When the learning distribution differs from the target (true) distribution

Imbalanced data sets
Learning from positive examples only
Semi-supervised learning
Active Learning
Domain adaptation

Antoine Cornuéjols
AgroParisTech - INRAE MIA Paris-Saclay
EKINOCS research group

When $P_{x}($ train $) \neq P_{x}$ (test)

$P_{x}($ train $) \neq P_{x}($ test $)$

- In which scenarios?

$P_{x}($ train $) \neq P_{x}($ test $)$

In which scenarios?

1. Classes are severely unbalanced
2. Learning from positive examples only
3. Semi-supervised learning
4. Active learning

Outline

1. Classes severely unbalanced
2. Learning from positive examples only
3. Semi-supervised learning
4. Active learning
5. Domain adaptation
6. Tracking

Illustrations

- Rare pathologies
- Anomaly detection
- Fraud
- Rare species
- E.g. Pl@ntNet: 46,000 species, but only ~1000 well represented

Remedies

Remedies

- If enough data
- undersample the over-represented classes

Remedies

- If enough data
- undersample the over-represented classes
- If not enough data

Remedies

- If enough data
- undersample the over-represented classes
- If not enough data
- oversample the under-represented classes
- Create noisy clones of the data points
- Create new data points generated by well chosen transformations
- E.g. respecting invariances (E.g. translations, rotations, change of luminosity, ...)

Remedies

- If enough data
- undersample the over-represented classes
- If not enough data
- oversample the under-represented classes
- Create noisy clones of the data points
- Create new data points generated by well chosen transformations
- E.g. respecting invariances (E.g. translations, rotations, change of luminosity, ...)
- Modify the loss function
- Penalize more the errors on the under-represented class

$$
\ell_{\hat{\mathrm{M}}, \mathrm{~m}} P_{\hat{\mathrm{M}}, \mathrm{~m}}+\ell_{\hat{\mathrm{m}}, \mathrm{M}} P_{\hat{\mathrm{m}}, \mathrm{M}} \quad \text { with } \quad \ell_{\hat{\mathrm{M}}, \mathrm{~m}} \gg \ell_{\hat{\mathrm{m}}, \mathrm{M}}
$$

Outline

1. Classes severely unbalanced
2. Learning from positive examples only
3. Semi-supervised learning
4. Active learning
5. Domain adaptation
6. Tracking

Scenarios for learning from positive examples only

- ???

Scenarios for learning from positive examples only

- Collaborative science
- Biodiversity
- E.g. PI@ntNet
- The users take pictures of plants: positive examples
- That does not say: "these other plants were not present"
- Medicine
- Reports of subjects with some disease does not say how many and which ones do not have the disease
- Adds on web pages
- Pages that have not been visited are not necessarily uninteresting

Scenarios for learning from positive examples only

- In general
- Detecting absence can be more difficult than detecting presence

> Possibly lots of
> false negative

The fully observable case

- We look for a hypothesis

$$
h: \mathcal{X} \rightarrow[0,1]^{L} \quad \text { A vector of predictions }
$$

where L is the number of possible classes (labels)

- We want to minimize the risk

$$
R(h)=\mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{x}, \mathbf{y})} \ell(h(\mathbf{x}), \mathbf{y})
$$

with loss function

$$
\ell:[0,1]^{L} \times \mathcal{Y} \rightarrow \mathbb{R}
$$

(e.g. binary cross-entropy)

$$
\ell_{\mathrm{BCE}}\left(h\left(\mathbf{x}_{n}\right), \mathbf{y}_{n}\right)=-\frac{1}{L} \sum_{i=1}^{L} P\left(\mathbf{y}_{n}^{i}=1 \mid \mathbf{x}_{n}\right) \log \left(h\left(\mathbf{x}_{n}^{i}\right)\right)+P\left(\mathbf{y}_{n}^{i}=0 \mid \mathbf{x}_{n}\right) \log \left(1-h\left(\mathbf{x}_{n}^{i}\right)\right)
$$

- Given a dataset

$$
\mathcal{S}=\left\{\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)\right\}_{1 \leq n \leq N}
$$

we want to find a hypothesis that minimizes the empirical risk

$$
\hat{h}_{\mathrm{fully}}=\underset{h \in \mathcal{H}}{\operatorname{ArgMin}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(h\left(\mathbf{x}_{n}\right), \mathbf{y}_{n}\right)
$$

The partially observable case

- We look for a hypothesis $\quad h_{\text {partial }}: \mathcal{X} \rightarrow[0,1]^{L}$
- During training, we observe

$$
\mathbf{z}_{n} \in \mathcal{Z}=\{0,1, \oslash\}^{L}
$$ where and only one

$$
\begin{array}{ll}
\mathbf{z}_{n}^{i}=\oslash \longleftarrow & \text { indicates that the th } \\
\mathbf{z}_{n}^{i}=1 & \text { label is unobserved }
\end{array}
$$

- Given a dataset

$$
\mathcal{S}=\left\{\left(\mathbf{x}_{n}, \mathbf{z}_{n}\right)\right\}_{1 \leq n \leq N}
$$

we want to find a hypothesis that
minimizes the empirical risk

$$
\hat{h}_{\text {partial }}=\underset{h \in \mathcal{H}}{\operatorname{ArgMin}} \frac{1}{N} \sum_{n=1}^{N} \ell\left(h\left(\mathbf{x}_{n}\right), \mathbf{z}_{n}\right)
$$

Approach "assume unobserved are negative"

- Assume that all unobserved labels are negative

$$
P\left(\mathbf{y}_{n}^{i}=1 \mid \mathbf{x}_{n}\right)=0 \quad \text { if } \quad \mathbf{z}_{n}^{i}=\oslash
$$

- The resulting loss is

$$
\begin{gathered}
\ell_{\mathrm{AN}}\left(h\left(\mathbf{x}_{n}\right), \mathbf{y}_{n}\right)=-\frac{1}{L} \sum_{i=1}^{L} \mathbb{1}_{\left[\mathbf{z}_{n}^{i}=1\right]} \log \left(h\left(\mathbf{x}_{n}^{i}\right)\right)+\mathbb{1}_{\left[\mathbf{z}_{n}^{i} \neq 1\right]} \log \left(1-h\left(\mathbf{x}_{n}^{i}\right)\right) \\
\mathbb{1}_{\left[\mathbf{z}_{n}^{i}=1\right]}=1 \quad \text { if } \mathbf{z}_{n}^{i}=1 \quad \text { and } 0, \text { otherwise }
\end{gathered}
$$

- We expect false negatives

Approach "assume unobserved are negative" + smoothing

- Assume that all unobserved labels are negative

$$
P\left(\mathbf{y}_{n}^{i}=1 \mid \mathbf{x}_{n}\right)=0 \quad \text { if } \quad \mathbf{z}_{n}^{i}=\oslash
$$

- And give more weight to the observed examples. The resulting loss is

$$
\begin{aligned}
\ell_{\mathrm{AN}-\mathrm{LS}}\left(h\left(\mathbf{x}_{n}\right), \mathbf{y}_{n}\right)= & -\frac{1}{L} \sum_{i=1}^{L} \mathbb{1}_{\left[\mathbf{z}_{n}^{i}=1\right]}^{0.95} \log \left(h\left(\mathbf{x}_{n}^{i}\right)\right)+\mathbb{1}_{\left[\mathbf{z}_{n}^{i} \neq 1\right]}^{0.05} \log \left(1-h\left(\mathbf{x}_{n}^{i}\right)\right) \\
& \text { Observed as positive }
\end{aligned}
$$

Hence assumed as negative

$$
\text { Intuitively } \quad R\left(\hat{h}_{\text {fully }}\right) \leq R\left(\hat{h}_{\text {partial }}\right)
$$

- But by how much?
- In the case of "assume unobserved = negative"

$$
\text { Intuitively } \quad R\left(\hat{h}_{\text {fully }}\right) \leq R\left(\hat{h}_{\text {partial }}\right)
$$

- But by how much?
- In the case of "assume unobserved = negative"

With 20 times fewer labeled examples, the performance is not that bad on this dataset compared to the fully observable case

[^0]
Lessons

1. Fomalize the assumptions about your problem

- The labelling process
- The type of target (and hypothesis) function

2. Design a loss function appropriate for the problem

- Able to explore efficiently the hypothesis space and to find a good minimum of the empirical risk

3. Design a good evaluation scheme

Learning from positive examples only: lots of approaches

- Approaches
- Assume that the missing labels are negative
- Ignore the missing labels
- Perform label matrix reconstruction
- Learn label correlations
- Learn generative probabilistic models
- Train label cleaning networks
- Related to learning with label noise
- Here, some unobserved labels are incorrectly treated as being absent
- Related to learning from a set of positive examples and a set of unlabeled ones (PU learning)

Outline

1. Classes severely unbalanced
2. Learning from positive examples only
3. Semi-supervised learning
4. Active learning
5. Domain adaptation
6. Tracking

The idea

Labeled data only

Semi-supervised learning

- Unsupervised learning
$\mathbf{P}_{\mathcal{X}}$
- Supervised learning
$\mathbf{P}_{\mathcal{Y} \mid \mathcal{X}}$

Semi-supervised learning

- Unsupervised learning $\mathbf{P}_{\mathcal{X}}$
- Supervised learning $\mathbf{P}_{\mathcal{Y} \mid \mathcal{X}}$

When can unsupervised learning help supervised learning?

Semi-supervised learning

The underlying main idea:

The decision function (hypothesis h) should not cut through high density regions

Semi-supervised learning

Simplest approach

1. Compute a clustering of the all data (labeled and unlabeled)
2. For each cluster, assign its class to the majority vote of the labeled examples that belong to it

Semi-supervised learning

Simplest approach

1. Compute a clustering of the all data (labeled and unlabeled)
2. For each cluster, assign its class to the majority vote of the labeled examples that belong to it

Semi-supervised learning

Self-training approach

1. Given $\mathcal{S}_{L}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{1 \leq i \leq l}$ and $\mathcal{S}_{U}=\left\{\left(\mathbf{x}_{j}\right)\right\}_{1 \leq j \leq u}$
2. Train on S_{L} to obtain h_{1}
3. Apply h_{1} to S_{U}
4. Remove a set of unlabeled data from S_{U} and add them to S_{L} (the one where $h(\mathbf{x})$ is the more confident) with the label $h(\mathbf{x})$
5. Go to 2 and repeat until convergence

Semi-supervised learning

- Idea: endow unlabeled data with pseudo-labels (the likeliest class at time t)

$$
y_{i}= \begin{cases}1 & \text { if } i=\operatorname{argmax}_{i \in\{1, \ldots, C\}} \\
0 & h_{i}^{t}(\mathbf{x}) \\
\text { otherwise } & \begin{array}{l}
\text { Output of the } \mathrm{i}^{\text {th }} \\
\text { output neuron }
\end{array}\end{cases}
$$

- Train with the empirical risk:

$$
R_{\mathrm{emp}}(h)=\frac{1}{m_{l}} \sum_{i=1}^{m_{l}} \sum_{j=1}^{C} \ell\left(h_{j}\left(\mathbf{x}_{i}\right), y_{j}^{i}\right)+\alpha(t) \frac{1}{m_{u}} \sum_{i=1}^{m_{u}} \sum_{j=1}^{C} \ell(h_{j}\left(\mathbf{x}_{i}\right), \underbrace{y_{j}^{i}}_{\text {pseudo-label }})
$$

Crucial to set $\alpha(t)$ with great care
[Dong-Hyun Lee (2013) "Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks", ICML-2013]

Semi-supervised learning

Transductive SVM approach

Classification using Support Vector Machines", ICML, 1999

Semi-supervised learning

Entropy regularization approach

$$
\hat{h}=\underset{h \in \mathcal{H}}{\operatorname{ArgMin}}[\underbrace{\frac{1}{l} \sum_{i=1}^{l} \ell\left(h\left(\mathbf{x}_{i}\right), y_{i}\right)}_{\text {Empirical risk on labeled data }}+\lambda \underbrace{\sum_{j=1}^{u}-h\left(\mathbf{x}_{j}\right) \log h\left(\mathbf{x}_{j}\right)}_{\text {Entropy of the predictions }}]
$$

- You have to make assumptions about what you think is reasonable as a bias
- E.g. that classes are separated by low density regions
- Then, you show that if the assumption is met by Nature, then you find a correct hypothesis

A remark on semi-supervised learning

- Could be regarded as transductive learning where one wants to label unlabeled training instances

Transductive learning

- I know in advance where I will be queried

Transductive learning

- "When solving a problem of interest, do not solve a more general problem as an intermediate step.

Try to get the answer that you really need but not a more general one."
(Vapnik, 1995)

Semi supervised learning with transductive learning

- Graph-Based labelling

Outline

1. Classes severely unbalanced
2. Learning from positive examples only
3. Semi-supervised learning
4. Active learning
5. Domain adaptation
6. Tracking

Active learning

- When the learner can actively ask for pieces of information
- Labels of selected examples
- Values of some selected descriptors
- E.g. ask for a medical examination
- Examples
- MasterMind
- Scientific activity

Active learning

- When the learner can actively ask for pieces of information
- Labels of selected examples
- Values of some selected descriptors
- E.g. ask for a medical examination
- The hope
- Need of less (costly) examples
- Having a faster convergence rate

$$
\begin{aligned}
& \forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^{m}\left[R_{\text {Réel }}(h) \leq R_{\text {Emp }}(h)+\frac{\log |\mathcal{H}|+\log \frac{1}{\delta}}{m}\right]>1-\delta \\
& \forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^{m}\left[R_{\text {Réel }}(h) \leq R_{\text {Emp }}(h)+\sqrt{\frac{\log |\mathcal{H}|+\log \frac{1}{\delta}}{2 m}}\right]>\begin{array}{c}
1-\delta \\
42 / 97
\end{array}
\end{aligned}
$$

Active learning

How to find the best threshold from querying points?

- By random selection of points

$$
m=\mathcal{O}\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)
$$

- By active selection

$$
m=\mathcal{O}\left(\log \frac{1}{\varepsilon}\right)
$$

Much faster!

Active learning

- Two main approaches
- "Constructive" approach
- The learner constructs queries
- "Selective" (pool-based) approach
- The learner selects points among the unsupervised ones

Why is the constructive approach sometimes not applicable?

How to select the examples? (some ideas)

- The more informative examples

1. The ones where the confidence of the current hypothesis is the lowest

- Measured by a probability
$\longrightarrow \quad \mathbf{x}^{\star}=\underset{\mathbf{x} \in \mathcal{S}_{U}}{\operatorname{ArgMax}} \operatorname{Uncertain}(\mathbf{x}) \quad \operatorname{Uncertain}(\mathbf{x})=\frac{1}{\operatorname{ArgMax}_{y \in \mathcal{Y}} p\left(h_{t}(\mathbf{x})=y\right)}$
$\longrightarrow \quad \mathbf{x}^{\star}=\underset{\mathbf{x} \in \mathcal{S}_{U}}{\operatorname{ArgMax}}\left\{-\sum_{i} p\left(h_{t}(\mathbf{x})=y_{i}\right) \log p\left(h_{t}(\mathbf{x})=y_{i}\right)\right\} \quad$ Entropy criyeria
- Measured by distance to the decision function

2. Learn an ensemble of hypotheses and select the examples where they disagree the most

Illustration

(a)

(b)

Figure 2: An illustrative example of pool-b ased active learning. (a) A toy data set of 400 instances, evenly sampled from two Class Gaussians. The instances are represented as points in a 2 D feature space. (b) A logistic regression model trained with 30 labeled instances randomly drawn from the problem domain. The line represents the decision boundary of the classifier (accuracy $=0.7$). (c) A logistic regressign model trained with 30 actively queried instances using uncertainty sampling (accuracy $=0.9$).

Active Learning

- What is the danger?

Active Learning

- What is the danger?
- No more theoretical guarantees

$$
\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^{m}\left[R_{\text {Réel }}(h) \leq R_{\mathrm{Emp}}(h)+\sqrt{\frac{\log |\mathcal{H}|+\log \frac{1}{\delta}}{2 m}}\right]>1-\delta
$$

Does not make sense anymore!!

- Why?

Active learning: lessons

- Active learning is not much used in practice

1. Costly to identify informative examples
2. Risk of ignoring important regions of X

- Interesting: learning under budget constraints
- What measurements should I made under some budget constraints?

Outline

1. Classes severely unbalanced
2. Learning from positive examples only
3. Semi-supervised learning
4. Active learning
5. Domain adaptation
6. Tracking

Different types of transfers

- Domain adaptation
$-X_{S}=X_{T}$ and $Y_{S}=Y_{T}$
- but different distributions P_{x}
- Concept shift
$-X_{S}=X_{T}$ and $Y_{S}=Y_{T}$
- but different distributions $\mathrm{P}_{\mathrm{Y} \mid \mathrm{X}}$
- Transfer learning
$-X_{S} \neq X_{T}$ and/or $Y_{S} \neq Y_{T}$

Domain adaptation

- Covariate shift
- We assume $X_{S}=X_{T} \quad$ (same input space)

Training data

Source domain

Test data

Target domain

- Covariate shift (suppose same input size and resolution)

Source domain (simulated images)

Target domain (real images) $53 / 97$

Concept shifts: illustrations

- Spam filtering
- Not the same user: $\quad P_{Y \mid X}$ may differ
- E.g. for me conference announcements are important, but could be an annoyance to someone else
- Changes in the tastes or expectations of the consumers
- Changes in medicine
- E.g. the prevalence of flu differs from one season to another $\left(P_{x}\right)$
- But this is still flu ($\mathrm{P}_{\mathrm{Y} \mid \mathrm{X}}$)

Types of Domain Adaptation

- Semi-supervised DA (SSDA)
- Some labeled target data, but not enough to train from it
- Lots of unlabeled data
- Unsupervised DA (UDA)
- No labeled target data
- Source-free DA (SFDA)
- No source data (e.g. because of privacy concerns)
- Only the source hypothesis h_{S}
- And a few labeled target data

Covariate shift

- Difference in the P_{x} distribution between source and target domains: $\mathbf{P}_{X}^{S} \neq \mathbf{P}_{X}^{T}$

How to approach the problem
?

How to approach the problem

- Very active research area
- Because of the numerous applications
- Lots of (heuristical) approaches

(Some) families of approaches

- Change the source distribution

1. Reweight the source data
2. Iteratively self-label the target data, and retrain

- Search for a common description subspace
- Where the source hypothesis works well on the projected source data
- And hope that it will work as well on the projected target data

DA by reweighting source data

- Here, a regression task

First analysis

$$
R_{P_{T}}(h)=\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{T}}{\mathbf{E}} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right]
$$

First analysis

$$
\begin{aligned}
R_{P_{T}}(h) & =\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{T}}{\mathbf{E}} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right] \\
& =\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{T}}{\mathbf{E}} \frac{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)}{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right]
\end{aligned}
$$

First analysis

$$
\begin{aligned}
R_{P_{T}}(h) & =\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{T}}{\mathbf{E}} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right] \\
& ={\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{T}}{\mathbf{E}} \frac{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)}{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right]}=\sum_{\left(\mathbf{x}^{t}, y^{t}\right)} P_{T}\left(\mathbf{x}^{t}, y^{t}\right) \frac{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)}{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right]
\end{aligned}
$$

First analysis

$$
\begin{aligned}
R_{P_{T}}(h) & =\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{T}}{\mathbf{E}} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right] \\
& =\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{T}}{\mathbf{E}} \frac{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)}{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right] \\
& =\sum_{\left(\mathbf{x}^{t}, y^{t}\right)} P_{T}\left(\mathbf{x}^{t}, y^{t}\right) \frac{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)}{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)} \mathbf{l}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right] \\
& =\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{S}}{\mathbf{E}} \frac{P_{T}\left(\mathbf{x}^{t}, y^{t}\right)}{P_{S}\left(\mathbf{x}^{t}, y^{t}\right)} \mathbf{l}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right]
\end{aligned}
$$

First analysis

Covariate shift [Shimodaira, '00]

\Rightarrow Assume similar tasks, $P_{S}(y \mid \mathbf{x})=P_{T}(y \mid \mathbf{x})$, then:

$$
\begin{aligned}
& =\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{S}}{\mathbf{E}} \frac{D_{T}\left(\mathbf{x}^{t}\right) P_{T}\left(y^{t} \mid \mathbf{x}^{t}\right)}{D_{S}\left(\mathbf{x}^{t}\right) P_{S}\left(y^{t} \mid \mathbf{x}^{t}\right)} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right] \\
& =\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{S}}{\mathbf{E}} \frac{D_{T}\left(\mathbf{x}^{t}\right)}{D_{S}\left(\mathbf{x}^{t}\right)} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right] \\
& \left.=\underset{\left(\mathbf{x}^{t}\right) \sim D_{S}}{\mathbf{E}} \frac{D_{T}\left(\mathbf{x}^{t}\right)}{D_{S}\left(\mathbf{x}^{t}\right) y^{t} \sim P_{S}\left(y^{t} \mid \mathbf{x}^{t}\right)}\right\} \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right]
\end{aligned}
$$

\Rightarrow weighted error on the source domain: $\omega\left(x^{t}\right)=\frac{D_{T}\left(x^{t}\right)}{D_{S}\left(\mathrm{x}^{t}\right)}$
Idea reweight labeled source data according to an estimate of $\omega\left(x^{t}\right)$:

$$
\underset{\left(\mathbf{x}^{t}, y^{t}\right) \sim P_{S}}{\mathbf{E}} \omega\left(\mathbf{x}^{t}\right) \mathbf{I}\left[h\left(\mathbf{x}^{t}\right) \neq y^{t}\right]
$$

Principle

- Law of large numbers
- Sample averages converge to the population mean

$$
\frac{1}{n} \sum_{i=1}^{n} A\left(x_{i}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{x_{i} i . i . d .}{\sim} \mathbf{p}_{\text {train }}(x)} \int A(x) \mathbf{p}_{\text {train }}(x) d x
$$

$\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{p}_{\text {test }}(x)}{\mathbf{p}_{\text {train }}(x)} A\left(x_{i}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{x_{i} . i . d .}{\sim} \mathbf{p}_{\text {train }}(x)} \int \frac{\mathbf{p}_{\text {test }}(x)}{\mathbf{p}_{\text {train }}(x)} A(x) \mathbf{p}_{\text {train }}(x) d x$

$$
\xrightarrow[n \rightarrow \infty]{x_{i} \stackrel{i . i . d}{\sim} \mathbf{p}_{\text {train }}(x)} \int A(x) \mathbf{p}_{\text {test }}(x) d x
$$

- But how to estimate $\frac{\mathbf{p}_{\text {test }}(x)}{\mathbf{p}_{\text {train }}(x)}$

Importance weighting

- A naïve estimation of

$$
\frac{\mathbf{p}_{\text {test }}(x)}{\mathbf{p}_{\text {train }}(x)}
$$

does not work

- Estimation density is too crude in high dimension space (and with few known testing instances)
- Idea of Sugiyama:
- Learn a parametric model of $w(\mathbf{x})=\frac{\mathbf{p}_{\text {test }}(x)}{\mathbf{p}_{\text {train }}(x)}$

$$
\hat{w}(\mathbf{x})=\sum_{j=1}^{J} \theta_{j} \phi_{j}(\mathbf{x}) \quad \text { and } \quad \hat{\mathbf{p}}_{\text {test }}(\mathbf{x})=\hat{w}(\mathbf{x}) \mathbf{p}_{\text {train }}(\mathbf{x})
$$

See [Sugiyama, Masashi, et al. "Direct importance estimation with model selection and its application to covariate

Covariate shift in regression

"Importance weighted" inductive criterion

Principle: weighting the classical ERM

$$
R_{C o v}(h)=\frac{1}{m} \sum_{i=1}^{m}\left(\frac{\mathbf{P}_{\mathcal{X}^{\prime}}\left(\boldsymbol{x}_{i}\right)}{\mathbf{P}_{\mathcal{X}}\left(\boldsymbol{x}_{i}\right)}\right)^{\lambda}\left(h\left(\boldsymbol{x}_{i}-y_{i}\right)^{2}\right.
$$

λ controls the
stability /
consistency
(absence of bias)

SKM07 M. Sugiyama and M. Kraudelat and K.-R. Müller (2007) "Covariate Shift Adaptation by Importance Weighted Cross Validation" Journal of Machine Learning Research, vol.8: 985-1005.-

Covariate shift in classification

"Importance weighted" inductive criterion (classification task)

The reweighting approach

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., \& Smola, A. (2012). A kernel two-sample test. The Journal of Machine Learning Research, 13(1), 723-773.

The reweighting approach

-... à la Fugiyama

- Complex approach
- Not easy to implement

Search for a common description space

- The idea

- The hope
- If the source hypothesis works well on the projected source data
- Then (?) it should/could work as well on the projected target data

Illustration by two algorithms

... among MANy others

1. Subspace alignment
2. Deep NNs

Subspace alignment algorithm

- Optimizing a (linear) mapping function that transforms the source subspace into the target one
- Assumption: both source and target input spaces are D-dimensional

1. Transform every source and target data in the form of a D-dimensional z-normalized vector (i.e. of zero mean and unit standard deviation)
2. Using PCA, select for each domain d eigenvectors (corresponding to the largest eigenvalues)
3. These eigenvectors are used as bases of the source and target subspaces, respectively denoted by X_{S} and $X_{T}\left(X_{S}, X_{T} \in \mathrm{R}^{D \times d}\right)$.
4. Realize the subspaces alignment

- Alignment of the basis vectors using a transformation matrix \mathbf{M} from X_{S} to X_{T}

$$
\begin{aligned}
& F(M)=\left\|X_{S} M-X_{T}\right\|_{F}^{2} \quad \text { Frobenius norm } \\
& M^{\star}=\underset{M}{\operatorname{Argmin}}\{F(M)\}
\end{aligned}
$$


```
Algorithm 1: Subspace alignment DA algorithm
Data: Source data S, Target data T, Source labels }\mp@subsup{Y}{S}{}\mathrm{ , Subspace dimension d
Result: Predicted target labels }\mp@subsup{Y}{T}{
S
\mp@subsup{\mathbf{S}}{2}{}\leftarrowPCA(T,d) (target subspace defined by the first d eigenvectors);
\mp@subsup{X}{a}{}}\leftarrow\mp@subsup{\mathbf{S}}{1}{}\mp@subsup{\mathbf{S}}{1}{\prime}\mp@subsup{\mathbf{S}}{2}{}\quad\mathrm{ (operator for aligning the source subspace to the target
one);
S
\mp@subsup{\mathbf{T}}{T}{}=T\mp@subsup{\mathbf{S}}{2}{}\quad\mathrm{ (new target data in the aligned space);}
YT}\leftarrowClassifier (\mathbf{S},\mp@code{a},\mp@subsup{\mathbf{T}}{T}{},\mp@subsup{Y}{S}{})
```

- $\mathbf{M}^{*}=\mathbf{S}_{1}{ }^{\prime} \mathbf{S}_{2}$ corresponds to the "subspace alignment matrix": $\mathbf{M}^{*}=\operatorname{argmin}_{\mathbf{M}}\left\|\mathbf{S}_{1} \mathbf{M}-\mathbf{S}_{2}\right\|$
- $X_{a}=\mathbf{S}_{1} \mathbf{S}_{1}{ }^{\prime} \mathbf{S}_{2}=\mathbf{S}_{1} \mathbf{M}^{*}$ projects the source data to the target subspace
- A natural similarity: $\operatorname{Sim}\left(\mathbf{x}_{s}, \mathbf{x}_{t}\right)=\mathbf{x}_{s} \mathbf{S}_{1} \mathbf{M}^{*} \mathbf{S}_{1}{ }^{\prime} \mathbf{x}_{t}^{\prime}=\mathbf{x}_{s} \mathbf{A} \mathbf{x}_{t}^{\prime}$

Subspace alignment: empirical results

Φ

Amazon

DSLR

Webcam

Caltech

- Adaptation from Office/Caltech-10 datasets (four domains to adapt) is used as source and one as target
- Comparisons
- Baseline 1: projection on the source subspace
- Baseline 2: projection on the target subspace
- 2 related methods : GFK [Gong et al., CVPR'12] and GFS [Gopalan et al.,ICCV'11]

Subspace alignment: empirical results

Method	$\mathrm{c} \rightarrow \mathrm{A}$	$\mathrm{D} \rightarrow \mathrm{A}$	$\mathrm{w} \rightarrow \mathrm{A}$	$\mathrm{A} \rightarrow \mathrm{C}$	$\mathrm{D} \rightarrow \mathrm{C}$	$\mathrm{w} \rightarrow \mathrm{C}$
Baseline 1	44.3	36.8	32.9	36.8	29.6	24.9
Baseline 2	44.5	38.6	34.2	37.3	31.6	28.4
GFK	44.8	37.9	37.1	38.3	31.4	29.1
OUR	$\mathbf{4 6 . 1}$	$\mathbf{4 2 . 0}$	$\mathbf{3 9 . 3}$	$\mathbf{3 9 . 9}$	$\mathbf{3 5 . 0}$	$\mathbf{3 1 . 8}$

Recognition accuracy using a SVM classifier

Method	$\mathrm{A} \rightarrow \mathrm{D}$	$\mathrm{C} \rightarrow \mathrm{D}$	$\mathrm{w} \rightarrow \mathrm{D}$	$\mathrm{A} \rightarrow \mathrm{w}$	$\mathrm{C} \rightarrow \mathrm{w}$	$\mathrm{D} \rightarrow \mathrm{w}$
Baseline 1	36.1	38.9	73.6	$\mathbf{4 2 . 5}$	34.6	75.4
Baseline 2	32.5	35.3	73.6	37.3	34.2	80.5
GFK	37.9	36.1	74.6	39.8	34.9	79.1
OUR	$\mathbf{3 8 . 8}$	$\mathbf{3 9 . 4}$	$\mathbf{7 7 . 9}$	39.6	$\mathbf{3 8 . 9}$	$\mathbf{8 2 . 3}$

Unsupervised Domain Adaptation with deep NNs

Mono-task

Domain adaptation

- Applying source classifier to target domain can yield inferior performance...

Unsupervised Domain Adaptation with deep NNs

From [https://ece.engin.umich.edu/wp-content/uploads/2019/09/4142.pdf]

Unsupervised Domain Adaptation with deep NNs

Several approaches

- by minimizing distance between distributions, e.g.

Maximum Mean Discrepancy M. Long, et al. ICML 2015

CORrelation ALignment Sun and Saenko, AAAI 2016

- ...or by adversarial domain alignment, e.g.

Domain Confusion E. Tzeng et al. ICCV 2015

Reverse Gradient Y. Ganin and V. Lempitsky ICML 2015

Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

Adversarial networks

Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

One agent tries to make the distributions look alike through the encodings
The other tries to discriminate them

Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation

Figure 3: An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source classifier. Dashed lines indicate fixed network parameters.

Tzeng, E., Hoffman, J., Saenko, K., \& Darrell, T. (2017). Adversarial discriminative domain adaptation.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7167-7176).

Unsupervised Domain Adaptation with deep NNs

Adversarial domain adaptation
MNIST
325 26

USPS

SVHN

Method	$\begin{gathered} \text { MNIST } \rightarrow \text { USPS } \\ 773 \rightarrow \square 105 \end{gathered}$	$\begin{array}{r} \text { USPS } \rightarrow \text { MNIST } \\ 105 \rightarrow 773 \end{array}$	$\begin{aligned} \text { SVHN } & \rightarrow \text { MNIST } \\ {[14.33[5]} & \rightarrow 7 \end{aligned}$
Source only	0.752 ± 0.016	0.571 ± 0.017	0.601 ± 0.011
Gradient reversal	0.771 ± 0.018	0.730 ± 0.020	0.739 [19]
Domain confusion	0.791 ± 0.005	0.665 ± 0.033	0.681 ± 0.003
CoGAN	0.912 ± 0.008	0.891 ± 0.008	did not converge
ADDA (Ours)	0.894 ± 0.002	0.901 ± 0.008	0.760 ± 0.018

Outline

1. Classes severely unbalanced
2. Learning from positive examples only
3. Semi-supervised learning
4. Active learning
5. Domain adaptation
6. Tracking

Tracking: an intriguing idea

[Richard Sutton, Anna Koop \& David Silver (2007). On the role of tracking in stationary environments. ICML-2007]

Even in stationary environments, it can be advantageous to act as if the environment was changing!!!

Tracking: an intriguing idea

In a lot of natural settings:

- Data comes sequentially
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.

This enables:

- Powerful learning

- with limited resources
(time + memory)

SKS:07 R. Sutton and A. Koop and D. Silver (2007) "On the role of tracking in stationary environments" (ICML07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

Tracking: an intriguing idea

Assumptions:

- Data streams
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.
- Limited resources: Restricted hypothesis space \mathcal{H}

"Local" learning

and local prediction :

$$
\begin{aligned}
L_{t} & =\ell\left(h_{t}\left(\boldsymbol{x}_{t}\right), y_{t}\right) \\
& =\ell\left(h_{t}\left(\boldsymbol{x}_{t}\right), f\left(x_{t}, \theta_{t}\right)\right)
\end{aligned}
$$

Tracking: an intriguing idea

Assumptions:

- Data streams
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.
- Limited resources: Restricted
 hypothesis space \mathcal{H}

"Local" learning

and local prediction :

$$
\begin{aligned}
L_{t} & =\ell\left(h_{t}\left(\boldsymbol{x}_{t}\right), y_{t}\right) \\
& =\ell\left(h_{t}\left(\boldsymbol{x}_{t}\right), f\left(x_{t}, \theta_{t}\right)\right)
\end{aligned}
$$

Tracking in stationary environments

- A toy environment

$$
\begin{aligned}
& y_{t}=\frac{1}{1+e^{-w_{t} x_{t}}} \\
& w_{t+1}=w_{t}+\alpha\left(z_{t}-y_{t}\right) x_{t}
\end{aligned}
$$

Figure 1. The Black and White world. The agent follows a random walk right and left, occasionally observing the color above it. The states wrap.

Figure 2. A sample trajectory in the Black and White world, showing the prediction on each time-step and the actual color above the agent. The prediction is modified only on time steps on which the color is observed. Here $\alpha=2$.

Tracking in stationary environments

Tracking to play Go

- 5×5 Go
- More than 5×10^{10} unique positions
- Usual approach: learn a general evaluation function $V(s)$ valid $\forall s$

Tracking as local changes of representation

Space of go positions

Embedding
Space of representations

Weighted features

Tracking in stationary environments

- Tracking approach: learn an evaluation function $\mathrm{V}(s)$
local to the currents

In general, playing (a) (center) is better than
playing (b)

More weight
BUT
In this situation, playing (b) is better than playing (a)

Tracking in stationary environments

Tracking to play Go

Comparison:

- learn a general evaluation function $\mathrm{V}(\mathrm{s})$
- On 250,000 complete episodes of self-play
- Learn successive evaluation functions $\mathrm{Vt}(\mathrm{s})$ attuned to the current states
- On 10,000 episodes of self-play starting from the current position

Features	Tracking beats converging		
	Black	White	Total
1×1	82%	43%	62.5%
2×2	90%	71%	80.5%
3×3	93%	80%	86.5%

Table 1. Percentage of 5×5 Go games won by the tracking agent playing against the converging agent when playing as Black (first to move) and as White.

Tracking in stationary environments

Comparison:

- learn a general evaluation function $\mathrm{V}(\mathrm{s})$
- On 250,000 complete episodes of self-play
- Learn successive evaluation functions $\mathrm{Vt}(\mathrm{s})$ attuned to the current state
- On 10,000 episodes of self-play starting from the current position

Features	Total	CPU (minutes)	
	features	Tracking	Converging
1×1	75	3.5	10.1
2×2	1371	5.7	13.8
3×3	178518	9.1	22.2

Table 2. Memory and CPU requirements for tracking and converging agents. The total number of binary features indicates the memory consumption. The CPU time is the average training time required to play a complete game: 250,000 episodes of training for the converging agent; 10,000 episodes of training per move for the tracking agent.

[^0]: COLE, Elijah, MAC AODHA, Oisin, LORIEUL, Titouan, et al. Multi-label learning from single positive labels. In : Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p. 933942.

