
Antoine Cornuéjols

AgroParisTech – INRAé MIA Paris

EKINOCS research group

Transfer Learning and representations

Transferring representations
Invariant Risk Minimization

Multi-task learning

2 / 85

Outline

1. Transfer learning: reminder

2. Fine tuning: how transferable are features in deep NNs?

3. Are the features learned during pretraining of foundational

models general enough to enable fine tuning on any task?

4. Multi-task learning

5. Conclusions

3 / 85

• Illustration

4 / 85

Notations

1. Source domain S

– Source training data SS

– Source data distribution DS

– Source hypothesis hS

2. Target domain T

– Target training data ST (|ST| << |SS|)

– Target data distribution DT

– Target hypothesis hT

5 / 85

Introduction to transfer learning

What can we transfer from one task to another?

6 / 85

• In the following: a strong assumption

There is something in common between the source and the target

We will remove this assumption later on

7 / 85

What can we transfer

• What could be in common?

1. Look for a universal representation

2. Underlying supposedly common regularities

3. Learning a translation to a common decision function

4. Others

8 / 85

Outline

1. Transfer learning: reminder

2. Fine tuning: how transferable are features in deep NNs?

3. Are the features learned during pretraining of foundational

models general enough to enable fine tuning on any task?

4. Multi-task learning

5. Conclusions

9 / 85

Universal representations ?

10 / 85

A universal representation for texts?

From [Kevin Murphy. Probabilistic Machine Learning. An introduction. MIT Press. (2022)], p.539

15.7. Language models and unsupervised representation learning 543

Figure 15.36: Illustration of how the T5 model (“Text-to-text Transfer Transformer”) can be used to perform
multiple NLP tasks, such as translating English to German; determining if a sentence is linguistic valid or
not (CoLA stands for “Corpus of Linguistic Acceptability”); determining the degree of semantic similarity
(STSB stands for “Semantic Textual Similarity Benchmark”); and abstractive summarization. From Figure 1
of [Raf+20]. Used with kind permission of Colin Raffel.

which it enters summarization mode. (This is an example of “prompt engineering”.) However, an
arguably better way to tell the model what task to perform is to train it on input-output pairs, as
discussed in Section 15.7.4.

GPT can also be used to create chatbots, such as ChatGPT [Ope], and for code generation
(see e.g., [HBK23]).

15.7.4 T5

Many models are trained in an unsupervised way, and then fine-tuned on specific tasks. It is also
possible to train a single model to perform multiple tasks, by telling the system what task to perform
as part of the input sentence, and then training it as a seq2seq model, as illustrated in Figure 15.36.
This is the approach used in T5 [Raf+20], which stands for “Text-to-text Transfer Transformer”. The
model is a standard seq2seq transformer, that is pretrained on unsupervised (x0, x00

) pairs, where x0

is a masked version of x and x00 are the missing tokens that need to be predicted, and then fine-tuned
on multiple supervised (x, y) pairs.

The unsupervised data comes from C4, or the “Colossal Clean Crawled Corpus”, a 750GB corpus
of web text. This is used for pretraining using a BERT-like denoising objective. For example, the
sentence x =“Thank you for inviting me to your party last week” may get converted to the input
x0

= “Thank you <X> me to your party <Y> week” and the output (target) x00
= “<X> for inviting

<Y> last <EOS>”, where < X > and < Y > are tokens that are unique to this example.
The supervised datasets are manually created, and are taken from the literature. Recently the

FLAN-T5 model [Chu+22] was released, which uses instruction fine-tuning on over 1800 such
tasks, including language translation, text classification, and question answering. The resulting model
is currently the state-of-the-art on many NLP tasks.

15.7.5 Discussion

Large language models or LLMs, such as BERT and GPT-3, have recently generated a lot of

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

11 / 85

What can we transfer

1. Representations

– E.g. for vision tasks

12 / 85

The idea of fine tuning

13 / 85

Transfer learning for deep neural networks

• In practice, very few people train an entire Convolutional Network from scratch.

• Instead, it is common to pretrain a ConvNet on a very large dataset
(e.g. ImageNet, which contains 1.2 million images with 1000 categories),

– and then use the ConvNet either as an initialization

– or a fixed feature extractor for the task of interest.

• Examples of pretrained networks

– Oxford VGG Model

– Google Inception Model

– Microsoft ResNet model

[Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural
networks? In Advances in Neural Information Processing Systems 27 (NIPS ’14), NIPS
Foundation, 2014.]

14 / 85

Transfer learning for deep neural networks

• The assumption:

– the features learned for a task can be used almost as such

for other, related, tasks

• Approach:

– Reuse the first layers and learn the last ones

– Same input spaces XS = XT, possibly YS ≠ YT

15 / 85

Transfer learning

• 1st strategy

1. Take a NN pretrained on the source data set,

2. remove the last fully-connected layer
(e.g. this layer’s outputs are the 1000 class scores for a task like ImageNet),

3. then treat the rest of the NN as a fixed feature extractor
for the target dataset.

• 2nd strategy

1. Not only replace and retrain the classifier on top of the NN
on the taget dataset,

2. but to also fine-tune the weights of the pretrained network by continuing
the backpropagation

16 / 85

Transfer learning for deep neural networks

From [Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724)].

C1-C2-C3-C4-C5 FC 6 FC 7 FC 8

African elephant

Wall clock

Green snake

Yorkshire terrier

Source task

Training images Sliding patches

FCa FCb

Chair

Background

Person

TV/monitor

Convolutional layers Fully-connected layers

Source task labels

Target task labels

Transfer
parameters

1 : Feature
learning

2 : Feature
transfer

3 : Classifier
learning C1-C2-C3-C4-C5 FC 6 FC 7

4096 or
6144-dim

vector

4096 or
6144-dim

vector

Target task

Training images

9216-dim
vector

4096 or
6144-dim

vector New adaptation
layers trained
on target task

Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

(here object and action classification in Pascal VOC), as il-
lustrated in Figure 2. However, this is difficult as the la-
bels and the distribution of images (type of objects, typical
viewpoints, imaging conditions, etc.) in the source and tar-
get datasets can be very different, as illustrated in Figure 3.
To address these challenges we (i) design an architecture
that explicitly remaps the class labels between the source
and target tasks (Section 3.1), and (ii) develop training and
test procedures, inspired by sliding window detectors, that
explicitly deal with different distributions of object sizes,
locations and scene clutter in source and target tasks (Sec-
tions 3.2 and 3.3).

3.1. Network architecture

For the source task, we use the network architec-
ture of Krizhevsky et al. [24]. The network takes as
input a square 224 ⇥ 224 pixel RGB image and pro-
duces a distribution over the ImageNet object classes.
This network is composed of five successive convolu-
tional layers C1. . . C5 followed by three fully connected
layers FC6. . . FC8 (Figure 2, top). Please refer to [24]
for the description of the geometry of the five convolu-
tional layers and their setup regarding contrast normaliza-
tion and pooling. The three fully connected layers then
compute Y6=�(W6Y5 +B6), Y7=�(W7Y6 +B7),
and Y8= (W8Y7 +B8), where Yk denotes the out-
put of the k-th layer, Wk, Bk are the trainable param-
eters of the k-th layer, and �(X)[i]=max(0,X[i]) and
 (X)[i]=eX[i]/

P
j e

X[j] are the “ReLU” and “SoftMax”
non-linear activation functions.

For target tasks (Pascal VOC object and action classifica-
tion) we wish to design a network that will output scores for
target categories, or background if none of the categories
are present in the image. However, the object labels in the
source task can be very different from the labels in the tar-
get task (also called a “label bias” [49]). For example, the
source network is trained to recognize different breeds of
dogs such as huskydog or australianterrier, but the
target task contains only one label dog. The problem be-
comes even more evident for the target task of action classi-
fication. What object categories in ImageNet are related to
the target actions reading or running ?

In order to achieve the transfer, we remove the output
layer FC8 of the pre-trained network and add an adaptation
layer formed by two fully connected layers FCa and FCb
(see Figure 2, bottom) that use the output vector Y7 of the
layer FC7 as input. Note that Y7 is obtained as a complex
non-linear function of potentially all input pixels and may
capture mid-level object parts as well as their high-level
configurations [27, 53]. The FCa and FCb layers compute
Ya=�(WaY7 +Ba) and Yb= (WbYa +Bb), where
Wa, Ba, Wb, Bb are the trainable parameters. In all our
experiments, FC6 and FC7 have equal sizes (either 4096 or
6144, see Section 4), FCa has size 2048, and FCb has a size
equal to the number of target categories.

The parameters of layers C1. . .C5, FC6 and FC7 are first
trained on the source task, then transferred to the target task
and kept fixed. Only the adaptation layer is trained on the
target task training data as described next.

17 / 85

Transfer learning for deep neural networks (case 1)

From [Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724)].

C1-C2-C3-C4-C5 FC 6 FC 7 FC 8

African elephant

Wall clock

Green snake

Yorkshire terrier

Source task

Training images Sliding patches

FCa FCb

Chair

Background

Person

TV/monitor

Convolutional layers Fully-connected layers

Source task labels

Target task labels

Transfer
parameters

1 : Feature
learning

2 : Feature
transfer

3 : Classifier
learning C1-C2-C3-C4-C5 FC 6 FC 7

4096 or
6144-dim

vector

4096 or
6144-dim

vector

Target task

Training images

9216-dim
vector

4096 or
6144-dim

vector New adaptation
layers trained
on target task

Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

(here object and action classification in Pascal VOC), as il-
lustrated in Figure 2. However, this is difficult as the la-
bels and the distribution of images (type of objects, typical
viewpoints, imaging conditions, etc.) in the source and tar-
get datasets can be very different, as illustrated in Figure 3.
To address these challenges we (i) design an architecture
that explicitly remaps the class labels between the source
and target tasks (Section 3.1), and (ii) develop training and
test procedures, inspired by sliding window detectors, that
explicitly deal with different distributions of object sizes,
locations and scene clutter in source and target tasks (Sec-
tions 3.2 and 3.3).

3.1. Network architecture

For the source task, we use the network architec-
ture of Krizhevsky et al. [24]. The network takes as
input a square 224 ⇥ 224 pixel RGB image and pro-
duces a distribution over the ImageNet object classes.
This network is composed of five successive convolu-
tional layers C1. . . C5 followed by three fully connected
layers FC6. . . FC8 (Figure 2, top). Please refer to [24]
for the description of the geometry of the five convolu-
tional layers and their setup regarding contrast normaliza-
tion and pooling. The three fully connected layers then
compute Y6=�(W6Y5 +B6), Y7=�(W7Y6 +B7),
and Y8= (W8Y7 +B8), where Yk denotes the out-
put of the k-th layer, Wk, Bk are the trainable param-
eters of the k-th layer, and �(X)[i]=max(0,X[i]) and
 (X)[i]=eX[i]/

P
j e

X[j] are the “ReLU” and “SoftMax”
non-linear activation functions.

For target tasks (Pascal VOC object and action classifica-
tion) we wish to design a network that will output scores for
target categories, or background if none of the categories
are present in the image. However, the object labels in the
source task can be very different from the labels in the tar-
get task (also called a “label bias” [49]). For example, the
source network is trained to recognize different breeds of
dogs such as huskydog or australianterrier, but the
target task contains only one label dog. The problem be-
comes even more evident for the target task of action classi-
fication. What object categories in ImageNet are related to
the target actions reading or running ?

In order to achieve the transfer, we remove the output
layer FC8 of the pre-trained network and add an adaptation
layer formed by two fully connected layers FCa and FCb
(see Figure 2, bottom) that use the output vector Y7 of the
layer FC7 as input. Note that Y7 is obtained as a complex
non-linear function of potentially all input pixels and may
capture mid-level object parts as well as their high-level
configurations [27, 53]. The FCa and FCb layers compute
Ya=�(WaY7 +Ba) and Yb= (WbYa +Bb), where
Wa, Ba, Wb, Bb are the trainable parameters. In all our
experiments, FC6 and FC7 have equal sizes (either 4096 or
6144, see Section 4), FCa has size 2048, and FCb has a size
equal to the number of target categories.

The parameters of layers C1. . .C5, FC6 and FC7 are first
trained on the source task, then transferred to the target task
and kept fixed. Only the adaptation layer is trained on the
target task training data as described next.

18 / 85

Transfer learning for deep neural networks (case 2)
19.2. Transfer learning 629

Figure 19.2: Illustration of fine-tuning a model on a new dataset. The final output layer is trained from
scratch, since it might correspond to a different label set. The other layers are initialized at their previous
parameters, and then optionally updated using a small learning rate. From Figure 13.2.1 of [Zha+20]. Used
with kind permission of Aston Zhang.

Many data-poor tasks have some high-level structural similarity to other data-rich tasks. For
example, consider the task of fine-grained visual classification of endangered bird species. Given
that endangered birds are by definition rare, it is unlikely that a large quantity of diverse labeled
images of these birds exist. However, birds bear many structural similarities across species - for
example, most birds have wings, feathers, beaks, claws, etc. We therefore might expect that first
training a model on a large dataset of non-endangered bird species and then continuing to train it on
a small dataset of endangered species could produce better performance than training on the small
dataset alone.

This is called transfer learning, since we are transferring information from one dataset to another,
via a shared set of parameters. More precisely, we first perform a pre-training phase, in which we
train a model with parameters ✓ on a large source dataset Dp; this may be labeled or unlabeled.
We then perform a second fine-tuning phase on the small labeled target dataset Dq of interest.
We discuss these two phases in more detail below, but for more information, see e.g., [Tan+18;
Zhu+21] for recent surveys.

19.2.1 Fine-tuning

Suppose, for now, that we already have a pretrained classifier, p(y|x, ✓p), such as a CNN, that works
well for inputs x 2 Xp (e.g. natural images) and outputs y 2 Yp (e.g., ImageNet labels), where the
data comes from a distribution p(x, y) similar to the one used in training. Now we want to create a
new model q(y|x, ✓q) that works well for inputs x 2 Xq (e.g. bird images) and outputs y 2 Yq (e.g.,
fine-grained bird labels), where the data comes from a distribution q(x, y) which may be different
from p.

We will assume that the set of possible inputs is the same, so Xq ⇡ Xp (e.g., both are RGB images),
or that we can easily transform inputs from domain p to domain q (e.g., we can convert an RGB
image to grayscale by dropping the chrominance channels and just keeping luminance). (If this is not

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

From [Kevin Murphy. Probabilistic Machine Learning. An introduction. MIT Press. (2022)], p.625

…

19.2. Transfer learning 629

Figure 19.2: Illustration of fine-tuning a model on a new dataset. The final output layer is trained from
scratch, since it might correspond to a different label set. The other layers are initialized at their previous
parameters, and then optionally updated using a small learning rate. From Figure 13.2.1 of [Zha+20]. Used
with kind permission of Aston Zhang.

Many data-poor tasks have some high-level structural similarity to other data-rich tasks. For
example, consider the task of fine-grained visual classification of endangered bird species. Given
that endangered birds are by definition rare, it is unlikely that a large quantity of diverse labeled
images of these birds exist. However, birds bear many structural similarities across species - for
example, most birds have wings, feathers, beaks, claws, etc. We therefore might expect that first
training a model on a large dataset of non-endangered bird species and then continuing to train it on
a small dataset of endangered species could produce better performance than training on the small
dataset alone.

This is called transfer learning, since we are transferring information from one dataset to another,
via a shared set of parameters. More precisely, we first perform a pre-training phase, in which we
train a model with parameters ✓ on a large source dataset Dp; this may be labeled or unlabeled.
We then perform a second fine-tuning phase on the small labeled target dataset Dq of interest.
We discuss these two phases in more detail below, but for more information, see e.g., [Tan+18;
Zhu+21] for recent surveys.

19.2.1 Fine-tuning

Suppose, for now, that we already have a pretrained classifier, p(y|x, ✓p), such as a CNN, that works
well for inputs x 2 Xp (e.g. natural images) and outputs y 2 Yp (e.g., ImageNet labels), where the
data comes from a distribution p(x, y) similar to the one used in training. Now we want to create a
new model q(y|x, ✓q) that works well for inputs x 2 Xq (e.g. bird images) and outputs y 2 Yq (e.g.,
fine-grained bird labels), where the data comes from a distribution q(x, y) which may be different
from p.

We will assume that the set of possible inputs is the same, so Xq ⇡ Xp (e.g., both are RGB images),
or that we can easily transform inputs from domain p to domain q (e.g., we can convert an RGB
image to grayscale by dropping the chrominance channels and just keeping luminance). (If this is not

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

19 / 85From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.547]

f1’ and f3’ are trained
from scratch when the
target input and
output spaces are
different from the
ones in the source task

(case 2)

20 / 85

Recommandations

1. The target data set is small and similar to the source data set

– Train a linear classifier on top of the last layer of pretrained NN

2. The target data set is large and similar to the source data set

– Fine-tune the pretrained NN using the target data set

3. The target data set is small and very different from the source data set

– Since the dataset is very different, it might not be best to train the classifier from
the top of the NN, which contains more dataset-specific features.
Instead, it might work better to train a classifier from activations somewhere
earlier in the network.

4. The target data set is large and very different from the source data set

– Fine-tune the pretrained NN using the target data set

21 / 85

But …

… how transferable are representations?

22 / 85

23 / 85

Principle

...

http://slideplayer.com/slide/8370683/

24 / 85

Experiments on two domains

...

ImageNet

1000 Classes

dataset

A

dataset

B

500 Classes

500 Classes

Randomly split the 1000 ImageNet classes into two groups each containing 500
classes and approximately half of the data, or about 645,000 examples each.

25 / 85... http://slideplayer.com/slide/8370683/

26 / 85... http://slideplayer.com/slide/8370683/

27 / 85

Hypothesis: If transferred features are specific to task A, performance on
task B drops. Otherwise the performance should be the same.

http://slideplayer.com/slide/8370683/

28 / 85
...

http://slideplayer.com/slide/8370683/

29 / 85
...

http://slideplayer.com/slide/8370683/

30 / 85

• Comparisons between

– Base B : a NN trained directly on database B (500 random classes)

– Selffer BnB (self-transfer):

• A number of the first layers are frozen, and re-training is done on the last ones

– Selffer BnB+ (self-transfer + retraining):

• A number of the first layers are frozen, and re-training is done on all layers
(a kind of initialization, but on the same task)

– Transfer AnB (transfer + fine-tuning last layers only):

– Transfer AnB+ (transfer + retraining of all layers):

N
o

tr
an

sf
er

31 / 85

It is clear that the higher the layer, the more specific it is to task A

http://slideplayer.com/slide/8370683/

Accuracy on the 500 classes of domain B

32 / 85

It is clear that the higher the layer, the more specific it is to task A

http://slideplayer.com/slide/8370683/

Accuracy on the 500 classes of domain B

33 / 85

It is clear that the higher the layer, the more specific it is to task A

http://slideplayer.com/slide/8370683/

Accuracy on the 500 classes of domain B

Why?

34 / 85

Results

...

0 1 2 3 4 5 6 7
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

7
o
p

-1
 a

cc
u

ra
cy

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

baseB

selffer BnB

selffer BnB+

transfer AnB

transfer AnB+

0 1 2 3 4 5 6 7
Layer n at whLFh network Ls Fhopped and retraLned

0.54

0.56

0.58

0.60

0.62

0.64

7
o
p

-1
 a

FF
u

ra
Fy

 (
h

Lg
h

e
r

Ls
 b

e
tt

e
r)

5: 7ransfer + fLne-tunLng LPproves generalLzatLon

3:)Lne-tunLng reFovers Fo-adapted LnteraFtLons

2: 3erforPanFe drops
 due to fragLle
 Fo-adaptatLon

4: 3erforPanFe
drops due to

 representatLon
speFLfLFLty

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

35 / 85

Results

...

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

0 1 2 3 4 5 6 7
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

7
o
p

-1
 a

cc
u

ra
cy

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

baseB

selffer BnB

selffer BnB+

transfer AnB

transfer AnB+

0 1 2 3 4 5 6 7
Layer n at whLFh network Ls Fhopped and retraLned

0.54

0.56

0.58

0.60

0.62

0.64

7
o
p

-1
 a

FF
u

ra
Fy

 (
h

Lg
h

e
r

Ls
 b

e
tt

e
r)

5: 7ransfer + fLne-tunLng LPproves generalLzatLon

3:)Lne-tunLng reFovers Fo-adapted LnteraFtLons

2: 3erforPanFe drops
 due to fragLle
 Fo-adaptatLon

4: 3erforPanFe
drops due to

 representatLon
speFLfLFLty

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

36 / 85

Results

...

0 1 2 3 4 5 6 7
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

7
o
p

-1
 a

cc
u

ra
cy

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

baseB

selffer BnB

selffer BnB+

transfer AnB

transfer AnB+

0 1 2 3 4 5 6 7
Layer n at whLFh network Ls Fhopped and retraLned

0.54

0.56

0.58

0.60

0.62

0.64

7
o
p

-1
 a

FF
u

ra
Fy

 (
h

Lg
h

e
r

Ls
 b

e
tt

e
r)

5: 7ransfer + fLne-tunLng LPproves generalLzatLon

3:)Lne-tunLng reFovers Fo-adapted LnteraFtLons

2: 3erforPanFe drops
 due to fragLle
 Fo-adaptatLon

4: 3erforPanFe
drops due to

 representatLon
speFLfLFLty

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

!!??
Freeze the first layers, and retrain the last ones on same domain

37 / 85

Results

...

0 1 2 3 4 5 6 7
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

7
o
p

-1
 a

cc
u

ra
cy

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

baseB

selffer BnB

selffer BnB+

transfer AnB

transfer AnB+

0 1 2 3 4 5 6 7
Layer n at whLFh network Ls Fhopped and retraLned

0.54

0.56

0.58

0.60

0.62

0.64

7
o
p

-1
 a

FF
u

ra
Fy

 (
h

Lg
h

e
r

Ls
 b

e
tt

e
r)

5: 7ransfer + fLne-tunLng LPproves generalLzatLon

3:)Lne-tunLng reFovers Fo-adapted LnteraFtLons

2: 3erforPanFe drops
 due to fragLle
 Fo-adaptatLon

4: 3erforPanFe
drops due to

 representatLon
speFLfLFLty

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

The first layers have co-adapted features specific to the
1st training that can not be relearned by the upper layers Less to relearn

38 / 85
...

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

0 1 2 3 4 5 6 7
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

7
o
p

-1
 a

cc
u

ra
cy

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

baseB

selffer BnB

selffer BnB+

transfer AnB

transfer AnB+

0 1 2 3 4 5 6 7
Layer n at whLFh network Ls Fhopped and retraLned

0.54

0.56

0.58

0.60

0.62

0.64

7
o
p

-1
 a

FF
u

ra
Fy

 (
h

Lg
h

e
r

Ls
 b

e
tt

e
r)

5: 7ransfer + fLne-tunLng LPproves generalLzatLon

3:)Lne-tunLng reFovers Fo-adapted LnteraFtLons

2: 3erforPanFe drops
 due to fragLle
 Fo-adaptatLon

4: 3erforPanFe
drops due to

 representatLon
speFLfLFLty

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

Can adapt the first layers.
Useful initialization

39 / 85

Results

...

0 1 2 3 4 5 6 7
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

7
o
p

-1
 a

cc
u

ra
cy

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

baseB

selffer BnB

selffer BnB+

transfer AnB

transfer AnB+

0 1 2 3 4 5 6 7
Layer n at whLFh network Ls Fhopped and retraLned

0.54

0.56

0.58

0.60

0.62

0.64

7
o
p

-1
 a

FF
u

ra
Fy

 (
h

Lg
h

e
r

Ls
 b

e
tt

e
r)

5: 7ransfer + fLne-tunLng LPproves generalLzatLon

3:)Lne-tunLng reFovers Fo-adapted LnteraFtLons

2: 3erforPanFe drops
 due to fragLle
 Fo-adaptatLon

4: 3erforPanFe
drops due to

 representatLon
speFLfLFLty

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

40 / 85

Results: what to think of them?

All layers but the first are retrained

0 1 2 3 4 5 6 7
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

7
o
p

-1
 a

cc
u

ra
cy

 (
h

ig
h

e
r

is
 b

e
tt

e
r)

baseB

selffer BnB

selffer BnB+

transfer AnB

transfer AnB+

0 1 2 3 4 5 6 7
Layer n at whLFh network Ls Fhopped and retraLned

0.54

0.56

0.58

0.60

0.62

0.64

7
o
p

-1
 a

FF
u

ra
Fy

 (
h

Lg
h

e
r

Ls
 b

e
tt

e
r)

5: 7ransfer + fLne-tunLng LPproves generalLzatLon

3:)Lne-tunLng reFovers Fo-adapted LnteraFtLons

2: 3erforPanFe drops
 due to fragLle
 Fo-adaptatLon

4: 3erforPanFe
drops due to

 representatLon
speFLfLFLty

Figure 2: The results from this paper’s main experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting the means of each treatment. Numbered descriptions above each
line refer to which interpretation from Section 4.1 applies.

4.1 Similar Datasets: Random A/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure 2. The results yield many different conclusions. In each of the following interpre-
tations, we compare the performance to the base case (white circles and dotted line in Figure 2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label these BnB networks. Similarly, we have aggregated the
statistically identical BnA and AnB networks and just call them AnB.

5

All layers but the first two are retrained

All layers but … are retrained

NN (8 layers) trained
from scratch

41 / 85

It is clear that the higher the layer, the more specific it is to task A

http://slideplayer.com/slide/8370683/

Accuracy on the 500 classes of domain B

42 / 85

It is clear that the higher the layer, the more specific it is to task A

http://slideplayer.com/slide/8370683/

Accuracy on the 500 classes of domain B

Why?

43 / 85

Interpretation

...

Freeze the first layers, and retrain using them on same domain

!!??

44 / 85

Interpretation

...

!!??

Fragile
co-adaptation

The first layers have co-adapted features specific to the
1st training that can not be relearned by the upper layers Less to relearn

45 / 85

Interpretation

...

Fragile
co-adaptation

Representation
specificity of

task B / task A
The first layers have
captured general features

The features tend to be
specific to domain A +
fragile co-adaptation

46 / 85

• Remark on the scientific methodology

It was essential to look at “fragile co-adaptation”

in order to assess the true effect of “representation specificity”

47 / 85

Interpretation

...

Retrain on all layers (fine-tuning) on domain B

48 / 85

Interpretation

...

Retrain on all layers (fine-tuning) on domain B after transfer from domain A

49 / 85

Interpretation

...

Retrain on all layers (fine-tuning) on domain B after transfer from domain A

Transfer + fine-tuning improves generalization

A surprising finding since there is already a
large training dataset for the target task

50 / 85

Conclusions of the paper

1. Be careful to separate effects

– Fragile co-adapted first layers

– Specialization of higher layers

2. The transferability gap grows as the distance between tasks increases

3. But even features transfered from distant tasks are better than
random weights

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural
networks?. Advances in neural information processing systems, 27.

51 / 85

• ImageNet has many categories

Dataset A: random Dataset B: random

http://slideplayer.com/slide/8370683/

52 / 85

• ImageNet has many categories

Dataset A: man-made Dataset B: natural

http://slideplayer.com/slide/8370683/

Dissimilar

53 / 85

• Comparison

http://slideplayer.com/slide/8370683/

• Transferability governed by:

– lost co-adaptations

– specificity

– difference between base and target dataset

• Fine-tuning helps even on large target dataset

co-adaptation

specificity

fine-tuning helps

Conclusions

55 / 85

Transfer learning with language data

• For texts in different

– Domains (e.g. finance, politics, society, ...)

– Media (e.g. journals, blogs, ...)

• A word embedding is used

– A mapping of the words to a high-dimensional (e.g. 500) continuous vector
space where different words with similar meanings have a similar vector
representation

• There exit pre-trained models trained on very large corpus of text
documents

– Google word2vec

– Stanford Glove model

56 / 85

Outline

1. Transfer learning: reminder

2. Fine tuning: how transferable are features in deep NNs?

3. Are the features learned during pretraining of foundational

models general enough to enable fine tuning on any task?

4. Multi-task learning

5. Conclusions

57 / 85

Fine tuning: the scenario

1. Pre-training using a large and diverse training dataset

composed of cheap examples that are somehow related

to the task of interest

2. The network is adapted (fine-tuned) using a much smaller

dataset composed of examples that are directly related

to the task of interest

– Dataset too small to enable direct training from scratch

58 / 85

Fine tuning: the challenge

• Ensure that transferred features are sufficient to handle new,
unseen datasets.

– A pretrained network that is missing crucial feature information may not

perform on par with direct learning if there was enough data to learn the

target task

• The folklore vision

– By pretraining these enormous models on “everything”,

they would learn all the features we would ever want for any task

59 / 85

Fine tuning: the question

Should we invest into building ever larger all-purpose

foundational models, or into collecting tasks-specific datasets

for training smaller specialized models?

60 / 85

How should we approach this issue?

61 / 85

How should we approach this issue?

Yang, Xingyu Alice, Jianyu Zhang, and Léon Bottou. "These are Not All the Features You are
Looking For: A Fundamental Bottleneck In Supervised Pretraining."
arXiv preprint arXiv:2506.18221 (2025).

62 / 85

The general idea

1. Make sure that the distribution of examples for the target task
is included in the distribution of examples used for training the
foundation model (a very favorable assumption)

2. Check whether, under this very favorable scenario, the fine-
tuned foundation model can equal the performance of a directly
trained model on the target data

63 / 85

• Consider a set of distributions

representing data from different populations

• And a mixture distribution
where

1. We pretrain a large network on mixture

2. We train a (small) network on one subdistribution

<latexit sha1_base64="yWFgT5dKucH1eEYh6Hx+qxExfTw=">AAAGQnicjVTLbtNQEJ0WAiW8WliysYgqilRVCRWPBYuIh8QyINIGNaWynZvErV9cX5O2lpf8CN/Cgi3s+APoDrFFgjMTB6WpEmIr9txzz5x53Imd2PcSU61+W1g8d7504eLSpfLlK1evXV9eubGVRKl2VdON/Ei3HDtRvheqpvGMr1qxVnbg+GrbOXjK+9vvlU68KHxtjmK1G9i90Ot6rm0A7S0/bjtez29nVjuwTd/pZo38bbazv5uvCeDaftbK161/izf5XfbQ7Xxvv7y3XKluVOWyzhq1wqjUN49PPjwb/GlEK4sDalOHInIppYAUhWRg+2RTgnuHalSlGNguZcA0LE/2FeVUhm8KlgLDBnqAZw+rnQINsWbNRLxdRPHx0/C0aBU+EXgaNkezZD8VZUanaWeiybkd4e0UWgFQQ32g//MbMef141oMdemR1OChplgQrs4tVFLpCmdujVVloBADY7uDfQ3bFc9Rny3xSaR27q0t+9+FySiv3YKb0o8iyxDIQLoVSP4h1DPg7KWgmMtqVJmDO6NXQDlXzpaj3hHVRHJxisw7RVSNSKwzO9pz7McSazKahb1RNKuIOWQrqTGUmqZPT4anlt71ZdYOZ3LHp2o663CMtz5mG6mePaf7BjKVRk4wQi9mxUmAO5gWD+tUTmS2Nqse0PEpzRHm4+1IJzRmnbX7xUQlc/E3cVLz8Pg9rGw+XVvmPSrO3J7ZjxjvLp7cbTOnfhdWR/5pvQmPs932ZGpd6QszV6dyeTLfUY4vZG3ye3jW2Lq3UXuwcf9lrVJ/QsNriW7RbVrD9/Ah1ekFNagJ/Y/0mb7Q19Kn0knpZ+nXkLq4UPjcpFNX6fdfj1tR8w==</latexit>�
P[j](X ,Y)

j

<latexit sha1_base64="FNxjLNOhnv5YoC92rGwPSUDAjSw=">AAAGgXicjVTJbhNBEC0n4ASz2XDkMsKKSKQo2EEsUhTJAiFxNIgsyDbRLO14ktmY6SEJoznzG3wLR/6AIzf4C16Vx8iLbDwjd1e/qnq1dHmsyHMT3Wj8LK2sXrteXlu/Ubl56/adu9XavcMkTGNbHdihF8bHlpkozw3UgXa1p46jWJm+5akj6/wV648+qzhxw+C9vopUzzdPA7fv2qYGdFLNur6pB1Y/a+cfs47vXvbyTYFs08uO823j3+FDvmV094x9XrpJ6p+cGV2oPcRyTD7YTqiNCbqzhWSVk2q9sdOQx5gVmoVQbz3+/u3rD2e/HdZWLqhLDoVkU0o+KQpIQ/bIpARvh5rUoAhYjzJgMSRX9IpyqsA3hZWChQn0HOspTp0CDXBmzkS8bUTx8IvhadAGfELYxZA5miH6VJgZncedCSfndoXdKrh8oJoGQP/nN7Jc1o9r0dSnF1KDi5oiQbg6u2BJpSucuTFWlQZDBIxlB/oYsi2eoz4b4pNI7dxbU/S/xZJRPtuFbUp/iiwDIBfSLV/yD8CeAWcvBcZcTqPKLLwZvQPKuXK2HPWRsCaSi1Vk7hRRY0RinsXRXkMfSazpaAZ0o2hGEXNoraTGQGqaPz0Z1lh6N5BZu1xoOz5V860ux+y2x2Qt1bPnfF9fplLLDYboxaI4CXAL0+LinMqNLOZm1nP6MsE5wjzslnQixqwz96CYqGQp+ye4qWXseB9WthyvKfMeFnduLuxHhL2Plbutl+TvQ3Lkn3Y65THbbVem1pa+sOXGXFuezE+U4wvZnP4ezgqHuzvNZztP3zbrrZc0fNbpAT2kTXwPn1OL3lCbDsD/q7RWqpZq5dXyVrlR3h2arpQKn/s08ZT3/gLqsmHA</latexit>

P[mix](X ,Y) =
P

j �j ·P[j](X ,Y)
<latexit sha1_base64="xCDpm6JK9lPtP0AauxrD2vX5QrQ=">AAAGSnicjVTJbhNBEK2YOASzOXDkMsKK4BAZTxDLJchikTgGhJNIcWTN0rYHz8ZMD3GwfOY3OPMZHBEHruEL4MoNceFVeSx5kY1n5O7q169edVWXx459L9W12vla4cJ6cePi5qXS5StXr10vb904SKMscVTDifwoObKtVPleqBra0746ihNlBbavDu3eM94/fK+S1IvCN/osVieB1Qm9tudYGlCr/Lzpg+xarbdGc8d4wkPNaGrV1wMDjxW6GIdGM82CEWWKv8eDWWqVK7VqTR5j3jBzo1K/9+XTx6/u3n60VTilJrkUkUMZBaQoJA3bJ4tSvMdkUo1iYCc0AJbA8mRf0ZBK8M3AUmBYQHsYO1gd52iINWum4u0gio9fAk+DtuETgZfA5miG7GeizOgi7YFo8tnOMNu5VgBUUxfo//zGzFX9OBdNbXosOXjIKRaEs3NylUyqwic3JrLSUIiBse1iP4HtiOe4zob4pJI719aS/Z/CZJTXTs7N6Fd+yhDIqVQrkPOHUB8AZy8FxaGsxpnZeAf0GiiflU/LUe+IaipnsfOTu3nUBJFYZ3m0F9iPJdZsNAN742hGHnPEVpJjKDkt7p4BxkRq15Ve6y/lTnbVYlZ/grczYWvJnj0X+wbSlVpuMEItlsVJgdvoFg/rTG5kuTar9ujDlOYY8zHbUokEvc7a3byj0pX493FTq/B4HmW2mq4l/R7ld24trUeMuY2Rq61X1G/DcuWf1pnxmK+2J13rSF2Yub2Qy535job4Qpqz38N542C3aj6sPnhlVupPafRs0i26TXfxPXxEdXpJ+9SA/mf6Tuf0o/it+Lv4p/h3RC2s5T43aerZWP8HxtRN3A==</latexit>

�j > 0 and
P

j �j = 1

<latexit sha1_base64="4hOdJSbcKH1er9y24K/Mh1GbOQk=">AAAGGHicjVTLbtNQEJ0GDCW80rJkYxFVsEBRUsRjg6hASCwDIm2lNFS2c5NY8Qv7mqZY+REWbFjAZ7Cr2LJB/AH8BWcmN1KaKCG2Ys8998yZx53YTQI/0/X6743ShYvWpcubV8pXr12/cbOytb2fxXnqqZYXB3F66DqZCvxItbSvA3WYpMoJ3UAduMMXvH/wQaWZH0dv9WmiOqHTj/ye7zka0HFl+yh09MDtFc3xu6Id+qPO+LhSrdfqctmLRsMY1Wdn5afJl1/lZrxVOqEj6lJMHuUUkqKINOyAHMpwt6lBdUqAdagAlsLyZV/RmMrwzcFSYDhAh3j2sWobNMKaNTPx9hAlwC+Fp0078InBS2FzNFv2c1FmdJl2IZqc2ynertEKgWoaAP2f35S5rh/XoqlHT6QGHzUlgnB1nlHJpSucuT1TlYZCAoztLvZT2J54Tvtsi08mtXNvHdn/I0xGee0Zbk5/TZYRkBPpVij5R1AvgLOXguJYVtPKXNwFvQHKuXK2HPWuqGaSi2sy75qoKSKxzupoL7GfSKz5aDb2ptFsE3PCVlJjJDUtn54Cz1R6N5BZG63kzk7VctZohnd/xtZSPXsu9w1lKrWcYIxerIqTAXcxLT7WuZzIam1WHdLHc5pTLMDblU6kmHXWHpiJytbiP8BJrcPj96Sy9XQdmffYnLmzsh8J3j08udt6Tf0erK780/pzHovd9mVqPekLM3eWcnky3xN/IRvz38NFY3+31nhUe/i6Ud17TpNrk27THbqH7+Fj2qNX1KSWzOZn+krfrE/Wd+vM+jGhljaMzy06d1k//wEs1UAX</latexit>

P[mix]

<latexit sha1_base64="YhafqfycJwqH8Au6iGkhs1heguA=">AAAGFnicjVTLbtNQEJ0GTEt4pbBkYxFVsEBRUsRjg6hASCwDIm2lNFS2c5NY8av2dR9Y+Q8W7BB8BjvULTvEH8BfcGZyI6WJEmIr9txzz5x53IndJPAzXa//XitdumxdWd+4Wr52/cbNW5XN27tZnKeeanlxEKf7rpOpwI9US/s6UPtJqpzQDdSeO3zF+3vHKs38OHqvzxLVCZ1+5Pd8z9GADiuVg9DRA7dXNEcfirbfGR1WqvVaXS573mgYo/rivPw8+fKr3Iw3Syd0QF2KyaOcQlIUkYYdkEMZ7jY1qE4JsA4VwFJYvuwrGlEZvjlYCgwH6BDPPlZtg0ZYs2Ym3h6iBPil8LRpCz4xeClsjmbLfi7KjC7SLkSTczvD2zVaIVBNA6D/85swV/XjWjT16JnU4KOmRBCuzjMquXSFM7enqtJQSICx3cV+CtsTz0mfbfHJpHburSP7f4TJKK89w83pr8kyAnIi3Qol/wjqBXD2UlAcyWpSmYu7oHdAOVfOlqPeF9VMcnFN5l0TNUUk1lke7TX2E4k1G83G3iSabWKO2UpqjKSmxdNT4JlK7wYya6dLudNTtZh1OsV7OGVrqZ49F/uGMpVaTjBGL5bFyYC7mBYf61xOZLk2qw7p4wXNCRbg7UonUsw6aw/MRGUr8R/hpFbh8Xtc2Wq6jsx7bM7cWdqPBO8entxtvaJ+D1ZX/mn9GY/5bvsytZ70hZlbC7k8mUfEX8jG7Pdw3tjdrjWe1B6/bVR3XtL42qC7dI8e4Hv4lHboDTWpBf1j+kxf6Zv1yfpu/bDOx9TSmvG5Qxcu6+c/w1c/Hg==</latexit>

P[i]

64 / 85

Question: Do features pretrained using P[mix] work nearly as well as

 features learned directly for target P[i]?

Direct Learning

 Model.	"["]	

Transfer Learning via Linear Probing

train Pretraining.train

linear
probing Frozen. +

extract
features

{" !"# ($)}

linear
classifier
for '[!"#]

"[$%&]

	"["]			

)[&'(]
linear
classifier
for '[)]

) *

extract
features
{") ($)}

	[]

Fine-tuning

linear
classifier
for '[)]

) **[&'(]
extract

features
{" !"# ($)}

*[&'(]

Figure 1: Two ways to train a classifier for P [i]: directly from P [i] or transferred from P [mix].

Question: Do features pretrained using P [mix] work nearly as well as features learned directly
for target P [i]?

2.1 Two Ways to Train

Consider a neural network f of the following form

f(X; ✓,�) =
X

j

'j(X; ✓)
| {z }

feature extractor

· �j|{z}
classifier

(1)

This network has two main components.
The feature extraction layers ('j(X; ✓)) initially transform the raw input X into real-valued features
using parameters ✓. Furthermore, these transformations may be non-linear, enabling the extraction of
complex signals from the input data.
The linear classification layer (�j) combines linearly the extracted features to produce the final
prediction.2

There are two ways to train such a model for distribution P [i] (Figure 1)

1. The model could be directly trained on the target distribution P [i]. In this case, the model learns
both feature parameters ✓ and classifier weights � optimized for the target distribution P [i]. This
yields the final trained model f(· ; ✓[i],�[i]).

2. Alternatively, we could train a model through transfer learning (via linear probing).2 The model
is pretrained on a mixture distribution P [mix]. The feature parameters ✓[mix] are frozen and only
the linear classifier weights � are fine-tuned on P [i]. This is called linear probing.

The two approaches primarily differ in how they learn features. In direct training, a model is capable
of capturing any representable feature from the target distribution P [i]. However, in transfer learning,
the model is restricted to selecting features based on a different pretraining task P [i], which includes
P [i] as a component among many.
Under the constraints of transfer learning, it is unclear whether models pretrained on broad mixtures
retain sufficient features to match the performance task-specific training.

To assess their effectiveness in preserving performance, we explore whether the direct training
solutions f(X; ✓[i], �[i]) of any component P [i] can be matched (or approximated) by linearly
combining features 'j(X; ✓[mix]) from pretraining on the mixture.

We assume access to unlimited training data, which is important for effective direct training. Theo-
retically, we ask whether the function space spanned by features 'j(X; ✓[mix]) contains the direct
training solutions f(. . . , ✓[i], �[i]) trained on unlimited data.

2We explain in the following section why it is sufficient to study the linear case.

3

65 / 85

• A neural network f has the form:

– Training transforms the raw input X into real-valued features

using parameter

– The linear classification layer combines the extracted features

to produce the final prediction.

<latexit sha1_base64="z1Nm8gFdzMsYizjpNkn79c3qquU=">AAAGxXicjVTbbtNAEJ0UCKXcWnjkZUVV0UpVlXCXKqQKhEDipaCmrVRX0dreJFZ8Y73uBcvi0/gO/gD+grOTjUhbEmIr69mZM2cuO1k/j6PCtFo/GwvXrt9o3ly8tXT7zt1795dXHuwXWakD1QmyONOHvixUHKWqYyITq8NcK5n4sTrwh++s/eBE6SLK0j1znqvjRPbTqBcF0kDVXf7RWz8U28IzA2XkpvD6MknkhvC2xRu7eEWZdD0Vx8KDsUxDpX0tA1V5HLry41LVlXcidT6IRsAJvo267laeUWem6ilpSq0EZPibTNe18IIwM5b4X8xahSDmdJj3L1UQy6JACQocS93l1dZWix9xVWg7YZXcs5utLJySRyFlFFBJCSlKyUCOSVKB94ja1KIcumOqoNOQIrYrqmkJviVQCggJ7RBrH7sjp02xt5wFeweIEuOn4SloDT4ZcBqyjSbYXjKz1U7jrpjT5naOr++4EmgNDaD9n98YOa+frcVQj15zDRFqylljqwscS8ldsZmLiaoMGHLorBzCriEH7Dnus2Cfgmu3vZVs/8VIq7X7wGFL+u2yTKE55W4lnH8K9gp666XAWPNuXJmPt6Iv0NpcbbY26hNmLTgX32UeuqgakSzP7GjvYc851uVoArZxNOFijtCKa0y5punTU2HV3LsBz9rZTOzkVE1HnU3gNidkw9Vbz+m+CU+l4RPM0ItZcQrofUxLhH3JJzKb27IO6dsFzrEuxtfnTmjMuuUeuIkq5sI/w0nNg7PfUWXz8Uqe98yduZzZjxzfHlbbbTMnfw9SyP+0/iWPq92OeGoD7otFrk3F2sn8SjVuyPbl+/CqsP90q/1y68Xn56s7b91duUiP6DGt4z58RTv0kXapQ0FjrfGpsdfoND80k6ZpnoygCw3n85AuPM3vfwBqnXq8</latexit>

f(X; ✓, �) =
X

`

'`(X; ✓)| {z }
feature extractor

· �`|{z}
classifier

<latexit sha1_base64="mPoFCKMwu6dwzZSGUM6NkEFcvy0=">AAAGC3icjVTNbtNAEJ4GDCX8tXDkYhFVcEBRwv+xAiFxLIg0ldoK2c4mseI/1mvaEuUROHCFx+CGuPIQvAG8Bd9M1lKayMG24p39Zuabn52sn0Vhbjqd3xuNCxedS5c3rzSvXrt+4+bW9q39PC10oHpBGqX6wPdyFYWJ6pnQROog08qL/Uj1/clL1vc/Kp2HafLOnGXqOPZGSTgMA88A6h+ZsTJe8/1Wq9PuyOOuCl0rtMg+e+l244SOaEApBVRQTIoSMpAj8ijHe0hd6lAG7JimwDSkUPSKZtSEbwErBQsP6ATfEXaHFk2wZ85cvANEifDT8HRpBz4p7DRkjuaKvhBmRqu4p8LJuZ1h9S1XDNTQGOj//ErLun5ci6EhPZcaQtSUCcLVBZalkK5w5u5CVQYMGTCWB9BryIF4ln12xSeX2rm3nuj/iCWjvA+sbUF/bZYJkBPpViz5J2CfAmcvBcaZ7MrKfLxTeguUc+VsOeo9Yc0lF99mPrBRNSIxz/por6DPJNZyNBe6MpprY86tldSYSE3V0zPFV0vvxjJrp2ttF6eq2up0we7Bgmykevas9o1lKo2cYIperIuTA/cxLSH2hZzIem5mndCnc5wlFmH1pRMas87cYztReS37RzipOna8ziurx+vJvKf2zL21/ciwDvHlbpua/ENIA/mnjZY8VrsdytQG0he23Km05cn8QDPckN3l+3BV2H/Y7j5tP3nzuLX7wt6Vm3SH7tJ93IfPaJde0x71hP8LfaVvzmfnu/PD+Tk3bWxYn9t07nF+/QOKCDdE</latexit>

✓

66 / 85

• Directly training a neural network on the target data yields the

trained model

– The model learns both feature parameters and classifier weights

optimized for the target distribution P[i]

• Pretraining on P[mix] yields feature parameters which

are frozen and only the linear classifier weights are

fine-tuned on P[i]

<latexit sha1_base64="EGGdFy+3nxbkDY4lKO7PGIYFEaU=">AAAGM3icjVTLbtNQEJ0GDCU8msKSjUVUUaQSJbylbioQEsuCSFspCZXt3CRW/MK+pi1WvoJvYcEWvgKxQyxgwT9wZnIjpYkSYiu+c8/MnHncyXWTwM90vf59rXThonXp8vqV8tVr129sVDZvHmRxnnqq6cVBnB65TqYCP1JN7etAHSWpckI3UIfu8AXrDz+oNPPj6K0+S1QndPqR3/M9RwM6rtzvbbd37LbXjbXd3rV37bYeKO28K1p+ZwRF3wlDs7tnl48r1XqtLo89LzSMUCXz7MebpRNqU5di8iinkBRFpCEH5FCGt0UNqlMCrEMFsBSSL3pFIyrDN4eVgoUDdIhvH7uWQSPsmTMTbw9RAvxSeNq0BZ8YdilkjmaLPhdmRhdxF8LJuZ1hdQ1XCFTTAOj//CaWq/pxLZp69Exq8FFTIghX5xmWXLrCmdtTVWkwJMBY7kKfQvbEc9JnW3wyqZ1764j+t1gyynvP2Ob0x2QZATmRboWSfwT2Ajh7KTCOZDepzMVb0BugnCtny1HvCmsmubgm866JmiIS8yyP9hL6RGLNRrOhm0SzTcyxtZIaI6lp8fQU+KbSu4HM2ulS2+mpWmx1OmW3MyVrqZ49F/uGMpVaTjBGL5bFyYC7mBYf+1xOZDk3sw7p4znOCRZgdaUTKWaduQdmorKV7B/ipFax43Vc2Wq8jsx7bM7cWdqPBGsPX+62XpG/B6kr/7T+jMd8t32ZWk/6wpZbC215Mt/TCDdkY/Y+nBcOHtQaT2qPXz+q7j03d+U63aY7tI378Cnt0Svapyb4P9EX+krfrM/WD+un9WtsWlozPrfo3GP9/Qcsc0VB</latexit>

f(· ; ✓[i], �[i])
<latexit sha1_base64="Mj/XVig86P4sOYwM0fo6fnPABiQ=">AAAGEXicjVTNbtNAEJ4GDCX8tXDkYhFVcEBRwv+xAiFxLIi0ldKAbGeTWPFf12vaYuUpOHCFx+CGuPIEvAG8Bd9M1lKaKCG24p39Zuabn52sn0Vhblqt3xu1CxedS5c3r9SvXrt+4+bW9q39PC10oDpBGqX60PdyFYWJ6pjQROow08qL/Ugd+OOXrD/4qHQepsk7c5apXuwNk3AQBp4B1DsyI2W892U37E3qH7YarWZLHndRaFuhQfbZS7drJ3REfUopoIJiUpSQgRyRRzneLrWpRRmwHpXANKRQ9IomVIdvASsFCw/oGN8hdl2LJtgzZy7eAaJE+Gl4urQDnxR2GjJHc0VfCDOjy7hL4eTczrD6lisGamgE9H9+leW6flyLoQE9lxpC1JQJwtUFlqWQrnDm7kxVBgwZMJb70GvIgXhWfXbFJ5faubee6P+IJaO8D6xtQX9tlgmQE+lWLPknYC+Bs5cC40R2VWU+3pLeAuVcOVuOek9Yc8nFt5n3bVSNSMyzOtor6DOJNR/Nha6K5tqYU2slNSZS0/LpKfHV0ruRzNrpStvZqVpudTpj92BGNlI9ey73jWUqjZxgil6sipMD9zEtIfaFnMhqbmYd06dznBUWYfWlExqzztwjO1H5WvaPcFLr2PE6rWw9Xk/mPbVn7q3sR4Z1gC9326zJP4DUl3/acM5jsduhTG0gfWHLnaW2PJnHNMEN2Z6/DxeF/YfN9tPmkzePG7sv7F25SXfoLt3HffiMduk17VEH/Mf0hb7SN+ez89354fycmtY2rM9tOvc4v/4BeFE59w==</latexit>

✓[i]
<latexit sha1_base64="eOyQ5HMuU7ND5RT+p+t5BgNJ2wQ=">AAAGEXicjVTNbtNAEJ4GDCX8tXDkYhFVcEBRwv+xAiFxLIi0ldKAbGeTrOK/2mvaYuUpOHCFx+CGuPIEvAG8Bd9M1lKaKCG24p39Zuabn52sn4Y6N63W743ahYvOpcubV+pXr12/cXNr+9Z+nhRZoDpBEibZoe/lKtSx6hhtQnWYZsqL/FAd+OOXrD/4qLJcJ/E7c5aqXuQNYz3QgWcA9Y6GXhR578uu7k3qH7YarWZLHndRaFuhQfbZS7ZrJ3REfUoooIIiUhSTgRySRzneLrWpRSmwHpXAMkha9IomVIdvASsFCw/oGN8hdl2LxtgzZy7eAaKE+GXwdGkHPgnsMsgczRV9IcyMLuMuhZNzO8PqW64IqKER0P/5VZbr+nEthgb0XGrQqCkVhKsLLEshXeHM3ZmqDBhSYCz3oc8gB+JZ9dkVn1xq5956ov8jlozyPrC2Bf21WcZATqRbkeQfg70Ezl4KjBPZVZX5eEt6C5Rz5Ww56j1hzSUX32bet1EzRGKe1dFeQZ9KrPloLnRVNNfGnForqTGWmpZPT4lvJr0byaydrrSdnarlVqczdg9mZCPVs+dy30im0sgJJujFqjg5cB/TorEv5ERWczPrmD6d46ywEKsvncgw68w9shOVr2X/CCe1jh2v08rW4/Vk3hN75t7KfqRYB/hyt82a/ANIffmnDec8FrutZWoD6Qtb7iy15ck8pgluyPb8fbgo7D9stp82n7x53Nh9Ye/KTbpDd+k+7sNntEuvaY864D+mL/SVvjmfne/OD+fn1LS2YX1u07nH+fUPDJk55A==</latexit>

�[i]

<latexit sha1_base64="c5gb/GF5XC6hFIis6+ZcHrgyKkY=">AAAGHHicjVTLbtNQEJ0GDCW8UpDYsLGIKligKOG9rEBILAsibaUkVLZzk1jxC/uappj8Cgu28BnsEFsk/gD+gjOTaylNlBBb8Z17ZubM406umwR+ppvN31uVc+etCxe3L1UvX7l67Xpt58ZBFuepp9peHMTpketkKvAj1da+DtRRkiondAN16I5fsP7wg0ozP47e6tNE9UJnGPkD33M0oOPara4eKe28KzpdrSa6CP3JtDetHtfqzUZTHntZaBmhTubZj3cqJ9SlPsXkUU4hKYpIQw7IoQxvh1rUpARYjwpgKSRf9IqmVIVvDisFCwfoGN8hdh2DRtgzZybeHqIE+KXwtGkXPjHsUsgczRZ9LsyMruIuhJNzO8XqGq4QqKYR0P/5lZab+nEtmgb0TGrwUVMiCFfnGZZcusKZ23NVaTAkwFjuQ59C9sSz7LMtPpnUzr11RP9HLBnlvWdsc/prsoyAnEi3Qsk/AnsBnL0UGKeyKytz8Rb0Bijnytly1LvCmkkursm8b6KmiMQ866O9hD6RWIvRbOjKaLaJObNWUmMkNa2engLfVHo3klmbrLWdn6rVVpM5u/tzspbq2XO1byhTqeUEY/RiXZwMuItp8bHP5UTWczPrmD6e4SyxAKsrnUgx68w9MhOVbWT/ECe1iR2vs8o243Vk3mNz5s7afiRYB/hyt/WG/ANIffmnDRc8lrvty9R60he23F1py5P5nqa4IVuL9+GycPCg0XrSePz6UX3vubkrt+k23aF7uA+f0h69on1qg/8TfaGv9M36bH23flg/Z6aVLeNzk8481q9/nMA+gA==</latexit>

✓[mix]

<latexit sha1_base64="4V8XGUjhKIES+8f4efZpY8KcPwk=">AAAGEnicjVRLbhNBEK0EBoL5JbBkM8KKYIEsm/8yAiGxDAgnkeIQ9Yzb9sjzo6eHJIx8CxZs4RjsEFsuwA3gFrwqtyXHlo1n5OnqV1WvPl3uII+jwjabv9fWL1z0Ll3euFK7eu36jZubW7f2iqw0oW6HWZyZg0AVOo5S3baRjfVBbrRKgljvB8OXrN//qE0RZek7e5bro0T106gXhcoCet/pqyRRx1VHx/GodrxZbzaa8vjzQssJdXLPbra1fkId6lJGIZWUkKaULOSYFBV4D6lFTcqBHVEFzECKRK9pRDX4lrDSsFBAh/j2sTt0aIo9cxbiHSJKjJ+Bp0/b8MlgZyBzNF/0pTAzuoi7Ek7O7Qxr4LgSoJYGQP/nN7Fc1Y9rsdSj51JDhJpyQbi60LGU0hXO3J+qyoIhB8ZyF3oDORTPSZ998Smkdu6tEv0fsWSU96GzLemvyzIFciLdSiT/FOwVcPbSYBzJblJZgLeit0A5V86Wo94T1kJyCVzmXRfVIBLzLI/2CvpcYs1G86GbRPNdzLG1lhpTqWnx9FT4GundQGbtdKnt9FQttjqdsnswJVupnj0X+yYylVZOMEMvlsUpgAeYlgj7Uk5kOTezDunTOc4JFmMNpBMGs87cAzdRxUr2j3BSq9jxOq5sNV4l8565M1dL+5Fj7eHL3bYr8vcgdeWf1p/xmO92JFMbSl/YcnuhLU/mBxrhhmzN3ofzwt7DRutp48mbx/WdF+6u3KA7dJfu4z58Rjv0mnapDX5DX+grffM+e9+9H97Psen6mvO5Tece79c/5EM6Zw==</latexit>�`

67 / 85

Question

– Do the solutions optimized for the target distribution P[i]

can be matched or approximated by linearly combining features learned

by pretraining

Potential problem

– Stochastic gradient descent in deep learning networks tend to favor

sparse solutions, removing features deemed redundant

– The remaining features depend on the order of the training examples

and the initialization

 Do the remaining features contain ones that are useful for task i?

<latexit sha1_base64="zjMua+I9HItqMCb82fTP9fTmgFQ=">AAAGP3icjVRLb9NAEJ4WDKW8UjhysYgqioSihDfiUoGQOBZE2khxiGxnk6ziF/a6TbH8W/gtHLjCmV8AXBBXbnw72UhpooTYinf2m5lvHjtZLwlkpur17xub585bFy5uXdq+fOXqteuVnRuHWZynvmj6cRCnLc/NRCAj0VRSBaKVpMINvUAceaOXWn90LNJMxtE7dZqITugOItmXvqsAdSvPCodJCi/IRVk4x26aDGXXEUFg77Xs57ajhkK574u2o8RYFaEcl53yblna3Uq1XqvzYy8KDSNUyTwH8c7mCTnUo5h8yikkQREpyAG5lOFtU4PqlADrUAEshSRZL6ikbfjmsBKwcIGO8B1g1zZohL3mzNjbR5QAvxSeNu3CJ4ZdCllHs1mfM7NGl3EXzKlzO8XqGa4QqKIh0P/5TS3X9dO1KOrTU65BoqaEEV2db1hy7orO3J6pSoEhAablHvQpZJ89p3222Sfj2nVvXdb/ZEuN6r1vbHP6ZbKMgJxwt0LOPwJ7AVx7CTCWvJtW5uEt6C1QnavOVke9w6wZ5+KZzHsmaopImmd1tFfQJxxrPpoN3TSabWJOrAXXGHFNy6enwDfl3g151sYrbWenarnVeMbu3oysuHrtudw35KlUfIIxerEqTgbcw7RI7HM+kdXcmnVEH89wTrEAq8edSDHrmntoJipby/4BTmodO71OKluP1+V5j82Zuyv7kWDt46u7rdbk70Pq8T9tMOex2G3JU+tzX7Tl7lJbPZkfqMQN2Zi/DxeFw/u1xuPaozcPq/svzF25RbfoNu3hPnxC+/SaDqgJ/k/0hb7SN+uz9cP6bf2ZmG5uGJ+bdOax/v4DCdRNIQ==</latexit>

'`(X; ✓[mix])

<latexit sha1_base64="o32wBl1oHQytiFFkkBPHPUL+8gs=">AAAGQXicjVRLb9NAEJ4GDCW8UjhyWRFVFKmKEt5SLhUIiWNBpK0Uh8p2NokVv7DXtMXyj+G3cOAKR/4BvSGuXPh2spHSRAmxFe/sNzPfPHaybhL4mWo2f25ULl22rlzdvFa9fuPmrdu1rTsHWZynnux4cRCnR66TycCPZEf5KpBHSSqd0A3koTt+pfWHn2Sa+XH0Xp0lshc6w8gf+J6jAB3X2jZzFG6Qy7IY7Ni7wvb6sRJ2W7SFrUZSOR+Krt8roRg6YWh2D0VZPa7Vm40mP2JRaBmhTubZj7cqJ2RTn2LyKKeQJEWkIAfkUIa3Sy1qUgKsRwWwFJLPekklVeGbw0rCwgE6xneIXdegEfaaM2NvD1EC/FJ4CtqGTwy7FLKOJlifM7NGl3EXzKlzO8PqGq4QqKIR0P/5TS3X9dO1KBrQC67BR00JI7o6z7Dk3BWduZipSoEhAablPvQpZI89p30W7JNx7bq3Dut/saVG9d4ztjmdmywjICfcrZDzj8BeANdeEowl76aVuXgLegdU56qz1VEfMGvGubgm876JmiKS5lkd7TX0Cceajyagm0YTJubEWnKNEde0fHoKfFPu3Yhn7XSl7exULbc6nbHbnZEVV689l/uGPJWKTzBGL1bFyYC7mBYf+5xPZDW3Zh3T5wucUyzA6nInUsy65h6ZicrWsn+Mk1rHTq+TytbjdXjeY3Pmzsp+JFgH+OpuqzX5B5D6/E8bznksdtvnqfW4L9pye6mtnsyPVOKGbM3fh4vCwaNG61nj6dsn9b2X5q7cpHt0n3ZwHz6nPXpD+9QB/xf6Rt/ph/XVOrd+W38mppUN43OXLjzW33/VdUvg</latexit>

f(· ; ✓[i], �[i])

68 / 85

Simple counter-example

• Imagine a feature extractor which can learn only two feature
extraction functions.

– Depending on parameters , the space spanned by
the selected features can have 0, 1 or 2 dimensions.

• Consider four individual distributions in this space

<latexit sha1_base64="DlWsda6UrUethXgeZrenENwrYPo=">AAAGR3icjVRNb9NAEJ0UUkr4auHIxSKqSKWqSsrnBamAkDgGRNpITVXZziZZ1bHN2u4HVn4Pv4UDVxD/AE7cEEfeTNZSmightuKdffvmzc7sZL040Elar/8orVy5Wl69tna9cuPmrdt31jfu7idRZnzV8qMgMm3PTVSgQ9VKdRqodmyUO/QCdeCdvOb1g1NlEh2FH9KLWB0N3X6oe9p3U0DH6y87opF7QaZGeac50LX2lvPC6Xi6H9Q6p66JB/q4AXDbKWa7TGGC2XJGleP1an2nLo8zazSsUSX7NKONlTPqUJci8imjISkKKYUdkEsJ3kNqUJ1iYEeUAzOwtKwrGlEFvhlYCgwX6Am+fcwOLRpizpqJePuIEuBn4OnQJnwi8AxsjubIeibKjM7TzkWT93aB0bNaQ6ApDYD+z69gLuvHuaTUo+eSg0ZOsSCcnW9VMqkK79yZyCqFQgyM7S7WDWxfPIs6O+KTSO5cW1fWfwqTUZ77lpvRL7vLEMiZVGso+w+hngNnLwXFkcyKzDy8Ob0Hynvl3XLUh6KayF48u/OujWoQiXUWR3uD9VhiTUdzsFZEc2zMMVtJjqHkNL97cnyN1G4gvXa+kDvZVfNZ5xO87Qk7lezZc77vULoylROMUItFcRLgHrpFY57JiSzWZtUT+nRJs8ACjJ5UwqDXWXtgOypZiv8IJ7UMj8dxZsvputLvkT1zd2E9Yow9fLna6ZL6PVhd+af1pzxmq62la32pCzM353K5Mz/SCDdkY/o+nDX2d3caT3eevHtc3Xtl78o1uk8PqIb78Bnt0VtqUgv6n+krfaPv5S/l3+U/5b9j6krJ+tyjS89q6R+zZEwU</latexit>

�(X) =
�
'1(X),'2(X)

�

Sparsity in deep networks Stochastic gradient learning algorithms in deep learning models
often have an implicit sparsity bias [Gunasekar et al., 2017, Andriushchenko et al., 2023], a likely
contributor to the effectiveness of deep learning. In an oversimplified account of the analysis of
Andriushchenko et al., when using stochastic gradient descent with large step sizes, features are
added and removed somewhat randomly, but those that contribute to reducing the training error tend
to stick around. Depending on the random order in which features are discovered by the training
algorithm, it may construct different sparse solutions.
Many practical regularization tricks such as early-stopping or weight decay have a similar effect. In
particular, weight decay acts differently in the last layer of a deep network (spreading the weights
over all the available features) than in the inner layers (quickly pruning features that do not rapidly
help reducing the training error.)

3 Counterexample
This study explores whether the features learned from mixture distribution perform as well across com-
ponent tasks P [i] as features learned specifically for each task. We introduce a simple counterexample
demonstrating that this desired outcome does not hold.
Example Setup Imagine a feature extractor which can learn only two feature extraction functions
�(X) = ('1(X),'2(X)). Depending on parameters ✓, the space spanned by the selected features
can have zero, one, or two dimensions.
Consider four individual distributions in this space, illustrated in Figure 2:

• P [1][�(X)=(+1, 0), Y=+ 1] = 1
2 and P [1][�(X)=(0,±1), Y=� 1] = 1

4 .
• P [2][�(X)=(�1, 0), Y=+ 1] = 1

2 and P [2][�(X)=(0,±1), Y=� 1] = 1
4 .

• P [3][�(X)=(0,+1), Y=� 1] = 1
2 and P [3][�(X)=(±1, 0), Y=+ 1] = 1

4 .
• P [4][�(X)=(0,�1), Y=� 1] = 1

2 and P [4][�(X)=(±1, 0), Y=+ 1] = 1
4 .

Each distribution is defined across three distinct points: two points with probability 1/4, and the
third point with probability 1/2. Combining these forms a mixture P [mix], supported over four points
(Figure 3).

P [mix] = �1 · P [1] + �2 · P [2] + �3 · P [3] + �4 · P [4] where �i > 0,
X

i=1

�i = 1

A distribution P [mix] with non-zero mixture coefficients �i, therefore, offers positive examples at
�(X) = (±1, 0) and negative examples at �(X) = (0,±1).
The Optimal Classifier Suppose that we optimize binary classifiers for each of the four distribu-
tions. The training error of each P [i] is minimized using one specific feature: '1(X) for P [1] and
P [2], '1(X) for P [3] and P [4].

Now, consider a binary classifier optimized for P [mix]. Since its four points cannot be linearly
separated, the training error is minimized by misclassifying the least-weighted point and correctly
classifying the other three. Depending on which point is ignored, the optimal classifier is one of the
four solutions in Figure 2

Observe that the optimal classifier P [mix] can be sparsely represented using just one of the two
features, determined by the balance of the mixture. Hence, a deep neural network which exhibits
sparsity bias will represent this optimal solution by learning just one feature. In other words,
the network learns a feature space that does not contain the optimal solutions for two of its four
subdistributions. Specifically, when it learns only '1, it cannot correctly classify P [3] and P [4]; when
it learns only '2, it cannot correctly classify P [1] and P [2]. 3

We find that training a deep network (with sparsity bias) on the mixture distribution yields a sparse
representation which can classify only half of its subdistributions. Even in this advantageous setup, a
model pretrained on a mixture may miss important features for its subtasks.

3Some mixtures have multiple clusters of equal minimal weight and, therefore, multiple optimal solutions.
However, this is a set of negligible probability.

5

Sparsity in deep networks Stochastic gradient learning algorithms in deep learning models
often have an implicit sparsity bias [Gunasekar et al., 2017, Andriushchenko et al., 2023], a likely
contributor to the effectiveness of deep learning. In an oversimplified account of the analysis of
Andriushchenko et al., when using stochastic gradient descent with large step sizes, features are
added and removed somewhat randomly, but those that contribute to reducing the training error tend
to stick around. Depending on the random order in which features are discovered by the training
algorithm, it may construct different sparse solutions.
Many practical regularization tricks such as early-stopping or weight decay have a similar effect. In
particular, weight decay acts differently in the last layer of a deep network (spreading the weights
over all the available features) than in the inner layers (quickly pruning features that do not rapidly
help reducing the training error.)

3 Counterexample
This study explores whether the features learned from mixture distribution perform as well across com-
ponent tasks P [i] as features learned specifically for each task. We introduce a simple counterexample
demonstrating that this desired outcome does not hold.
Example Setup Imagine a feature extractor which can learn only two feature extraction functions
�(X) = ('1(X),'2(X)). Depending on parameters ✓, the space spanned by the selected features
can have zero, one, or two dimensions.
Consider four individual distributions in this space, illustrated in Figure 2:

• P [1][�(X)=(+1, 0), Y=+ 1] = 1
2 and P [1][�(X)=(0,±1), Y=� 1] = 1

4 .
• P [2][�(X)=(�1, 0), Y=+ 1] = 1

2 and P [2][�(X)=(0,±1), Y=� 1] = 1
4 .

• P [3][�(X)=(0,+1), Y=� 1] = 1
2 and P [3][�(X)=(±1, 0), Y=+ 1] = 1

4 .
• P [4][�(X)=(0,�1), Y=� 1] = 1

2 and P [4][�(X)=(±1, 0), Y=+ 1] = 1
4 .

Each distribution is defined across three distinct points: two points with probability 1/4, and the
third point with probability 1/2. Combining these forms a mixture P [mix], supported over four points
(Figure 3).

P [mix] = �1 · P [1] + �2 · P [2] + �3 · P [3] + �4 · P [4] where �i > 0,
X

i=1

�i = 1

A distribution P [mix] with non-zero mixture coefficients �i, therefore, offers positive examples at
�(X) = (±1, 0) and negative examples at �(X) = (0,±1).
The Optimal Classifier Suppose that we optimize binary classifiers for each of the four distribu-
tions. The training error of each P [i] is minimized using one specific feature: '1(X) for P [1] and
P [2], '1(X) for P [3] and P [4].

Now, consider a binary classifier optimized for P [mix]. Since its four points cannot be linearly
separated, the training error is minimized by misclassifying the least-weighted point and correctly
classifying the other three. Depending on which point is ignored, the optimal classifier is one of the
four solutions in Figure 2

Observe that the optimal classifier P [mix] can be sparsely represented using just one of the two
features, determined by the balance of the mixture. Hence, a deep neural network which exhibits
sparsity bias will represent this optimal solution by learning just one feature. In other words,
the network learns a feature space that does not contain the optimal solutions for two of its four
subdistributions. Specifically, when it learns only '1, it cannot correctly classify P [3] and P [4]; when
it learns only '2, it cannot correctly classify P [1] and P [2]. 3

We find that training a deep network (with sparsity bias) on the mixture distribution yields a sparse
representation which can classify only half of its subdistributions. Even in this advantageous setup, a
model pretrained on a mixture may miss important features for its subtasks.

3Some mixtures have multiple clusters of equal minimal weight and, therefore, multiple optimal solutions.
However, this is a set of negligible probability.

5

69 / 85…

Sparsity in deep networks Stochastic gradient learning algorithms in deep learning models
often have an implicit sparsity bias [Gunasekar et al., 2017, Andriushchenko et al., 2023], a likely
contributor to the effectiveness of deep learning. In an oversimplified account of the analysis of
Andriushchenko et al., when using stochastic gradient descent with large step sizes, features are
added and removed somewhat randomly, but those that contribute to reducing the training error tend
to stick around. Depending on the random order in which features are discovered by the training
algorithm, it may construct different sparse solutions.
Many practical regularization tricks such as early-stopping or weight decay have a similar effect. In
particular, weight decay acts differently in the last layer of a deep network (spreading the weights
over all the available features) than in the inner layers (quickly pruning features that do not rapidly
help reducing the training error.)

3 Counterexample
This study explores whether the features learned from mixture distribution perform as well across com-
ponent tasks P [i] as features learned specifically for each task. We introduce a simple counterexample
demonstrating that this desired outcome does not hold.
Example Setup Imagine a feature extractor which can learn only two feature extraction functions
�(X) = ('1(X),'2(X)). Depending on parameters ✓, the space spanned by the selected features
can have zero, one, or two dimensions.
Consider four individual distributions in this space, illustrated in Figure 2:

• P [1][�(X)=(+1, 0), Y=+ 1] = 1
2 and P [1][�(X)=(0,±1), Y=� 1] = 1

4 .
• P [2][�(X)=(�1, 0), Y=+ 1] = 1

2 and P [2][�(X)=(0,±1), Y=� 1] = 1
4 .

• P [3][�(X)=(0,+1), Y=� 1] = 1
2 and P [3][�(X)=(±1, 0), Y=+ 1] = 1

4 .
• P [4][�(X)=(0,�1), Y=� 1] = 1

2 and P [4][�(X)=(±1, 0), Y=+ 1] = 1
4 .

Each distribution is defined across three distinct points: two points with probability 1/4, and the
third point with probability 1/2. Combining these forms a mixture P [mix], supported over four points
(Figure 3).

P [mix] = �1 · P [1] + �2 · P [2] + �3 · P [3] + �4 · P [4] where �i > 0,
X

i=1

�i = 1

A distribution P [mix] with non-zero mixture coefficients �i, therefore, offers positive examples at
�(X) = (±1, 0) and negative examples at �(X) = (0,±1).
The Optimal Classifier Suppose that we optimize binary classifiers for each of the four distribu-
tions. The training error of each P [i] is minimized using one specific feature: '1(X) for P [1] and
P [2], '1(X) for P [3] and P [4].

Now, consider a binary classifier optimized for P [mix]. Since its four points cannot be linearly
separated, the training error is minimized by misclassifying the least-weighted point and correctly
classifying the other three. Depending on which point is ignored, the optimal classifier is one of the
four solutions in Figure 2

Observe that the optimal classifier P [mix] can be sparsely represented using just one of the two
features, determined by the balance of the mixture. Hence, a deep neural network which exhibits
sparsity bias will represent this optimal solution by learning just one feature. In other words,
the network learns a feature space that does not contain the optimal solutions for two of its four
subdistributions. Specifically, when it learns only '1, it cannot correctly classify P [3] and P [4]; when
it learns only '2, it cannot correctly classify P [1] and P [2]. 3

We find that training a deep network (with sparsity bias) on the mixture distribution yields a sparse
representation which can classify only half of its subdistributions. Even in this advantageous setup, a
model pretrained on a mixture may miss important features for its subtasks.

3Some mixtures have multiple clusters of equal minimal weight and, therefore, multiple optimal solutions.
However, this is a set of negligible probability.

5

Sparsity in deep networks Stochastic gradient learning algorithms in deep learning models
often have an implicit sparsity bias [Gunasekar et al., 2017, Andriushchenko et al., 2023], a likely
contributor to the effectiveness of deep learning. In an oversimplified account of the analysis of
Andriushchenko et al., when using stochastic gradient descent with large step sizes, features are
added and removed somewhat randomly, but those that contribute to reducing the training error tend
to stick around. Depending on the random order in which features are discovered by the training
algorithm, it may construct different sparse solutions.
Many practical regularization tricks such as early-stopping or weight decay have a similar effect. In
particular, weight decay acts differently in the last layer of a deep network (spreading the weights
over all the available features) than in the inner layers (quickly pruning features that do not rapidly
help reducing the training error.)

3 Counterexample
This study explores whether the features learned from mixture distribution perform as well across com-
ponent tasks P [i] as features learned specifically for each task. We introduce a simple counterexample
demonstrating that this desired outcome does not hold.
Example Setup Imagine a feature extractor which can learn only two feature extraction functions
�(X) = ('1(X),'2(X)). Depending on parameters ✓, the space spanned by the selected features
can have zero, one, or two dimensions.
Consider four individual distributions in this space, illustrated in Figure 2:

• P [1][�(X)=(+1, 0), Y=+ 1] = 1
2 and P [1][�(X)=(0,±1), Y=� 1] = 1

4 .
• P [2][�(X)=(�1, 0), Y=+ 1] = 1

2 and P [2][�(X)=(0,±1), Y=� 1] = 1
4 .

• P [3][�(X)=(0,+1), Y=� 1] = 1
2 and P [3][�(X)=(±1, 0), Y=+ 1] = 1

4 .
• P [4][�(X)=(0,�1), Y=� 1] = 1

2 and P [4][�(X)=(±1, 0), Y=+ 1] = 1
4 .

Each distribution is defined across three distinct points: two points with probability 1/4, and the
third point with probability 1/2. Combining these forms a mixture P [mix], supported over four points
(Figure 3).

P [mix] = �1 · P [1] + �2 · P [2] + �3 · P [3] + �4 · P [4] where �i > 0,
X

i=1

�i = 1

A distribution P [mix] with non-zero mixture coefficients �i, therefore, offers positive examples at
�(X) = (±1, 0) and negative examples at �(X) = (0,±1).
The Optimal Classifier Suppose that we optimize binary classifiers for each of the four distribu-
tions. The training error of each P [i] is minimized using one specific feature: '1(X) for P [1] and
P [2], '1(X) for P [3] and P [4].

Now, consider a binary classifier optimized for P [mix]. Since its four points cannot be linearly
separated, the training error is minimized by misclassifying the least-weighted point and correctly
classifying the other three. Depending on which point is ignored, the optimal classifier is one of the
four solutions in Figure 2

Observe that the optimal classifier P [mix] can be sparsely represented using just one of the two
features, determined by the balance of the mixture. Hence, a deep neural network which exhibits
sparsity bias will represent this optimal solution by learning just one feature. In other words,
the network learns a feature space that does not contain the optimal solutions for two of its four
subdistributions. Specifically, when it learns only '1, it cannot correctly classify P [3] and P [4]; when
it learns only '2, it cannot correctly classify P [1] and P [2]. 3

We find that training a deep network (with sparsity bias) on the mixture distribution yields a sparse
representation which can classify only half of its subdistributions. Even in this advantageous setup, a
model pretrained on a mixture may miss important features for its subtasks.

3Some mixtures have multiple clusters of equal minimal weight and, therefore, multiple optimal solutions.
However, this is a set of negligible probability.

5

λ1	*

!!

	!"

p [1] p [mix]	λ4	* p [4]

!!

	!"

p [3]λ3	*

!!

	!"

p [2]λ2	*

	!"

=+ + +

!! !!

	!"

? ?

?

?

: +1

: -1

! determines
mixture distribution

* *!,# ≔ *!,#(-) abbreviatedMixture of Components

examples distributed
in each component

: 25%

: 50%

Figure 2: Four subdistributions and a combined mixture distribution are represented by red
points (labeled +1) and blue points (labeled �1) Each subdistribution includes three points; two
points contain an equal number of examples, while the third point contains twice as many. The size of
each point reflects the number of examples it represents. The final mixture distribution is a weighted
average of these four component distributions (not drawn to scale).

`

`

: +1

: -1

: optimal
classifier

: least
weighted

: everything
else

Point Scale

!!

	!"

!!

	!"	!"

!!!!

p [mix1] p [mix4]p [mix2] p [mix3]

	!"

!! >	$! % − 0.5

!!

!"

!#

!$

!" < $! % + 0.5 !# <	$"(x) − 0.5 !$ >	$"(%) + 0.5

Optimal Classifiers

* !!,# ≔ !!,#($) abbreviated

Figure 3: Four cases illustrate optimal classifiers for different mixture distributions. Each classifier
uses a dotted line to separate red points (labeled +1) from the blue points (labeled �1). Sincef
points are not linearly separable, an optimal classifier ignores the least-weighted point (smallest) and
classifies the remaining three points. Interestingly, this optimal classifier can be sparsely represented
using just one feature, either '1(X) or '2(X), but cannot classify two of the four subdistributions.

3.1 Assumptions

In this counterexample, we study the training error as an indicator of how well a model can adapt to
its subdistributions. We make the following assumptions
Assumption 1: A Model Will Learn These Features [Papyan et al., 2020] finds that a neural
network learns representations which "collapse" into the problem space features, '1(X), '2(X)

Assumption 2: We Cannot Study Non-Linear Decision Boundaries A network with a non-linear
decision boundary could learn both features and optimally classify all subdistributions. However, we
are not interested in studying solutions with zero training error (see Section 2.1.2).

4 True in Practice?
Our simple counterexample illustrates how a model may struggle to learn crucial features during
training, which creates biased performance on subtasks of the training distribution.
When an optimally-trained model can miss a crucial feature in such a simple setup, it suggests that
deep networks may frequently miss important feature when trained on more complex datasets. In
fact, the results of many already-published papers could be explained by this phenomenon. Instead of
running redundant experiments, we describe this limitation and explore existing experiments below.

4.1 An Information Saturation Bottleneck

We identify a fundamental limitation of deep learning models that arises from their sparsity bias – an
information saturation bottleneck. These networks struggle to learn new features when they have
encoded similar competing features during training.
When networks are restricted to learning a subset of key features during pretraining, they permanently
lose critical features needed for effective transfer, leading to inconsistent performance on data
distributions–even components of the pretraining mixture.

6

70 / 85

• For mixtures mix1 and mix2, feature is enough

– But problems 3 and 4 cannot be solved

• For mixtures mix3 and mix4, feature is enough

– But problems 1 and 2 cannot be solved

λ1	*

!!

	!"

p [1] p [mix]	λ4	* p [4]

!!

	!"

p [3]λ3	*

!!

	!"

p [2]λ2	*

	!"

=+ + +

!! !!

	!"

? ?

?

?

: +1

: -1

! determines
mixture distribution

* *!,# ≔ *!,#(-) abbreviatedMixture of Components

examples distributed
in each component

: 25%

: 50%

Figure 2: Four subdistributions and a combined mixture distribution are represented by red
points (labeled +1) and blue points (labeled �1) Each subdistribution includes three points; two
points contain an equal number of examples, while the third point contains twice as many. The size of
each point reflects the number of examples it represents. The final mixture distribution is a weighted
average of these four component distributions (not drawn to scale).

`

`

: +1

: -1

: optimal
classifier

: least
weighted

: everything
else

Point Scale

!!

	!"

!!

	!"	!"

!!!!

p [mix1] p [mix4]p [mix2] p [mix3]

	!"

!! >	$! % − 0.5

!!

!"

!#

!$

!" < $! % + 0.5 !# <	$"(x) − 0.5 !$ >	$"(%) + 0.5

Optimal Classifiers

* !!,# ≔ !!,#($) abbreviated

Figure 3: Four cases illustrate optimal classifiers for different mixture distributions. Each classifier
uses a dotted line to separate red points (labeled +1) from the blue points (labeled �1). Sincef
points are not linearly separable, an optimal classifier ignores the least-weighted point (smallest) and
classifies the remaining three points. Interestingly, this optimal classifier can be sparsely represented
using just one feature, either '1(X) or '2(X), but cannot classify two of the four subdistributions.

3.1 Assumptions

In this counterexample, we study the training error as an indicator of how well a model can adapt to
its subdistributions. We make the following assumptions
Assumption 1: A Model Will Learn These Features [Papyan et al., 2020] finds that a neural
network learns representations which "collapse" into the problem space features, '1(X), '2(X)

Assumption 2: We Cannot Study Non-Linear Decision Boundaries A network with a non-linear
decision boundary could learn both features and optimally classify all subdistributions. However, we
are not interested in studying solutions with zero training error (see Section 2.1.2).

4 True in Practice?
Our simple counterexample illustrates how a model may struggle to learn crucial features during
training, which creates biased performance on subtasks of the training distribution.
When an optimally-trained model can miss a crucial feature in such a simple setup, it suggests that
deep networks may frequently miss important feature when trained on more complex datasets. In
fact, the results of many already-published papers could be explained by this phenomenon. Instead of
running redundant experiments, we describe this limitation and explore existing experiments below.

4.1 An Information Saturation Bottleneck

We identify a fundamental limitation of deep learning models that arises from their sparsity bias – an
information saturation bottleneck. These networks struggle to learn new features when they have
encoded similar competing features during training.
When networks are restricted to learning a subset of key features during pretraining, they permanently
lose critical features needed for effective transfer, leading to inconsistent performance on data
distributions–even components of the pretraining mixture.

6

λ1	*

!!

	!"

p [1] p [mix]	λ4	* p [4]

!!

	!"

p [3]λ3	*

!!

	!"

p [2]λ2	*

	!"

=+ + +

!! !!

	!"

? ?

?

?

: +1

: -1

! determines
mixture distribution

* *!,# ≔ *!,#(-) abbreviatedMixture of Components

examples distributed
in each component

: 25%

: 50%

Figure 2: Four subdistributions and a combined mixture distribution are represented by red
points (labeled +1) and blue points (labeled �1) Each subdistribution includes three points; two
points contain an equal number of examples, while the third point contains twice as many. The size of
each point reflects the number of examples it represents. The final mixture distribution is a weighted
average of these four component distributions (not drawn to scale).

`

`

: +1

: -1

: optimal
classifier

: least
weighted

: everything
else

Point Scale

!!

	!"

!!

	!"	!"

!!!!

p [mix1] p [mix4]p [mix2] p [mix3]

	!"

!! >	$! % − 0.5

!!

!"

!#

!$

!" < $! % + 0.5 !# <	$"(x) − 0.5 !$ >	$"(%) + 0.5

Optimal Classifiers

* !!,# ≔ !!,#($) abbreviated

Figure 3: Four cases illustrate optimal classifiers for different mixture distributions. Each classifier
uses a dotted line to separate red points (labeled +1) from the blue points (labeled �1). Sincef
points are not linearly separable, an optimal classifier ignores the least-weighted point (smallest) and
classifies the remaining three points. Interestingly, this optimal classifier can be sparsely represented
using just one feature, either '1(X) or '2(X), but cannot classify two of the four subdistributions.

3.1 Assumptions

In this counterexample, we study the training error as an indicator of how well a model can adapt to
its subdistributions. We make the following assumptions
Assumption 1: A Model Will Learn These Features [Papyan et al., 2020] finds that a neural
network learns representations which "collapse" into the problem space features, '1(X), '2(X)

Assumption 2: We Cannot Study Non-Linear Decision Boundaries A network with a non-linear
decision boundary could learn both features and optimally classify all subdistributions. However, we
are not interested in studying solutions with zero training error (see Section 2.1.2).

4 True in Practice?
Our simple counterexample illustrates how a model may struggle to learn crucial features during
training, which creates biased performance on subtasks of the training distribution.
When an optimally-trained model can miss a crucial feature in such a simple setup, it suggests that
deep networks may frequently miss important feature when trained on more complex datasets. In
fact, the results of many already-published papers could be explained by this phenomenon. Instead of
running redundant experiments, we describe this limitation and explore existing experiments below.

4.1 An Information Saturation Bottleneck

We identify a fundamental limitation of deep learning models that arises from their sparsity bias – an
information saturation bottleneck. These networks struggle to learn new features when they have
encoded similar competing features during training.
When networks are restricted to learning a subset of key features during pretraining, they permanently
lose critical features needed for effective transfer, leading to inconsistent performance on data
distributions–even components of the pretraining mixture.

6

<latexit sha1_base64="JkRMs7OQGPKABXCr/7M4xaGPnTk=">AAAGFXicjVRLb9NAEJ4WDCU8msKRi0VUUSQUJeV5rEBIHAsibaS2imxnk1jxi/W6D6z8Dg5c4WdwQ1w58w/gX/DNZCOliRJiK97Zb2a+eexk/SwKc9No/F5bv3LVuXZ940bl5q3bdzarW3cP8rTQgWoFaZTqtu/lKgoT1TKhiVQ708qL/Ugd+sPXrD88VToP0+SDucjUSez1k7AXBp4B1Klulsenns4GYae50340qnSqtUa9IY87LzStUCP77Kdb62d0TF1KKaCCYlKUkIEckUc53iNqUoMyYCdUAtOQQtErGlEFvgWsFCw8oEN8+9gdWTTBnjlz8Q4QJcJPw9OlbfiksNOQOZor+kKYGV3EXQon53aB1bdcMVBDA6D/85tYrurHtRjq0UupIURNmSBcXWBZCukKZ+5OVWXAkAFjuQu9hhyI56TPrvjkUjv31hP9H7FklPeBtS3or80yAXIm3Yol/wTsJXD2UmAcyW5SmY+3pPdAOVfOlqM+FNZccvFt5l0bVSMS8yyP9gb6TGLNRnOhm0RzbcyxtZIaE6lp8fSU+Grp3UBm7Xyp7fRULbY6n7J7PCUbqZ49F/vGMpVGTjBFL5bFyYH7mJYQ+0JOZDk3sw7p0yXOCRZh9aUTGrPO3AM7UflK9k9wUqvY8TqubDVeT+Y9tWfuLe1HhrWHL3fbrMjfg9SVf1p/xmO+26FMbSB9YcvthbY8mR9phBuyOXsfzgsHu/Xm8/qzd09re6/sXblB9+kB7eA+fEF79Jb2qSV35hf6St+cz85354fzc2y6vmZ97tGlx/n1D85iOmo=</latexit>

'1(X)

<latexit sha1_base64="298frKcmuUXAKdT9paERMcgOgc8=">AAAGFXicjVRLb9NAEJ4WDCU8msKRi0VUUSQUJeV5rEBIHAsibaS2imxnk1jxi/W6D6z8Dg5c4WdwQ1w58w/gX/DNZCOliRJiK97Zb2a+eexk/SwKc9No/F5bv3LVuXZ940bl5q3bdzarW3cP8rTQgWoFaZTqtu/lKgoT1TKhiVQ708qL/Ugd+sPXrD88VToP0+SDucjUSez1k7AXBp4B1Klulsenns4GYWd3p/1oVOlUa416Qx53XmhaoUb22U+31s/omLqUUkAFxaQoIQM5Io9yvEfUpAZlwE6oBKYhhaJXNKIKfAtYKVh4QIf49rE7smiCPXPm4h0gSoSfhqdL2/BJYachczRX9IUwM7qIuxROzu0Cq2+5YqCGBkD/5zexXNWPazHUo5dSQ4iaMkG4usCyFNIVztydqsqAIQPGchd6DTkQz0mfXfHJpXburSf6P2LJKO8Da1vQX5tlAuRMuhVL/gnYS+DspcA4kt2kMh9vSe+Bcq6cLUd9KKy55OLbzLs2qkYk5lke7Q30mcSajeZCN4nm2phjayU1JlLT4ukp8dXSu4HM2vlS2+mpWmx1PmX3eEo2Uj17LvaNZSqNnGCKXiyLkwP3MS0h9oWcyHJuZh3Sp0ucEyzC6ksnNGaduQd2ovKV7J/gpFax43Vc2Wq8nsx7as/cW9qPDGsPX+62WZG/B6kr/7T+jMd8t0OZ2kD6wpbbC215Mj/SCDdkc/Y+nBcOduvN5/Vn757W9l7Zu3KD7tMD2sF9+IL26C3tU0vuzC/0lb45n53vzg/n59h0fc363KNLj/PrH9QIOms=</latexit>

'2(X)

71 / 85

Analysis

The authors identify an information saturation bottleneck

• Deep NNs struggle to learn new features when they have

encoded similar competing features during training

• Because of their sparsity bias, they may permanently lose critical

feature needed for effective transfer

72 / 85

In practice on genomic tasks

• Comparison of

– transfer learning from Genomic Foundation Models (GFM)

– and direct supervised learning
Table 1: Empirical Evidence (Left) Performance gap after recovering core features with transfer
(Right) The simple supervised models trained by their supervised ’DASHA’ workflow outperform
eight well Genomic Foundation Models (GFMs) on the diverse NT benchmark [Xu et al., 2025]

Trial Accuracy

Data Direct Transfer via LinProb Change
(99% corr) P [bal] P [mix] ! P [bal]

MNIST-Fashion 97% 94% (�3%)
MNIST-CIFAR 90% 81% (�9%)

Model Model Pretraining Average Average Mean Median
Size Base-Pairs Score " Rank # %Imp." %Imp."

Enformer 252M 4B 0.569 11.86 27.73 27.91
NT-1000G (500M) 500M 20.5T 0.625 10.52 33.48 36.74
NT-1000G (2.5B) 2.5B 20.5T 0.656 7.0 36.58 40.86
NT-Multispecies (500M) 500M 174B 0.700 3.81 40.76 45.07

Foundation NT-Multispecies (2.5B) 2.5B 174B 0.697 4.08 40.51 45.52
Models DNABERT-2 117M 32.5B 0.680 6.88 38.65 43.59

HyenaDNA-1K 1.6M 3.2B 0.708 6.92 41.2 43.36
HyenaDNA-32K 1.6M 3.2B 0.630 10.22 33.96 36.93
Caduceus-PS 1.9M 35B 0.689 6.69 39.08 41.38
Caduceus-PH 1.9M 35B 0.725 4.69 42.63 45.01

Supervised Wide ResNet 2.0M 0 0.694 6.83 37.16 43.08

Models UNet 4.5M 0 0.68 7.78 38.67 42.69
DASHA (our workflow) 10.5M 0 0.761 3.69 46.33 49.08

The previous counterexample demonstrates that balance of a mixture may determine which features a
deep network will learn over time. We provide empirical evidence for this and identify additional
factors which influence the subset of features learned by a network.

4.2 Spurious Features

Spurious features are superficial features which are correlated with but do not predict the label. For
example, a bird classification model may incorrectly learn to use a water background to predict a
waterbird and a land background to predict a land bird.
[Pezeshki et al., 2021] find that learning spurious features hinders the appearance of core features
essential for accurate prediction. They find that spurious features to arise from bias towards certain
classes in complicated mixtures of data, descriptive of real-world datasets. Core features cannot
appear after the gradient is consumed by spurious features, which provide the same information but
cannot be used for prediction. Class imbalances produce spurious features which "starve" the model
of essential features.
[Kirichenko et al., 2023b] propose a promising mitigation to recover core features via transfer, by
reweighting the remaining features without the spurious feature 'spu. They consider that a model,
pretrained on a biased mixture P [mix], may still learn core features after learning easier spurious
features. They remove P'spu by transferring the network to a class-balanced subdistribution P [bal]

(where Cor
�
'spu(X), Y

�
= 0). The remaining core features are optimized via linear probing.

Despite significant accuracy improvements, a performance gap {3%, 9%} remains between the
adapted model and one trained directly on P [bal] (Table 1). Here, directly training on P[bal] produces
a solution which includes all of the core features. In contrast, pre-training on P [mix] gives a solution
which does not. Linear probing on P [bal] cannot recover these features.
In this example of the bottleneck, pretraining on an imbalanced mixture produces misleading spurious
features, which prevent the network from learning core features which are essential for prediction.

4.3 Genomic Foundation Models

[Xu et al., 2025] find that simple supervised CNNs can be easily trained to match the performance
of transformer-based genomic foundation models (GFMs). Using their "DASHA" workflow, they
train and evaluate supervised models on a diverse set of genomic tasks P [adja] from the Nucleotide
Transformer (NT) benchmark. They compare to the performance of well-known GFMs with up to
2.5B parameters, which are pretrained on a broad mixture P [mix] of genomic tasks. They find the
directly trained models to consistently outperform the GFMs across all aggregated metrics of P [adja]

benchmark (Table 1).
Certain GFMs such as Caduceus or NT-Multispecies(500M) perform almost as well as supervised
networks on specific tasks of P [adja], but miss features needed to perform well across all P [adja].
This suggests that large scale models learn some, but not all critical features for P [adja] which appear
in the extensive P [mix]. While GFMs can excel in specific scenarios, their performance on new tasks
is, ultimately, constrained by missing features that arise from information saturation.
If foundational models saturate regardless of scale, it may be more efficient invest resources into
creating direct training data.

7

73 / 85

Transferring regularities in common

74 / 85

Outline

1. Transfer learning: reminder

2. Fine tuning: how transferable are features in deep NNs?

3. Are the features learned during pretraining of foundational

models general enough to enable fine tuning on any task?

4. Multi-task learning

5. Conclusions

75 / 85

What is Multi-Task learning (MTL)?

• As soon you try to optimize more than one loss function

– E.g. From someone’s picture, trying to guess both

• The gender
• The age
• The emotion

76 / 85

Why Multi-Task learning (MTL)?

• (IF) The tasks at hand are not unrelated

– E.g. From someone’s picture, trying to guess both
• The gender
• The age
• The emotion

• It may help to consider them all together:
 better performance with less computing resources

– E.g. guessing the gender may help recognize the emotion and vice-versa

Rk: There are links with the LUPI framework

77 / 85

Assumption behind MTL

• The combined learning of multiple related tasks can outperform learning
each task in isolation

• MTL allows for common information shared between the tasks to be used in
the learning process, which leads to better generalization if the tasks are
related

• E.g. Learning to predict the ratings for several different critics (in different
countries) can lead to better performances for each separate task (predict the
restaurant ratings for a specific critic)

• Learning to recognize a face and the expression (fear, disgust, anger, …)

• Multi modality learning: e.g. vision and proprioception

78 / 85

Possible relations between tasks

• All functions to be learn are close to each other in some norm

– E.g. functions capturing preferences in users’ modeling problems

• Tasks that share a common underlying representation

– E.g. in human vision, all tasks use the same set of features learnt in the
first stages of the visual system (e.g. local filters similar to wavelets)

– Users may also prefer different types of things (e.g. books, movies, music)
based on the same set of features or score functions

79 / 85

Question

How do we choose to
 model the shared information between the tasks?

• Idea: Some shared underlying constraints

– E.g. a low dimensional representation shared across multiple related
tasks

• By way of a shared hidden layer in a neural network

• By explicitly constraining the dimensionality of a shared representation

80 / 85

An approach for the linear case: minimizing the distance with a shared weight vector

• T binary classification tasks defined over X x Y

That share a weight vector

Linear hypotheses

81 / 85

MTL with deep neural networks

• Approaches

1. Sharing features (first layers) and have
multiple task-specific heads

1. Soft-features or parameters sharing

82 / 85

• Multi-Task Learning induces a bias that prefers hypotheses

that can “explain” all tasks

• Beware:

– Can lead to worse performance if the tasks are unrelated

or adversarially related

• Question: how to measure the relatedness of learning tasks?

83 / 85

…

WU, Chengyue, WANG, Teng, GE, Yixiao, et al. $\pi $-Tuning: Transferring Multimodal
Foundation Models with Optimal Multi-task Interpolation. In International Conf. on
Machine Learning (ICML). PMLR, 2023. p. 37713-37727.

⇡-Tuning: Transferring Multimodal Foundation Models

with Optimal Multi-task Interpolation

Chengyue Wu
1 2

Teng Wang
1 2

Yixiao Ge
2

Zeyu Lu
3

Ruisong Zhou
4

Ying Shan
2

Ping Luo
1

Abstract

Foundation models have achieved great advances
in multi-task learning with a unified interface of
unimodal and multimodal tasks. However, the
potential of such multi-task learners has not been
exploited during transfer learning. In this work,
we present a universal parameter-efficient trans-
fer learning method, termed Predict-Interpolate
Tuning (⇡-Tuning), for vision, language, and
vision-language tasks. It aggregates the parame-
ters of lightweight task-specific experts learned
from similar tasks to aid the target downstream
task. The task similarities are predicted in a
unified modality-independent space, yielding a
scalable graph to demonstrate task relationships.
⇡-Tuning has several appealing benefits. First,
it flexibly explores both intra- and inter-modal
transferability between similar tasks to improve
the accuracy and robustness of transfer learn-
ing, especially in data-scarce scenarios. Sec-
ond, it offers a systematical solution for trans-
fer learning with multi-task prediction-and-then-
interpolation, compatible with diverse types of
parameter-efficient experts, such as prompt and
adapter. Third, an extensive study of task-level
mutual benefits on 14 unimodal and 6 multi-
modal datasets shows that ⇡-Tuning surpasses
fine-tuning and other parameter-efficient transfer
learning methods both in full-shot and low-shot
regimes. The task graph also enables an in-depth
interpretable analysis of task transferability across
modalities. The code will be available at https:
//github.com/TencentARC/pi-Tuning.

1Department of Computer Science, The University of Hong
Kong 2ARC Lab, Tencent PCG 3Shanghai Jiao Tong University
4School of Mathematical Sciences, Fudan University. Correspon-
dence to: Yixiao Ge <yixiaoge@tencent.com>.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

VL Tasks Vision Tasks Language Tasks

Figure 1. Heatmap of the predicted task similarities, composed of
both unimodal and multimodal tasks. Vision-language tasks are
more similar to vision tasks compared to language tasks. Best
viewed in color.

1. Introduction

With the development of Transformer architectures (Doso-
vitskiy et al., 2021; Devlin et al., 2018; Brown et al., 2020),
foundation models (Cho et al., 2021; Lu et al., 2022; Wang
et al., 2022) pre-trained with large-scale data are capable
of multiple tasks across modalities in a unified sequence-to-
sequence manner, taking one more step toward mimicking
the human brain. These foundation models are natural multi-
task learners with universal representation and I/O interfaces
for both unimodal and multimodal tasks. But unfortunately,
these properties have not been fully exploited in downstream
tasks, as few studies investigated how to properly transfer
these models.

In this work, we tackle the problem of transfer learning of
multimodal foundation models with unified sequence-to-
sequence interfaces. Most of our experiments are based on
OFA (Wang et al., 2022), an open-source model, without

1

84 / 85

Outline

1. Transfer learning: definition

2. Transfering representations

3. IRM: Invariant Risk Minimization

4. Multi-task learning

5. Conclusions

85 / 85

• Transferring representations is not that straightforward

– The relevant hidden layer depends on the conditions

– Necessary features can be missing

