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Outline

1. Transfer learning: definition

2. Transfering representations

3. IRM: Invariant Risk Minimization

4. Multi-task learning
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Types of Out-Of-Distribution Learning

Goal

– Improve a target prediction function in the target domain 
using knowledge from the source domain 

1. The source domain and target domain can be the same, but with different 
probability distributions:       “Domain Adaptation”

– Co-variate shift : same decision function PY|X, but ≠ distributions PX

2.  Concept drift : ≠ decision functions PY|X

3.  Or they can be from different domains:       Transfer Learning



4 / 61

Non stationary environment 

• Co-variate shift

– Virtual drift

– Non i.i.d.

• Change of concept

– Concept drift

– Non i.i.d. + non stationary



5 / 61

Concept shifts: illustrations

• Spam filtering

– Not the same user:      PY|X may differ

• E.g. for me conference announcements are important, 
        but could be an annoyance to someone else

• Changes in the tastes or expectations of the consumers 

• Changes in medicine

– E.g. the severity of the COVID variants differs 
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The focus of the course

• Out-Of Distribution learning  (OOD)

–  Change of domain    between learning and testing:   Transfer Learning

Learning

Out-of-Distribution Generalisation 3

cations. There are many generalisation-related research topics or solutions such
as domain adaptation, meta-learning, transfer learning, covariate shift, lifelong
learning, and zero-shot learning.

This article addresses a direct comparison study between domain-specific
and domain generalised methods with respect to vision-based applications, es-
pecially classification. To achieve our goal, we have implemented a pipeline with
9 well-known domain generalised algorithms and 7 domain-specific models. The
comparison study is conducted on two popular benchmarks namely PACS and
O�ce-Home, from which some sample images are shown in Figure 1. We also
trained and tested 16 models by using fine-tuning. Our research shows the learn-
ing curves of methods for both benchmarks. The result section considers accuracy
as a measure of generalisation for supervised learning benchmarks.
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Fig. 1. Sample images of the same classes across all domains in the PACS and Home-
O�ce datasets.
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The focus of the course

• Out-Of Distribution learning  (OOD)

–  Change of domain    between learning and testing:   Transfer Learning

Learning

Project Report - Telecom Paris 9

3 Application to MNIST and sklearn digits

3.1 Summary
MNIST and sklearn digits datasets are two commonly used hand-written digits datasets with two different

resolutions. MNIST is made of 28 by 28 hand-written digits images while digits from scikit-learn library is only
8 by 8.

Once we have studied TransBoost method on half-moons two-dimensional datasets, we tackle larger dimen-
sions, respectively d = 784 for MNIST and d = 64 for sklearn digits. We first transfer on MNIST only from 0
and 1 classification to 7 and 8. Then we transfer from 0 and 1 in MNIST to 0 and 1 in sklearn digits, and finally
the other way, from 0 and 1 in sklearn digits to 0 and 1 in MNIST.

The main targets remain scoring TransBoost method and comparing it to relearning from target training
set, in particular via linear SVC classifier.

3.2 Method
We first introduce a canonical projection matrix P between the two spaces we would transfer. It is supposed

to be an simple and relatively good transformation, without any form of boosting.
Then comes TransBoost, so the ⇧ projection function at each step is chosen to have the lowest error between

1000 random samples, given by :
⇧(x) = (P +A) ⇤ x+ y (12)

where P is the canonical projection matrix of size (dsource, dtarget), A a Gaussian matrix and y a Gaussian
vector (with standard normal distribution).

The projection between the two spaces is thereby a random variation of the canonical projection. Never-
theless, choosing the projection within relatively high-dimensional randomly generated matrices is of course an
unoptimized method which lead to longer calculation time.

3.2.1 From 0/1 in MNIST to 7/8 in MNIST

(a) Is it a zero or a one ? (b) Is it an eight or a seven ?

Figure 13: Transfer learning of the source model 0/1 so that it can distinguish 8/7

In this case, P is chosen to be the identity matrix. The intuitive idea is that representations of 7 are quite
close to 1’s, as 0’s are to 8’s. Transfer methods are thought all the more relevant to use as the distance between
source and target datasets are small. Therefore we expected a very low error by classifying sevens and eights
with the original classifier hsource trained on ones and zeros.

Figure 14: Canonical projection from MNIST (clipped to 24 by 24) to sklearn digits (8 by 8)
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3.2.2 Between 0/1 in MNIST and 0/1 sklearn digits

(a) Is it a zero or a one ? (b) Is it a zero or a one ?

Figure 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

In these cases, P are chosen to be whether an image compression matrix or a scaling up matrix, depending
on the direction of transfer. In order to increase performance and calculation speed, we clipped MNIST images
from 28 by 28 to 24 by 24 pixels. Not only we simplify compression as 24 is multiple of 8, and reduce the MNIST
dimension from d = 784 to d = 576, but also we equate the two datasets as sklearn digits are cut-short images.

3.3 Results
3.3.1 Scoring the canonical projection

For transferring from 0/1 in MNIST to 7/8 in MNIST, the average error was surprisingly evaluated at 70%
which contradict initial intuition. A posteriori, pairing zeros with sevens ans ones with eights leads to positive
results.

For projection between MNIST and sklearn digits, the use of the original model hsource composed with
canonical projection matrix, i.e. no TransBoost yet, leads to good accuracy results :

- less than 15% for transferring from MNIST to sklearn digits : 16

Figure 16: Accuracy comparison between both methods on a data test of variable proportion p

(a) Blue : TransBoost method

(b) Orange : Relearning SVC method

- less than 10% for transferring from sklearn Digit to MNIST : 18

3.3.2 Comparing TransBoost method with relearning from target training set

With TransBoost, minimal error on target test set is barely reached within at most 15 steps. Again, the
better the weak classifier hsource �⇧i is chosen, fewer are steps needed to achieve maximal accuracy.

Again, we compared this method to relearning via linear SVC, depending on the ratio of target test dataset
among total target data.

The result are quite similar within the 3 transfers tested.

3.4 Conclusion
Though TransBoost method allow reasonable low error levels, it seems to be less efficient than relearning

from a linear SVC, whatever the ratio of target test set is.
Moreover, TransBoost method takes certainly longer time to process as the projection are chosen randomly

between huge sample at each steps, but there is no doubt picking off weak classifier could largely be optimized.
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Transfer learning for image recognition

…
Endangered bird species

2 1. THE DEEP LEARNING REVOLUTION

plications of machine learning which are designed to solve very specific and focused
problems, and while these are extremely useful they fall far short of the tremendous
breadth of capabilities of the human brain. This has led to the introduction of the
term artificial general intelligence, or AGI, to describe the aspiration of building
machines with this much greater flexibility. After many decades of steady progress,
machine learning has now entered a phase of very rapid development. Recently,
massive deep learning systems called large language models have started to exhibitChapter 12
remarkable capabilities that have been described as the first indications of artificial
general intelligence (Bubeck et al., 2023).

1.1. The Impact of Deep Learning

We begin our discussion of machine learning by considering four examples drawn
from diverse fields to illustrate the huge breadth of applicability of this technology
and to introduce some basic concepts and terminology. What is particularly remark-
able about these and many other examples is that they have all been addressed using
variants of the same fundamental framework of deep learning. This is in sharp con-
trast to conventional approaches in which different applications are tackled using
widely differing and specialist techniques. It should be emphasized that the exam-
ples we have chosen represent only a tiny fraction of the breadth of applicability for
deep neural networks and that almost every domain where computation has a role is
amenable to the transformational impact of deep learning.

1.1.1 Medical diagnosis
Consider first the application of machine learning to the problem of diagnosing

skin cancer. Melanoma is the most dangerous kind of skin cancer but is curable
if detected early. Figure 1.1 shows example images of skin lesions, with malig-
nant melanomas on the top row and benign nevi on the bottom row. Distinguishing
between these two classes of image is clearly very challenging, and it would be vir-
tually impossible to write an algorithm by hand that could successfully classify such
images with any reasonable level of accuracy.

This problem has been successfully addressed using deep learning (Esteva et
al., 2017). The solution was created using a large set of lesion images, known as

Figure 1.1 Examples of skin lesions cor-
responding to dangerous ma-
lignant melanomas on the top
row and benign nevi on the bot-
tom row. It is difficult for the
untrained eye to distinguish be-
tween these two classes.

Tumors: malignant vs. benign
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Transfer learning for text styles

…
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Transfer learning for image styles

…

Source TargetConstraint of transfer
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Transfer learning for image styles

…

Source TargetConstraint of transfer
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Transfer Learning: change of domains, change of tasks

• Change of domain

– E.g. Recognition of the same objects but in a different environment

• Change of task 

– E.g. learning to play chess after having learned to play checkers
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Transfer Learning

• Definition [Pan, TL-IJCAI’13 tutorial]

– Ability of a system to recognize and apply knowledge and skills learned in 
previous domains/tasks to novel domains/tasks

• Example

– We have labeled images from a web corpus

– Novel task: is there a person in unlabeled images from a video corpus?

Transfer Learning

Definition [Pan, TL-IJCAI’13 tutorial]

Ability of a system to recognize and apply knowledge and skills learned in
previous domains/tasks to novel domains/tasks

An example

• We have labeled images from a Web image corpus

• Is there a Person in unlabeled images from a Video corpus ?

Person no Person

�

Is there a Person?

(LaHC) Domain Adaptation - EPAT’14 4 / 95
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Transfer Learning for sentiment analysis

[Pan, TL-IJCAI’13 tutorial]

Domain Adaptation for sentiment analysis - ex
[Pan-IJCAI’13 tutorial]

Electronics Video games

(1) Compact; easy to operate; very
good picture quality; looks sharp!

(2) A very good game! It is action
packed and full of excitement. I am
very much hooked on this game.

(3) I purchased this unit from Circuit
City and I was very excited about the
quality of the picture. It is really nice
and sharp.

(4) Very realistic shooting action and
good plots. We played this and were
hooked.

(5) It is also quite blurry in very dark
settings. I will never buy HP again.

(6) It is so boring. I am extremely
unhappy and will probably never buy
UbiSoft again.

Source specific: compact, sharp, blurry.

Target specific: hooked, realistic, boring.

Domain independent: good, excited, nice, never buy, unhappy.

(LaHC) Domain Adaptation - EPAT’14 21 / 95
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Notations

1. Source domain S 

– Source training data SS

– Source data distribution DS

– Source hypothesis  hS

2. Target domain T 

– Target training data ST    (|ST| << |SS|)

– Target data distribution  DT

– Target hypothesis  hT
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Introduction to transfer learning

What can we transfer from one task to another?
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• In the following: a strong assumption

There is something in common between the source and the target

We will remove this assumption later on
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What can we transfer

• What could be in common?

1.  Look for a universal representation

2.  Underlying supposedly common regularities 

3.  Learning a translation to a common decision function

4.  Others
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Outline

1. Transfer learning: definition

2. Transfering representations

3. IRM: Invariant Risk Minimization

4. Multi-task learning

5. Conclusions
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Universal representations ? 
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Learning representations

with deep neural networks
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Representation learning: approaches

…

Learning method Learning principle Summary

Autoencoding Compression Remove redundant information

Contrastive Transforming space Examples of the same class are close 
and far apart if not of the same class

Clustering Compression Quantize continuous data into discrete 
categories

Future prediction Prediction Predict the future

Imputation Prediction Predict missing data

Pretext (proxy) tasks Prediction Predict abstract properties of the data

Inspired from [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.443]
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Auto-encoding
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Auto-encoding

• An old idea: auto-association        (dates back to 1986)

26Institut SupAgro Montpellier (2024) « Une perspective sur l’apprentissage »   (A. Cornuéjols) 

Internal representation: the embedding
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Auto-encoding

• An old idea: auto-association        (dates back to 1986)

27Institut SupAgro Montpellier (2024) « Une perspective sur l’apprentissage »   (A. Cornuéjols) 

Supervised learning...
... without labels!
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Autoencoding

<latexit sha1_base64="W/oyirfu2TfT/XCRukUoPlIWoAM="></latexit>

f?, g? = ArgMin
f,g

EX ||g(f(x))� x||22

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.444]

If f and g are linear, this is PCA
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Autoencoding

• Autoencoders learn a compress representation of the data, 
but do they learn a useful representation?
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Autoencoding

• Autoencoders learn a compress representation of the data, 
but do they learn a useful representation?

• Experiment

– Data set with 64,000 images

• 8 colors
• 3 shapes: circles, triangles, squares
• Randomized size, position and rotation

– Autoencoder architecture and training

• 6 convolutional layers (for the encoder, and 6 for the decoder)

• Relu nonlinearities
• 128-dimensional bottleneck
• Trained for 20,000 epochs of stochastic gradient with batch size = 128

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.446]

Re
le

va
nt
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Do autoencoders learn useful representations?

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.446]

For a given query (a pattern)

1. Visualize the images in the data set whose embeddings 
are nearest neighbors to the query’s embedding (layer 6)

2. Measure the accuracy of a one-nearest-neighbor in embedding space

Nearest neighbors are similar 
in terms of colors, shapes, 
positions and rotations in the 
embedding of the 6th layer.

Query
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Do autoencoders learn useful representations?

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.446]

For a given query (a pattern)

1. Visualize the images in the data set whose embeddings 
are nearest neighbors to the query’s embedding (layer 6)

2. Measure the accuracy of a one-nearest-neighbor in embedding space

Nearest neighbors are similar 
in terms of colors, shapes, 
positions and rotations in the 
embedding of the 6th layer.

Query

The color classifier performs best in the 1st 
layer embedding (raw data) 
whereas the shape classifier performs best on 
the 6th layer (more abstract).

No representation is UNIVERSAL
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Predictive encoding
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Predictive encoding

• We make prediction to learn a useful representation

– Not to predict per se   -- > a pretext (or proxy) learning task

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.447]
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Self-supervised learning
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Learning by imputation

• Imputation is a special case of self-supervised learning, where the prediction 
targets are missing elements of the input data

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.450]
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Self-supervised learning

• A type of supervised learning but where the labels are provided by the learner 
itself, therefore possible from unsupervised data!

– Example: train a network so that it predicts the relative positions of two subimages

It is thus hoped that the system will learn spatial relationships that will be useful for other 
tasks related to images

37Institut SupAgro Montpellier (2024) « Une perspective sur l’apprentissage »   (A. Cornuéjols) 

Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

8 possible locations

Recap: relative positioning
Train network to predict relative position of two regions in the same image

Unsupervised visual representation learning by context prediction, 
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015 
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Self-supervised learning

In sequences

• Is this a valid sequence?

38Institut SupAgro Montpellier (2024) « Une perspective sur l’apprentissage »   (A. Cornuéjols) 

Sequential Verification

• Is this a valid sequence?

Sun and Giles, 2001; Sun et al., 2001; Cleermans 1993; Reber 1989
Arrow of Time - Pickup et al., 2014

Slide credit: Ishan Misra

Sequential Verification

• Is this a valid sequence?

Sun and Giles, 2001; Sun et al., 2001; Cleermans 1993; Reber 1989
Arrow of Time - Pickup et al., 2014

Slide credit: Ishan Misra

O
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al

 v
id

eo

Slide credit: Ishan Misra
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Self-supervised learning

Dans des séquences

39Institut SupAgro Montpellier (2024) « Une perspective sur l’apprentissage »   (A. Cornuéjols) 

O
rig

in
al

 v
id

eo

Temporally Correct orderTemporally Correct order

Temporally Incorrect order Slide credit: Ishan Misra
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Self-supervised learning
...

40Institut SupAgro Montpellier (2024) « Une perspective sur l’apprentissage »   (A. Cornuéjols) 
co

nc
at

en
at

io
n

Input Tuple

fc8

Correct/Incorrect
Tuple

cla
ss

ific
at

io
n

Cross Entropy Loss

Slide credit: Ishan Misra
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Self-supervised learning

...

41Institut SupAgro Montpellier (2024) « Une perspective sur l’apprentissage »   (A. Cornuéjols) 

What does the network learn?

Given a start and an end, can this point lie in between?

Images

Shuffle and Learn – I. Misra, L. Zitnick, M. Hebert – ECCV 2016 Slide credit: Ishan Misra

Learning an embedding that satisfies the order of sequences
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ITHACA  (March 2022)

• Given an incomplete tablet, ITHACA generates predictions for the missing 
words in order to recover the whole text.

• The historians choose the final answer using their expertise

• Accuracy = 62%   vs.   25% for the experts alone!!

• Provides also a probability for the geographic source and the date between 
800 BC et 800 AC.

42
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Data augmentation
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Data augmentation

• Principle: augment the data set by adding random transformations of each 
data point without changing their class

• Transformations should correspond to invariances in the data 

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.539]
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Data augmentation

…

From [Christopher Bishop. Deep learning. Foundations and concepts. Springer, 2024, p.258]

258 9. REGULARIZATION

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9.1 Illustration of data set augmentation, showing (a) the original image, (b) horizontal inversion, (c)
scaling, (d) translation, (e) rotation, (f) brightness and contrast change, (g) additive noise, and (h) colour shift.

An example of approach 2 is the technique of tangent propagation (Simard et al.,
1992) in which a regularisation term is added to the error function during training.
This term directly penalizes changes in the output resulting from changes in the input
variables that correspond to one of the invariant transformations. A limitation of this
technique, in addition to the extra complexity of training, is can only cope with small
transformations (e.g., translations by less than a pixel).

Approach 3 is known as data set augmentation. It is often relatively easy to
implement and can prove to be very effective in practice. It is often applied in the
context of image analysis as it straightforward to create the transformed training data.
Figure 9.1 shows examples of such transformations applied to an image of a cat.
For medical images of soft tissue, data augmentation could also include continuous
‘rubber sheet’ deformations (Ronneberger, Fischer, and Brox, 2015).

For sequential training algorithms, such as stochastic gradient descent, the data
set can be augmented by transforming each input data point before it is presented
to the model so that, if the data points are being recycled, a different transformation
(drawn from an appropriate distribution) is applied each time. For batch methods, a
similar effect can be achieved by replicating each data point a number of times and
transforming each copy independently.

We can analyse the effect of using augmented data by considering transforma-
tions that represent small changes to the original examples and then making a Taylor
expansion of the error function in powers of the magnitude of the transformation
(Bishop, 1995c; Leen, 1995; Bishop, 2006). This leads to a regularized error func-
tion in which the regularizer penalizes the gradient of the network output with respect
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…

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.541]
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Remarks on data augmentation

• With data augmentation, we aim at enlarging as much as 
possible the training distribution so that it covers the test 

distribution as well

• But it is usually impossible to train on all possible queries we 
might encounter, we often need to rely on transfer learning to 

adapt to new kinds of queries and new tasks

See course on transfer learning to come
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Contrastive learning
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Contrastive learning

• We want to learn invariant representations to certain 
transformations

– This is what Convolutional NNs do: translational invariance

• The hypothesis space is tailored for that

– We can force invariances 

• Through the objective function   

– Penalize deviations from the invariance we want

• Suppose T is a transformation we wish our representation to be invariant to

• f  is the encoder

• Loss function 
<latexit sha1_base64="Xp44jRSruHgHQ9Ui371dRj4BB70=">AAAGUHicjVRdbxJBFL2tghW/qD76spE0QqIE8POx0ZgYn6opbZO2kt1lgA375eyspS77n/wtPpj4pI/6D3zTM5choSDIbti5c+bcc+feuYwT+16iGo1vG5uXLheKV7aulq5dv3HzVnn79kESpdIVbTfyI3nk2InwvVC0lad8cRRLYQeOLw6d4Uu9fvhRyMSLwn11HovTwO6HXs9zbQWoU34zHp8oMVKslEnRzbNeXp2BHD8VebafV0e1mvXQ+gd5VBuP37c6rU650qg3+LEWjaYxKmSevWh784xOqEsRuZRSQIJCUrB9sinBe0xNalAM7JQyYBKWx+uCcirBNwVLgGEDHeLbx+zYoCHmWjNhbxdRfPwkPC3agU8EnoSto1m8nrKyRpdpZ6yp93aO0TFaAVBFA6D/85sy1/XTuSjq0XPOwUNOMSM6O9eopFwVvXNrJisFhRiYtrtYl7Bd9pzW2WKfhHPXtbV5/SczNarnruGm9MvsMgRyxtUKeP8h1DPg2ktAMefZNDMHb0bvgOq96t3qqPdZNeG9OGbnXRNVIpLWWR3tFdZjjjUfzcLaNJplYk7YgnMMOafl3ZPhK7l2A+610UrubFctZ41meA9mbMXZa8/lvgF3peITjFCLVXES4A66xcM85RNZra1Vh/TpguYU8zE6XAmJXtfaA9NRyVr8RzipdXh6nGS2nq7N/R6ZM7dX1iPG2MNXV1utqd+D1eV/Wn/OY7HaHnety3XRzJ2lXN2ZHyjHDdmcvw8XjYNWvfm0/uTt48ruC3NXbtFdukdV3IfPaJde0x61of+ZvtJ3+lH4Uvhd+FPcmFA3zUh36MJTLP0F0olSyA==</latexit>

||f(T (x))� f(x)||22
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Contrastive learning

– Penalize deviations from the invariance we want

• Suppose T is a transformation we wish our representation to be invariant to

• f  is the encoder

• Loss function 

• But we want to avoid that f projects all points to the same vector. 

(The collapsing phenomenon)

• Second loss function that pushes apart embeddings of data points for which 

we do not want an invariant representation

• Positive pairs

• Negative pairs

<latexit sha1_base64="Xp44jRSruHgHQ9Ui371dRj4BB70="></latexit>

||f(T (x))� f(x)||22 Alignment loss

<latexit sha1_base64="3uQpMFMlPiEJ+ZrXe3h9kCbDQz8="></latexit>

{x, x+} with x+ = T (x)
<latexit sha1_base64="aLvnpwGkafVEN0JVMjg6/Ws6reI="></latexit>

{x, x�}
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Contrastive learning

• Illustration

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.456]
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Constrastive learning

• Typically, the examples x+ are obtained through data 
augmentation techniques from x 
– Rotation

– Mirror image

– Change of luminosity

– Change of scale

– Generative adversarial networks
(GAN)
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Contrastive learning

• Illustrations

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.456]

32.3. Approaches for learning representations 1053
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Figure 32.2: Approaches for representation learning from images. An input image is encoded through a deep
neural network (green) to produce a representation (blue). An additional shallow or deep neural network
(yellow) is often used to train the representation, but is thrown out after the representation is learned when
solving downstream tasks. In the supervised case, the mapping from the representation to logits is typically
linear, while for autoencoders the mapping from representation to images can be highly complex and stochastic.
Unlike supervised or generative approaches, contrastive methods rely on other datapoints in the form of positive
pairs (often created through data augmentation) and negative pairs (typically other datapoints) to learn a
representation.

In Figue 32.2, we outline three approaches we will discuss for representation learning. Supervised
approaches train on large-scale supervised or weakly-supervised data using standard supervised
losses. Generative approaches aim to learn generative models of the dataset or parts of a dataset.
Self-supervised approaches are based on transformation prediction or multi-view learning, where
we design a task that where labels can be easily synthesized without needing human input.

32.3.1 Supervised representation learning and transfer

The first major successes in visual representation learning with deep learning came from networks
trained on large labeled datasets. Following the discovery that supervised deep neural networks could
outperform classical computer vision models for natural image classification [KSH12b; CMS12], it
became clear that the representations learned by these networks could outperform handcrafted features
used across a wide variety of tasks [Don+14; SR+14; Oqu+14; Gir+14]. Although unsupervised
visual representation learning has recently achieved competitive results on many domains, supervised
representation learning remains the dominant approach.

Larger networks trained on larger datasets generally achieve better performance on both pretrain-
ing and downstream tasks. When other design choices are held fixed, architectures that achieve
higher accuracy during pretraining on natural image datasets such as ImageNet also learn better
representations for downstream natural image tasks, as measured by both linear evaluation and
fine-tuned accuracy [KSL19; TL19; Zha+19a; Zha+21; Abn+21]. However, when the domain shift
from the pretraining task to the downstream task becomes larger (e.g., from ImageNet to medical
imaging), the correlation between pretraining and downstream accuracy can be much lower [Rag+19;
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Contrastive learning

• Same experiments with autoencoding as for measuring the usefulness of 
representations learned by autoencoders, but with embedding of dimension 2 
instead of 128

• Transformations Tc sensitive to color and invariant to shapes

• The embedding becomes invariant to shapes and spreads the colors rather uniformly

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.459]
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Contrastive learning

• Same experiments with autoencoding as for measuring the usefulness of 
representations learned by autoencoders, but with embedding of dimension 2 instead 
of 128

• Transformations TS sensitive to shapes and invariant to colors

• The embedding becomes invariant to colors and spreads the shapes rather uniformly

From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.459]
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From [Antonio Torralba et al. Foundations of Computer Vision. MIT Press, 2024, p.459]
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Constrastive learning

• The triplet loss  

<latexit sha1_base64="7lryFhoFz7bksEzY7bNyXQ7G8Kw=">AAAGg3icjVRZbxMxEJ4EGtpy9XjkxSKqSJRDSSmHhCpVHBIPIBVED6lpK+/GSazuhddLU1b5oTzzAv+CmakjpakSsqvMjj/PfHN4Yi8JdGpbrV+F4p27S6V7yyur9x88fPR4bX3jMI0z46sDPw5ic+zJVAU6UgdW20AdJ0bJ0AvUkXfxjvaPfiiT6jj6Zq8SdRrKfqR72pcWofO1USeUduDLIP80qgzrYnhWI9Gois4bsUuiEyfKSBubSIbqUttBoENt0/yzHI46nu4HlfeVXmVYrQuUZ7UqetZXGyjEJN5gXNRIhHXRIk9TPV8rt5otfsRtpe2UMrhnP14vXkIHuhCDDxmEoCACi3oAElJ8T6ANLUgQO4UcMYOa5n0FI1hF3wytFFpIRC9Q9nF14tAI18SZsrePUQL8GfQUsIU+MdoZ1Cma4P2MmQmdxZ0zJ+V2hV/PcYWIWhgg+j+/seWiflSLhR685ho01pQwQtX5jiXjrlDmYqIqiwwJYqR3cd+g7rPnuM+CfVKunXoref8PWxJKa9/ZZvDXZRkhcsndCjn/CNlzxMlLIeOIV+PKPHxz+Ioo5UrZUtRnzJpyLp7LvOuiGoxEPPOjfcD9hGNNRxO4N44mXMxra8U1RlzT7OnJURru3YBnbTjXdnKqZlsNJ+zqE7rl6slztm/IU2n5BGPsxbw4KeIeTovGdcYnMp+bWC/g5w3OMRbg1+NOGJx14h64iUoXsn+OJ7WIHX2vK1uMV/K8x+7M5dx+JPjtoaRu2wX5e6h1+Z/Wn/K43W3NU+tzX8hya6YtTeZ3GOEN2Z6+D28rh9vN9svmiy875b237q5chifwFCp4H76CPfgI+3CA/L8LK4WNwmZpqVQrbZd2rk2LBeezCTee0u4/IKBXZA==</latexit>

L(x, x+, x�) = Max
�
D(f(x), f(x+)) � D(f(x), f(x�)) + m, 0

�

The distance of the negative pair must be 
at least the distance of the positive one + m
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Conclusions
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• In all cases, the hope is to learn a representation that captures 
regularities 

– that are useful for the task at hand, 

– and possibly for a variety of tasks. 

Kind of an invariance wrt. the tasks
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Kind of an invariance wrt. the tasks

Are foundation models the ultimate solution?


