QHwAew592ZS4pSkcZTxnTv3nPuYO2Mn9r1UNxo/5uYXTp0+U1k8Wz13/sLFS7Wly5tplCWu2nAjP0q2HTtVvheqDe1pX23HibIDx1dbTv8xr2/tqyT1ovClPozVbmB3Q6/jubaGaq92rRXYuud08vViL89bru1br4q3A2G7KPZqy416Qx7ruNA0wvLayp/vt5/8/LweLS3sUIvaFJFLGQWkKCQN2SebUvx2qEkNiqHbpRy6BJIn64oKqgKbwUrBwoa2j7GL2Y7RhpgzZypoF158/BMgLboBTAS7BDJ7s2Q9E2bWTuLOhZNjO8TbMVwBtJp60J6EG1rOjnPwC07IVlOHHkqWHrKORcP5u8ZPJnXj3KyRvDUYYuhYbmM9gewKcrgTlmBSqQ5X35b1X2LJWp67xjaj3yaPEJrXUs9AMgzBnkPPKAXGQmbD3Dm/nF5Ay7FytOz1prCmEotjIm8brwk8Mc90b0+xHouvcW8W1obeLONzYK0kx1BymlzxHGMitetJNx5MtR3tu8lWByN2qyOyluwZORkbSN9q2cEItZjmJ4XeQbd4mGeyI9O5mbVPb0qcQ52PtyOVSHAamLtnOiqdyf4udmoWO34PMpuN15Z+j8ye21PrEePdwcjV1jPydyC15aR1xxDHq+1J17pSl2mW5dthtdQPxUif86nYNzsdHp1TzmOATbBWxvIduouR97oNqSodz2fin5Uv2XK8NtiVxKBKLDnVMf4P45h7Ydx+GX4LnKzq0SkbRU/CtYS3A+ZbY/aTY2uBS6GOvCN5qQ6F1G6YrzJ3Q9litqgSOTE94FaYE1+65vh37biweafevF+/9xyfvEc0eBbpKl1Hbk16QGv0jNZpA57e0Rf6St8qYeV95UPl48B0fs5grlDpqXz6CyXCntg=</latexit>

PY|X

28 / 97

Semi-supervised learning

The underlying main idea:

The decision function (hypothesis h) should not cut

through high density regions

29 / 97

Semi-supervised learning

Simplest approach

1. Compute a clustering of the all data (labeled and unlabeled)

2. For each cluster, assign its class to the majority vote of the
labeled examples that belong to it

30 / 97

Semi-supervised learning

Simplest approach

1. Compute a clustering of the all data (labeled and unlabeled)

2. For each cluster, assign its class to the majority vote of the
labeled examples that belong to it

31 / 97

Semi-supervised learning

Self-training approach

1. Given and

2. Train on SL to obtain h1

3. Apply h1 to SU

4. Remove a set of unlabeled data from SU and add

them to SL (the one where h(x) is the more confident)

with the label h(x)

5. Go to 2 and repeat until convergence

<latexit sha1_base64="8vtRw5bRf9rqYsLC43gnIzcJoSE=">AAAIBHicjVU7bxNBEJ4kgIN5OVDSnAiIRIosG0SgQYpASBQU4ZGHlIusu/PaPuVe3CMknK6g4VfwCxAdoqWghZKGjhIkfgTfjNfB52DHZ3l3dna+bx47e2dHnpukjcaPmdm5U6fPVObPVs+dv3DxUm3h8mYSZrGjNpzQC+Nt20qU5wZqI3VTT21HsbJ821Nb9t5D3t/aV3HihsGL9DBSu77VDdyO61gpVK3aam46lmc8L1pPjPuGmS+ZvpX27E5+ULTcFeOw5S6bRStvGqanXhpuf/KKVm2xUW/IYxwXmlpYXLv+5s/397Wf6+HC3A6Z1KaQHMrIJ0UBpZA9sijBb4ea1KAIul3KoYshubKvqKAqsBmsFCwsaPcwdrHa0doAa+ZMBO3Ai4d/DKRBN4AJYRdDZm+G7GfCzNpx3LlwcmyHmG3N5UObUg/ak3ADy+lxNn7+Cdmm1KF7kqWLrCPRcP6O9pNJ3Tg3YyjvFAwRdCy3sR9DdgQ5OAlDMIlUh6tvyf4vsWQtrx1tm9FvnUcAzSuppy8ZBmDPoWeUAmMhq0HunF9Oz6DlWDla9npTWBOJxdaRt7XXGJ6YZ7K3R9iPxNeoNwN7A2+G9tm3VpJjIDmNr3iOMZba9aQbDybaDvfdeKuDIbuVITmV7Bk5HutL36ZygiFqMclPAr2NbnGxzuREJnMz6x69LnEOdB5mWyoR4zYwd093VDKV/W2c1DR2PPczm47Xkn4P9ZlbE+sRYe5g5GqnU/J3ILXlpnVHEMer7UrXOlKXSZblt8NKqR+KoT7nW7GvTzo4uqecRx8bY6+M5XfoLkY+6zakqnQ834l/Vp5ky/FaYFcSgyqx5FTH+D+Mrd8Lo/aL8FvgZlWPbtkwehzOFN4OmJdG7MfHZoJLoY58InmpDoXUbpCv0u+GssV0UcVyY3rALTMnvnTN0e/acWHzVr25Wr/zFJ+8B9R/5ukqXUNuTbpLa/SY1mkDnt7RF/pK3ypvKx8qHyuf+qazMxpzhUpP5fNfjxim0A==</latexit>

SL = {(xi, yi)}1il
<latexit sha1_base64="yvQnOa1fTAkVGaH8a8SK0yNfEYo=">AAAH/3icjVXJbhNBEK0kgIPDksCRy4iASKTIskEsF6QIhMQxLE4iZSJrZty2J5mNWULCaA58BZ/ADXFC4sAJCb6BP4APgDOvyu3gcbDjsdxdXV3v1dLVM3bkuUlar/+YmZ07c/ZcZf58deHCxUuXF5eubCZhFjuq6YReGG/bVqI8N1DN1E09tR3FyvJtT23Z+495f+tAxYkbBi/To0jt+lY3cDuuY6VQtRYbuelYnvGiaDWNh4aZr5i+lfbsTn5YtPZWzaKVNwzTU6+Mvf6UFa3F5XqtLo9xUmhoYXn9xu9PXw8W/myES3M7ZFKbQnIoI58UBZRC9siiBL8dalCdIuh2KYcuhuTKvqKCqsBmsFKwsKDdx9jFakdrA6yZMxG0Ay8e/jGQBt0EJoRdDJm9GbKfCTNrx3HnwsmxHWG2NZcPbUo9aE/DDSynx9n4+adkm1KHHkiWLrKORMP5O9pPJnXj3IyhvFMwRNCx3MZ+DNkR5OAkDMEkUh2uviX7P8WStbx2tG1Gv3QeATSvpZ6+ZBiAPYeeUQqMhawGuXN+OT2HlmPlaNnrLWFNJBZbR97WXmN4Yp7J3p5gPxJfo94M7A28Gdpn31pJjoHkNL7iOcZYateTbjycaDvcd+OtDofs1obkVLJn5HisL32bygmGqMUkPwn0NrrFxTqTE5nMzaz79KbEOdB5mG2pRIzbwNw93VHJVPZ3cFLT2PHcz2w6Xkv6PdRnbk2sR4S5g5GrnU7J34HUlpvWHUGcrLYrXetIXSZZlt8Oa6V+KIb6nG/FgT7p4Piech59bIy9MpbfobsY+azbkKrS8Xwn/ll5ki3Ha4FdSQyqxJJTDeP/MLZ+L4zaL8NvgZtVPb5lw+hxOFN4O2BeGbEfH5sJLoU68onkpToUUrtBvkq/G8oW00UVy43pAbfKnPjSNUa/ayeFzdu1xr3a3Wf45D2i/jNP1+g6cmvQfVqnp7RBTXh6R1/oG32vvK28r3yofOybzs5ozFUqPZXPfwHBNqUv</latexit>

SU = {(xj)}1ju

32 / 97

Semi-supervised learning

• Idea: endow unlabeled data with pseudo-labels
(the likeliest class at time t)

• Train with the empirical risk:

Crucial to set a(t) with great care

[Dong-Hyun Lee (2013) “Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep
Neural Networks”, ICML-2013]

yi =

(
1 if i = argmaxi2{1,...,C} h

t
i(x)

0 otherwise

Remp(h) =
1

ml

mlX

i=1

CX

j=1

`(hj(xi), y
i
j) + ↵(t)

1

mu

muX

i=1

CX

j=1

`(hj(xi), yij|{z}
pseudo-label

)

Output of the ith
output neuron

33 / 97

Semi-supervised learning

Transductive SVM approach

Outlook: Semi-supervised SVM

Find a boundary that can
provide the largest
margin and least error

Enumerate all
possible labels for
the unlabeled data

Thorsten Joachims, ”Transductive Inference for Text
Classification using Support Vector Machines”, ICML, 1999

34 / 97

Semi-supervised learning

Entropy regularization approach

<latexit sha1_base64="QbeHHm5Y/EYNqZka9dc+/FmMtS8=">AAAI7nicjVXNjhNHEC4DSYwJYTccubRYoewqm5WdKD8SQoIAEkJCIogFpJ2N1TPT9jTb86OeHthNa16DG0LixI0nIdeQNwg3HoGq8hg83th4LHdXV9f31U9Xz4SF0aXr9//tnDh56osvv+qe7p35+uw359bWv31Q5pWN1G6Um9w+CmWpjM7UrtPOqEeFVTINjXoYHlyn/YdPlC11nt13R4XaT+U40yMdSYeq4XrnWpBI55NaBNviCg1BXigrXW4zmaqn2iVGp9qV/pod39FZPfSJCHQmfBBJI27VCAz1eGz2ekGVxcqGVkbKByOc/KD2pu4RZ1mlQ6+vDOo/jQiUMYQxm8lmkEqXhCN/WA/11rY4GmrasVvoJnDq0PmbaaGtJldWlwciz4SRoTIqFrF0suawvxfB5V5gMOlYcgazgbDnx+S5Ej+0HD7eYmOTj8Wc/pP3zNm8OBL5SLhECaxsrCMqXFljXpS33e8N1zb6O31+xHFh0AgbV/duvBGvX76/m6+fvA0BxJBDBBWkoCADh7IBCSX+9mAAfShQtw8edRYlzfsKaughtkIrhRYStQc4jnG112gzXBNnyegIvRj8W0QKuISYHO0syuRN8H7FzKRdxO2Zk2I7wjlsuFLUOkhQ+znc1HJVHOXiYAS/cQ4acypYQ9lFDUvFVaHIxUxWDhkK1JEc475FOWLktM6CMSXnTrWVvP8fW5KW1lFjW8G7JsoMNU+5WinHnyG7Rz2hFDLWvJpmFuLPwz3UUqwULXn9jllLjiVsIo8brxY9Ec9ybzdxv2Bf894E7k29icbnxFpxjhnntLh7PI6Wa5dwrx0utZ3tqsVWhzN22zOy4+wJuRibclc6PsEca7HMT4n6ELtF47riE1nOTawH8FeLc6ozOIdcCYu9TtxJ01HlSvY/4UmtYkfzJLPVeCX3e96cuVxajwLnEY5Ubbci/wilmG/aeA5xvNqauzbiuiyzbN/97VY/1DN9TrfiSXPS2cd7SnlMsBb32lh6Q+7jSGcdo9Tjjqc78cnKcLYUr0R2xTGoFouHHRz/DxM274V5+w30W+PN6n28ZbPoRbiAeUfIvDlnvzi2ALkU1pFOxLfqUHPtpvmq5t3QtlgtKss3JkHcFnHid2ww/9U6Ljz4cWfwy87Pf+AH7XeYPF24ABcxtwH8ClfhFtyFXYg6rzp/d/7pvO0W3Wfd590XE9MTnQZzHlpP99UHnaAC1g==</latexit>

ĥ = ArgMin
h2H


1

l

lX

i=1

`
�
h(xi), yi

�

| {z }
Empirical risk on labeled data

+ �
uX

j=1

�h(xj) log h(xj)

| {z }
Entropy of the predictions

�

Entropy-based Regularization

𝜃∗𝑥𝑢 𝑦𝑢

Distribution

𝑦𝑢

1 2 3 4 5

𝑦𝑢

1 2 3 4 5

𝑦𝑢

1 2 3 4 5

Good!

Good!

Bad!

𝐸 𝑦𝑢 = − ෍
𝑚=1

5

𝑦𝑚𝑢𝑙𝑛 𝑦𝑚𝑢

Entropy of 𝑦𝑢 :
Evaluate how concentrate
the distribution 𝑦𝑢 is

𝐸 𝑦𝑢 = 0

𝐸 𝑦𝑢 = 0

𝐸 𝑦𝑢

= 𝑙𝑛5
= −𝑙𝑛

1
5

As small as possible

𝐿 =෍
𝑥𝑟

𝐶 𝑦𝑟, ො𝑦𝑟

+𝜆෍
𝑥𝑢

𝐸 𝑦𝑢

labelled
data

unlabeled
data

35 / 97

• You have to make assumptions about what you think is
reasonable as a bias

– E.g. that classes are separated by low density regions

• Then, you show that if the assumption is met by Nature, then
you find a correct hypothesis

36 / 97

A remark on semi-supervised learning

• Could be regarded as transductive learning where

one wants to label unlabeled training instances

37 / 97

Transductive learning

• I know in advance where I will be queried

x

y

!

38 / 97

Transductive learning

• "When solving a problem of interest, do not solve a more general

problem as an intermediate step.

Try to get the answer that you really need but not a more general

one.”

 (Vapnik, 1995)

39 / 97

Semi supervised learning with transductive learning

• Graph-Based labelling

Then learn a hypothesis on
the new training set

40 / 97

Outline

1. Classes severely unbalanced

2. Learning from positive examples only

3. Semi-supervised learning

4. Active learning

5. Domain adaptation

6. Tracking

41 / 97

Active learning

• When the learner can actively ask for pieces of information

– Labels of selected examples

– Values of some selected descriptors
• E.g. ask for a medical examination

• Examples

– MasterMind

– Scientific activity

42 / 97

Active learning

• When the learner can actively ask for pieces of information
– Labels of selected examples

– Values of some selected descriptors
• E.g. ask for a medical examination

• The hope
– Need of less (costly) examples

– Having a faster convergence rate

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

�
log |H|+ log 1

�

2 m

�
> 1� �

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

log |H|+ log 1
�

m

�
> 1� �

43 / 97

Active learning

How to find the best threshold from querying points?

• By random selection of points

• By active selection

Intro Constructives Sélectives Exemple Approches

Un exemple
Distribution uniforme sur intervalle [0,1]

Tirage au hasard des points : m = O(1
" log 1

")

Sélection active : m = O(log 1
")

Amélioration exponentielle en terme d’échantillonnage !!

5 / 41

Intro Constructives Sélectives Exemple Approches

Un exemple
Distribution uniforme sur intervalle [0,1]

Tirage au hasard des points : m = O(1
" log 1

")

Sélection active : m = O(log 1
")

Amélioration exponentielle en terme d’échantillonnage !!

5 / 41

Much faster!

44 / 97

Active learning

• Two main approaches

– “Constructive” approach

• The learner constructs queries

– ”Selective” (pool-based) approach

• The learner selects points among the unsupervised ones

Why is the constructive approach sometimes not applicable?

45 / 97

How to select the examples? (some ideas)

• The more informative examples

1. The ones where the confidence of the current hypothesis is the lowest

• Measured by a probability

• Measured by distance to the decision function

2. Learn an ensemble of hypotheses and select the examples where they
disagree the most

<latexit sha1_base64="lD6ElBNq+SkgaCu3BZt6Wmv9KJY=">AAAIQ3icjVXbbtNAEJ20QErKpYVHXiwqRCtVUULFRUJIBYTEC1K5pK1Ul2jtbJJVfdN63aZY/jw+AvEDIN4Qr0jMTDZtnJI0jrIez55zZmd21vaSQKWm0fhWWVi8cvVadel6bfnGzVu3V1bv7KZxpn3Z8uMg1vueSGWgItkyygRyP9FShF4g97yj1zS/dyx1quLokzlN5GEoepHqKl8YdLVXMjcUpu9180Hx2U2N0I773HlBgxsnUgsT60iE8kSZfqBCZdL8pe69E4OinZ8zHVdFTu76InA+Fu1WQWwjByZvRb7URqioWD9Hb9Rq7ZW1Rr3Bl3PRaFpjbXtji6+deHXxAFzoQAw+ZBCChAgM2gEISPF3AE1oQIK+Q8jRp9FSPC+hgBpyM0RJRAj0HuHYw6cD643wmTRTZvsYJcC/RqYDD5ATI06jTdEcns9YmbzTtHPWpLWd4t2zWiF6DfTRexlvhJyf5+EvvCRbA114xlkqzDphD+Xv2zgZ141yc8byNqiQoI/sDs5rtH1mjnbCYU7K1aHqC57/wUjy0rNvsRn8tHlE6DnheoacYYTqOfqJJVGx4KdR7pRfDh/QS2ul1VLUh6ya8lo8u/KOjaoxEunMjvYG5xOONRnNwblRNMfGHKIl5xhxTtMrnuOouXZ97sbBTOx4301HDcZwm2O24eyJOZ0bct8a3sEYazErTop+D7tF4XPGOzJbm1SP4EtJc+QL8O5xJTSeBtLu245K58Jv4U7Ng6P7MLP5dAX3e2z3XMysR4L3Lo5UbTOnfhetDp+03gTjYrUVd63PdZmFLL8dNkv9UIz1OZ2KY7vT0dk5pTyGXI1zZS69Qw9xpL3uoFXjjqczcY4KOFtar0B1yWuQJZUc6jj+j+PZ98Ikfg3jFniyamenbJw9jeeybheV1yfw09fmopbEOtKO5KU6FFy7Ub7SvhvKiPlWpfnE9JG3QZr4pWtOftcuGruP6s0n9cfv8ZP3CobXEtyD+5hbE57CNryFHWhhpO+VSqVWWa5+rf6q/q7+GUIXKpZzF0pX9e8/S5q9NA==</latexit>

x? = ArgMax
x2SU

Uncertain(x)

<latexit sha1_base64="ihSYe3TltNuXVWe5k9FEDSCJCG4=">AAAIjnicjVXbbtNAEJ20XEK4pfDIy4oKaKUSJSAKEqooIEQfQCqXtJXqYtnOJlnVN63XbYrxD/EV/AZ/AH/BzMRp45SkcZT1ePacMzuzs7Yb+yoxzebvysLipctXrlav1a7fuHnrdn3pzk4SpdqTbS/yI73nOon0VSjbRhlf7sVaOoHry1338C3N7x5Jnago/GpOYnkQOL1QdZXnGHTZ9V9W4Ji+280G+TcrMY4W1kuxQYMVxVI7JtKhE8hjZfq+CpRJste699EZ5HZ2xhSWCkVmeY4vvuR2O0d2zXJVr+db2WNhJWlgZyoXMfn8lb5tVs64qxsntqIJvSqsNWH5Ue9ioGB1beW1ml1fbjaafInzRqswljffi5+W/aO3HS0t7oMFHYjAgxQCkBCCQdsHBxL87UMLmhCj7wAy9Gm0FM9LyKGG3BRREhEOeg9x7OHTfuEN8Zk0E2Z7GMXHv0amgAfIiRCn0aZogudTVibvNO2MNWltJ3h3C60AvQb66L2IN0LOz3PxF1yQrYEuvOAsFWYds4fy94o4KdeNchNjeRtUiNFHdgfnNdoeM0c7IZiTcHWo+g7P/2EkeenZK7Ap/C3yCNFzzPUMOMMQ1TP0E0uiYs5Po9wpvww+o5fWSqulqI9YNeG1uMXKO0VUjZFIZ3a0dzgfc6zJaALnRtFEEXOIlpxjyDlNr3iGo+ba9bkbBzOx4303HTUYw62N2YazJ+Z0bsB9a3gHI6zFrDgJ+l3sFoXPKe/IbG1SPYTvJc2Rz8e7y5XQeBpIu190VDIX/inu1Dw4ug8zm0/X4X6Pij13ZtYjxnsXR6q2mVO/i1aHT1pvgnG+2oq71uO6zEKW3w5rpX7Ix/qcTsVRsdPh6TmlPIZcjXNlLr1DD3Ckve6gVeOOpzNxhvI5W1qvg+qS1yBLKhk0cPwfxy3eC5P4ZYyb48mqnZ6ycfY0nsW6XVRemcBPX5uFWhLrSDuSleqQc+1G+cri3VBGzLcqzSemj7xV0sQvXWvyu3be2HnSaK03nn3CT94bGF5VuAf3MbcWPIdN2IJtaINXeVj5UGlXdqr16np1o/pqCF2oFJy7ULqqW/8AXi/VVw==</latexit>

x? = ArgMax
x2SU

⇢
�
X

i

p
�
ht(x) = yi

�
log p

�
ht(x) = yi

��

<latexit sha1_base64="NhqHwUQKJhOeDPFNAVm311F7E6k=">AAAITXicjVVLb9NAEJ60QErKo+Vx4mK1QrRSFSUgHhKqVApIXJAKIm1RXUVrZ52s6pfWmzbBsvgBnPhRnDnzA5DgB3BDiJmJU+KUpHGU9ezsfN88dnbtxL5KTK32rTQ3f+HipfLC5crilavXri8t39hNoq52ZcON/EjvOyKRvgplwyjjy/1YSxE4vtxzjp7T+t6x1ImKwnemH8vDQLRD5SlXGFQ1lz7aRvZM2ghdqY1QYbZmB8J0HC/tZeuW/dTapMH2tHDTepbaUSy1MJEORSBPlOn4KlAmSZ/p9mvRy5pp37JVaKW2K3zrfZbFtqPa/lqnaUZ5N/uk1utZpdJcWq1Va/xYZ4V6Lqxuvdj+tFL+/GUnWp4/ABtaEIELXQhAQggGZR8EJPg7gDrUIEbdIaSo0ygpXpeQQQWxXbSSaCFQe4RjG2cHuTbEOXEmjHbRi49/jUgL7iImQjuNMnmzeL3LzKSdxJ0yJ8XWx7eTcwWoNdBB7Xm4oeXsOAd/wTnZGvDgCWepMOuYNZS/m/vpct0oN2skb4MMMepIbuG6Rtll5HAnLMYkXB2qvuD1H2xJWpq7uW0XfuZ5hKg54XoGnGGI7CnqCSWRMePZMHfKL4W3qKVYKVryeo9ZE47FySNv5V41eiKe6d5e4nrMvsa9Wbg29GblPgfWknMMOafJFU9x1Fy7Dndjb6rtaN9NtuqN2G2MyIazJ+RkbMB9a3gHI6zFND8J6h3sFoXzLu/IdG5iPYIPBc6hzse3w5XQeBqIu5N3VDKT/QPcqVns6D3IbDZewf0e5XsuptYjxreHI1XbzMjvodTik9YeQ5yttuKudbku0yyLt8NGoR+ykT6nU3Gc73R4ek4pjwFW41oRS3foIY601y2UKtzxdCb+WfmcLcUrkF1yDLLAkkIVx/9hnPxeGLdfRb8ZnqzK6SkbRU/C2czrIfPamP3k2GzkklhH2pG0UIeMazfMV+Z3Q9Fitqg0n5gO4taJE7909fHv2llh9361/qj68A1+8rZh8CzAHVjB3OrwGLbgFexAAz19Ly2WbpVul7+Wf5V/l/8MTOdKOeYmFJ6F8l9B8sFG</latexit>

Uncertain(x) =
1

ArgMaxy2Y p
�
ht(x) = y

�

Entropy criyeria

46 / 97

Illustration

…

47 / 97

Active Learning

• What is the danger?

48 / 97

Active Learning

• What is the danger?

– No more theoretical guarantees

Does not make sense anymore!!

– Why?

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

�
log |H|+ log 1

�

2 m

�
> 1� �

49 / 97

Active learning: lessons

• Active learning is not much used in practice

1. Costly to identify informative examples

2. Risk of ignoring important regions of X

• Interesting: learning under budget constraints

– What measurements should I made under some budget constraints?

50 / 97

Outline

1. Classes severely unbalanced

2. Learning from positive examples only

3. Semi-supervised learning

4. Active learning

5. Domain adaptation

6. Tracking

51 / 97

Different types of transfers

• Domain adaptation

– XS = XT and YS = YT

– but different distributions PX

• Concept shift

– XS = XT and YS = YT

– but different distributions PY|X

• Transfer learning

– XS ≠ XT and/or YS ≠ YT

52 / 97

Domain adaptation

• Covariate shift

– We assume XS = XT (same input space)
Domain Shift

A classifier trained on one domain may perform poorly on another domain

5

Training data Test data

Source domain Target domain

53 / 97

• Covariate shift (suppose same input size and resolution)

Domain Adaptation: Other Scenarios

9

Synthetic (source domain)

Real (target domain)

Domain Adaptation: Other Scenarios

9

Synthetic (source domain)

Real (target domain)

Domain Adaptation: Other Scenarios

9

Synthetic (source domain)

Real (target domain)

Domain Adaptation: Other Scenarios

9

Synthetic (source domain)

Real (target domain)

Source domain (simulated images) Target domain (real images)

<latexit sha1_base64="LfpZzr9Kt//HKPZC7u5ja49MHmA=">AAAH3XicjVVLb9NAEJ5SIMU82oLEhYtFhQCpihIQj2NVhMSxRX1JTRXZzqax6pfW69Ji5cgNceXAFY78C/4EF87wL/hmsilxStI4ynp2dr5vHju79rMozE2j8XPu0vzlK1drC9ec6zdu3lpcWr69k6eFDtR2kEap3vO9XEVhorZNaCK1l2nlxX6kdv2jV7y+e6x0HqbJljnN1EHsHSZhNww8A1V7abEVe6bnd8uTfnvLcZz20kqj3pDHPS80rbCydnfzV/h9/cdGujy/Ty3qUEoBFRSTooQM5Ig8yvHbpyY1KIPugEroNKRQ1hX1yQG2gJWChQftEcZDzPatNsGcOXNBB/AS4a+BdOkBMCnsNGT25sp6IcysncRdCifHdoq3b7liaA31oL0IN7ScHefjF1+QraEuvZQsQ2SdiYbzD6yfQurGubkjeRswZNCx3MG6hhwIcrgTrmByqQ5X35P132LJWp4H1ragPzaPBJp3Us9YMkzAXkLPKAXGvsyGuXN+Jb2FlmPlaNnrQ2HNJRbfRt6xXjU8Mc90b6+xnomvcW8u1obeXOtzYK0kx0RymlzxEqOW2vWkG0+m2o723WSrkxG71RHZSPaMnIyNpW+N7GCKWkzzk0Pvo1tCzAvZkenczHpE7yucQ12Ety+V0DgNzN2zHZXPZP8UOzWLHb8Hmc3G60m/p3bPvan1yPDuYuRqmxn5u5A6ctIOxxDnqx1K1wZSl2mW1dthtdIP/ZE+51NxbHc6OTunnMcAq7FWxfIdeoCR97oDyZGO5zPxzyqSbDleD+xKYlAVlpLqGP+H8e29MG6/Ar99nCzn7JSNoifhWsLbBfOjMfvJsbXApVBH3pGyUoe+1G6Yr7J3Q9Vitqi0nJgecI+ZE1+65vh37byw86TefF5/tolP3joNngW6R/eRW5Ne0Bq9oQ3alm/fF/pK32rt2ofax9qngemlOYu5Q5Wn9vkv5vOW7w==</latexit>xT
<latexit sha1_base64="mVVwSUUOfqydwD8eMMYTsp7YKlA=">AAAH3XicjVVLb9NAEJ5SIMU82oLEhYtFhQCpihIQj2NVhMSxBfqQmiqynU1j1S+t16XFypEb4sqBKxz5F/wJLpzhX/DNZFPilKRxlPXs7HzfPHZ27WdRmJtG4+fchfmLly7XFq44V69dv7G4tHxzO08LHaitII1Svet7uYrCRG2Z0ERqN9PKi/1I7fiHL3h950jpPEyTt+YkU/uxd5CE3TDwDFTtpcVW7Jme3y2P++03juO0l1Ya9YY87lmhaYWVtdubv8Lv6z820uX5PWpRh1IKqKCYFCVkIEfkUY7fHjWpQRl0+1RCpyGFsq6oTw6wBawULDxoDzEeYLZntQnmzJkLOoCXCH8NpEv3gElhpyGzN1fWC2Fm7STuUjg5thO8fcsVQ2uoB+15uKHl7Dgfv/icbA116blkGSLrTDScf2D9FFI3zs0dyduAIYOO5Q7WNeRAkMOdcAWTS3W4+p6s/xZL1vI8sLYF/bF5JNC8k3rGkmEC9hJ6Rikw9mU2zJ3zK+k1tBwrR8te7wtrLrH4NvKO9arhiXmme3uJ9Ux8jXtzsTb05lqfA2slOSaS0+SKlxi11K4n3Xg81Xa07yZbHY/YrY7IRrJn5GRsLH1rZAdT1GKanxx6H90SYl7IjkznZtZDel/hHOoivH2phMZpYO6e7ah8JvvH2KlZ7Pg9yGw2Xk/6PbV77k2tR4Z3FyNX28zI34XUkZN2MIY4W+1QujaQukyzrN4Oq5V+6I/0OZ+KI7vTyek55TwGWI21Kpbv0H2MvNcdSI50PJ+Jf1aRZMvxemBXEoOqsJRUx/g/jG/vhXH7Ffjt42Q5p6dsFD0J1xLeLpgfjNlPjq0FLoU68o6UlTr0pXbDfJW9G6oWs0Wl5cT0gHvInPjSNce/a2eF7Uf15tP6k0188tZp8CzQHbqL3Jr0jNboFW3Qlnz7vtBX+lZr1z7UPtY+DUwvzFnMLao8tc9/Ad+Hlu4=</latexit>xS

<latexit sha1_base64="5garxrDUBqAFnypEYY6f6eemmJk=">AAAH0nicjVXbbtNAEJ22QIq5tIVHELKoECBVUQLi8liBkHhsoWkrJVVlO5vG1Det7dLUygNCvPHAK3xJf4U/APETnJlsSpySNI6ynp2dc+ays2s3Cfw0q9V+zs0vXLp8pbJ41bp2/cbNpeWVW9tpnGtPNbw4iPWu66Qq8CPVyPwsULuJVk7oBmrHPXzN6ztHSqd+HG1lvUTthc5B5Hd8z8mg2u7tv7csa395tVatyWOfF+pGWF2/e7r558u90414ZaFJLWpTTB7lFJKiiDLIATmU4tekOtUogW6PCug0JF/WFfXJAjaHlYKFA+0hxgPMmkYbYc6cqaA9eAnw10Da9ACYGHYaMnuzZT0XZtZO4i6Ek2Pr4e0arhDajLrQXoQbWs6Oc/ELL8g2ow69lCx9ZJ2IhvP3jJ9c6sa52SN5Z2BIoGO5jXUN2RPkcCdswaRSHa6+I+u/xJK1PPeMbU6/TR4RNB+lnqFkGIG9gJ5RCox9mQ1z5/wKegctx8rRsteHwppKLK6JvG28anhinune3mA9EV/j3mysDb3ZxufAWkmOkeQ0ueIFRi2160o3Hk+1He27yVbHI3ZrI3Im2TNyMjaUvs1kB2PUYpqfFHoX3eJjnsuOTOdm1kM6KXEOdQHerlRC4zQwd9d0VDqT/VPs1Cx2/B5kNhuvI/0emz13ptYjwbuDkaudzcjfgdSWk3YwhjhfbV+61pO6TLMs3w5rpX7oj/Q5n4ojs9PR2TnlPAZYjbUylu/QPYy8121IlnQ8n4l/VoFky/E6YFcSgyqxFFTF+D+Ma+6FcftV+O3jZFlnp2wUPQnXEt4OmB+N2U+OrQUuhTryjhSlOvSldsN8lbkbyhazRaXlxHSBe8yc+NLVx79r54XtJ9X68+qzTXzyXtHgWaQ7dB+51ekFrdNb2qAGPH2gb/SdflS2KieVT5XPA9P5OYO5TaWn8vUvYxKSqA==</latexit>yS
<latexit sha1_base64="CE+eV9EMxL89Wu/snmFpBRSSZyQ=">AAAH2HicjVXbbtNAEJ22QIq5tfAIQhYRAqQqSkBcXhAVCInHFjVtRVNVtrNJrPqmtV1arEi8IMQrD7zCZ/RX+AMQP8GZyabEKUnjKOvZ2TlnLju7dpPAT7N6/efc/MK58xcqixetS5evXL22tHx9M41z7ammFwex3nadVAV+pJqZnwVqO9HKCd1Abbn7r3h960Dp1I+jjewoUbuh0438ju85GVSto70N+3lrxX5hWdbeUrVeq8tjnxYaRqiu3jpe//Pp9vFavLywQy1qU0we5RSSoogyyAE5lOK3Qw2qUwLdLhXQaUi+rCvqkwVsDisFCwfafYxdzHaMNsKcOVNBe/AS4K+BtOkuMDHsNGT2Zst6LsysncRdCCfHdoS3a7hCaDPqQXsWbmg5O87FLzwj24w69Eyy9JF1IhrO3zN+cqkb52aP5J2BIYGO5TbWNWRPkMOdsAWTSnW4+o6s/xJL1vLcM7Y5/TZ5RNC8l3qGkmEE9gJ6Rikw9mU2zJ3zK+gttBwrR8te7wlrKrG4JvK28arhiXmme3uN9UR8jXuzsTb0ZhufA2slOUaS0+SKFxi11K4n3Xg41Xa07yZbHY7YrYzImWTPyMnYUPo2kx2MUYtpflLoXXSLj3kuOzKdm1n36UOJc6gL8HalEhqngbl7pqPSmewfYadmseP3ILPZeB3p99jsuTO1HgneHYxc7WxG/g6ktpy07hjidLV96VpP6jLNsnw7rJT6oT/S53wqDsxORyfnlPMYYDXWyli+Q3cx8l63IVnS8Xwm/lkFki3H64BdSQyqxFJQDeP/MK65F8btq/Dbx8myTk7ZKHoSriW8HTDfH7OfHFsLXAp15B0pSnXoS+2G+SpzN5QtZotKy4npAfeAOfGla4x/104Lmw9rjSe1x+v45L2kwbNIN+kOcmvQU1qlN7RGTXhK6Bt9px+Vd5WPlc+VLwPT+TmDuUGlp/L1L9r8lCk=</latexit>

yT =?

54 / 97

Concept shifts: illustrations

• Spam filtering

– Not the same user: PY|X may differ

• E.g. for me conference announcements are important,
but could be an annoyance to someone else

• Changes in the tastes or expectations of the consumers

• Changes in medicine

– E.g. the prevalence of flu differs from one season to another (PX)

– But this is still flu (PY|X)

55 / 97

Types of Domain Adaptation

• Semi-supervised DA (SSDA)

– Some labeled target data, but not enough to train from it

– Lots of unlabeled data

• Unsupervised DA (UDA)

– No labeled target data

• Source-free DA (SFDA)

– No source data (e.g. because of privacy concerns)

– Only the source hypothesis hS

– And a few labeled target data

56 / 97

Covariate shift

• Difference in the PX distribution between source and target

domains:
<latexit sha1_base64="y8/ov+Wy5EkZos9WOxdyfuCvR0o=">AAAH+XicjVXNbtNAEJ62QIr5a+HIxWqFKKKKEhCUYwVC4ligf1JTKtvZNFb9h70uLVYegjMnbogrB65w5BEQPAC8Bd9MNsVOSRpH2Z2dme+bndlZ200CP9ONxo+p6Zlz5y/UZi9aly5fuXptbv76Zhbnqac2vDiI023XyVTgR2pD+zpQ20mqnNAN1JZ78ITtW4cqzfw4WtfHidoNnf3I7/ieo6Ham7vbCh3ddTvFWm9v+9VLu7VstyL1WuayZd2yrL25xUa9IY99WmgaYXF1YenXz5Xv79fi+ZkdalGbYvIop5AURaQhB+RQht8ONalBCXS7VECXQvLFrqhHFrA5vBQ8HGgPMO5jtWO0EdbMmQnaQ5QA/xRIm24BE8MvhczRbLHnwszaUdyFcPLejjG7hiuEVlMX2rNwA8/JcS5+4RnZaurQI8nSR9aJaDh/z8TJpW6cm13KW4MhgY7lNuwpZE+Qg5OwBZNJdbj6jth/iydree0Z35z+mDwiaN5IPUPJMAJ7AT2jFBh7shrkzvkV9AJa3ivvlqPeFtZM9uKanbdN1BSRmGd8tKewJxJrOJoN2yCabWL2vZXkGElOoyteYEyldl3pxqOxvuW+G+11VPJbLslasmfkaGwofavlBGPUYlycDHoX3eJjncuJjOdm1gN6W+Ec6ALMrlQixW1g7q7pqGwi//s4qUn8eO5nNhmvI/0emzN3xtYjwdzByNXWE/J3ILXlpu0PIU5X25eu9aQu4zyrb4flSj/0Sn3Ot+LQnHR0ck85jz42ha2K5XfoLkY+6zYkSzqe78Q/r0Cy5f06YFeyB1VhKaiO8X8Y17wXhv0XEbeHm2Wd3LIyehSuJbwdMC8N+Y/eWwtcCnXkEykqdehJ7Qb5KvNuqHpMtqtUbkwXuDvMiS9dc/i7dlrYvFdvPqw/eI5P3mPqP7N0kxaQW5NWaJWe0RptINI7+kJf6VutqH2ofax96rtOTxnMDao8tc9/AdH0oX4=</latexit>

PS
X 6= PT

X

Domain Shift

• The domain shift is defined as a difference in the distribution of the
source and target samples

13

57 / 97

How to approach the problem

?

58 / 97

How to approach the problem

• Very active research area

– Because of the numerous applications

• Lots of (heuristical) approaches

59 / 97

(Some) families of approaches

• Change the source distribution

1. Reweight the source data

2. Iteratively self-label the target data, and retrain

• Search for a common description subspace

– Where the source hypothesis works well on the projected source data

– And hope that it will work as well on the projected target data

60 / 97

DA by reweighting source data

• Here, a regression task
225Examples of Covariate ShiftExamples of Covariate Shift

(Weak) extrapolation:
Predict output values outside training region

Training samples

Test samples

61 / 97

First analysis

A first analysis

RPT (h) = E
(xt ,yt)�PT

I
�
h(xt) �= y t

⇥

(LaHC) Domain Adaptation - EPAT’14 32 / 95

62 / 97

First analysis
A first analysis

RPT (h) = E
(xt ,yt)�PT

I
�
h(xt) �= y t

⇥

= E
(xt ,yt)�PT

PS(xt , y t)
PS(xt , y t)

I
�
h(xt) �= y t

⇥

(LaHC) Domain Adaptation - EPAT’14 32 / 95

63 / 97

First analysis
A first analysis

RPT (h) = E
(xt ,yt)�PT

I
�
h(xt) �= y t

⇥

= E
(xt ,yt)�PT

PS(xt , y t)
PS(xt , y t)

I
�
h(xt) �= y t

⇥

=
⇤

(xt ,yt)

PT (x
t , y t)

PS(xt , y t)
PS(xt , y t)

I
�
h(xt) �= y t

⇥

(LaHC) Domain Adaptation - EPAT’14 32 / 95

64 / 97

First analysis
A first analysis

RPT (h) = E
(xt ,yt)�PT

I
�
h(xt) �= y t

⇥

= E
(xt ,yt)�PT

PS(xt , y t)
PS(xt , y t)

I
�
h(xt) �= y t

⇥

=
⇤

(xt ,yt)

PT (x
t , y t)

PS(xt , y t)
PS(xt , y t)

I
�
h(xt) �= y t

⇥

= E
(xt ,yt)�PS

PT (xt , y t)
PS(xt , y t)

I
�
h(xt) �= y t

⇥

(LaHC) Domain Adaptation - EPAT’14 32 / 95

65 / 97

First analysis

Covariate shift [Shimodaira,’00]

� Assume similar tasks, PS(y |x) = PT (y |x), then:

= E
(xt ,yt)�PS

DT (xt)PT (y t |xt)
DS(xt)PS(y t |xt)

I
�
h(xt) ⇥= y t

⇥

= E
(xt ,yt)�PS

DT (xt)
DS(xt)

I
�
h(xt) ⇥= y t

⇥

= E
(xt)�DS

DT (xt)
DS(xt)

E
yt�PS (yt |xt)

}I
�
h(xt) ⇥= y t

⇥

� weighted error on the source domain: �(x t) = DT (xt)
DS (xt)

Idea reweight labeled source data according to an estimate of �(x t):
E

(xt ,yt)�PS

�(xt)I
�
h(xt) ⇥= y t

⇥

(LaHC) Domain Adaptation - EPAT’14 33 / 95

66 / 97

Principle

• Law of large numbers

– Sample averages converge to the population mean

– But how to estimate ?

67 / 97

Importance weighting

• A naïve estimation of does not work

– Estimation density is too crude in high dimension space (and with few
known testing instances)

• Idea of Sugiyama:

– Learn a parametric model of

and

See [Sugiyama, Masashi, et al. "Direct importance estimation with model selection and its application to covariate
shift adaptation." Advances in neural information processing systems 20 (2007)]

68 / 97

Covariate shift in regression

69 / 97

Covariate shift in classification

70 / 97

The reweighting approach

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A kernel
two-sample test. The Journal of Machine Learning Research, 13(1), 723-773.

Sample Reweighting/Selection

• Gretton et al., JRSS 2012: Sample reweighting

29

MMD

Bound on the weights

Encourage the weights
to define a probability
distribution

71 / 97

The reweighting approach

• … à la Fugiyama

– Complex approach

– Not easy to implement

72 / 97

Search for a common description space

• The idea

Transformation Learning

• Learn a mapping to a latent space where the distributions are similar

32

• The hope

– If the source hypothesis works well on the projected source data

– Then (?) it should/could work as well on the projected target data

73 / 97

Illustration by two algorithms

… among MANy others

1. Subspace alignment

2. Deep NNs

74 / 97

Subspace alignment algorithm

• Optimizing a (linear) mapping function that transforms the
source subspace into the target one

– Assumption: both source and target input spaces are D-dimensional

1. Transform every source and target data in the form of a 𝐷-dimensional
z-normalized vector (i.e. of zero mean and unit standard deviation)

2. Using PCA, select for each domain d eigenvectors (corresponding to the
largest eigenvalues)

3. These eigenvectors are used as bases of the source and target
subspaces, respectively denoted by 𝑋𝑆 and 𝑋𝑇 (𝑋𝑆, 𝑋𝑇 ∈ R𝐷×𝑑).

4. Realize the subspaces alignment

75 / 97

• Alignment of the basis vectors using a transformation matrix M
from XS to XT

<latexit sha1_base64="5hE8Z0rckZ382TQi0RGRlXxeoLo=">AAAIB3icjVVLb9NAEJ62QEp4tIUjF6sVohUlSop4CSFVICoulQr0Eakpke1sGquObflRWhz/AO7c+QncEFcOXOHcfwD/gm8mmxKnJI2jrGdn5/vmsbNrK3CdKC6XTyYmpy5cvFSYvly8cvXa9ZnZuRvbkZ+EttqyfdcPq5YZKdfx1FbsxK6qBqEy25ardqyDF7y+c6jCyPG9zfg4UHttc99zmo5txlDVZ5+sLa4vGbWnxjMeOp1q/a2R1oQ3tdxEZel6lhm1ZeMeD9X6ZqdTX3u3UiwW67ML5VJZHuOsUNHCwup87e6nk9XjDX9uapdq1CCfbEqoTYo8iiG7ZFKE3y5VqEwBdHuUQhdCcmRdUUZFYBNYKViY0B5g3MdsV2s9zJkzErQNLy7+IZAG3QbGh10Imb0Zsp4IM2uHcafCybEd421prja0MbWgPQ/XsxwfZ+HXPifbmJr0WLJ0kHUgGs7f1n4SqRvnZvTlHYMhgI7lBtZDyLYgezthCCaS6nD1TVn/LZas5bmtbRP6o/PwoHkv9WxLhh7YU+gZpcCYyayXO+eX0htoOVaOlr3eEdZIYrF05A3tNYQn5hnt7SXWA/E16M3AWs+boX12rZXk6ElOwyueYgyldi3pxqORtv19N9zqqM9uuU+OJXtGDse2pW9j2UEftRjlJ4LeQrc4mCeyI6O5mfWAPuQ4ezoXb0sqEeI0MHdLd1Q0lv197NQ4dvzuZjYeryn97us9N0fWI8C7iZGrHY/J34TUkJO2P4A4W21HutaWuoyyzN8Oy7l+yPr6nE/Fod5p7/Scch5dbIi1PJbv0D2MvNcNSEXpeD4T/6xcyZbjNcGuJAaVY0mphPF/GEvfC4P2C/Cb4WQVT09ZP3oYria8TTAvDtgPj60GLoU68o6kuTpkUrtevkrfDXmL8aIK5cS0gFtiTnzpKoPftbPC9kqp8rD04DU+ec+p+0zTLZpHbhV6RKv0ijZoC54+0w/6Sb8KHwtfCl8L37qmkxMac5NyT+H7X8n8pE4=</latexit>

F (M) = ||XSM � XT ||2F
<latexit sha1_base64="rez3x3tvWIAOCxoKsFb5EFenyWw=">AAAINHicjVVLb9NAEJ5SICW8WjhysagQrVRVCYiHhJAKCMSlUkH0IdWlsp1NYtUvrTd9Wf4NXPkF/AR+BX8AiRtCggsHrnDgm4lT4oSkcZT17Mx83+zMzq7dJPBTU6t9njozffbc+crMherFS5evXJ2du7aRxh3tqXUvDmK95TqpCvxIrRvfBGor0coJ3UBtunvP2L65r3Tqx9Ebc5SondBpRX7T9xwD1e5sM7OFJHODjsqz1Tx/a6fG0Zb9yHrMgx0nSjsm1pETqgPftAM/9E2aPdGt0I/y3VXLdv1WYGfWi4UhrkUxajvfnZ2vLdfksYaFeiHMryy+O05mPrxfi+emt8mmBsXkUYdCUhSRgRyQQyl+21SnGiXQ7VAGnYbki11RTlVgO/BS8HCg3cPYwmy70EaYM2cqaA9RAvw1kBbdAiaGn4bM0Syxd4SZtaO4M+HktR3h7RZcIbSG2tCehut5To5z8QtPydZQkx5Klj6yTkTD+XtFnI7UjXOz+vI2YEigY7kBu4bsCbK3E5ZgUqkOV98R+3fxZC3PvcK3Qz+KPCJoDqSeoWQYgT2DnlEKjLnMerlzfhm9hpbXyqvlqLeFNZW1uMXKG0VUjUjMMz7ac9gTiTUYzYKtF80qYna9leQYSU6jK55h1FK7tnTj4Vjf/r4b7XXY57fUJxvJnpGjsaH0rZEdjFGLcXFS6F10i495R3ZkPDez7tFxibOnC/B2pRIap4G520VHpRP538VOTeLH725mk/E60u9xsefO2HokeDcxcrXNhPxNSA05aa0BxHC1felaT+oyzrN8OyyV+iHv63M+FfvFTkcn55Tz6GI1bGUs36E7GHmvG5Cq0vF8Jv55BZItr9cBu5I1qBJLRssY/4dxi3th0H8ecXOcrOrJKetHj8LZwtsE88KA/+i12eBSqCPvSFaqQy616+Wriruh7DHZqrScmDZwi8yJL1198Ls2LGzcWa7fX773Cp+8p9R9ZugG3URudXpAK/SS1mgdkT7RL/pNfyofK18qXyvfuq5npgrMdSo9lZ9/AXbwvDY=</latexit>

M? = Argmin
M

�
F (M)

Frobenius norm

A simpler approach - Subspace alignment [Fernando et
al.,ICCV’13]

Move closer PCA-based representations

Totally unsupervised

(LaHC) Domain Adaptation - EPAT’14 61 / 95

76 / 97
…

Subspace alignment algorithm

Algorithm 1: Subspace alignment DA algorithm
Data: Source data S , Target data T , Source labels YS , Subspace dimension d
Result: Predicted target labels YT

S1 PCA(S , d) (source subspace defined by the first d eigenvectors) ;
S2 PCA(T , d) (target subspace defined by the first d eigenvectors);
Xa S1S1

0
S2 (operator for aligning the source subspace to the target

one);
Sa = SXa (new source data in the aligned space);
TT = TS2 (new target data in the aligned space);
YT Classifier(Sa,TT ,YS) ;

M
⇤ = S1

0
S2 corresponds to the “subspace alignment matrix”:

M
⇤ = argminM kS1M� S2k

Xa = S1S1
0
S2 = S1M

⇤ projects the source data to the target
subspace

A natural similarity: Sim(xs , xt) = xsS1M
⇤
S1

0
x
0
t = xsAx

0
t

(LaHC) Domain Adaptation - EPAT’14 62 / 95

Subspace alignment algorithm

Algorithm 1: Subspace alignment DA algorithm
Data: Source data S , Target data T , Source labels YS , Subspace dimension d
Result: Predicted target labels YT

S1 PCA(S , d) (source subspace defined by the first d eigenvectors) ;
S2 PCA(T , d) (target subspace defined by the first d eigenvectors);
Xa S1S1

0
S2 (operator for aligning the source subspace to the target

one);
Sa = SXa (new source data in the aligned space);
TT = TS2 (new target data in the aligned space);
YT Classifier(Sa,TT ,YS) ;

M
⇤ = S1

0
S2 corresponds to the “subspace alignment matrix”:

M
⇤ = argminM kS1M� S2k

Xa = S1S1
0
S2 = S1M

⇤ projects the source data to the target
subspace

A natural similarity: Sim(xs , xt) = xsS1M
⇤
S1

0
x
0
t = xsAx

0
t

(LaHC) Domain Adaptation - EPAT’14 62 / 95

77 / 97

Subspace alignment: empirical results

…

Some results

Adaptation from O�ce/Caltech-10 datasets (four domains to
adapt) is used as source and one as target
Comparisons

Baseline 1: projection on the source subspace
Baseline 2: projection on the target subspace
2 related methods : GFK [Gong et al., CVPR’12] and GFS [Gopalan et
al.,ICCV’11]

(LaHC) Domain Adaptation - EPAT’14 63 / 95

78 / 97

Subspace alignment: empirical results

Recognition accuracy
using a SVM classifier

Figure 2. Finding a stable solution and a subspace dimensionality
using the consistency theorem.

Method NA Baseline 1 Baseline 2 GFK OUR
TDAS 1.25 3.34 2.74 2.84 4.26
HΔH 98.1 99.0 99.0 74.3 53.2

Table 1. Several distribution discrepancy measures averaged over
12 DA problems using Office dataset.

pared to the other baselines (highest TDAS value and low-
est !Δ! measure). Both GFK and our method have lower
!Δ! values meaning that these methods are more likely
to perform well2.

4.5. Classification Results

Visual domain adaptation performance with Of-
fice/Caltech10 datasets: In this experiment we evaluate the
different methods using Office [14]/Caltech10 [8] datasets
which consist of four domains (A, C, D and W). The re-
sults for the 12 DA problems in the unsupervised setting
using a NN classifier are shown in Table 2. In 9 out of the
12 DA problems our method outperforms the other ones.
The results obtained in the semi-supervised DA setting (see
supplementary material) confirm this behavior. Here our
method outperforms the others in 10 DA problems.

The results obtained with a SVM classifier in the unsu-
pervised DA case are shown in Table 3. Our method out-
performs all the other methods in 11 DA problems. These
results indicate that our method works better than other DA
methods not only for NN-like local classifiers but also with
more global SVM classifiers.

Domain adaptation on ImageNet, LabelMe and
Caltech-256 datasets : Results obtained for unsupervised
DA using NN classifiers are shown in Table 4. First, we can
remark that all the other DA methods achieve poor accu-
racy when LabelMe images are used as the source domain,
while our method seems to adapt the source to the target
reasonably well. On average, our method significantly out-
performs all other DA methods.

A visual example where we classify ImageNet images

2See section 1.4 of supplementary material for more details.

Method C→A D→A W→A A→C D→C W→C

NA 21.5 26.9 20.8 22.8 24.8 16.4
Baseline 1 38.0 29.8 35.5 30.9 29.6 31.3
Baseline 2 40.5 33.0 38.0 33.3 31.2 31.9
GFS [8] 36.9 32 27.5 35.3 29.4 21.7
GFK [7] 36.9 32.5 31.1 35.6 29.8 27.2

OUR 39.0 38.0 37.4 35.3 32.4 32.3
Method A→D C→D W→D A→W C→W D→W

NA 22.4 21.7 40.5 23.3 20.0 53.0
Baseline 1 34.6 37.4 71.8 35.1 33.5 74.0
Baseline 2 34.7 36.4 72.9 36.8 34.4 78.4
GFS [8] 30.7 32.6 54.3 31.0 30.6 66.0
GFK [7] 35.2 35.2 70.6 34.4 33.7 74.9

OUR 37.6 39.6 80.3 38.6 36.8 83.6
Table 2. Recognition accuracy with unsupervised DA using a NN
classifier (Office dataset + Caltech10).

Method C→A D→A W→A A→C D→C W→C

Baseline 1 44.3 36.8 32.9 36.8 29.6 24.9
Baseline 2 44.5 38.6 34.2 37.3 31.6 28.4

GFK 44.8 37.9 37.1 38.3 31.4 29.1
OUR 46.1 42.0 39.3 39.9 35.0 31.8

Method A→D C→D W→D A→W C→W D→W

Baseline 1 36.1 38.9 73.6 42.5 34.6 75.4
Baseline 2 32.5 35.3 73.6 37.3 34.2 80.5

GFK 37.9 36.1 74.6 39.8 34.9 79.1
OUR 38.8 39.4 77.9 39.6 38.9 82.3

Table 3. Recognition accuracy with unsupervised DA using a SVM
classifier(Office dataset + Caltech10).

Method L→C L→I C→L C→I I→L I→C AVG

NA 46.0 38.4 29.5 31.3 36.9 45.5 37.9
Baseline1 24.2 27.2 46.9 41.8 35.7 33.8 34.9
Baseline2 24.6 27.4 47.0 42.0 35.6 33.8 35.0

GFK 24.2 26.8 44.9 40.7 35.1 33.8 34.3
OUR 49.1 41.2 47.0 39.1 39.4 54.5 45.0

Table 4. Recognition accuracy with unsupervised DA with NN
classifier (ImageNet (I), LabelMe (L) and Caltech-256 (C)).

using Caltech-256 images is shown in Figure 1. The near-
est neighbor coming from Caltech-256 corresponds to the
same class, even though the appearance of images are very
different from the two datasets.

In Table 5 we report results using a SVM classifier for
the unsupervised DA setting. In this case our method out-
performs all other DA methods, confirming the good behav-
ior of our approach.

Classifying PASCAL-VOC-2007 images using classi-
fiers built on ImageNet : In this experiment, we compare
the average precision obtained on PASCAL-VOC-2007 by
a SVM classifier in both unsupervised and semi-supervised
DA settings. We use ImageNet as the source domain and
PASCAL-VOC-2007 as the target domain. The results are
shown in Figure 3 for the unsupervised case and in the sup-

2966

Figure 2. Finding a stable solution and a subspace dimensionality
using the consistency theorem.

Method NA Baseline 1 Baseline 2 GFK OUR
TDAS 1.25 3.34 2.74 2.84 4.26
HΔH 98.1 99.0 99.0 74.3 53.2

Table 1. Several distribution discrepancy measures averaged over
12 DA problems using Office dataset.

pared to the other baselines (highest TDAS value and low-
est !Δ! measure). Both GFK and our method have lower
!Δ! values meaning that these methods are more likely
to perform well2.

4.5. Classification Results

Visual domain adaptation performance with Of-
fice/Caltech10 datasets: In this experiment we evaluate the
different methods using Office [14]/Caltech10 [8] datasets
which consist of four domains (A, C, D and W). The re-
sults for the 12 DA problems in the unsupervised setting
using a NN classifier are shown in Table 2. In 9 out of the
12 DA problems our method outperforms the other ones.
The results obtained in the semi-supervised DA setting (see
supplementary material) confirm this behavior. Here our
method outperforms the others in 10 DA problems.

The results obtained with a SVM classifier in the unsu-
pervised DA case are shown in Table 3. Our method out-
performs all the other methods in 11 DA problems. These
results indicate that our method works better than other DA
methods not only for NN-like local classifiers but also with
more global SVM classifiers.

Domain adaptation on ImageNet, LabelMe and
Caltech-256 datasets : Results obtained for unsupervised
DA using NN classifiers are shown in Table 4. First, we can
remark that all the other DA methods achieve poor accu-
racy when LabelMe images are used as the source domain,
while our method seems to adapt the source to the target
reasonably well. On average, our method significantly out-
performs all other DA methods.

A visual example where we classify ImageNet images

2See section 1.4 of supplementary material for more details.

Method C→A D→A W→A A→C D→C W→C

NA 21.5 26.9 20.8 22.8 24.8 16.4
Baseline 1 38.0 29.8 35.5 30.9 29.6 31.3
Baseline 2 40.5 33.0 38.0 33.3 31.2 31.9
GFS [8] 36.9 32 27.5 35.3 29.4 21.7
GFK [7] 36.9 32.5 31.1 35.6 29.8 27.2

OUR 39.0 38.0 37.4 35.3 32.4 32.3
Method A→D C→D W→D A→W C→W D→W

NA 22.4 21.7 40.5 23.3 20.0 53.0
Baseline 1 34.6 37.4 71.8 35.1 33.5 74.0
Baseline 2 34.7 36.4 72.9 36.8 34.4 78.4
GFS [8] 30.7 32.6 54.3 31.0 30.6 66.0
GFK [7] 35.2 35.2 70.6 34.4 33.7 74.9

OUR 37.6 39.6 80.3 38.6 36.8 83.6
Table 2. Recognition accuracy with unsupervised DA using a NN
classifier (Office dataset + Caltech10).

Method C→A D→A W→A A→C D→C W→C

Baseline 1 44.3 36.8 32.9 36.8 29.6 24.9
Baseline 2 44.5 38.6 34.2 37.3 31.6 28.4

GFK 44.8 37.9 37.1 38.3 31.4 29.1
OUR 46.1 42.0 39.3 39.9 35.0 31.8

Method A→D C→D W→D A→W C→W D→W

Baseline 1 36.1 38.9 73.6 42.5 34.6 75.4
Baseline 2 32.5 35.3 73.6 37.3 34.2 80.5

GFK 37.9 36.1 74.6 39.8 34.9 79.1
OUR 38.8 39.4 77.9 39.6 38.9 82.3

Table 3. Recognition accuracy with unsupervised DA using a SVM
classifier(Office dataset + Caltech10).

Method L→C L→I C→L C→I I→L I→C AVG

NA 46.0 38.4 29.5 31.3 36.9 45.5 37.9
Baseline1 24.2 27.2 46.9 41.8 35.7 33.8 34.9
Baseline2 24.6 27.4 47.0 42.0 35.6 33.8 35.0

GFK 24.2 26.8 44.9 40.7 35.1 33.8 34.3
OUR 49.1 41.2 47.0 39.1 39.4 54.5 45.0

Table 4. Recognition accuracy with unsupervised DA with NN
classifier (ImageNet (I), LabelMe (L) and Caltech-256 (C)).

using Caltech-256 images is shown in Figure 1. The near-
est neighbor coming from Caltech-256 corresponds to the
same class, even though the appearance of images are very
different from the two datasets.

In Table 5 we report results using a SVM classifier for
the unsupervised DA setting. In this case our method out-
performs all other DA methods, confirming the good behav-
ior of our approach.

Classifying PASCAL-VOC-2007 images using classi-
fiers built on ImageNet : In this experiment, we compare
the average precision obtained on PASCAL-VOC-2007 by
a SVM classifier in both unsupervised and semi-supervised
DA settings. We use ImageNet as the source domain and
PASCAL-VOC-2007 as the target domain. The results are
shown in Figure 3 for the unsupervised case and in the sup-

2966

[Fernando, B., Habrard, A., Sebban, M., & Tuytelaars, T. (2013). Unsupervised visual domain adaptation using
subspace alignment. In Proceedings of the IEEE international conference on computer vision (pp. 2960-2967).]

Remark2: not that impressive!

Remark1: not symmetrical!

determine which dataset(s) would give us the best perfor-
mance on the target domain?

To answer this question, we introduce a Rank of Domain
(ROD) metric that integrates two sets of information: ge-
ometrically, the alignment between subspaces, and statisti-
cally, KL divergences between data distributions once they
are projected into the subspaces.

We sketch the main idea in the following; the detailed
derivation is described in the Supplementary. Given a pair
of domains, computing ROD involves 3 steps: i) determine
the optimal dimensionality d⇤ for the subspaces (as in sec-
tion 3.4); ii) at each dimension i  d⇤, approximate the data
distributions of the two domains with two one-dimensional
Gaussians and then compute the symmetrized KL diver-
gences between them; iii) compute the KL-divergence
weighted average of principal angles, namely,

R(S, T) =
1

d⇤

d⇤X

i

✓i [KL(SikTi) +KL(TikSi)] . (9)

Si and Ti are the two above-mentioned Gaussian distribu-
tions; they are estimated from data projected onto the prin-
cipal vectors (associated with the i-th principal angle).

A pair of domains with smaller values of R(S, T) are
more likely to adapt well: the two domains are both geomet-
rically well-aligned (small principal angles) and similarly
distributed (small KL divergences). Empirically, when we
use the metric to rank various datasets as source domains,
we find the ranking correlates well with their relative per-
formance improvements on the target domain.

4. Experiments

We evaluate our methods in the context of object recog-
nition. We first compare our geodesic-flow kernel method
to baselines and other domain adaptation methods [25, 14].
We then report results that validate our automatic procedure
of selecting the optimal dimensionality of subspaces (sec-
tion 3.4). Next we report results to demonstrate our Rank of
Domain (ROD) metric predicts well which source domain is
more suitable for domain adaptation. At last, we re-examine
the dataset bias problem, recently studied in [27], from the
perspective of “ease of adaptability”.

4.1. Setup

Our experiments use the three datasets which were stud-
ied in [25]: Amazon (images downloaded from online mer-
chants), Webcam (low-resolution images by a web camera),
and DSLR (high-resolution images by a digital SLR cam-
era). Additionally, to validate the proposed methods on
a wide range of datasets, we added Caltech-256 [15] as a
fourth dataset. We regard each dataset as a domain.

We extracted 10 classes common to all four datasets:
BACKPACK, TOURING-BIKE, CALCULATOR, HEAD-

Caltech-256 Amazon

 DSLR Webcam

Figure 2. Example images from the MONITOR category in Caltech-
256, Amazon, DSLR, and Webcam. Caltech and Amazon images
are mostly from online merchants, while DSLR and Webcam im-
ages are from offices. (Best viewed in color.)

PHONES, COMPUTER-KEYBOARD, LAPTOP-101,
COMPUTER-MONITOR, COMPUTER-MOUSE, COFFEE-
MUG, AND VIDEO-PROJECTOR. There are 8 to 151
samples per category per domain, and 2533 images in total.
Fig. 2 highlights the differences among these domains with
example images from the category of MONITOR.

We report in the main text our results on the 10 common
classes. Moreover, we report in the Supplementary our re-
sults on 31 categories common to Amazon, Webcam and
DSLR, to compare directly to published results [25, 20, 14].
Our results on either the 10 or 31 common classes demon-
strate the same trend that the proposed methods signifi-
cantly outperform existing approaches.

We follow similar feature extraction and experiment pro-
tocols used in previous work. Briefly, we use SURF features
[1] and encode the images with 800-bin histograms with the
codebook trained from a subset of Amazon images. The
histograms are normalized first and then z-scored to have
zero mean and unit standard deviation in each dimension.
For each pair of source and target domains, we conduct ex-
periments in 20 random trials. In each trial, we randomly
sample labeled data in the source domain as training ex-
amples, and unlabeled data in the target domain as testing
examples. In semi-supervised domain adaptation, we also
sample a small number of images from the target domain
to augment the training set. More details on how data are
split are given in the Supplementary. We report averaged
accuracies on target domains as well as standard errors.

1-nearest neighbor is used as our classifier as it does not
require cross-validating parameters. For our algorithms, the
dimensionality of subspaces are selected according to the
criterion in section 3.4. For methods we compare to, we use
what is recommended in the published work.

4.2. Results on unsupervised adaptation

Our baseline is OrigFeat, where we use original fea-
tures, ie., without learning a new representation for adap-
tation. Other types of baselines are reported in the Suppl.

For our methods, we use two types of subspaces for the

79 / 97

Unsupervised Domain Adaptation with deep NNs

Mono-task

fc
8conv1 conv5 fc

6
fc
7 classification

loss

How to adapt a deep network?

backpack chair bike

Source Data

backpack chair bike

fc
8conv1 conv5 fc

6
fc
7

• Applying source classifier to target domain can
yield inferior performance…

classification
loss

How to adapt a deep network?

Source Data

Target Databackpack

?

Domain adaptation

80 / 97

Unsupervised Domain Adaptation with deep NNs

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]

Source Data

backpack chair

Target Databackpack

?

fc
8conv1 conv5 fc

6
fc
7

labeled target
data

fc
8conv1 conv5 fc

6
fc
7

classification
losssh

ar
ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

sh
ar

ed

• Fine tune?
…..Zero or few labels in target domain

• Siamese network?
…..No paired / aligned instance examples!

How to adapt a deep network?

source
data

same

bike

IDEA: align feature
distributions

81 / 97

Unsupervised Domain Adaptation with deep NNs

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]

Several approachesDeep distribution alignment

17
Y. Ganin and V. Lempitsky ICML 2015

M. Long, et al. ICML 2015Maximum Mean Discrepancy

E. Tzeng et al. ICCV 2015Domain Confusion Reverse Gradient

Sun and Saenko, AAAI 2016CORrelation ALignment

• by minimizing distance between distributions, e.g.

• …or by adversarial domain alignment, e.g.

82 / 97

Unsupervised Domain Adaptation with deep NNs

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]

Adversarial domain adaptation

Adversarial networks

P

Q

P

Q

83 / 97

Unsupervised Domain Adaptation with deep NNs

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]

Adversarial domain adaptation

Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

C
la

ss
ifi

er

classification
loss

Adversarial domain adaptation

conv1 conv5 fc
6

fc
7

conv1 conv5 fc
6

fc
7

84 / 97

Unsupervised Domain Adaptation with deep NNs

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]

Adversarial domain adaptation

Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

Encoder

C
la

ss
ifi

er

Encoder classification
loss

Adversarial domain adaptation

Discriminator Adversarial
loss

can be shared

One agent tries to make the distributions look alike through the encodings
The other tries to discriminate them

Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

Encoder

C
la

ss
ifi

er

Encoder classification
loss

Adversarial domain adaptation

Discriminator Adversarial
loss

can be shared

Source Data + Labels

backpack chair bike

Unlabeled Target Data

?

Encoder

C
la

ss
ifi

er

Encoder classification
loss

Adversarial domain adaptation

Discriminator Adversarial
loss

can be shared

85 / 97

Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial discriminative domain adaptation.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7167-7176).

source images
+ labels

Cl
as

sif
ie

r

Pre-training

class
label

source images

Source
CNN

Di
sc

rim
in

at
or

Adversarial Adaptation

domain
label

Target
CNN

target images

Cl
as

sif
ie

r

Testing

class
label

Target
CNN

target image

Source
CNN

Figure 3: An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.

by optimizing Lcls over Ms and C by training using the
labeled source data, Xs and Ys. Because we have opted to
leave Ms fixed while learning Mt, we can thus optimize
LadvD and LadvM without revisiting the first objective term.
A summary of this entire training process is provided in
Figure 3.

We note that the unified framework presented in the previ-
ous section has enabled us to compare prior domain adversar-
ial methods and make informed decisions about the different
factors of variation. Through this framework we are able
to motivate a novel domain adaptation method, ADDA, and
offer insight into our design decisions. In the next section we
demonstrate promising results on unsupervised adaptation
benchmark tasks, studying adaptation across visual domains
and across modalities.

5. Experiments

We now evaluate ADDA for unsupervised classification
adaptation across three different adaptation settings. We ex-
plore three digits datasets of varying difficulty: MNIST [21],
USPS, and SVHN [22]. We additionally evaluate on the
NYUD [23] dataset to study adaptation across modalities.
Finally, we evaluate on the standard Office [24] dataset for
comparison against previous work. Example images from
all experimental datasets are provided in Figure 4.

For the case of digit adaptation, we compare against mul-
tiple state-of-the-art unsupervised adaptation methods, all
based upon domain adversarial learning objectives. In 3 of
4 of our experimental setups, our method outperforms all
competing approaches, and in the last domain shift studied,
our approach outperforms all but one competing approach.
We also validate our model on a real-world modality adap-
tation task using the NYU depth dataset. Despite a large
domain shift between the RGB and depth modalities, ADDA

learns a useful depth representation without any labeled
depth data and improves over the nonadaptive baseline by
over 50% (relative). Finally, on the standard Office dataset,
we demonstrate ADDA’s effectiveness by showing convinc-
ing improvements over competing approaches, especially on
the hardest domain shift.

5.1. MNIST, USPS, and SVHN digits datasets

We experimentally validate our proposed method in an un-
supervised adaptation task between the MNIST [21], USPS,
and SVHN [22] digits datasets, which consist 10 classes of
digits. Example images from each dataset are visualized in
Figure 4 and Table 2. For adaptation between MNIST and
USPS, we follow the training protocol established in [25],
sampling 2000 images from MNIST and 1800 from USPS.
For adaptation between SVHN and MNIST, we use the full
training sets for comparison against [19]. All experiments
are performed in the unsupervised settings, where labels in
the target domain are withheld, and we consider adaptation
in three directions: MNIST→USPS, USPS→MNIST, and
SVHN→MNIST.

For these experiments, we use the simple modified LeNet
architecture provided in the Caffe source code [21, 26].
When training with ADDA, our adversarial discriminator
consists of 3 fully connected layers: two layers with 500
hidden units followed by the final discriminator output. Each
of the 500-unit layers uses a ReLU activation function. Opti-
mization proceeds using the Adam optimizer [27] for 10,000
iterations with a learning rate of 0.0002, a β1 of 0.5, a β2 of
0.999, and a batch size of 256 images (128 per domain). All
training images are converted to greyscale, and rescaled to
28×28 pixels.

Results of our experiment are provided in Table 2. On the
easier MNIST and USPS shifts ADDA achieves comparable
performance to the current state-of-the-art, CoGANs [13],

7172

…

86 / 97

Unsupervised Domain Adaptation with deep NNs

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]

Adversarial domain adaptation

ADDA: Adaptation on digits (in submission)RGB
MNIST

USPS

SVHN

Digits adaptation Cross-modality adaptation
(NYUD)

HHA

Amazon

DSLR

Webcam

Office adaptation

Figure 4: We evaluate ADDA on unsupervised adaptation across seven domain shifts in three different settings. The first
setting is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality
adaptation task between RGB and depth modalities from the NYU depth dataset (center). The third setting is adaptation on the
standard Office adaptation dataset between the Amazon, DSLR, and Webcam domains (right).

MNIST → USPS USPS → MNIST SVHN → MNIST

Method → → →

Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [19]
Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge
ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

despite being a considerably simpler model. This provides
compelling evidence that the machinery required to generate
images is largely irrelevant to enabling effective adaptation.
Additionally, we show convincing results on the challenging
SVHN and MNIST task in comparison to other methods,
indicating that our method has the potential to generalize
to a variety of settings. In contrast, we were unable to get
CoGANs to converge on SVHN and MNIST—because the
domains are so disparate, we were unable to train coupled
generators for them.

5.2. Modality adaptation

We use the NYU depth dataset [23], which contains
bounding box annotations for 19 object classes in 1449 im-
ages from indoor scenes. The dataset is split into a train (381
images), val (414 images) and test (654) sets. To perform
our cross-modality adaptation, we first crop out tight bound-
ing boxes around instances of these 19 classes present in
the dataset and evaluate on a 19-way classification task over
object crops. In order to ensure that the same instance is not
seen in both domains, we use the RGB images from the train
split as the source domain and the depth images from the val
split as the target domain. This corresponds to 2,186 labeled

source images and 2,401 unlabeled target images. Figure 4
visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB
and HHA encoded depth images [28], using them as source
and target domains respectively. Because the bounding boxes
are tight and relatively low resolution, accurate classification
is quite difficult, even when evaluating in-domain. In addi-
tion, the dataset has very few examples for certain classes,
such as toilet and bathtub, which directly translates
to reduced classification performance.

For this experiment, our base architecture is the VGG-16
architecture, initializing from weights pretrained on Ima-
geNet [29]. This network is then fully fine-tuned on the
source domain for 20,000 iterations using a batch size of
128. When training with ADDA, the adversarial discrim-
inator consists of three additional fully connected layers:
1024 hidden units, 2048 hidden units, then the adversar-
ial discriminator output. With the exception of the output,
these layers use a ReLU activation function. ADDA training
then proceeds for another 20,000 iterations, using the same
hyperparameters as in the digits experiments.

We find that our method, ADDA, greatly improves clas-
sification accuracy for this task. For certain categories, like

7173

87 / 97

Outline

1. Classes severely unbalanced

2. Learning from positive examples only

3. Semi-supervised learning

4. Active learning

5. Domain adaptation

6. Tracking

88 / 97

Tracking: an intriguing idea

[Richard Sutton, Anna Koop & David Silver (2007). On the role of
tracking in stationary environments. ICML-2007]

Even in stationary environments, it can be advantageous to act as if

the environment was changing!!!

88

89 / 97

Tracking: an intriguing idea

89

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Motivation

In a lot of natural settings:

Data comes sequentially

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

This enables:

Powerful learning

with limited resources
(time + memory)

x1

x2

X

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

69 / 81

…

90 / 97

Tracking: an intriguing idea

90

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Definition

Assumptions:

Data streams

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

Limited resources: Restricted
hypothesis space H x

y

“Local” learning

and local prediction :

Lt = `(ht(xt), yt)

= `(ht(xt), f (xt, ✓t))
x

y

fenêtre

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

70 / 81

91 / 97

Tracking: an intriguing idea
Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Definition

Assumptions:

Data streams

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

Limited resources: Restricted
hypothesis space H x

y

“Local” learning

and local prediction :

Lt = `(ht(xt), yt)

= `(ht(xt), f (xt, ✓t))
x

y

fenêtre

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

70 / 81

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
A new inductive problem

Notion of temporal consistency

f (·, ✓t) continuous
and with bounded variation / ✓t

New inductive criterion

Lh0,Ti(r) =
TX

t=0

`(ht(xt), yt)

+ �
X

||ht � ht�1||2

+ Capacity(R)

x

y

fenêtre

x

y

fenêtre

Do not optimize the choice of ONE h any longer!!

but optimize the learning rule (r 2 R) instead: (ht�1, xt)
r
�! ht !!

73 / 81

92 / 97

Tracking in stationary environments

• A toy environment
On the Role of Tracking in Stationary Environments

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the
color above it. The states wrap.

is to predict the probability of observing black using a
single scalar parameter. The environment is station-
ary, but cannot be represented accurately with only
one parameter.

The prediction yt 2 (0, 1) is computed from a logistic
sigmoid over the learned parameter w:

yt =
1

1 + e�wtxt
, (1)

where wt 2 <n denotes the learned parameter at time
step t, and xt 2 <n denotes a feature vector at time
step t, where here in the Black and White world we
have the simplest case in which n = 1 and xt = 1
for all t. We describe it here in the general, multi-
dimensional form because we will use that form in the
computer Go application presented in the next section.
We will refer to the parameter wt as the weight vector
or, in the scalar case, simply as the weight.

The target value for the prediction is the actual obser-
vation when the agent looks up, which we denote as
zt, where zt = 0 if the agent looks up and sees white,
zt = 1 if the agent looks up and sees black, and zt is
undefined if the agent does not look up on time step t.
On time steps on which the agent looks up it incurs a
loss, the cross entropy between the target zt and the
current prediction yt:

Lt = �zt log (yt)� (1� zt) log (1� yt). (2)

On these time steps the weight is updated by gradient
descent:

wt+1 = wt + ↵�txt, (3)

where �t is the di↵erence between the target and the
prediction: �t = zt � yt. The learning rate is deter-
mined by the step-size parameter ↵ > 0.

In the Black and White world, the single best param-
eter value for minimizing loss is wt = 0, because in
the long run the frequency of seeing black is 0.5. With
a su�ciently small step-size parameter, wt approaches
0. With a larger step-size parameter, the weight up-
date is more influenced by the current error than by
the long term average, and wt will vary by a larger
amount. In the Black and White world, observations
made soon after each other are more likely to be the
same color than observations separated by longer time

5 10 15 20 25 30 35 40 45 50

0

0.5

1

Prediction
y

t

time−step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
↵ = 2.

frames. This temporal coherence suggests that track-
ing may be beneficial. Figure 2 illustrates this, chart-
ing which part of the world (black or white) the agent
is in together with the prediction at that time for a
typical sequence of 50 time steps.

When the agent remains in a consistent region, the
prediction approaches the correct value. After the first
observation in a new region, the prediction is adjusted
accordingly. With a small ↵, as in this example, it may
take several observations before the prediction catches
up with the target.

To empirically illustrate the benefits of tracking in a
stationary environment, we tested several settings of ↵
in the Black and White world. For each setting, we ran
30 episodes each with 200,000 observation steps. Re-
sults are reported for the second 100,000 steps only,
to remove any e↵ect of the initial conditions. The
look, left, and right actions were chosen randomly
with probabilities 0.5, 0.25, and 0.25 respectively. The
boundaries of the world wrap: taking the left action
in the leftmost state moves the agent to the rightmost
state, and similarly for the right action in the right-
most state.

The mean loss and standard errors are displayed in
Figure 3. The dotted line is the loss of the best con-
verged solution. The solid line shows the tracking re-
sults. For small values of ↵ the solution was arbitrar-
ily close to the converged solution, with corresponding
loss. For very high values of ↵, the loss of the tracking
solution was worse than that of the converged solu-
tion. For intermediate values, the loss of the tracking
solution was significantly better than the converged
solution. In this world, an ↵ value of 4 resulted in
the lowest loss among the values tested. Across all
↵ = 4 runs, the average loss was 0.24. The loss of the
best converged solution was almost three times this,
at 0.69.

The best choice of ↵ depends on the degree of temporal

On the Role of Tracking in Stationary Environments

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the
color above it. The states wrap.

is to predict the probability of observing black using a
single scalar parameter. The environment is station-
ary, but cannot be represented accurately with only
one parameter.

The prediction yt 2 (0, 1) is computed from a logistic
sigmoid over the learned parameter w:

yt =
1

1 + e�wtxt
, (1)

where wt 2 <n denotes the learned parameter at time
step t, and xt 2 <n denotes a feature vector at time
step t, where here in the Black and White world we
have the simplest case in which n = 1 and xt = 1
for all t. We describe it here in the general, multi-
dimensional form because we will use that form in the
computer Go application presented in the next section.
We will refer to the parameter wt as the weight vector
or, in the scalar case, simply as the weight.

The target value for the prediction is the actual obser-
vation when the agent looks up, which we denote as
zt, where zt = 0 if the agent looks up and sees white,
zt = 1 if the agent looks up and sees black, and zt is
undefined if the agent does not look up on time step t.
On time steps on which the agent looks up it incurs a
loss, the cross entropy between the target zt and the
current prediction yt:

Lt = �zt log (yt)� (1� zt) log (1� yt). (2)

On these time steps the weight is updated by gradient
descent:

wt+1 = wt + ↵�txt, (3)

where �t is the di↵erence between the target and the
prediction: �t = zt � yt. The learning rate is deter-
mined by the step-size parameter ↵ > 0.

In the Black and White world, the single best param-
eter value for minimizing loss is wt = 0, because in
the long run the frequency of seeing black is 0.5. With
a su�ciently small step-size parameter, wt approaches
0. With a larger step-size parameter, the weight up-
date is more influenced by the current error than by
the long term average, and wt will vary by a larger
amount. In the Black and White world, observations
made soon after each other are more likely to be the
same color than observations separated by longer time

5 10 15 20 25 30 35 40 45 50

0

0.5

1

Prediction
y

t

time−step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
↵ = 2.

frames. This temporal coherence suggests that track-
ing may be beneficial. Figure 2 illustrates this, chart-
ing which part of the world (black or white) the agent
is in together with the prediction at that time for a
typical sequence of 50 time steps.

When the agent remains in a consistent region, the
prediction approaches the correct value. After the first
observation in a new region, the prediction is adjusted
accordingly. With a small ↵, as in this example, it may
take several observations before the prediction catches
up with the target.

To empirically illustrate the benefits of tracking in a
stationary environment, we tested several settings of ↵
in the Black and White world. For each setting, we ran
30 episodes each with 200,000 observation steps. Re-
sults are reported for the second 100,000 steps only,
to remove any e↵ect of the initial conditions. The
look, left, and right actions were chosen randomly
with probabilities 0.5, 0.25, and 0.25 respectively. The
boundaries of the world wrap: taking the left action
in the leftmost state moves the agent to the rightmost
state, and similarly for the right action in the right-
most state.

The mean loss and standard errors are displayed in
Figure 3. The dotted line is the loss of the best con-
verged solution. The solid line shows the tracking re-
sults. For small values of ↵ the solution was arbitrar-
ily close to the converged solution, with corresponding
loss. For very high values of ↵, the loss of the tracking
solution was worse than that of the converged solu-
tion. For intermediate values, the loss of the tracking
solution was significantly better than the converged
solution. In this world, an ↵ value of 4 resulted in
the lowest loss among the values tested. Across all
↵ = 4 runs, the average loss was 0.24. The loss of the
best converged solution was almost three times this,
at 0.69.

The best choice of ↵ depends on the degree of temporal

wt+1 = wt + ↵ (zt � yt)xt

yt =
1

1 + e�wtxt

93 / 97

Tracking in stationary environments

Tracking to play Go

• 5 x 5 Go

– More than 5 x 1010 unique positions

• Usual approach: learn a general evaluation function V(s) valid s

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

.
.

. .
.

.
s

.
.

.

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

8

Features describing the situation

Associated weights (learnt)

94 / 97

Tracking as local changes of representation

...

Space of go positions

Features

x

x’

Embedding
Space of representations

Weighted features

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

.
.
. .
.
.

s

.
.
.

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

.
.
. .
.
.

s

.
.
.

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

.
.

. .
.

.

s

.
.

.

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

95 / 97

Tracking in stationary environments

• Tracking approach: learn an evaluation function V(s)
local to the current s

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

.
.
. .
.
.

s

.
.
.

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

On the Role of Tracking in Stationary Environments

b

a

Figure 7. (Left) A 3 ⇥ 3 feature making two eyes in the
corner. (Right) Black to play, move a is now the winning
move. Using 3 ⇥ 3 features, the converging agent makes
two eyes at b, believing this to be a good shape in general.
However, the tracking agent realizes that move b is redun-
dant (black already has two eyes) and learns to play the
winning move at a.

now bad: Black already has two eyes and should play
in the center to maximize his territory. The converg-
ing agent is unable to understand the global context
and plays the wrong move in the corner. The track-
ing agent learns that the corner pattern is not as im-
portant as the central territory in this context, and
plays the correct move in the center. Thus, the track-
ing agent customizes its policy to the current situation
and outperforms the converging agent, even when the
representation is expressive and rich with features.

4. Step-size adaptation in the Black

and White world

As we saw in the Black and White world, the best
step-size parameter ↵ generally depends on the degree
of temporal coherence of the world, which may not
be known a priori. This is an area in which meta-
learning might play a role. We present an adaptation
of the incremental delta-bar-delta (IDBD) algorithm,
an online meta-learning algorithm that uses gradient
descent to learn step-size parameters (Sutton, 1992a,
1992b). Here we use a version of IDBD customized for
the log loss we use in this paper. Our derivation of
the IDBD algorithm for log loss directly parallels that
presented by Sutton (1992a) for squared error.

The IDBD algorithm allows for a di↵erent step-size ↵i

for each component wi of the parameter vector w. The
weight update rule is similar to that for the scalar case
shown in Section 2:

wi
t+1 = wi

t + ↵i
t+1�tx

i
t. (5)

The step-size ↵i
t is a function of a new parameter �i

t:

↵i
t = e�i

t . (6)

The parameter �i is updated according to the gradient
descent rule with meta-learning rate µ. The derivative

is with respect to �i, which can be thought of as the
derivative of the loss with respect to an infinitesimal
change in �i at all time steps. Let hi

t = @wi
t

@�i . Then:

�i
t+1 = �i

t � µ
@Lt

@�i

= �i
t � µ

@

@�i
[�zt log(yt)� (1� zt) log(1� yt)]

= �i
t + µzt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

� µ(1� zt)yt

nX

j=1

@wj
t x

j
t

@�i

⇡ �i
t + µzt(1� yt)xi

t
@wi

t

@�i
+ µ(zt � 1)ytx

i
t
@wi

t

@�i

= �i
t + µ�tx

i
th

i
t.

Note the derivative is exact in the scalar case.

We calculate the derivative of wi
t with an accumulating

trace:

hi
t+1 =

@wi
t+1

@�i

=
@wi

t

@�i
+

@↵i
t+1�t

@�i
xi

t

= hi
t +

@e�i
t+1

@�i
�tx

i
t + e�i

t+1xi
t
@(zt � yt)

@�i

= hi
t + e�i

t+1�tx
i
t � e�i

t+1xi
tyt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

⇡ hi
t + e�i

t+1�tx
i
t � e�i

t+1(xi
t)

2yt(1� yt)
@wi

t

@�i

= hi
t[1� ↵i

t+1(x
i
t)

2yt(1� yt)] + ↵i
t+1�tx

i
t

The full algorithm for semi-linear IDBD is given in
Figure 1.

Algorithm 1 Semi-linear IDBD
Initialize hi

0 to 0, wi
0 and �i

0 as desired.
for each time step t do

y 1

1+e
Pn

i=1 �wixi

� z � y
for each weight i do

�i �i + µ�xihi

↵i e�i

wi wi + ↵i�xi

hi hi[1� ↵i(xi)2y(1� y)] + ↵i�xi

end for
end for

On the Role of Tracking in Stationary Environments

b

a

Figure 7. (Left) A 3 ⇥ 3 feature making two eyes in the
corner. (Right) Black to play, move a is now the winning
move. Using 3 ⇥ 3 features, the converging agent makes
two eyes at b, believing this to be a good shape in general.
However, the tracking agent realizes that move b is redun-
dant (black already has two eyes) and learns to play the
winning move at a.

now bad: Black already has two eyes and should play
in the center to maximize his territory. The converg-
ing agent is unable to understand the global context
and plays the wrong move in the corner. The track-
ing agent learns that the corner pattern is not as im-
portant as the central territory in this context, and
plays the correct move in the center. Thus, the track-
ing agent customizes its policy to the current situation
and outperforms the converging agent, even when the
representation is expressive and rich with features.

4. Step-size adaptation in the Black

and White world

As we saw in the Black and White world, the best
step-size parameter ↵ generally depends on the degree
of temporal coherence of the world, which may not
be known a priori. This is an area in which meta-
learning might play a role. We present an adaptation
of the incremental delta-bar-delta (IDBD) algorithm,
an online meta-learning algorithm that uses gradient
descent to learn step-size parameters (Sutton, 1992a,
1992b). Here we use a version of IDBD customized for
the log loss we use in this paper. Our derivation of
the IDBD algorithm for log loss directly parallels that
presented by Sutton (1992a) for squared error.

The IDBD algorithm allows for a di↵erent step-size ↵i

for each component wi of the parameter vector w. The
weight update rule is similar to that for the scalar case
shown in Section 2:

wi
t+1 = wi

t + ↵i
t+1�tx

i
t. (5)

The step-size ↵i
t is a function of a new parameter �i

t:

↵i
t = e�i

t . (6)

The parameter �i is updated according to the gradient
descent rule with meta-learning rate µ. The derivative

is with respect to �i, which can be thought of as the
derivative of the loss with respect to an infinitesimal
change in �i at all time steps. Let hi

t = @wi
t

@�i . Then:

�i
t+1 = �i

t � µ
@Lt

@�i

= �i
t � µ

@

@�i
[�zt log(yt)� (1� zt) log(1� yt)]

= �i
t + µzt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

� µ(1� zt)yt

nX

j=1

@wj
t x

j
t

@�i

⇡ �i
t + µzt(1� yt)xi

t
@wi

t

@�i
+ µ(zt � 1)ytx

i
t
@wi

t

@�i

= �i
t + µ�tx

i
th

i
t.

Note the derivative is exact in the scalar case.

We calculate the derivative of wi
t with an accumulating

trace:

hi
t+1 =

@wi
t+1

@�i

=
@wi

t

@�i
+

@↵i
t+1�t

@�i
xi

t

= hi
t +

@e�i
t+1

@�i
�tx

i
t + e�i

t+1xi
t
@(zt � yt)

@�i

= hi
t + e�i

t+1�tx
i
t � e�i

t+1xi
tyt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

⇡ hi
t + e�i

t+1�tx
i
t � e�i

t+1(xi
t)

2yt(1� yt)
@wi

t

@�i

= hi
t[1� ↵i

t+1(x
i
t)

2yt(1� yt)] + ↵i
t+1�tx

i
t

The full algorithm for semi-linear IDBD is given in
Figure 1.

Algorithm 1 Semi-linear IDBD
Initialize hi

0 to 0, wi
0 and �i

0 as desired.
for each time step t do

y 1

1+e
Pn

i=1 �wixi

� z � y
for each weight i do

�i �i + µ�xihi

↵i e�i

wi wi + ↵i�xi

hi hi[1� ↵i(xi)2y(1� y)] + ↵i�xi

end for
end for

On the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 1. Percentage of 5⇥5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ✏-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to ↵t = 0.1/||x(st)||
for both agents.

The first experiment used only the 1⇥1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 ⇥ 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 ⇥ 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 ⇥ 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

In general, playing (a)
(center) is better than

playing (b)

In this situation, playing (b)
is better than playing (a)

More weight

BUT

More weight

b
b

a
a

96 / 97

Tracking in stationary environments

Tracking to play Go

Comparison:

– learn a general evaluation function V(s)

• On 250,000 complete episodes of self-play

– Learn successive evaluation functions Vt(s) attuned to the current states

• On 10,000 episodes of self-play starting from the current positionOn the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 1. Percentage of 5⇥5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ✏-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to ↵t = 0.1/||x(st)||
for both agents.

The first experiment used only the 1⇥1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 ⇥ 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 ⇥ 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 ⇥ 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

97 / 97

Tracking in stationary environments

Comparison:

– learn a general evaluation function V(s)

• On 250,000 complete episodes of self-play

– Learn successive evaluation functions Vt(s) attuned to the current state

• On 10,000 episodes of self-play starting from the current positionOn the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 1. Percentage of 5⇥5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ✏-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to ↵t = 0.1/||x(st)||
for both agents.

The first experiment used only the 1⇥1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 ⇥ 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 ⇥ 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 ⇥ 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

