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Py(train) # Py(test)

In which scenarios?
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2.
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Learning from positive examples only
Semi-supervised learning

Active learning

4 /97



Outline

Classes severely unbalanced

Learning from positive examples only

Semi-supervised learning

Active learning

Domain adaptation

Tracking

5/97



Illustrations

Rare pathologies

Anomaly detection

Fraud

Rare species

— E.g. Pl@ntNet: 46,000 species, but only ~1000 well represented
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Remedies
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Remedies

* If enough data

— undersample the over-represented classes
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Remedies

* |f enough data

— undersample the over-represented classes

* |f not enough data
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Remedies

* |f enough data

— undersample the over-represented classes

* |f not enough data

— oversample the under-represented classes

* Create noisy clones of the data points

* Create new data points generated by well chosen transformations

— E.g. respecting invariances (E.g. translations, rotations, change of luminosity;, ...)
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Remedies

* |f enough data

— undersample the over-represented classes

* |f not enough data

— oversample the under-represented classes

* Create noisy clones of the data points

* Create new data points generated by well chosen transformations

— E.g. respecting invariances (E.g. translations, rotations, change of luminosity;, ...)

 Modify the loss function

— Penalize more the errors on the under-represented class

EI\A/[,mPl\A/[,m + Ui M P M with EM,m >> L M

f

Proportion of all points where points of the minority class are misclassified as from the Majority one
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Scenarios for learning from positive examples only

277

13 /97



Scenarios for learning from positive examples only

e Collaborative science
— Biodiversity
— E.g. Pl@ntNet

* The users take pictures of plants: positive examples

* That does not say: “these other plants were not present”

e Medicine

— Reports of subjects with some disease does not say

how many and which ones do not have the disease

 Adds on web pages

— Pages that have not been visited are not necessarily

uninterestin
8 14 / 97



Scenarios for learning from positive examples only

* |n general

— Detecting absence can be more difficult

than detecting presence

Possibly lots of

false negative
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The fully observable case

We look for a hypothesis h:X — |0, 1]L A vector of predictions

where L is the number of possible
classes (labels)

We want to minimize the risk R(h) = Ex,y)pxy) L(R(X),y)
with loss function (:00,1]* x Y =R

(e.g. binary cross-entropy)

lgoe(h(xn),yn) = —% ZP(yf,L = 1|x,) log(h(xf,b)) + Py’ = 0|x,) log(l — h(xib))

1=1

Given a dataset S = {(Xn7Yn)}1§n§N
we want to find a hypothesis that

minimizes the empirical risk

N
~ 1
hfully = Arhgel\ﬁm N nz::l f(h(Xn), yn)
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The partially observable case

We look for a hypothesis hpartial ¢ X — 0, 1]L

During training, we observe z, € Z = {0,1,0}"

where Z:,L,L — () «— indicates that the /"
and only one ?;7, —1 label is unobserved

Given a dataset S = {(szn)}lgngN
we want to find a hypothesis that

minimizes the empirical risk

harla—AM AT t(h n
i = Al 3 () )

n=1
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Approach “assume unobserved are negative”

Assume that all unobserved labels are

negative | |
Py, =1|x,) =0 if z! =0

The resulting loss is

1 L

AN(h(Xn),Yn) = 7 Zﬂ[zgzu log (h(x},)) + Lz 217 log(1 — h(x},))

N

L=y =1 if z' =1 and 0, otherwise

We expect false negatives
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Approach “assume unobserved are negative” + smoothing

e Assume that all unobserved labels are

negative | |
Py, =1|x,) =0 if z! =0

* And give more weight to the observed
examples. The resulting loss is

L

an-Ls(h(xy = -7 2110295_1 log(h(x})) + ]1?225#1] log (1 — h(x},))
Observed as positive No observation reported

Hence assumed as negative
19 /97



Intuitively R(iquny) < R(ﬁpartial)

 But by how much?

* |nthe case of “assume
unobserved = negative”
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Intuitively R(iquny) < R(ilpartial)
SN 1 \

 But by how much? 86

84

82

* Inthe case of “assume o

MAP

~ LAME

unobserved = negative” 78

Lan -8
J ~&— Lnce

L I

76

107 10* 10°
# Observed Labels

With 20 times fewer labeled examples, the performance is not
that bad on this dataset compared to the fully observable case

COLE, Elijah, MAC AODHA, Oisin, LORIEUL, Titouan, et al. Multi-label learning from single positive labels.
In : Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 933- 21 / 97
942.



Lessons

1. Fomalize the assumptions about your problem

— The labelling process

— The type of target (and hypothesis) function

2. Design a loss function appropriate for the problem

— Able to explore efficiently the hypothesis space

and to find a good minimum of the empirical risk

3. Designh a good evaluation scheme

22 /97



Learning from positive examples only: lots of approaches

 Approaches
— Assume that the missing labels are negative
— Ignore the missing labels
— Perform label matrix reconstruction
— Learn label correlations
— Learn generative probabilistic models

— Train label cleaning networks

— Related to learning with label noise
* Here, some unobserved labels are incorrectly treated as being absent

— Related to learning from a set of positive examples
and a set of unlabeled ones (PU learning)
23 /97
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The idea
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Labeled data only
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Semi-supervised learning

* Unsupervised learning PX

e Supervised learning Py|X
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Semi-supervised learning

* Unsupervised learning PX

e Supervised learning Py|X

When can unsupervised learning help supervised learning?

27 [ 97



Semi-supervised learning

The underlying main idea:

The decision function (hypothesis h) should not cut

through high density regions

28 /97



Semi-supervised learning

Simplest approach

1. Compute a clustering of the all data (labeled and unlabeled)

2. For each cluster, assign its class to the majority vote of the
labeled examples that belong to it

° o °
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Semi-supervised learning

Simplest approach

1. Compute a clustering of the all data (labeled and unlabeled)

2. For each cluster, assign its class to the majority vote of the
labeled examples that belong to it
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Semi-supervised learning

Self-training approach

1. Given St = {(xi,¥:) h1<i<t and Sv = {(x;) }1<j<u
2. Trainon S, to obtain h;
3. Applyh;to S,

4. Remove a set of unlabeled data from S;, and add

them to S, (the one where h(x) is the more confident)

with the label h(x)

5. Goto 2 and repeat until convergence

31/97



Semi-supervised learning

* |dea: endow unlabeled data with pseudo-labels
(the likeliest class at time t)

) 1 ifi=argmax;c g oy hi(X)
i = 0 otherwise

Output of the ith

output neuron
* Train with the empirical risk:

1 m; C i 1 m, C i

Remp(h) — E Zze(hj(xz)ayg) + Oé(t) m— Zze(hj(xl)v Y, )

i=1 j=1 Yi=1j=1 —~
pseudo-label

Crucial to set a(t) with great care

[Dong-Hyun Lee (2013) “Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep
Neural Networks”, ICML-2013]
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Semi-supervised learning

Transductive SVM approach

Enumerate all O O
possible labels for O O
the unlabeled data

Find a boundary that can
provide the largest
margin and least error

Thorsten Joachims, ”Transductive Inference for Text
Classification using Support Vector Machines”, ICML, 1999

33/97



Semi-supervised learning

Entropy regularization approach

[ U
- 1
h = ArgMin[ 7 Z@(h(xi)ayi) + A Z—h(Xj) log h(x;)

Empirical risk on labeled data Entropy of the predictions

7 _y

U J Good!  E(y%) =0

1 2 3 4 5

yU Good! l E(y“) =0

1 2 3 4 5

y Bad! E(y") .
" B EEEE =—ln<—>
1 2 4 5

3 > =1In5

34 /97



You have to make assumptions about what you think is

reasonable as a bias

— E.g. that classes are separated by low density regions

Then, you show that if the assumption is met by Nature, then
you find a correct hypothesis

35/97



A remark on semi-supervised learning

* Could be regarded as transductive learning where

one wants to label unlabeled training instances

36 /97



Transductive learning

| know in advance where | will be queried

Ay

. o
@
e
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) ¢ 3
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L] e . "

WR
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Transductive learning

* "When solving a problem of interest, do not solve a more general
problem as an intermediate step.

Try to get the answer that you really need but not a more general

’”

one.

(Vapnik, 1995)

38 /97



Semi supervised learning with transductive learning

 Graph-Based labelling

®

O
® o ®
oY @
o “.°
NS

Then learn a hypothesis on

the new training set
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Active learning

* When the learner can actively ask for pieces of information
— Labels of selected examples

— Values of some selected descriptors

* E.g. ask for a medical examination

e Examples
— MasterMind

— Scientific activity

41 /97



Active learning

* When the learner can actively ask for pieces of information
— Labels of selected examples

— Values of some selected descriptors

* E.g. ask for a medical examination

* The hope
— Need of less (costly) examples

— Having a faster convergence rate

Vhe HW6<1: P™|Rpser(h) < Rpmp(h) +

m

10g|H|—|—log§] o1

Vhe H,Vo<1: P™ > 1-9

42 [/ 97
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Active learning

o+
' B
+
+

hw(m)z{1 fr>w oe—eo—o o -~ oo

0 ifr<w w

How to find the best threshold from querying points?
« By random selection of points m = (9(% log %)
By acti lecti _ 1

Yy acCtive selection m — O(log (-:)

Much faster!

43 / 97



Active learning

 Two main approaches

— “Constructive” approach

* The learner constructs queries

— "Selective” (pool-based) approach

* The learner selects points among the unsupervised ones

Why is the constructive approach sometimes not applicable?

44 [/ 97



How to select the examples? (some ideas)

 The more informative examples

1.

2.

* = ArgMax Uncertain(x) Uncertain(x) =

The ones where the confidence of the current hypothesis is the lowest

 Measured by a probability
1

xSy ArgMaxyEy p(ht (x) = y)

* — ArgMax {_ Zp(ht(x) = y;) log p(he(x) = yz)} Entropy criyeria

xESy

 Measured by distance to the decision function

Learn an ensemble of hypotheses and select the examples where they
disagree the most

45 / 97



lllustration
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Figure 2: An illustrative example of pool- arning. (a) A toy data set of
400 instances, evenly sampled ass Gaussians. The instances are
represented as points in a 2D featyre"space. (b) A logistic regression model
trained with|30 labeled instances|randomly drawn from the problem domain.
The line represents the sion boundary of the classifier (accuracy = 0.7).
(c) A logistic regre ss%yh%:/del trained with 30 actively queried instances using

uncertainty sampling (accuracy = 0.9).
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Active Learning

* What is the danger?

47 [ 97



Active Learning

* Whatis the danger?

— No more theoretical guarantees

log |H| + log 5
2m

Vh e H,Vo <1: Pm RRéel(h) < REmp<h) + \/ ] > 1—9

Does not make sense anymore!!

— Why?

48 [/ 97



Active learning: lessons

* Active learning is not much used in practice

1.  Costly to identify informative examples

2.  Risk of ignoring important regions of X

* |nteresting: learning under budget constraints

— What measurements should | made under some budget constraints?

49 [/ 97
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Different types of transfers

 Domain adaptation
— X5=X-|-and YS=YT

— but different distributions Py

e Concept shift
— X5=XTand YS=YT

— but different distributions Py

* Transfer learning

— Xs # Xy and/or Ys# Y

51/97



Domain adaptation

Covariate shift

— We assume X¢ = X (same input space)

Training data Test data

Source domain Target domain

52 /97



Covariate shift

(suppose same input size and resolution)

Source domain (simulated images) Target domain (real images)s 3 /97



Concept shifts: illustrations

* Spam filtering

— Not the same user:  Pyx may differ

* E.g. for me conference announcements are important,

but could be an annoyance to someone else

* Changes in the tastes or expectations of the consumers

* Changes in medicine
— E.g. the prevalence of flu differs from one season to another (Py)

— But this is still flu (Pyx)
54 / 97



Types of Domain Adaptation

e Semi-supervised DA (SSDA)

— Some labeled target data, but not enough to train from it

— Lots of unlabeled data

* Unsupervised DA (UDA)

— No labeled target data

* Source-free DA (SFDA)

— No source data (e.g. because of privacy concerns)
— Only the source hypothesis hs

— And a few labeled target data
55 /97



Covariate shift

Difference in the Py distribution between source and target

domains: P35 # P%L

Source domain Il
l /\/\ .\ Target domain R
N\

SRR
SRR ]
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How to approach the problem
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How to approach the problem

* Very active research area

— Because of the numerous applications

e Lots of (heuristical) approaches

58 /97



(Some) families of approaches

 Change the source distribution

1. Reweight the source data

2. lteratively self-label the target data, and retrain
e Search for a common description subspace

— Where the source hypothesis works well on the projected source data

— And hope that it will work as well on the projected target data

59 /97



DA by reweighting source data

Here, a regression task

Training samples

1.6}
1.4}
1.2}
11
0.87
0.67
041
0.27

0

Input Density
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First analysis
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First analysis

Re (W)= E _ 1[h(x)# "
E k) £ 1]

 (xtyt)~Pr Ps(xt,y?)

62 /97




First analysis

Rer(h) =, £ 1[H() %'
E Ps(Xt, yt)

 (xtyt)~Pr Ps(xt,yt)

Ps(xt, yt . .

I[h(x") # y°]
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First analysis

Rer(h) = E_ 1[h(x) £ '
E PS(Xtvyt)I[h(xt) 7éyt]

 (xtyt)~Pr Ps(xt,yt)

= ) Pr(xt,yt)gjgt’itil[h(xt)#yt]
(xt,yt) ’

. E PT(Xtv.yt)
(xt,yt)~Ps Ps(xt,y?)

|| h(x") # y']
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First analysis

Covariate shift [Shimodaira,'00]

= Assume similar tasks, Ps(y|x) = Pr(y|x), then:
. Drl)Pry )
(xt.y)~Ps Ds(x*)Ps(yF[x")

- D (x") Xt t
) (xt,ytE)NPs Ds(x*) Ul

DT(Xt) . .
= E E 1[h(x

|[h(x") # ']

t
= weighted error on the source domain: w(x?) = gz((:t))

Idea reweight labeled source data according to an estimate of w(x"):
E  wxHI[h(x!) # y']
(xt7yt)NP5
65 /97



Principle

* Law of large numbers

— Sample averages converge to the population mean

i.d.

. ZA:I:Z = Penl [ Aw) pyygin(0) da

— OO

1 P, ( 2 5 Dy i (@) / Prest (T)
o es IL train , es A T p ain T dx
n ; ptrazn ) oo pt'r‘ain(x) ( ) : ( )
el [ A pyeny(a) do
n—moo
— But how to estimate pt@St(x) ?
pt'rain(x)
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Importance weighting

e A naive estimation of Piest (33) does not work

pt'r'az'n (x)

— Estimation density is too crude in high dimension space (and with few
known testing instances)

* |dea of Sugiyama:
ptest (x)

pt'r‘ain (CE)

— Learn a parametric model of w(x) -

J
QD(X) — Z 9]' ij(X) and ﬁtest(x) — ’UA)(X) ptrain(x)
j=1

See [Sugiyama, Masashi, et al. "Direct importance estimation with model selection and its application to covariate
shift adaptation." Advances in neural information processing systems 20 (2007)] 67 / 97



Covariate shift in regression

“Importance weighted” inductive criterion

Principle : weighting the classical ERM

(A) Input Data Densties (B) Leamed Function by OLS (AIWLS with 72=0)

— Trainng
1.5¢ - - Test :
v Aatio EL

A controls the
stability /
consistency
(absence of bias)

SKMO07 M. Sugiyama and M. Kraudelat and K.-R. Maller (2007) “Covariate Shift Adaptation by Importance
Weighted Cross Validation” Journal of Machine Learning Research,vol.8: 985-1005.- :
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Covariate shift in classification

“Importance weighted” inductive criterion (classification task)

O Trp
x  Tr-n
8r N A O Te-p
il Negative Posttive sk M. A=05 S e
=1
B N
L « w X
st 6 \X éx X
d L
ar x
3t Training
»
2t 2t
1t 0
@ o
ot or
-1r Test [m]
es Ll y oo
-2} aJ «FE O o
-3 =
5 8 -6 -4 6
(a) Contours of tramning and test input densitics. (b) Optumal decision boundary (solid linc) and

learned boundaries (dashed lines). ‘o’ and ‘x’
denote the positive and negative training samples,
while '[1" and "+ denote the positive and nega-
tive test samples. Note that the test samples are
not given in the training phase; they are plotted in
the figure for illustration purposes.

SKMO07 M. Sugiyama and M. Kraudelat and K.-R. Maller (2007) “Covariate Shift Adaptation by Importance
Weighted Cross Validation” Journal of Machine Learning Research,vol.8: 985-1005. =
69 /97



The reweighting approach

1 A TR
' ; ! ! MMD
min - — E :ﬂ:fb(xs) i E :¢(xt)
B n- m “4
=1 =1
s.t. ,Bi e [O, B] : V1i<i<n Bound on the weights
n Encourage the weights
E :,Bl —n S ne to define a probability
i—1 distribution

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B., & Smola, A. (2012). A kernel

two-sample test. The Journal of Machine Learning Research, 13(1), 723-773. 70/ 97



The reweighting approach

e ..alaFugiyama

— Complex approach

— Not easy to implement

71/ 97



Search for a common description space

e Theidea

l /\/\ . Target domain -

wx O '.- A s = ;‘&‘k ,\/o\\rl/ +}+
_.E.. o:‘ by ;; (:-:- o 'j ~:§§:> . c“ C,“;; . BE +'#-
. .:'._;: X3 -; '«.: ;nfro‘;‘ + ++ +
W =5 "
XA ey
WP TEy iy
. s '»’,‘- ',‘,-;:-' ,,::.w‘v X
A < ’F:"'”‘:;{ ’ : %%
~_ 2711711/ High dimensional space X )Z( Xy X Latent Space
.\‘ - x x
30 \ // ’ xﬁ ?é(x "
~- 30 A .
20 \\\K ///7::' X %(
10 \_\ /,(_ 10 X

* The hope
— If the source hypothesis works well on the projected source data

— Then (?) it should/could work as well on the projected target data
72 /97



lllustration by two algorithms

... among MANYy others

1. Subspace alignment

2. Deep NNs

73 /97



Subspace alignment algorithm

 Optimizing a (linear) mapping function that transforms the

source subspace into the target one

— Assumption: both source and target input spaces are D-dimensional

1.

Transform every source and target data in the form of a D-dimensional

z-normalized vector (i.e. of zero mean and unit standard deviation)

Using PCA, select for each domain d eigenvectors (corresponding to the

largest eigenvalues)

These eigenvectors are used as bases of the source and target

subspaces, respectively denoted by X¢ and X; (X, X, € RP*d),

Realize the subspaces alignment

74 [ 97



* Alignment of the basis vectors using a transformation matrix M

from X to X;
F(M) = ||X5M — XTH%’ Frobenius norm

M* = Ar%wmin{F(M)}

T~

/ Target Domain

Xt

AD2
Source Domain

Target Aligned Source Domain
/ \
~— 75/ 97

N XsM




Algorithm 1: Subspace alignment DA algorithm

Data: Source data S, Target data T, Source labels Ys, Subspace dimension d
Result: Predicted target labels Y7

S; < PCA(S,d) (source subspace defined by the first d eigenvectors) ;
S, <+ PCA(T,d) (target subspace defined by the first d eigenvectors);

X, + S15¢'S, (operator for aligning the source subspace to the target
one);

S, = 5X, (new source data in the aligned space);

Tr=TS, (new target data in the aligned space);

Y7 < Classifier(S,, Tr, Ys) ;

@ M* =S5;’S, corresponds to the “subspace alignment matrix”:
M* = argminy, ||S1M — S,

@ X; =515:'S, = S;{M* projects the source data to the target
subspace

@ A natural similarity: Sim(xs,x;:) = xsS1M*S1'x}, = x;AX),




Subspace alignment: empirical results

)

Amazon DSLR | Webcam -Caltech

o Adaptation from Office/Caltech-10 datasets (four domains to
adapt) is used as source and one as target

e Comparisons
e Baseline 1: projection on the source subspace

e Baseline 2: projection on the target subspace
o 2 related methods : GFK [Gong et al., CVPR'12] and GFS [Gopalan et

al.,ICCV'11]

v
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Subspace alignment: empirical results

Caltech—256

3 % @

Amazon DSLR Webcam Caltech

MCthOd C—A D—A W—A A—C D—C W—C

Baseline 1 | 44.3 | 36.8 | 32.9 | 36.8 | 29.6 | 24.9
Baseline2 | 445 | 38.6 | 34.2 | 37.3 | 31.6 | 284
GFK 448 | 379 | 37.1 | 383 | 31.4 | 29.1 Recognition dCCcuracy
OUR 46.1 | 42.0 | 39.3 | 39.9 | 35.0 | 31.8

using a SVM classifier

Method A—D co»D | WD | AW | cow | pow

Baseline 1 | 36.1 | 38.9 | 73.6 | 42.5 | 346 | 754
Baseline 2 | 32.5 | 35.3 | 73.6 | 373 | 342 | 80.5
GFK 379 | 36.1 | 74.6 | 39.8 | 349 | 79.1
OUR 38.8 | 39.4 | 77.9 | 39.6 | 389 | 82.3 Remark2: not that impressive!

Remarkl: not symmetrical!

[Fernando, B., Habrard, A., Sebban, M., & Tuytelaars, T. (2013). Unsupervised visual domain adaptation using 78 / 97
subspace alignment. In Proceedings of the IEEE international conference on computer vision (pp. 2960-2967).]



Unsupervised Domain Adaptation with deep NNs

Mono-task

Source Data

Domain adaptation

ﬁ

Source Data

@

Target Data

fc| |fc fc L
conv1 e+ convdh 6 7 8 classification
- & SSECRECEECLELEREEREEIELEE — RRLEED loss
fc| | fc fc _
conv1 <+ convh 6 7 8 classification
. A L SRR e AR loss

» Applying source classifier to target domain can
yield inferior performance...

79 /97



Unsupervised Domain Adaptation with deep NNs

- IDEA: align feature
. , =) distributions
& 5

fo | | fc source
convi e+« convbs

Source Data

o ] [©] O
l @ % % % % classification
7 7 ® o loss
Target Data
conv1 s+ convd g
..... (7 N 4 R i -
labeled target
data

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]
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Unsupervised Domain Adaptation with deep NNs

Several approaches

* by minimizing distance between distributions, e.g.
@ co Q it
VAN W W R WD Ry L Oy W —J HiHH casstcaten
O O O O O ') g oo ., @ ‘H: -
Ol.,... @] fromen O fine- O fne- @] Seuros oo 53?5
ol ol lol lol [o ‘ELAD m Hf ICs - Crllf
3 Omnvl Ocmwz omm.? ormw-l O & @ ose
Maximum Mean Discrepancy M. Long, et al. ICML 2015 CORrelation ALignment Sun and Saenko, AAAI 2016

..or by adversarial domain alignment, e.g.

o0 =
convi convs : '.;; source s =
Bt & A W— data---eeeeer . z|:> E> |:"> class label y
&, S
. —— 2\
Pl i eE = M e
g g E £ | = 2 - —/\09, & lllllllllllllllll ( 11111 Gl 00)
?g ’ / r -‘
convs fe||fe @g‘;’ ture extr d(t r Ge(-:65) é ”»
O3 16 L7 'f'hb!kd'targ!r ..... : ¢> [ > a domain label d
dL
data o DLy
(S | B forwardprop tives) D04

backprop (and produced deriva

Domain Confusion E. Tzeng et al. ICCV 2015

Reverse Gradient Y. Ganin and V. Lempitsky ICML 2015

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]
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Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

Adversarial networks

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf] 82 /97



Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

(e

Source Data + Labels

Unlabeled Target Data

conv1i

conv1i

conv5

convs

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]

classification
loss

Classifier
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Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

classification

O] - - - - - - - -- - - - == === oo meee loss

Classifier

Source Data + Labels

can be shared

Unlabeled Target Data .. [ _
g ‘| Discriminator |...| Adversarial

loss

--"
-
PEA

Encoder

One agent tries to make the distributions look alike through the encodings

The other tries to discriminate them
From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf] e | e



Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

Pre-training Adversarial Adaptation Testing
4 ) /source images ([ )
source images RN
+ labels | Source ! ) ———
' CNN ! . targetimage ~.__ i :
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Figure 3: An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.

Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial discriminative domain adaptation.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7167-7176).
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Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

- [ [N Rl E
L1515 14
Sl b5 b 14

MNIST — USPS USPS — MNIST SVHN — MNIST
Method /171284 )V 10ISIR ) IOISEE /171> JiEbs IR /1713
Source only 0.752 £ 0.016 0.571 £0.017 0.601 £ 0.011
Gradient reversal 0.771 £ 0.018 0.730 £ 0.020 0.739 [19]
Domain confusion 0.791 £ 0.005 0.665 4 0.033 0.681 £ 0.003
CoGAN 0.912 £ 0.008 0.891 £ 0.008 did not converge
ADDA (Ours) 0.894 + 0.002 0.901 4 0.008 0.760 + 0.018

86 /97
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Outline

Classes severely unbalanced

Learning from positive examples only

Semi-supervised learning

Active learning

Domain adaptation

Tracking
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Tracking: an intriguing idea

[Richard Sutton, Anna Koop & David Silver (2007). On the role of

tracking in stationary environments. |IC\VIL-2007]

Even in stationary environments, it can be advantageous to act as if

the environment was changing!!!

884,97



Tracking: an intriguing idea

In a lot of natural settings:
@ Data comes sequentially

@ Temporal consistency: consecutive

H (TP H ” T x2
data points come from “similar
distribution: not i.i.d.
This enables:
@ Powerful learning X ‘

@ with limited resources
(time + memory)

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.
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Tracking: an intriguing idea

Assumptions:
@ Data streams

@ Temporal consistency: consecutive
data points come from “similar”
distribution: not i.i.d.

@ Limited resources: Restricted

hypothesis space ‘H

“Local” learning

and local prediction :

Lo = £(hi(x;),yr)
= C(hi(x1),f(x1,6;))




Tracking: an intriguing idea
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A toy environment Jt

Wi41

m—p—

Figure 1. The Black and White world. The agent follows
a random walk right and left, occasionally observing the

color above it. The states wrap.

]
Prediction
Yi o5

0

5 10 15 20 25 30 35 40 45 50
time-step

Figure 2. A sample trajectory in the Black and White
world, showing the prediction on each time-step and the
actual color above the agent. The prediction is modified
only on time steps on which the color is observed. Here
a = 2.

1 + e~ were

we + (2 — Yi) Ty
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Tracking in stationary environments

Tracking to play Go

 5x5Go

— More than 5 x 10%° unique positions

e Usual approach: learn a general evaluation function V(s) valid Vs

Associated weights (learnt)

Features describing the situation 93 /97



Tracking as local changes of representation

L/ vz
Features | @

Embedding

Space of representations

Space of go positions

Weighted features
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Tracking in stationary environments

* Tracking approach: learn an evaluation function V(s)

local to the current s

b

In general, playing (a) In this situation, playing (b)
(center) is better than BUT is better than playing (a)

C ) More weight More weight

playing (b) /
b
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Tracking in stationary environments
Tracking to play Go

Comparison:

— learn a general evaluation function V(s)
* On 250,000 complete episodes of self-play
— Learn successive evaluation functions Vt(s) attuned to the current states

* On 10,000 episodes of self-play starting from the current position

Features | Tracking beats converging
Black | White Total
1x1 82% 43% 62.5%
2 X 2 90% 1% 80.5%
3 x3 93% 80% 86.5%

Table 1.Percentageof 5x5-Gogames-won by thetracking
agent playing against the converging agent when playing
as Black (first to move) and as White. 96 /97



Tracking in stationary environments

Comparison:

— learn a general evaluation function V(s)

* On 250,000 complete episodes of self-play

— Learn successive evaluation functions Vt(s) attuned to the current state

* On 10,000 episodes of self-play starting from the current position

Features | Total CPU (minutes)
features | Tracking | Converging

1x1 75 3.5 10.1

2 X 2 1371 5.7 13.8

3 %3 178518 9.1 22.2

Table 2.\Memory and CPU requirements |for tracking and

converging agents.
indicates the memory consumption.

The total number of binary features

The CPU time is

the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking

agent.
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