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Illustration

o - Rl
Traditional ML vs  Transfer Learning
e |solated, single task learning: 1 e Learning of a new tasks relies on
o Knowledge is not retained or the previous learned tasks:
accumulated. Learning is performed o Learning process can be faster, more
W.0. considering past learned accurate and/or need less training data

knowledge in other tasks
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Notations

1. Source domain S

— Source training data S
— Source data distribution Dg

— Source hypothesis hc

2. Targetdomain T

— Target training data S; (|S;| << |Ss])
— Target data distribution D;

— Target hypothesis h;
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Introduction to transfer learning

What can we transfer from one task to another?
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* In the following: a strong assumption

There is something in common between the source and the target

We will remove this assumption later on
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What can we transfer

e What could be in common??

1. Look for a universal representation

2. Underlying supposedly common regularities

3. Learning a translation to a common decision function

4.  Others
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Universal representations ?
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A universal representation for texts?

["translate English to German: That is good."

[ "cola sentence: The "Das ist gut.“]

course is jumping well."

“not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi..”

"six people hospitalized after
a storm in attala county."

Figure 15.36: Illustration of how the T5 model (“Text-to-text Transfer Transformer”) can be used to perform
multiple NLP tasks, such as translating English to German; determining if a sentence is linguistic valid or
not (CoLA stands for “Corpus of Linguistic Acceptability”); determining the degree of semantic similarity
(STSB stands for “Semantic Textual Similarity Benchmark”); and abstractive summarization. From Figure 1
of [Raf+20]. Used with kind permission of Colin Raffel.

From [Kevin Murphy. Probabilistic Machine Learning. An introduction. MIT Press. (2022)], p.539
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What can we transfer

1. Representations

— E.g. for vision tasks
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The idea of fine tuning
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Transfer learning for deep neural networks

* |n practice, very few people train an entire Convolutional Network from scratch.

* Instead, it is common to pretrain a ConvNet on a very large dataset
(e.g. ImageNet, which contains 1.2 million images with 1000 categories),

— and then use the ConvNet either as an initialization

— or a fixed feature extractor for the task of interest.

 Examples of pretrained networks
— Oxford VGG Model
— Google Inception Model
— Microsoft ResNet model

[Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are features in deep neural
networks? In Advances in Neural Information Processing Systems 27 (NIPS “14), NIPS
Foundation, 2014. ]
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Transfer learning for deep neural networks
 The assumption:

— the features learned for a task can be used almost as such

for other, related, tasks

 Approach:

— Reuse the first layers and learn the last ones

— Same input spaces X = X;, possibly Yo # Y

14 / 85



Transfer learning

e 1ststrategy
1. Take a NN pretrained on the source data set,

2. remove the last fully-connected layer
(e.g. this layer’s outputs are the 1000 class scores for a task like ImageNet),

3. then treat the rest of the NN as a fixed feature extractor

for the target dataset.

- 2nd strategy

1. Notonlyreplace and retrain the classifier on top of the NN

on the taget dataset,

2. butto also fine-tune the weights of the pretrained network by continuing

the backpropagation
15/ 85



Transfer learning for deep neural networks

Training images

Source task

Convolutional layers

Fully-connected layers

Source task labels

. Chair

g Person
ﬂ TV/monitor

1: Feature
learning C1-C2-C3-C4-C5 FC6 [ FC7 FC8 >
4096 or
6144-dim
) vector
2 : Feature Transfer
transfer parameters
) o I1 ] Background
3: CIas§lf|er Cl‘CZ'C3‘C4'C5 Fce B FCc7 > FCa —>» FCb —» -
learning 4096 or
6144-dim
9216-dim 4096 or vector
vector 6144-dim
Training i lid h vector New adaptation
raining images Sliding patches layers trained
&b Target task Y
on target task

Target task labels

From [Oquab, M., Bottou, L., Lapteyv, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional

neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724)].
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Transfer learning for deep neural networks (case 1)

Training images

Source task

Convolutional layers

Fully-connected layers

Training images Sliding patches

FC8

\ 4

Source task labels

1: Feature
learning C1-C2-C3-C4-C5 > Fc6 pf Fc7
4096 or
6144-dim
) vector
2 : Feature Transfer
transfer parameters
3:|Clas:<,|f|er C1-C2-C3-C4-C5 FC6 P FC7
earning 4096 or
6144-dim

9216-dim 4096 or

vector

6144-dim
vector

Target task

vector

New adaptation
layers trained
on target task

—————» FCa —> FCb —» -

. Chair
!\u Background

b Person
E TV/monitor

Target task labels

Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

From [Oquab, M., Bottou, L., Lapteyv, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional

neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724)].
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Transfer learning for deep neural networks (case 2)

Pre-train <

Source
model

Output layer

Random

Source data

e age s . = =>
initialization

Target
model

Output layer

-->» LayerL-1
-->
i
- - > Layer 1
t
Target data

Train from
scratch

> Fine-tune

Figure 19.2: Illustration of fine-tuning a model on a new dataset. The final output layer is trained from
scratch, since it might correspond to a different label set. The other layers are initialized at their previous
parameters, and then optionally updated using a small learning rate. From Figure 13.2.1 of [Zha+20]. Used

with kind permission of Aston Zhang.

From [Kevin Murphy. Probabilistic Machine Learning. An introduction. MIT Press. (2022)], p.625
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Figure 37.1: Transfer learning consists of two phases: first we pretrain a model on one task and then we adapt that model

to perform a new task.
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Recommandations

The target data set is small and similar to the source data set
—  Train a linear classifier on top of the last layer of pretrained NN

The target data set is large and similar to the source data set

—  Fine-tune the pretrained NN using the target data set

The target data set is small and very different from the source data set

—  Since the dataset is very different, it might not be best to train the classifier from
the top of the NN, which contains more dataset-specific features.
Instead, it might work better to train a classifier from activations somewhere

earlier in the network.

The target data set is large and very different from the source data set

—  Fine-tune the pretrained NN using the target data set
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But ...

... how transferable are representations?
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Principle

Lion

\ | :

Image labels
Krizhevsky, Sutskever, Hinton — NIPS 2012

http://slideplayer.com/slide/8370683/ 23 / 85



Experiments on two domains

ImageNet

1000 Classes

500 Classes

Randomly split the 1000 ImageNet classes into two groups each containing 500
classes and approximately half of the data, or about 645,000 examples each.
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Transfer

Input B

Layer n

AnB: Frozen Weights
d

"‘H Task A

—I] Task B
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Input A |
| 1 Task A

Transfer

Input B BT . —I] Task B

AnB*: Fine-tuning
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\:\_\ NN —

Hypothesis: If transferred features are specific to task A, performance on

task B drops. Otherwise the performance should be the same.

http://slideplayer.com/slide/8370683/ 27 / 85



transfer
AnB

B Images B Labels

http://slideplayer.com/slide/8370683/ 28 / 85



transfer
AnB

Compare to w

B Images B Labels

baseB
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 Comparisons between
— BaseB : a NN trained directly on database B (500 random classes)

— Selffer BnB (self-transfer):

* A number of the first layers are frozen, and re-training is done on the last ones

No transfer

— Selffer BnB* (self-transfer + retraining):

* A number of the first layers are frozen, and re-training is done on all layers

(a kind of initialization, but on the same task)

— Transfer AnB (transfer + fine-tuning last layers only):

— Transfer AnB+ (transfer + retraining of all layers):
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Results
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Figure 2: The results from this paper’s main experiment. 7op: Each marker in the figure represents

the average accuracy over the validation set for a trained network. The
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Results: what to think of them?
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 Remark on the scientific methodology

It was essential to look at “fragile co-adaptation”

in order to assess the true effect of “representation specificity”
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Interpretation

Retrain on all layers (fine-tuning) on domain B after transfer from domain A
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Interpretation

Retrain on all layers (fine-tuning) on domain B after transfer from domain A
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Conclusions of the paper

Be careful to separate effects

— Fragile co-adapted first layers

— Specialization of higher layers
The transferability gap grows as the distance between tasks increases

But even features transfered from distant tasks are better than
random weights

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural

networks?. Advances in neural information processing systems, 27.
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ImageNet has many categories

Dataset A: random

gecko

fire truck

baseball

panther

rabbit
gorilla

http://slideplayer.com/slide/8370683/

Dataset B: random

garbage truck
toucan
radiator
binoculars
lion
bookshop
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ImageNet has many categories

Dataset A: man-made

fire truck
radiator
baseball

binoculars

bookshop

Di:

5SiMi

http://slideplayer.com/slide/8370683/
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Dataset B: natural

gorilla

gecko

toucan

rabbit
panther
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Transfer learning with language data

For texts in different
— Domains (e.g. finance, politics, society, ...)

— Media (e.g. journals, blogs, ...)

A word embedding is used

— A mapping of the words to a high-dimensional (e.g. 500) continuous vector
space where different words with similar meanings have a similar vector

representation

There exit pre-trained models trained on very large corpus of text
documents

— Google word2vec

— Stanford Glove model
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Fine tuning: the scenario

1. Pre-training using a large and diverse training dataset

composed of cheap examples that are somehow related

to the task of interest

2. The network is adapted (fine-tuned) using a much smaller
dataset composed of examples that are directly related

to the task of interest

— Dataset too small to enable direct training from scratch
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Fine tuning: the challenge

 Ensure that transferred features are sufficient to handle new,

unseen datasets.

— A pretrained network that is missing crucial feature information may not
perform on par with direct learning if there was enough data to learn the

target task

e The folklore vision

— By pretraining these enormous models on “everything”,

they would learn all the features we would ever want for any task
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Fine tuning: the question

Should we invest into building ever larger all-purpose
foundational models, or into collecting tasks-specific datasets

for training smaller specialized models?
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How should we approach this issue?
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How should we approach this issue?

Yang, Xingyu Alice, Jianyu Zhang, and Léon Bottou. "These are Not All the Features You are
Looking For: A Fundamental Bottleneck In Supervised Pretraining."
arXiv preprint arXiv:2506.18221 (2025).
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The general idea

1. Make sure that the distribution of examples for the target task
is included in the distribution of examples used for training the

foundation model (a very favorable assumption)

2. Check whether, under this very favorable scenario, the fine-
tuned foundation model can equal the performance of a directly

trained model on the target data
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A neural network f has the form:

fX:0.9) = 3 wulX50) - e

J/

WV
feature extractor classifier

— Training transforms the raw input X into real-valued features

using parameter 6

— The linear classification layer combines the extracted features

to produce the final prediction.
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* Directly training a neural network on the target data yields the
trained model f( - ;H[i]ﬂ’[i])
[4]

— The model learns both feature parameters H[i] and classifier weights 7/ ‘

optimized for the target distribution Pl

e Pretraining on PIM¥ yields feature parameters 8™ which
are frozen and only the linear classifier weights V¢ are

fine-tuned on P!l
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Question

— Do the solutions f( - ; gl : VM) optimized for the target distribution Pl

can be matched or approximated by linearly combining features learned

by pretraining oe(X; H[mix])

Potential problem

— Stochastic gradient descent in deep learning networks tend to favor

sparse solutions, removing features deemed redundant

— The remaining features depend on the order of the training examples

and the initialization

Do the remaining features contain ones that are useful for task i?
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Simple counter-example

Imagine a feature extractor which can learn only two feature
extraction functions.

— Depending on parameters &(X) = (¢1(X), gpg(X)) , the space spanned by

the selected features can have 0, 1 or 2 dimensions.

Consider four individual distributions in this space

« PU[®(X)=(+1,0), Y=+1] =1 and PH[®(X)=(0,£1), Y=—-1] =1
« PU[®(X)=(-1,0), Y=+41] =1 and PP [®(X)=(0,£1), Y=—1]=1
« PEI®(X)=(0,41), Y=—1] =1 and PB[®(X)=(£1,0), Y=+1] =1
« PU[®(X)=(0,-1), Y=—1] =1 and PY[®(X)=(£1,0), Y=+1] =1

P[miX] = )\1 . P[l] + )\2 . P[2] + )\3 . P[g] + >\4 . P[4] where )\7, > O, Z)\'L =1
=1
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PU[®(X)=(+1,0), Y=+ 1] = 1 and PH[ ®(X
PRI ®(X)=(-1,0), Y=+1] =1 and PPI[ ®(X
PBI®(X)=(0,+1), Y=—1] = 1 and PBI[ ®(X
P ®(X)=(0,-1), Y=—1] =1 and PU[D(X
plmixl — o pll o, PRI S pBL N, Pl
P2 P2 ap) P2
P1 P1 P1
A pll 4 Azx pl2l As* pBlI Aax pIL4]

)=(0,+1), Y=—1] =
)=(0,+1), Y=—1
)=(+1,0), Y=+1
)=(+1,0), Y=+1] =

where \; > 0, Z)\i =1

N PN N e

O :25%

(O :50%

[

examples distributed
in each component

|

=1
%)
O :+1
‘ : -1
P1 P1
= p[mix]
S

A determines
mixture distribution

69 / 85



%) +‘P2 +(P2 (%) %) 0 1
N P o @

1 + 1 ‘ 1 1 1
A1 p[l] + Az * p[2] + Az * p[3] + Aax p[4‘] — p[mix]
. : ) !
O :25% examples distributed . “emfmif‘es.
O . 50% in each component mixture distribution
* @12 = @12(x) abbreviated
("‘.)2 P2 O+
®:
. : optimal
classifier
[mix1] [mix2] [mix3] [mix4]
P P P P : least
weighted
c1> ¢1(x) — 0.5 ¢z < p1(x) +0.5 c3 < ¢2(x) — 0.5 €4 > @a(x) +0.5 : everything
O else
Optimal Classifiers
Point Scale

For mixtures mix1 and mix2, feature 01 (X ) is enough
— But problems 3 and 4 cannot be solved

For mixtures mix3 and mix4, feature ¥2 (X) is enough

— But problems 1 and 2 cannot be solved 70/ 85



Analysis

The authors identify an information saturation bottleneck

 Deep NNs struggle to learn new features when they have

encoded similar competing features during training

* Because of their sparsity bias, they may permanently lose critical

feature needed for effective transfer
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Comparison of

— and direct supervised learning

1

Model Pretraining

Average Average Mean Median

Model Size Base-Pairs | Score T Rank | %Imp.T %Imp.T
Enformer 252M 4B 0.569 11.86 27.73 27091
NT-1000G (500M) 500M  20.5T 0.625 10.52 3348 36.74
NT-1000G (2.5B) 2.5B 20.5T 0.656 7.0 36.58 40.86
NT-Multispecies (500M) | 500M 174B 0.700  3.81 40.76 45.07
Foundation NT-Multispecies (2.5B) | 2.5B 174B 0.697 4.08 40.51 45.52
Models DNABERT-2 117M  32.5B 0.680 6.88 38.65 43.59
HyenaDNA-1K 1.6M 3.2B 0.708  6.92 41.2  43.36
HyenaDNA-32K 1.6M 3.2B 0.630 10.22 3396 3693
Caduceus-PS 1.OM 35B 0.689  6.69 39.08 41.38
Caduceus-PH 1.9M 35B 0.725 4.69 42.63 45.01
Supervised Wide ResNet 2.0M 0 0.694 6.83 37.16 43.08
Models UNet 4.5M 0 0.68 7.78 3867 42.69
DASHA (our workflow)|10.5M 0 0.761  3.69 46.33 49.08
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Transferring regularities in common
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Outline

Transfer learning: reminder

Fine tuning: how transferable are features in deep NNs?

Are the features learned during pretraining of foundational

models general enough to enable fine tuning on any task?

Multi-task learning

Conclusions
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What is Multi-Task learning (MTL)?

* As soon you try to optimize more than one loss function

— E.g. From someone’s picture, trying to guess both

 The gender
* The age

e The emotion
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Why Multi-Task learning (MTL)?

* (IF) The tasks at hand are not unrelated

— E.g. From someone’s picture, trying to guess both

 The gender
* The age
* The emotion

* It may help to consider them all together:

better performance with less computing resources

— E.g. guessing the gender may help recognize the emotion and vice-versa

Rk: There are links with the LUPI framework
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Assumption behind MTL

The combined learning of multiple related tasks can outperform learning
each task in isolation

MTL allows for common information shared between the tasks to be used in
the learning process, which leads to better generalization if the tasks are
related

E.g. Learning to predict the ratings for several different critics (in different
countries) can lead to better performances for each separate task (predict the
restaurant ratings for a specific critic)

Learning to recognize a face and the expression (fear, disgust, anger, ...)

Multi modality learning: e.g. vision and proprioception
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Possible relations between tasks

 All functions to be learn are close to each other in some norm

— E.g. functions capturing preferences in users’ modeling problems

e Tasks that share a common underlying representation

— E.g.in human vision, all tasks use the same set of features learnt in the

first stages of the visual system (e.g. local filters similar to wavelets)

— Users may also prefer different types of things (e.g. books, movies, music)

based on the same set of features or score functions
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Question

How do we choose to

model the shared information between the tasks?

* |dea: Some shared underlying constraints

— E.g. a low dimensional representation shared across multiple related
tasks

* By way of a shared hidden layer in a neural network

* By explicitly constraining the dimensionality of a shared representation
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An approach for the linear case: minimizing the distance with a shared weight vector

* T binary classification tasks defined over Xx Y

S = {{(x11,¥11), (%21, 921)s - - - s (Xim1, Ym1) }s - - - { X1z, yar), (Xor, Y2r)s - -+ s (X Ymr) } }

hij(x) = w;-X Linear hypotheses

That share a weight vector W, = Wq + V;

T m T
* * . )\
g = Argmm{ZZ&ﬁ% 2. |\Vj|!2+>\2!|wo|\2}
j=1

WO,Vj,fij jZl i=1
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MTL with deep neural networks

 Approaches

[ -
1. Sharing features (first layers) and have
multiple task-specific heads
1.  Soft-features or parameters sharing =
T 1
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Multi-Task Learning induces a bias that prefers hypotheses

that can “explain” all tasks

Beware:

— Can lead to worse performance if the tasks are unrelated

or adversarially related

Question: how to measure the relatedness of learning tasks?
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Figure 1. Heatmap of the predicted task similarities, composed of
both unimodal and multimodal tasks. Vision-language tasks are
more similar to vision tasks compared to language tasks. Best
viewed in color.

WU, Chengyue, WANG, Teng, GE, Yixiao, et al. S\pi $-Tuning: Transferring Multimodal

Foundation Models with Optimal Multi-task Interpolation. In International Conf. on

Machine Learning (ICML). PMLR, 2023. p. 37713-37727. 83/85



Outline

Transfer learning: definition

Transfering representations

IRM: Invariant Risk Minimization

Multi-task learning

Conclusions
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* Transferring representations is not that straightforward

— The relevant hidden layer depends on the conditions

— Necessary features can be missing

85 / 85



