
Antoine Cornuéjols – Christine Martin – Chloé Vigliotti

AgroParisTech – INRAe MIA Paris-Saclay

EKINOCS research group

Man_Shell

Mise à niveau Système d’exploitation Unix
d

Comment utiliser sa puissance

2 / 122

Objectifs du cours

1. Savoir utiliser l’environnement Unix

2. Avoir eu un 1er contact avec les expressions régulières

3. Notions de script bash et d’utilisation de Python

pour le maniement des fichiers

4. Savoir installer un logiciel

3 / 122

Plan

1. L’environnement Unix

2. Travailler avec des motifs : les expressions régulières

3. Scripts Bash et programmes Python

4. L’installation de logiciels

4 / 122

Système d’exploitation

• Qu’est-ce qu’un système d’exploitation (Operating System (OS))?

– Tout le fonctionnement d’un ordinateur est contrôlé par un système
d’exploitation (Operating System ou OS)
• Exemple : lorsque plusieurs programmes tournent ensemble, c’est l’OS qui

alloue les ressources entre eux et les interrompt si nécessaire.

– Unix est un exemple d’un OS, très répandu (toutes les machines de
calcul scientifique déjà)
• Développé dans les années 70 (après Multics)
• Mac OS X et Ubuntu (utilisant Linux), par exemple, sont basés sur Unix

(mais Windows ne l’est pas)

– En général, les OS ont deux types d’interface
• Graphique (GUI : Graphical User Interface)
• En ligne de commande (CLI : Command Line Interface)

5 / 122

Système d’exploitation

From [Shawn T. O’Neil (2019) « A primer for Computational Biology », Oregon State University]The 8gure above illustrates the four main “consumable” resources available to modern computers:

1. The CPU. Some computers have multiple CPUs, and some CPUs have multiple processing “cores.” Generally, if
there are n total cores and k programs running, then each program may access up to n/k processing power per unit
time. The exception is when there are many processes (say, a few thousand); in this case, the operating system must
spend a considerable amount of time just switching between the various programs, e6ectively reducing the
amount of processing power available to all processes.

2. Hard drives or other “persistent storage.” Such drives can store ample amounts of data, but access is quite slow
compared to the speed at which the CPU runs. Persistent storage is commonly made available through remote
drives “mapped in” over the network, making access even slower (but perhaps providing much more space).

3. RAM, or random access memory. Because hard drives are so slow, all data must be copied into the “working
memory” RAM to be accessed by the CPU. RAM is much faster but also much more expensive (and hence
usually provides less total storage). When RAM is 8lled up, many operating systems will resort to trying to use the
hard drive as though it were RAM (known as “swapping” because data are constantly being swapped into and out
of RAM). Because of the di6erence in speed, it may appear to the user as though the computer has crashed, when
in reality it is merely working at a glacial pace.

4. The network connection, which provides access to the outside world. If multiple programs wish to access the

4 Part I: Introduction to Unix/Linux

4 | Shawn T. O’Neil

6 / 122

Accès à un système Unix

• Mac OS X ou Linux : vous avez un accès « direct »
– Sous Linux : ctrl + alt + T

– Sous Mac OS X
• Icone Terminal dans le Launchpad
• ou :

2. Logging In

This book assumes that you have access to an account on a Unix-like operating system (such as Linux) that you can
use directly or log in to remotely via the SSH (Secure-SHell) login protocol. Accounts of this type are frequently
available at universities and research institutions, though you may also consider using or installing Linux on your own
hardware. Additionally, the CyVerse Collaborative provides free command-line access to biological researchers through
their Atmosphere system; see the end of this chapter for information on how to access this system using your web
browser.

Before explaining anything in detail, let’s cover the actual process of logging in to a remote computer via SSH. To
do this, you will need four things:

1. Client software on your own computer.

2. The address of the remote computer, called its “host name,” or, alternatively, its IP (Internet protocol) address.

3. A username on the remote computer with which to log in.

4. A corresponding password on the remote machine with which to log in.

If you are using a computer running Mac OS X, the client software will be command line oriented and is accessible from
the Terminal utility. The Terminal is located in the Utilities folder, inside of the Applications folder.

1

In the window that opens up, you will see a prompt for entering commands. On my computer it looks like this:

1. The style of your terminal session likely won’t look like what we show in this book, but you can customize the look of your
terminal using preferences. We’ll be spending a lot of time in this environment!

7

Computational Biology | 7

7 / 122

Accès à un système Unix sous Windows

• Accès à une machine virtuelle Unix ou Linux

• Utilisation de WSL (Windows Sous Linux)

– Le Sous-système Windows pour Linux permet aux développeurs
d’exécuter un environnement GNU/Linux (et notamment la plupart
des utilitaires, applications et outils en ligne de commande)
directement sur Windows, sans modification et tout en évitant la
surcharge d’une machine virtuelle traditionnelle ou d’une
configuration à double démarrage.

– https://learn.microsoft.com/fr-fr/windows/wsl/

8 / 122

Accès à un système Unix

• Windows

– Il faut installer un client ssh (secure shell).
• Le plus communément utilisé est putty (https://www.putty.org/)
• Installer la version 32 ou 64 bits correspondant à votre machine

– Se connecter depuis PUTTY dans l’onglet session
– Renseigner le champ « host name (or IP address) avec l’information

ü nomutilisatur@nomserveur
ü Puis cliquez sur « open » (en laissant le port 22)

• ssh utilise 4 informations
– L’adresse du serveur
– Le nom de l’utilisateur
– Le mot de passe

– Le port (en général, le port 22)

ssh <nom_utilisateur>@<ipaddress> -p <num_port>

https://www.putty.org/

9 / 122

PUTTY

…

If you have successfully entered the host name or IP, you will be prompted for your username and password (and
potentially to verify the key 8ngerprint).

Finally, if you are already running a Linux or other Unix-like operating system, the steps for logging in remotely via
SSH will be similar to those for Mac OS X, though you’ll need to 8nd the Terminal utility on your own. If you are using
CyVerse Atmosphere, then you can utilize a terminal window right in the web browser by clicking on the Access By Shell
tab or Open Web Shell link. In all cases, the text-based interface will be identical, because the remote computer, rather
than your local desktop, determines the display.

Logging in Further, Changing Your Password Logging in Further, Changing Your Password

Depending on where you are logging in to, you may not be done with the login process. At many universities and

Chapter 2. Logging In 9

Computational Biology | 9

10 / 122

ssh

• Le serveur ssh et le client ssh communiquent par le protocole ssh

– Sécurisé (par cryptographie à clé publique avancée)

– Le client envoie des commandes

– Le serveur envoie du texte

– Par convention, SSH se connecte sur le port 22 (et HTTP sur le port 80)

research centers, the administrator would prefer that you not do any work on the computer you initially logged in to,
because that computer may be reserved just for initial logins by dozens or even hundreds of researchers. As a result,
you may need to “check out” a secondary, internal computer for your actual computational needs. Sometimes this can
be done by SSHing on the command line to the secondary computer, but at some institutions, you will be asked to run
other commands for this checkout process. Check with your local system administrator.

In addition, you may want to change your password after your initial login. Running the passwd command usually
suffices, and you will be prompted to enter both your old and new passwords. As usual, for security reasons, no
characters will appear when entered. Further, good system administrators never ask for your password, and they are
unable to recover it if it gets lost. The best administrators can do is reset it to a temporary one.

SSH: Secure Shell SSH: Secure Shell

One might rightfully ask: what did we just accomplish with all of this logging in? On our desktop computer, we used a

program called a client to connect to another program, called a server. A server is a program that waits in the background

for another program (a client) to connect to it.
2
 This connection often happens over a network, but connections can

occur between programs on the same computer as well. A client is a program that is generally run by a user on an as-

needed basis, and it connects to a server. While it’s more correct to de8ne a server as a program that waits for a connection

from a client, colloquially, computers that primarily run server programs are also referred to as servers.

The SSH server and the SSH client communicate using what is known as the SSH “protocol,” simply an agreed-

upon format for data transfer. The SSH protocol is quite lightweight: because all of the actual computation happens on

the remote machine, the only information that needs to be transferred to the server are the keystrokes typed by the user,

and the only information that needs to be transferred to the client are the characters to be displayed to the user. As its

name implies, the SSH protocol is very secure owing to its reliance on advanced public-key cryptography.
3

The SSH server may not be the only server program running on the remote computer. For example, web servers

allow remote computers to serve web pages to clients (like Mozilla Firefox and OS X’s Safari) using HTTP (hypertext

transfer protocol). But because there is only one host name or IP address associated with the remote computer, an extra

bit (byte, actually) of information is required, known as the “port number.” By way of analogy, if the remote computer

2. Sometimes server programs are called “daemons,” terminology that evokes Maxwell’s infamous “demon,” an impossible theoretical
entity working in the background to sort gaseous molecules.

3. The public-key infrastructure currently in use by SSH is only secure as far as anyone in the academic sphere suspects: the
mathematics underlying the key exchange protocol haven’t yet been proven unbreakable. Most mathematicians, however, suspect
that they are unbreakable. On the other hand, bugs have been known to occur in the software itself, though they are usually fixed
promptly when found.

10 Part I: Introduction to Unix/Linux

10 | Shawn T. O’Neil

11 / 122

Le shell

• Notion de shell

– Interface permettant d’interagir avec un système d’exploitation

• Un OS est composé d’un noyau (kernel) et d’une coque (shell)

• le shell est un programme qui reçoit des commandes qu’on va écrire

depuis le clavier (ou par une interface graphique + souris)

et qui les passe au système d’exploitation afin qu’elles soient exécutées.

12 / 122

Bash

• Shell : Interface permettant d’interagir avec un système d’exploitation

– nous allons devoir envoyer nos commandes sous un certain format
compréhensible par notre OS. Ce « format » est en fait un langage de
programmation spécifique au shell utilisé.

– Le plus utilisé est Bash (“Bourne Again SHell”).
• Bash est notamment le shell utilisé par défaut par les systèmes OS X

(en fait zsh depuis Catalina)

• Terminal

– Le Terminal est l’interface de ligne de commande de Mac.
• Nous allons utiliser le Terminal pour envoyer nos commandes à notre OS et pour

communiquer avec lui.

– L’invite de commande ou “command prompt” ou CMD est l’interpréteur de
ligne de commande Windows.

13 / 122

Bash

• Ouverture de Terminal

• Lorsqu’on ouvre le Terminal, une fenêtre noire ou blanche s’ouvre. Cette fenêtre contient
un invite de commande, c’est-à-dire une ligne nous indiquant que le shell attend qu’on lui

passe des commandes.

• Par défaut, cette ligne contient le nom de votre machine suivi de deux points suivi du

caractère tilde (~) suivi de votre nom d’utilisateur suivi du signe dollar ($ (ou % pour
Zsh)).

• Le tilde est une abréviation pour indiquer qu’on se situe actuellement dans le dossier
“home”, c’est-à-dire dans le répertoire de base lié à notre nom d’utilisateur.

• Le signe dollar (ou %) indique qu’on est connecté en tant qu’utilisateurs classiques avec
des privilèges normaux.

14 / 122

Les commandes Bash

et le système de fichiers

15 / 122

Premiers pas et variables d’environnement

...

3. The Command Line and Filesystem

Computer users are used to interacting with a “user interface.” On many computers, this interface displays the desktop
or task bar, icons, 8le previews, and so on. It takes input from the user in the form of keystrokes, mouse movements, and
in some cases voice commands, and presents the results of the user’s actions. Perhaps most importantly, the user interface
is itself a program (it is software running on a computer, after all) we interact with to execute other programs.

The same thing happens when we use SSH to log in to a remote machine, or open up the Terminal application on
a Linux or OS X desktop. In this case, however, instead of interacting with a GUI (Graphical User Interface), we interact
with a CLI (Command-Line Interface), or shell, which does the job of displaying the command prompt. The shell is
the software we interact with on the command line. In some sense it is the command line, as it displays the command
prompt, accepts input via typed text, runs other programs on our behalf, and displays the results textually. A command
prompt is a line of status information provided in a text-based interface, indicating that commands are to be entered and
run by pressing Enter. Command prompts often include information about what computer or network one is logged in
to, the username one is logged in with, and an indication of the “present working directory” (discussed below).

The 8rst command that we’ll learn for the Linux command line is echo, which prints the parameters we give it.

oneils@atmosphere ~$ echo hello there
hello there

Let’s break down the command prompt and the program that we ran, which consisted of a program name and several
parameters, separated by spaces. In the 8gure below, the command prompt consists of oneils@atmosphere ~$.

The echo program might seem absurdly simple, as it just prints its parameters. But it is quite useful in practice and

as a learning tool. For example, we can use echo to print not only simple strings, but also the contents of an environment
variable, which is a variable bit of information (usually holding strings of text) that is accessible by the shell and other
programs the user runs. Accessing the contents of an environment variable requires pre8xing it with a $.

The shell (and other programs) commonly uses environment variables to store information about your login
session, much like how, in a GUI interface, a “variable” remembers the wallpaper picture for the desktop. Environment
variables control many aspects of the command-line environment, and so they are quite important. Many of these are set
automatically when we log in. For example, $USER.

oneils@atmosphere ~$ echo $USER
oneils

17

Computational Biology | 17

3. The Command Line and Filesystem

Computer users are used to interacting with a “user interface.” On many computers, this interface displays the desktop
or task bar, icons, 8le previews, and so on. It takes input from the user in the form of keystrokes, mouse movements, and
in some cases voice commands, and presents the results of the user’s actions. Perhaps most importantly, the user interface
is itself a program (it is software running on a computer, after all) we interact with to execute other programs.

The same thing happens when we use SSH to log in to a remote machine, or open up the Terminal application on
a Linux or OS X desktop. In this case, however, instead of interacting with a GUI (Graphical User Interface), we interact
with a CLI (Command-Line Interface), or shell, which does the job of displaying the command prompt. The shell is
the software we interact with on the command line. In some sense it is the command line, as it displays the command
prompt, accepts input via typed text, runs other programs on our behalf, and displays the results textually. A command
prompt is a line of status information provided in a text-based interface, indicating that commands are to be entered and
run by pressing Enter. Command prompts often include information about what computer or network one is logged in
to, the username one is logged in with, and an indication of the “present working directory” (discussed below).

The 8rst command that we’ll learn for the Linux command line is echo, which prints the parameters we give it.

oneils@atmosphere ~$ echo hello there
hello there

Let’s break down the command prompt and the program that we ran, which consisted of a program name and several
parameters, separated by spaces. In the 8gure below, the command prompt consists of oneils@atmosphere ~$.

The echo program might seem absurdly simple, as it just prints its parameters. But it is quite useful in practice and

as a learning tool. For example, we can use echo to print not only simple strings, but also the contents of an environment
variable, which is a variable bit of information (usually holding strings of text) that is accessible by the shell and other
programs the user runs. Accessing the contents of an environment variable requires pre8xing it with a $.

The shell (and other programs) commonly uses environment variables to store information about your login
session, much like how, in a GUI interface, a “variable” remembers the wallpaper picture for the desktop. Environment
variables control many aspects of the command-line environment, and so they are quite important. Many of these are set
automatically when we log in. For example, $USER.

oneils@atmosphere ~$ echo $USER
oneils

17

Computational Biology | 17

Note that when setting an environment variable, we do not use the $. By convention, environment variable names
contain only capital letters.

1
 Further, this expansion (from environment variables to their contents) is done by the shell;

the command itself is changed from export GREETING="hello $USER" to export GREETING="hello oneils".

Alternative Shells Alternative Shells

There is a special environment variable, $0, that generally holds the name of the currently running program. In the case
of our interaction with the command line, this would be the name of the interface program itself, or shell.

The above command illustrates that we are running bash, the most commonly used shell.
2

Depending on the system you are logged in to, running echo $0 may not report bash. The reason is (although
it may seem odd) that there are a variety of shells available, owing to the long history of Unix and Linux. In the
beginning, the interfaces were quite simple, but over time better interfaces/shells were developed that included new
features (consider how the “Start” menu has changed over the years on Microsoft Windows versions). We can run a
di6erent shell, if it is installed, by simply running it like any other program. The tcsh shell, itself an outgrowth of the csh
shell, is sometimes the default instead of bash. (Both csh and tcsh are older than bash.)

When running tcsh, the setenv command takes the place of export, and the syntax is slightly di6erent.

Although bash and similar shells like dash and zsh are most commonly found (and recommended), you might 8nd

1. There is another type of variable known as a “shell variable,” which operates similar to environment variables. There are some
differences: (1) by convention, these have lowercase names; (2) they are set differently, in bash by using declare instead of export;
and (3) they are available only to the shell, not other programs that you might run. The distinction between these two types can
cause headaches on occasion, but it isn’t crucial enough to worry about now.

2. Because $0 holds the name of the currently running program, one might expect echo $0 to result in echo being reported, but this
isn’t the case. As mentioned previously, the shell replaces the environment variables with their contents before the command is
executed.

Chapter 3. The Command Line and Filesystem 19

Computational Biology | 19

Note that when setting an environment variable, we do not use the $. By convention, environment variable names
contain only capital letters.

1
 Further, this expansion (from environment variables to their contents) is done by the shell;

the command itself is changed from export GREETING="hello $USER" to export GREETING="hello oneils".

Alternative Shells Alternative Shells

There is a special environment variable, $0, that generally holds the name of the currently running program. In the case
of our interaction with the command line, this would be the name of the interface program itself, or shell.

The above command illustrates that we are running bash, the most commonly used shell.
2

Depending on the system you are logged in to, running echo $0 may not report bash. The reason is (although
it may seem odd) that there are a variety of shells available, owing to the long history of Unix and Linux. In the
beginning, the interfaces were quite simple, but over time better interfaces/shells were developed that included new
features (consider how the “Start” menu has changed over the years on Microsoft Windows versions). We can run a
di6erent shell, if it is installed, by simply running it like any other program. The tcsh shell, itself an outgrowth of the csh
shell, is sometimes the default instead of bash. (Both csh and tcsh are older than bash.)

When running tcsh, the setenv command takes the place of export, and the syntax is slightly di6erent.

Although bash and similar shells like dash and zsh are most commonly found (and recommended), you might 8nd

1. There is another type of variable known as a “shell variable,” which operates similar to environment variables. There are some
differences: (1) by convention, these have lowercase names; (2) they are set differently, in bash by using declare instead of export;
and (3) they are available only to the shell, not other programs that you might run. The distinction between these two types can
cause headaches on occasion, but it isn’t crucial enough to worry about now.

2. Because $0 holds the name of the currently running program, one might expect echo $0 to result in echo being reported, but this
isn’t the case. As mentioned previously, the shell replaces the environment variables with their contents before the command is
executed.

Chapter 3. The Command Line and Filesystem 19

Computational Biology | 19

yourself needing to use a shell like csh or its successor, tcsh. In this book, the assumption is that you are using bash,

but when di6erent commands would be needed to accomplish the same thing in the older tcsh or csh, a footnote will

explain.

To get back to bash from tcsh, a simple exit will su7ce.

In general, it can be di7cult to determine which shell is running on the basis of the look of the command prompt;

using echo $0 right on the command line is the most reliable way.

Files, Directories, and Paths Files, Directories, and Paths

With some of the more di7cult concepts of the shell out of the way, let’s turn to something a bit more practical:

understanding how directories (also known as folders) and 8les are organized.

Most 8lesystems are hierarchical, with 8les and directories stored inside other directories. In Unix-like operating

systems, the “top level” directory in which everything can be found is known as / (a forward slash). This top-level

directory is sometimes called the root of the 8lesystem, as in the root of the 8lesystem tree. Within the root directory,

there are commonly directories with names like bin, etc, media, and home; the last of these is often where users will store

their own individual data.

3

3. Computer scientists and mathematicians usually draw trees upside down. One theory is that trees are easier to draw upside down
when working on a blackboard, the traditional (and still considered by many the best) medium of exposition for those fields. Our
language reflects this thinking: when we move a file, we move it “down” into a subdirectory, or “up” into a directory “above” the
current one.

20 Part I: Introduction to Unix/Linux

20 | Shawn T. O’Neil

16 / 122

Se diriger dans le système de fichiers

• Quand vous vous loggez pour la 1ère fois, vous arrivez dans votre
« home directory »

• PWD : Present Working Directory

on yet another remote computer. This con8guration allows users to “see” the same 8lesystem hierarchy and 8les no
matter which remote computer they happen to log in to, if more than one is available. (For example, even /home might
be a network mount, and so all users’ home directories might be available on a number of machines.)

Getting around the Filesystem Getting around the Filesystem

It is vitally important to understand that, as we are working in the command-line environment, we always have a “place,”
a directory (or folder) in which we are working called the present working directory, or PWD. The shell keeps track of
the present working directory in an environment variable, $PWD.

When you 8rst log in, your present working directory is set to your home directory; echo $PWD and echo $HOME will
likely display the same result. There is also a dedicated program for displaying the present working directory, called pwd.

We can list the 8les and directories that are stored in the present working directory by using the ls command.

This command reveals that I have a number of directories in my home directory (/home/oneils) with names like
Music and Pictures (helpfully colored blue) and a 8le called todo_list.txt.

We can change the present working directory—that is, move to another directory—by using the cd command,
giving it the path that we’d like to move to.

Notice that the command prompt has changed to illustrate the present working directory: now it shows
oneils@atmosphere /home$, indicating that I am in /home. This is a helpful reminder of where I am in the 8lesystem as
I work. Previously, it showed only ~, which is actually a shortcut for $HOME, itself a shortcut for the absolute path to my
home directory. Consequently, there are a number of ways to go back to my home directory: cd /home/oneils, or cd
$HOME, or cd ~, or even just cd with no arguments, which defaults to moving to $HOME.

22 Part I: Introduction to Unix/Linux

22 | Shawn T. O’Neil

17 / 122

Se diriger dans le système de fichiers

• Vous pouvez avoir la liste des fichiers de votre PWD par la commande ls

• On peut changer de répertoire (directory) par la commande cd (change
directory)

• On peut revenir à son « home directory » par :

– cd $HOME

– cd

– cd ~

on yet another remote computer. This con8guration allows users to “see” the same 8lesystem hierarchy and 8les no
matter which remote computer they happen to log in to, if more than one is available. (For example, even /home might
be a network mount, and so all users’ home directories might be available on a number of machines.)

Getting around the Filesystem Getting around the Filesystem

It is vitally important to understand that, as we are working in the command-line environment, we always have a “place,”
a directory (or folder) in which we are working called the present working directory, or PWD. The shell keeps track of
the present working directory in an environment variable, $PWD.

When you 8rst log in, your present working directory is set to your home directory; echo $PWD and echo $HOME will
likely display the same result. There is also a dedicated program for displaying the present working directory, called pwd.

We can list the 8les and directories that are stored in the present working directory by using the ls command.

This command reveals that I have a number of directories in my home directory (/home/oneils) with names like
Music and Pictures (helpfully colored blue) and a 8le called todo_list.txt.

We can change the present working directory—that is, move to another directory—by using the cd command,
giving it the path that we’d like to move to.

Notice that the command prompt has changed to illustrate the present working directory: now it shows
oneils@atmosphere /home$, indicating that I am in /home. This is a helpful reminder of where I am in the 8lesystem as
I work. Previously, it showed only ~, which is actually a shortcut for $HOME, itself a shortcut for the absolute path to my
home directory. Consequently, there are a number of ways to go back to my home directory: cd /home/oneils, or cd
$HOME, or cd ~, or even just cd with no arguments, which defaults to moving to $HOME.

22 Part I: Introduction to Unix/Linux

22 | Shawn T. O’Neil

on yet another remote computer. This con8guration allows users to “see” the same 8lesystem hierarchy and 8les no
matter which remote computer they happen to log in to, if more than one is available. (For example, even /home might
be a network mount, and so all users’ home directories might be available on a number of machines.)

Getting around the Filesystem Getting around the Filesystem

It is vitally important to understand that, as we are working in the command-line environment, we always have a “place,”
a directory (or folder) in which we are working called the present working directory, or PWD. The shell keeps track of
the present working directory in an environment variable, $PWD.

When you 8rst log in, your present working directory is set to your home directory; echo $PWD and echo $HOME will
likely display the same result. There is also a dedicated program for displaying the present working directory, called pwd.

We can list the 8les and directories that are stored in the present working directory by using the ls command.

This command reveals that I have a number of directories in my home directory (/home/oneils) with names like
Music and Pictures (helpfully colored blue) and a 8le called todo_list.txt.

We can change the present working directory—that is, move to another directory—by using the cd command,
giving it the path that we’d like to move to.

Notice that the command prompt has changed to illustrate the present working directory: now it shows
oneils@atmosphere /home$, indicating that I am in /home. This is a helpful reminder of where I am in the 8lesystem as
I work. Previously, it showed only ~, which is actually a shortcut for $HOME, itself a shortcut for the absolute path to my
home directory. Consequently, there are a number of ways to go back to my home directory: cd /home/oneils, or cd
$HOME, or cd ~, or even just cd with no arguments, which defaults to moving to $HOME.

22 Part I: Introduction to Unix/Linux

22 | Shawn T. O’Neil

18 / 122

Se déplacer dans la hiérarchie des répertoires

…

Exercises Exercises

1. Practice moving about the filesystem with cd and listing directory contents with ls, including navigating by
relative path, absolute path, . and ... Use echo $PWD and pwd frequently to list your present working directory.
Practice navigating home with cd ~, cd $HOME, and just cd with no arguments. You might find it useful to draw a
“map” of the filesystem, or at least the portions relevant to you, on a piece of paper.

2. Without explicitly typing your username, create another environment variable called $CHECKCASH, such that
when echo $CHECKCASH is run, a string like oneils has $20 is printed (except that oneils would be your username and
should be set by reading from $USER).

3. The directory /etc is where many configuration files are stored. Try navigating there (using cd) using an
absolute path. Next, go back home with cd $HOME and try navigating there using a relative path.

4. What happens if you are in the top-level directory / and you run cd ..?

Chapter 3. The Command Line and Filesystem 27

Computational Biology | 27

19 / 122

Chemins absolus et chemins relatifs

Chemin absolu : /home/oneils/Pictures/profile.jpg

Chemin absolu : /home/oneils/todo_list.txt

• Supposons être dans l’home directory

– Chemin relatif : oneils/Pictures/profile.jpg

– Chemin relatif : oneils/todo_list.txt

• Supposons être dans home/oneils

– Chemin relatif : Pictures/profile.jpg

– Chemin relatif : todo_list.txt

Remarque :

– Les chemins absolus commencent par /

– Pas les chemins relatifs

20 / 122

Remarques

• Dans les systèmes Unix, les commandes sont sensibles à la casse

• Les espaces comptent

– On donnera donc des noms de fichiers et de répertoires sans espaces

• Eg. todo_list.txt

• Sinon il faut utiliser ‘todo list.txt’ ou todo\ list.txt dans les commandes

(à éviter !!!)

21 / 122

Les fichiers cachés

• Par défaut les fichiers commençant par . sont « cachés »

• Il faut utiliser l’option –a pour les voir

• Ce sont en général des fichiers de configuration utilisés par des
programmes variés

It turns out there are quite a few hidden 8les here! Many of those starting with a ., like .bash_login, are actually

con8guration 8les used by various programs. We’ll spend some time with those in later chapters.

On the topic of ls, there are many additional parameters we can give to ls: include -l to show “long” 8le

information including 8le sizes, and -h to make those 8le sizes “human readable” (e.g., 4K versus 4,196 bytes). For ls,

we can specify this combination of options as ls -l -a -h (where the parameters may be given in any order), or with a

single parameter as ls -lah, though not all utilities provide this 9exibility.

Some of these columns of information are describing the permissions associated with the various 8les and

directories; we’ll look at the permissions scheme in detail in later chapters.

24 Part I: Introduction to Unix/Linux

24 | Shawn T. O’Neil

22 / 122

Commande ls et ses options

…

ls affiche la liste des fichiers et sous-répertoires du
répertoire courant

ls rep1/toto affiche la liste des fichiers et sous-répertoires du
répertoire rep1/toto

ls -l affiche une liste détaillée (droit, propriétaire, taille, etc.)

ls –a affiche aussi les fichiers cachés

ls –t affiche par ordre de date de dernière modification

23 / 122

• Option -h pour « human readable »

– Donne les tailles mémoire en Ko ou Mo

• réfère au répertoire courant

•• réfère au répertoire home
• E.g. cd .. remonte au répertoire home

It turns out there are quite a few hidden 8les here! Many of those starting with a ., like .bash_login, are actually

con8guration 8les used by various programs. We’ll spend some time with those in later chapters.

On the topic of ls, there are many additional parameters we can give to ls: include -l to show “long” 8le

information including 8le sizes, and -h to make those 8le sizes “human readable” (e.g., 4K versus 4,196 bytes). For ls,

we can specify this combination of options as ls -l -a -h (where the parameters may be given in any order), or with a

single parameter as ls -lah, though not all utilities provide this 9exibility.

Some of these columns of information are describing the permissions associated with the various 8les and

directories; we’ll look at the permissions scheme in detail in later chapters.

24 Part I: Introduction to Unix/Linux

24 | Shawn T. O’Neil

If we like, we can go up two directories with cd ../..:

We can even use . and .. in longer relative or absolute paths (number 2 in the 8gure below illustrates the relatively
odd path of /media/./cdrom0, which is identical to /media/cdrom0).

26 Part I: Introduction to Unix/Linux

26 | Shawn T. O’Neil

24 / 122

Créer de nouveaux répertoires

mkdir (make directory)

Notice that the 8rst long line has not been wrapped, though we can still use the arrow keys to scroll left or right to
see the remainder of this line.

Creating New Directories Creating New Directories

The mkdir command creates a new directory (unless a 8le or directory of the same name already exists), and takes as a
parameter the path to the directory to create. This is usually a simple 8le name as a relative path inside the present working
directory.

Move or Rename a File or Directory Move or Rename a File or Directory

The mv utility serves to both move and rename 8les and directories. The simplest usage works like mv <source_path>

<destination_path>, where <source_path> is the path (absolute or relative) of the 8le/directory to rename, and
<destination_path> is the new name or location to give it.

In this example, we’ll rename p450s.fasta to p450s.fa, move it into the projects folder, and then rename the
projects folder to projects_dir.

30 Part I: Introduction to Unix/Linux

30 | Shawn T. O’Neil

25 / 122

Copier ou renommer un fichier ou un répertoire

mv (move)

– Si la destination n’existe pas, elle est créée

– Si la destination existe

• Si c’est un répertoire, la source est déplacée dans celui-ci
• Si c’est un fichier, celui-ci est écrasé (!!!) et le contenu remplacé

par celui de la source

Notice that the 8rst long line has not been wrapped, though we can still use the arrow keys to scroll left or right to
see the remainder of this line.

Creating New Directories Creating New Directories

The mkdir command creates a new directory (unless a 8le or directory of the same name already exists), and takes as a
parameter the path to the directory to create. This is usually a simple 8le name as a relative path inside the present working
directory.

Move or Rename a File or Directory Move or Rename a File or Directory

The mv utility serves to both move and rename 8les and directories. The simplest usage works like mv <source_path>

<destination_path>, where <source_path> is the path (absolute or relative) of the 8le/directory to rename, and
<destination_path> is the new name or location to give it.

In this example, we’ll rename p450s.fasta to p450s.fa, move it into the projects folder, and then rename the
projects folder to projects_dir.

30 Part I: Introduction to Unix/Linux

30 | Shawn T. O’Neil

26 / 122

Copier un fichier ou un répertoire

cp (copy)

– Avec l’option –r (récursif) si l’on veut copier tout le contenu d’un
répertoire avec ses sous-répertoires et ses fichiers

Because mv serves a dual role, the semantics are important to remember:

• If <destination_path> doesn’t exist, it is created (so long as all of the containing folders exist).

• If <destination_path> does exist:

◦ If <destination_path> is a directory, the source is moved inside of that location.

◦ If <destination_path> is a 8le, that 8le is overwritten with the source.

Said another way, mv attempts to guess what it should do, on the basis of whether the destination already exists. Let’s

quickly undo the moves above:

A few other notes: First, when specifying a path that is a directory, the trailing / is optional: mv projects_dir/

projects is the same as mv projects_dir projects if projects_dir is a directory (similarly, projects could have been

speci8ed as projects/). Second, it is possible to move multiple 8les into the same directory, for example, with mv

p450s.fasta todo_list.txt projects. Third, it is quite common to see . referring to the present working directory as

the destination, as in mv ../file.txt . for example, which would move file.txt from the directory above the present

working directory (..) into the present working directory (., or “here”).

Copy a File or Directory Copy a File or Directory

Copying 8les and directories is similar to moving them, except that the original is not removed as part of the operation.

The command for copying is cp, and the syntax is cp <source_path> <destination_path>. There is one caveat, however:

cp will not copy an entire directory and all of its contents unless you add the -r 9ag to the command to indicate the

operation should be recursive.

Forgetting the -r when attempting to copy a directory results in an omitting directory warning.

It is possible to simultaneously copy and move (and remove, etc.) many 8les by specifying multiple sources. For

example, instead of cp ../todo_list.txt ., we could have copied both the to-do list and the p450s.fasta 8le with the

same command:

Chapter 4. Working with Files and Directories 31

Computational Biology | 31

27 / 122

Retirer ou effacer un fichier ou un répertoire

rm (remove)

• ATTENTION !!!

– Les fichiers ou répertoires effacés ne peuvent pas être récupérés (!!!)
• Pas de Ctrl z
• Pas de « corbeille »

Remove (Delete) a File or Directory Remove (Delete) a File or Directory

Files may be deleted with the rm command, as in rm <target_file>. If you wish to remove an entire directory and
everything inside, you need to specify the -r 9ag for recursive, as in rm -r <target_dir>. Depending on the
con8guration of your system, you may be asked “are you sure?” for each 8le, to which you can reply with a y. To avoid
this checking, you can also specify the -f (force) 9ag, as in rm -r -f <target_dir> or rm -rf <target_dir>. Let’s create
a temporary directory alongside the 8le copies from above, inside the projects folder, and then remove the p450s.fasta
8le and the todo_list.txt 8le as well as the temporary folder.

Beware! Deleted 8les are gone forever. There is no undo, and there is no recycle bin. Whenever you use the rm
command, double-check your syntax. There’s a world of di6erence between rm -rf project_copy (which deletes the
folder project_copy) and rm -rf project _copy (which removes the folders project and _copy, if they exist).

Checking the Size of a File or Directory Checking the Size of a File or Directory

Although ls -lh can show the sizes of 8les, this command will not summarize how much disk space a directory and
all of its contents take up. To 8nd out this information, there is the du (disk usage) command, which is almost always
combined with the -s (summarize) and -h (show sizes in human-readable format) options.

As always, . is a handy target, here helping to determine the 8le space used by the present working directory.

Editing a (Text) File Editing a (Text) File

There is no shortage of command-line text editors, and while some of them—like vi and emacs—are powerful and can
enhance productivity in the long run, they also take a reasonable amount of time to become familiar with. (Entire books
have been written about each of these editors.)

32 Part I: Introduction to Unix/Linux

32 | Shawn T. O’Neil

28 / 122

Caractères spéciaux utiles

• ? : remplace un caractère quelconque

– mv ../data/out0?.dat ~/poub/

• déplace tous les fichiers .dat de nom commençant par out0 avec un caractère
de plus du répertoire ../data dans le répertoire poub du répertoire personnel
(indiqué par le caractère spécial ~) (e.g. home/dupont)

• * : remplace une chaîne de caractères quelconque

– rm rep1/*.dat : détruit tous les fichiers du répertoire rep1
 dont le nom fini par .dat

29 / 122

Miscellanées

• Tab completion

• Obtenir de l’aide sur une commande
– E.g. man ls

• Voir quels sont les programmes qui tournent : top
– Fournit le pourcentage de CPU consommé, combien de mémoire, les

utilisateurs, …

– On quitte par q

commands and examples. For some commands, there are also “info” pages; try running info ls to read a more complete

overview of ls. Either way, as in less, pressing q will exit the help page and return you to the command prompt.

Viewing the Top Running Programs Viewing the Top Running Programs

The top utility is invaluable for checking what programs are consuming resources on a machine; it shows in an interactive

window the various processes (running programs) sorted by the percentage of CPU time they are consuming, as well as

which user is running them and how much RAM they are consuming. Running top produces a window like this:

From a users’ perspective, the list of processes below the dark line is most useful. In this example, no processes

are currently using a signi8cant amount of CPU or memory (and those processes that are running are owned by the

administrator root). But if any user were running processes that required more than a tiny bit of CPU, they would likely

be shown. To instead sort by RAM usage, use the key sequence Control-M. When 8nished, q will quit top and return you

to the command prompt.

Of particular importance are the %CPU and %MEM columns. The 8rst may vary from 0 up to 100 (percent) times the

number of CPU cores on the system; thus a value of 3200 would indicate a program using 100% of 32 CPU cores (or

perhaps 50% of 64 cores). The %MEM column ranges from 0 to 100 (percent). It is generally a bad thing for the system when

the total memory used by all process is near or over 100%—this indicates that the system doesn’t have enough “working

memory” and it may be attempting to use the much slower hard drive as working memory. This situation is known as

swapping, and the computer may run so slowly as to have e6ectively crashed.

Killing Rogue Programs Killing Rogue Programs

It sometimes happens that programs that should run quickly, don’t. Perhaps they are in an internal error state, looping

forever, or perhaps the data analysis task you had estimated to take a minute or two is taking much longer. Until the

program ends, the command prompt will be inaccessible.

There are two ways to stop such running programs: the “soft” way and the “hard” way. The soft way consists of

Chapter 4. Working with Files and Directories 35

Computational Biology | 35

30 / 122

Obtenir de l’information sur les utilisateurs

finger

31 / 122

Les permissions

• Tous les fichiers et répertoires sont associés à un utilisateur (le
propriétaire) et un groupe, plus « les autres ».

• Les permissions déterminent ce que peuvent faire
l’utilisateur, le groupe et les autres.

• Elles sont décrites par une combinaison de permissions de :

– Lecture (r : read)

– Écriture (w : write)

– Exécution (x : execute)

32 / 122

Les permissions

• Exemple :

• Pour le 1er fichier : la combinaison rwxrwxrwx
permet à tout le monde de tout faire

• Pour le répertoire :

– Est accessible par tout le monde : x

– Peut être lu par les membres du groupe : rx

– Et modifié seulement par le propriétaire : rwx

some deep knowledge of how the system is con8gured or some programming expertise. On some systems, a command

like getent group <groupname> will provide the answer; getent group faculty would report emrichs, schmidtj, and

hellmannj for the example above.

If you are unsure of a person’s username, the finger command may come to the rescue. You can supply finger

with either a 8rst name or last name to search for (or even the username, if known), and it will return information—if

entered by the system administrator—about that user.

Each 8le and directory is associated with one user (the owner) and one group; unfortunately, in normal Unix-like

permissions, one and only one group may be associated with a 8le or directory. Each 8le and directory also has associated

with it permissions describing:

1. what the owner can do,

2. what members of the group can do, and

3. what everyone else (others) can do.

This information is displayed when running ls -l, and is represented by a combination of r (read), w (write), and x

(execute). Where one of these three is absent, it is replaced by a -. Here’s an example, showing two entries owned by

oneils and in the iplant-everyone group; one has permissions rwxrwxrwx (an insecure permission set, allowing anyone

to do anything with the 8le), and the other has rwxr-xr-x (a much more reasonable permission set).

There is an extra entry in the 8rst column; the 8rst character describes the type of the entry, - for a regular 8le and d

for directory. Let’s break down these 8rst few columns for one of the entries:

38 Part I: Introduction to Unix/Linux

38 | Shawn T. O’Neil

33 / 122

Les permissions

…

Each 8le or directory may have some combination of r, w, and x permissions, applied to either the user, the group,

or others on the system. For 8les, the meanings of these permissions are fairly straightforward.

Code Code Meaning for Files Meaning for Files

r Can read file contents

w Can write to (edit) the file

x Can (potentially) “execute” the file

We’ll cover what it means for a 8le to be executable in a bit. For directories, these permissions take on di6erent meanings.

Code Code Meaning for Directories Meaning for Directories

r Can see contents of the directory (e.g., run ls)

w Can modify contents of the directory (create or remove files/directories)

x Can cd to the directory, and potentially access subdirectories

The temp directory above gives the user all permissions (rwx), but members of the group and others can only cd to the

directory and view the 8les there (r-x); they can’t add or remove 8les or directories. (They may be able to edit 8les in

temp, however, depending on those 8les’ permissions.)

The chmod (change mode) utility allows us to add or remove permissions. There are two types of syntax, the simpler

“character” syntax and the numeric “octal” syntax. We’ll describe the simpler syntax and leave discussion of the octal

syntax for those brave enough to read the manual page (man chmod).

Chapter 5. Permissions and Executables 39

Computational Biology | 39

Each 8le or directory may have some combination of r, w, and x permissions, applied to either the user, the group,

or others on the system. For 8les, the meanings of these permissions are fairly straightforward.

Code Code Meaning for Files Meaning for Files

r Can read file contents

w Can write to (edit) the file

x Can (potentially) “execute” the file

We’ll cover what it means for a 8le to be executable in a bit. For directories, these permissions take on di6erent meanings.

Code Code Meaning for Directories Meaning for Directories

r Can see contents of the directory (e.g., run ls)

w Can modify contents of the directory (create or remove files/directories)

x Can cd to the directory, and potentially access subdirectories

The temp directory above gives the user all permissions (rwx), but members of the group and others can only cd to the

directory and view the 8les there (r-x); they can’t add or remove 8les or directories. (They may be able to edit 8les in

temp, however, depending on those 8les’ permissions.)

The chmod (change mode) utility allows us to add or remove permissions. There are two types of syntax, the simpler

“character” syntax and the numeric “octal” syntax. We’ll describe the simpler syntax and leave discussion of the octal

syntax for those brave enough to read the manual page (man chmod).

Chapter 5. Permissions and Executables 39

Computational Biology | 39

Each 8le or directory may have some combination of r, w, and x permissions, applied to either the user, the group,

or others on the system. For 8les, the meanings of these permissions are fairly straightforward.

Code Code Meaning for Files Meaning for Files

r Can read file contents

w Can write to (edit) the file

x Can (potentially) “execute” the file

We’ll cover what it means for a 8le to be executable in a bit. For directories, these permissions take on di6erent meanings.

Code Code Meaning for Directories Meaning for Directories

r Can see contents of the directory (e.g., run ls)

w Can modify contents of the directory (create or remove files/directories)

x Can cd to the directory, and potentially access subdirectories

The temp directory above gives the user all permissions (rwx), but members of the group and others can only cd to the

directory and view the 8les there (r-x); they can’t add or remove 8les or directories. (They may be able to edit 8les in

temp, however, depending on those 8les’ permissions.)

The chmod (change mode) utility allows us to add or remove permissions. There are two types of syntax, the simpler

“character” syntax and the numeric “octal” syntax. We’ll describe the simpler syntax and leave discussion of the octal

syntax for those brave enough to read the manual page (man chmod).

Chapter 5. Permissions and Executables 39

Computational Biology | 39

34 / 122

Les modifications de permissions

Exemples :

To clarify, here are some examples of modifying permissions for the p450s.fasta 8le.

Command Command E6ect E6ect

chmod go-w p450s.fasta Remove write for group and others

chmod ugo+r p450s.fasta Add read for user, group, and others

chmod go-rwx p450s.fasta Remove read, write, and execute for group and others

chmod ugo+x p450s.fasta Add execute for user, group, and others

chmod +x p450s.fasta Same as chmod ugo+x p450s.fasta

If you wish to modify a directory and everything inside, you can add the -R 9ag (capital R this time for recursive) to
chmod. To share a projects directory and everything inside for read access with group members, for example, you can use
chmod -R g+r projects.

There are a few small things to note about 8le and directory permissions. The 8rst is that while it is possible to
change the group of a 8le or directory, you can only do so with the chgrp command if you are a member of that group.

Second, you own the 8les that you create, but generally only the root user has access to the chown utility that changes
the owner of an existing 8le (it wouldn’t be very nice to “gift” another user a nefarious program).

Third, while it is convenient to be able to open up a directory for reading by group members, doing so is only
useful if all of the directories above it are also minimally accessible. In particular, all the directories in the path to a shared
directory need to have at least x for the group if they are to be accessed in any way by group members.

40 Part I: Introduction to Unix/Linux

40 | Shawn T. O’Neil

To clarify, here are some examples of modifying permissions for the p450s.fasta 8le.

Command Command E6ect E6ect

chmod go-w p450s.fasta Remove write for group and others

chmod ugo+r p450s.fasta Add read for user, group, and others

chmod go-rwx p450s.fasta Remove read, write, and execute for group and others

chmod ugo+x p450s.fasta Add execute for user, group, and others

chmod +x p450s.fasta Same as chmod ugo+x p450s.fasta

If you wish to modify a directory and everything inside, you can add the -R 9ag (capital R this time for recursive) to
chmod. To share a projects directory and everything inside for read access with group members, for example, you can use
chmod -R g+r projects.

There are a few small things to note about 8le and directory permissions. The 8rst is that while it is possible to
change the group of a 8le or directory, you can only do so with the chgrp command if you are a member of that group.

Second, you own the 8les that you create, but generally only the root user has access to the chown utility that changes
the owner of an existing 8le (it wouldn’t be very nice to “gift” another user a nefarious program).

Third, while it is convenient to be able to open up a directory for reading by group members, doing so is only
useful if all of the directories above it are also minimally accessible. In particular, all the directories in the path to a shared
directory need to have at least x for the group if they are to be accessed in any way by group members.

40 Part I: Introduction to Unix/Linux

40 | Shawn T. O’Neil

35 / 122

Exercices

1. Dans votre home, tapez pwd. Qu’est-ce qui est retourné ?

2. Créez un répertoire Man_Shell dans home et déplacez vous dedans

3. Tapez pwd. Qu’est-ce qui est retourné ?

4. Créez un fichier test.txt dans home/Man_Shell

5. Grâce à un éditeur de texte, tapez quelques lignes dans ce fichier

6. Quelles sont les permissions par défaut données au fichier ?

7. Modifiez ces permissions pour le rendre lisible par le groupe

8. Copiez ce fichier dans un fichier test2.txt dans home/Man_Shell

36 / 122

Commandes Bash

– pwd print working directory
• Renvoie le répertoire du chemin courant

– mkdir make dir
• Permet de créer de nouveaux répertoires

– chmod
• Change les permissions d’accès aux fichiers

– ls list files and directories

– cd change directory

– file retourne le type de fichier

– compgen (avec un pipe serait bien)
• Liste des différentes commandes disponibles

– man
• Fournit une description de la commande fournie en argument

37 / 122

Commandes Bash de manipulation de fichiers

– cp copy file

– mv move

• déplace ou renomme des fichiers

– rm remove

• Supprime ou renomme des fichiers ou des répertoires

38 / 122

Les commandes Bash

et le contenu des fichiers

39 / 122

Comparer des fichiers grâce à diff

• Créez fichier_1.txt avec dedans le texte « Ceci est une chaine de
caractères »

• Copiez fichier_1.txt dans fichier_2.txt

– Que donne $ diff fichier_1.txt fichier_2.txt ?

– Et $ diff –s fichier_1.txt fichier_2.txt ?

• Modifiez le contenu de fichier_2.txt en remplaçant
des minuscules par des majuscules

– Que donne $ diff fichier_1.txt fichier_2.txt ?

– Que donne $ diff fichier_1.txt fichier_2.txt -i ?
• Pourquoi ?

40 / 122

Comparer des fichiers grâce à diff

• Modifiez le contenu de fichier_1.txt et de fichier_2.txt en
ajoutant respectivement « ligne 1 » et « ligne 2 »

• Que donne maintenant $ diff fichier_1.txt fichier_2.txt ?

Pour en savoir davantage utilisez diff --help

41 / 122

Commandes Bash

wc (word count) pour compter

– wc –c : compte le nombre de caractères du fichier

– wc –w : compte les mots du fichier

– wc –l : compte le nombre de lignes (en fait les newlines) du fichier

Nombre de lignes (donc de fichiers)
dans le répertoire courant

pipe

42 / 122

Commandes Bash

wc (word count) pour compter

– Compter le nombre d’apparitions d’un mot dans un fichier est
complexe.

– Compter le nombre de lignes où il apparaît est plus facile

Nombre de lignes avec le mot « the »

Nombre de lignes avec le mot
« the » ou « The »

43 / 122

Exercices

9. Quelle commande devez-vous utiliser pour avoir la liste des fichiers de
home/Man_Shell ?

10. Copiez maintenant le fichier microbiome.txt disponible sur e-campus

11. Affichez les 5 premières lignes de microbiome.txt.

12. Affichez les 4 dernières lignes de microbiome.txt.

13. Comptez le nombre de lignes de microbiome.txt.

44 / 122

Exercices

14. Recherchez tous les chiffres dans microbiome.txt et les afficher

15. Combien y en a-t-il ?

16. Comptez le nombre de ‘e’ dans le texte

45 / 122

Commande cat

• de l'anglais catenate, synonyme de concatenate (concaténer),
est une commande Unix standard permettant de

– concaténer des fichiers

– ainsi que d'afficher leur contenu sur la sortie standard

– cat fichier.txt
• Affiche le contenu de fichier.txt

– cat fichier.txt | more
• Affiche la 1ère page de fichier.txt et plus de lignes si on fait return

– cat –n fichier.txt
• Affiche le contenu de fichier.txt en numérotant les lignes (voir cat –b qui ne numérote que les lignes non

vides)

– cat fichier1.txt fichier2.txt
• Affiche le contenu des deux fichiers

– cat source1.txt source2.txt > destination.txt
• Met le contenu des fichiers source1.txt et source2.txt dans le fichier destination.txt

– cat -v nomdufichier.txt
• Affiche les caractères non imprimables du fichier

46 / 122

Commande grep

• grep [options] <expression> <fichiers/répertoires>

– grep cherche la chaîne de caractères <expression> à l'intérieur des fichiers ou des
répertoires spécifiés et affiche les lignes correspondantes.

– Cette commande permet l’utilisation d’expressions régulières (voir plus loin)

47 / 122

Commande grep

• La commande grep permet de capturer un motif dans un texte (Global
Regular Expression Parser)

– grep "Paris" fichier
• Affiche toutes les lignes de fichier qui contiennent « Paris »

– grep –c "Paris" fichier
• Affiche le nombre de lignes de fichier qui contiennent « Paris »

– grep "^Paris" fichier
• Affiche les lignes de fichier qui commencent par « Paris »

(le méta caractère ^ signifie « qui commence par »)

– grep "Paris" repertoire1/*
• Affiche la liste des fichiers de repertoire1 qui contiennent « Paris »

– grep –v "Paris" fichier
• Affiche toutes les lignes de fichier qui ne contiennent pas « Paris »

– grep –i –v "Paris" fichier
• Affiche toutes les lignes de fichier qui ne contiennent pas « Paris » (-i signifie ne pas faire

attention à la casse)

48 / 122

Commande grep

– grep –A3 "Paris" fichier
• Affiche 3 lignes de fichier après (After) le mot« Paris »

– grep –B2 "Paris" fichier
• Affiche 2 lignes de fichier avant (Before) le mot« Paris »

– grep –C5 "Paris" fichier
• Affiche 5 lignes de fichier avant et après le mot« Paris »

– grep –e "Paris" –e "Londres" fichier
• Affiche toutes les lignes de fichier qui contiennent « Paris » ou « Londres »

– grep –E "Paris|Londres" fichier
• Idem en utilisant une expression régulière (voir plus loin)

– Grep "^#" fichier
• Pour afficher les lignes commençant par # (donc les lignes de commentaires)

– Grep "\.$" fichier
• Pour afficher les lignes se terminant par un point ($ signifie se terminant)

