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À partir : 

•  d’un échantillon d’apprentissage 
 
•  de connaissances préalables sur le type de dépendances sur  
 
 
Trouver : 

•  une fonction 
 
•  permettant la prédiction de y pour une nouvelle entrée x 
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Apprentissage	supervisé	

2	
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Induction supervisée 
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Identifieur Genre Age Niveau 
études 

Marié ? Nb enfants Revenu Profession A 
prospecter ? 

I_21 M 43 Bac+5 Oui 3 55 000 Architecte OUI 

I_34 M 25 Bac+2 Non 0 21 000 Infirmier NON 

I_38 F 34 Bac+8 Oui 2 35 000 Chercheus
e 

OUI 

I_39 F 67 Bac Oui 5 20 000 Retraitée NON 

I_58 F 56 CAP Oui 4 27 000 Ouvrière NON 

I_73 M 40 Bac+3 Non 2 31 000 Commercial OUI 

I_81 F 51 Bac+5 Oui 3 75 000 Chef 
d’entreprise 

OUI 

Exemple	
(example,	instance)	

Descripteur	
Attribut	
(feature)	

Étiquette	
(label)	

Les données : organisation et types 	
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Outline	

1.  	Decision	trees	

2.  	Learning	decision	trees	

3.  	Pruning	decision	trees	

4.  	Bias	in	decision	trees	and	oblique	trees	

5.  	Regression	trees	
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Decision trees 
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The	structure	of	decision	trees	

•  The	internal	nodes	test	attribute	values	

•  A	branch	for	each	possible	value	of	the	tested	attribute	

•  Leaves	correspond	to	classes	(labels)	
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abdomen 

pain? 

appendicitis! cough? 

fever? 
yes 

yes no 

cold! flu!

nothing!

nothing chest 

Coronary!
thrombosis !

fever? 

yes no 

flu! Sore Throat!

throat 

no 
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   internal	node	=	 	
	attribute	test	

   branch	= 	 	
	attribute	value	

   leaf	node	=	 	 	
	classification	

©Tom Mitchell, McGraw Hill, 1997

Les	arbres	de	décision	:	représentation	

«	Introduction	to	Decision	Trees	»							(A.	
Cornuéjols)	 8	
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A	Real	Decision	Tree	

+833+167	(tree)	0.8327	0.1673	0	
fetal_presentation	=	1:	+822+116	(tree)	0.8759	0.1241	0	
|			previous_csection	=	0:	+767+81	(tree)	0.904	0.096	0	
|			|			primiparous	=	0:	+399+13	(tree)	0.9673	0.03269	0	
|			|			primiparous	=	1:	+368+68	(tree)	0.8432	0.1568	0	
|			|			|			fetal_distress	=	0:	+334+47	(tree)	0.8757	0.1243	0	
|			|			|			|			birth_weight	<	3349:	+201+10.555	(tree)	0.9482	0.05176	0	
|			|			|			|			birth_weight	>=	3349:	+133+36.445	(tree)	0.783	0.217	0	
|			|			|			fetal_distress	=	1:	+34+21	(tree)	0.6161	0.3839	0	
|			previous_csection	=	1:	+55+35	(tree)	0.6099	0.3901	0	
fetal_presentation	=	2:	+3+29	(tree)	0.1061	0.8939	1	
fetal_presentation	=	3:	+8+22	(tree)	0.2742	0.7258	1		

Decision Tree Trained on 1000 Patients:

«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	 9	
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Expressiveness	of	decision	trees	

•  Any	boolean	function	can	be	represented	by	a	decision	tree	
–  Reminder:	with	6	boolean	attributes,	there	are	26	=	64	possible	examples,	and	there	

exists	approximately	2	.	1019	boolean	functions!!	

•  Some	functions	can	require	very	large	decision	trees	

–  E.g.	The	“parity”	function	and	the	“majority”	function	may	require	exponentially	large	
trees	

–  Other	functions	can	be	represented	with	one	node	

•  Limited	to	propositional	logic.	No	relational	representation	

•  A	tree	corresponds	to	a	disjunction	of	rules	

	 	 						(if	feather	=	no 	 			then	label	=	not	bird)	

	 	 	or	(if	feather	=	yes	&	color	=	brown			then	label	=	not	bird)	

	 	DT	=	 	or	(if	feather	=	yes	&	color	=	B&W 			then	label	=	bird)	

	 	 	or	(if	feather	=	yes	&	color	=	yellow			then	label	=	bird)	

	
10	«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	
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Arbre	de	décision	:	exemple	

Détection	du	spam	

11	«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	
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Exemple	:	arbre	de	décision	

Étude	sur	la	différence	d’appréciation	des	risques	
d’intoxication	des	deux	côtés	de	l’Atlantique.		

(ANR	–	Holyrisk	(2010-2013))	

On	cherche	à	distinguer	deux	classes	de	textes	
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Outline	

1.  	Decision	trees	

2.  	Learning	decision	trees	

3.  	Pruning	decision	trees	

4.  	Bias	in	decision	trees	and	oblique	trees	

5.  	Regression	trees	
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Illustration	

...	
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4.2 Split Selection
83 4

. Tab. 4.1 The watermelon data set 2.0

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

10 green straight crisp clear flat soft false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

which has three possible values {green,dark, light}. IfD is split
by color, then there are three subsets:D1 (color = green), D2

(color = dark), and D3 (color = light).
SubsetD1 includes six samples {1, 4, 6, 10, 13, 17}, in which

p1 = 3
6 of them are positive and p2 = 3

6 of them are negative.
SubsetD2 includes six samples {2, 3, 7, 8, 9, 15}, in whichp1 =
4
6 of them are positive andp2 = 2

6 of them are negative. Subset
D3 includes five samples {5, 11, 12, 14, 16}, in which p1 = 1

5 of
them are positive and p2 = 4

5 of them are negative. According
to (4.1), the entropy of the three child nodes are

Ent(D1) = −
(
3
6
log2

3
6
+ 3

6
log2

3
6

)
= 1.000,

Ent(D2) = −
(
4
6
log2

4
6
+ 2

6
log2

2
6

)
= 0.918,

Ent(D3) = −
(
1
5
log2

1
5
+ 4

5
log2

4
5

)
= 0.722.

Then, we use (4.2) to calculate the information gain of splitting
by color as

Gain(D,color) = Ent(D) −
3∑

v=1

∣∣Dv∣∣

|D| Ent(D
v)

= 0.998 −
(

6
17

× 1.000+ 6
17

× 0.918+ 5
17

× 0.722
)

= 0.109.

How	to	learn	a	decision	tree?	
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  Color  Wings  Feathers  Sonar  Concept 
x23  yellow  yes  yes  no  bird 
x24  B&W  yes  yes  no  bird 
x25  brown  yes  no  yes  Not bird 
   

feather? 

yes no 

bird Not bird 

Sonar? 

yes no 

Not bird  bird 

Color? 

brown yellow 

Not bird  bird 
B&W 

 bird 
Color? 

brown yellow 

Not bird  bird 
B&W 

 bird 

feathers? 

yes no 

Not bird 

There	exist	four	trees	consistant	with	the	data	set	

DT1 

DT2 

DT3 DT4 

Which	tree	to	select	from	H?	

«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	 15	
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L’espace	de	recherche	

•  Toutes	les	séquences	possibles	de	tous	les	tests	(éventuellement	
répétés)	

•  Arbre	de	recherche	GIGANTESQUE	

–  Nombre	de	Catalan	(n	nœuds	d’au	plus	deux	descendants)	

16	«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	

Cn =
1

n + 1

(

2n

n

)

n	=	10			=>						16	796		arbres	binaires	
	
n	=	20		=>		6.56	x	109	arbres	binaires		
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The	search	space	

•  Number	of	trees	=	Catalan’s	number	

17	«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	

Huge	search	space!	
	
How	to	explore	it?	

n	attributes	of		
branching	factor	=	2	
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A	greedy	iterative	top-down	strategy	

•  Principle	

1.   	Select	the	best	attribute	

2.   Grow	the	tree	according	to	the	choice	

3.   	Now	there	are	subsets	of	the	data	set	at	the	leaves	

4.   	Return	to	1	until	stopping	criterion	

18	«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	
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How	to	chose	the	best	separator?	

•  Enclosure	and	entropy	
19	«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	
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How	to	chose	the	best	separator?	

•  Enclosure	and	entropy	
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How	to	chose	the	best	separator?	

•  Enclosure	and	entropy	
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•  Boltzmann entropy 

•  … used by Shannon 

–  In 1949 Shannon proposed an entropy  measure valid for discrete 
probability. 

–  It expresses the quantity of information, that is the number of  bits required 
to specify the distribution 

–  The information entropy is: 

 

 

   where pi is the probability of class Ci. 

I = - p  log (pi 2 i
i=1..k

×∑ )

Impurity	measure:	the	entropy	criterion	

«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	 22	
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Information	entropy	of	S	(with	C	classes)	:	

-  Zero	if	only	one	class	
-  Increasing	as	the	classes	are	more	equi-likely		
-  Equals	log2(k)	when	the	k	classes	are	equiprobables	

-  Unit:	bit	of	information   

I(S)  =  − p(ci) ⋅log 
i=1

C

∑ p(ci)

p(ci):	probability	of	the	class	ci			

Impurity	measure:	the	entropy	criterion	

«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	 23	
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•  For C=2 :   							I(S)	=	-p+	x	log2(p+)-	p-	x	log2(p-)	
                           p+	=	p/	(p+n)	and	p-	=	n/	(p+n) 
 
  d’où 														I(S)				=	-					p			log	(				p				)-						n						log(				n			)		 	 	 	 																					(p+n)								(p+n)							(p+n)									(p+n)		 	 	 	 	 		
	 	 	 	 	 	and						I(S)	=	-	P	log	P	-	(1-P)	log(1-

P)	
   I(S) 

P 
P=p/(p+n)=n/(n+p)=0.5 
equiprobable 

The	entropy	criterion	for	2	classes	

«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	 24	
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|Sv|	:	size	of	the	sub-population	in	the	branch	v	of	A	

Gain(S, A) =  I(S)  −
Sv
Sv  ∈ valeurs( A)

∑ ⋅ I(Sv)

Measures to what extent the knowledge of the value of attribute A  
Brings information about the class of an example 

Entropy	gain	for	one	attribute	

«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	 25	
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Illustration	

...	

26	«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	

4.2 Split Selection
83 4

. Tab. 4.1 The watermelon data set 2.0

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

10 green straight crisp clear flat soft false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

which has three possible values {green,dark, light}. IfD is split
by color, then there are three subsets:D1 (color = green), D2

(color = dark), and D3 (color = light).
SubsetD1 includes six samples {1, 4, 6, 10, 13, 17}, in which

p1 = 3
6 of them are positive and p2 = 3

6 of them are negative.
SubsetD2 includes six samples {2, 3, 7, 8, 9, 15}, in whichp1 =
4
6 of them are positive andp2 = 2

6 of them are negative. Subset
D3 includes five samples {5, 11, 12, 14, 16}, in which p1 = 1

5 of
them are positive and p2 = 4

5 of them are negative. According
to (4.1), the entropy of the three child nodes are

Ent(D1) = −
(
3
6
log2

3
6
+ 3

6
log2

3
6

)
= 1.000,

Ent(D2) = −
(
4
6
log2

4
6
+ 2

6
log2

2
6

)
= 0.918,

Ent(D3) = −
(
1
5
log2

1
5
+ 4

5
log2

4
5

)
= 0.722.

Then, we use (4.2) to calculate the information gain of splitting
by color as

Gain(D,color) = Ent(D) −
3∑

v=1

∣∣Dv∣∣

|D| Ent(D
v)

= 0.998 −
(

6
17

× 1.000+ 6
17

× 0.918+ 5
17

× 0.722
)

= 0.109.
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Illustration	

...	
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4.2 Split Selection
83 4

. Tab. 4.1 The watermelon data set 2.0

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

10 green straight crisp clear flat soft false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

which has three possible values {green,dark, light}. IfD is split
by color, then there are three subsets:D1 (color = green), D2

(color = dark), and D3 (color = light).
SubsetD1 includes six samples {1, 4, 6, 10, 13, 17}, in which

p1 = 3
6 of them are positive and p2 = 3

6 of them are negative.
SubsetD2 includes six samples {2, 3, 7, 8, 9, 15}, in whichp1 =
4
6 of them are positive andp2 = 2

6 of them are negative. Subset
D3 includes five samples {5, 11, 12, 14, 16}, in which p1 = 1

5 of
them are positive and p2 = 4

5 of them are negative. According
to (4.1), the entropy of the three child nodes are

Ent(D1) = −
(
3
6
log2

3
6
+ 3

6
log2

3
6

)
= 1.000,

Ent(D2) = −
(
4
6
log2

4
6
+ 2

6
log2

2
6

)
= 0.918,

Ent(D3) = −
(
1
5
log2

1
5
+ 4

5
log2

4
5

)
= 0.722.

Then, we use (4.2) to calculate the information gain of splitting
by color as

Gain(D,color) = Ent(D) −
3∑

v=1

∣∣Dv∣∣

|D| Ent(D
v)

= 0.998 −
(

6
17

× 1.000+ 6
17

× 0.918+ 5
17

× 0.722
)

= 0.109.

4

82 Chapter 4 · Decision Trees

4.2.1 Information Gain

One of themost commonly usedmeasures for purity is informa-
tion entropy, or simply entropy. Let pk denotes the proportion
of thekth class in the currentdata setD,wherek = 1, 2, . . . , |Y|.
Then, the entropy is defined as

Ent(D) = −
|Y|∑

k=1

pk log2 pk. (4.1)In the calculation of entropy,
p log2 p = 0 when p = 0.

The lower the Ent(D), the higher the purity of D.The minimum of Ent(D) is 0
and the maximum is log2 |Y|. Suppose that the discrete feature a has V possible values

{a1, a2, . . . , aV }. Then, splitting the data set D by feature a
producesV childnodes,where the vth childnodeDv includes all
samples inD taking the value av for feature a. Then, the entropy
of Dv can be calculated using (4.1). Since there are different
numbers of samples in the child nodes, a weight |Dv| / |D| is
assigned to reflect the importance of each node, that is, the
greater the number of samples, the greater the impact of the
branch node. Then, the information gain of splitting the data
set D with feature a is calculated as

Gain(D, a) = Ent(D) −
V∑

v=1

|Dv|
|D| Ent(D

v). (4.2)

In general, the higher the information gain, the more purity
improvementwecanexpect by splittingDwith featurea. There-
fore, information gain can be used for split selection, that is,
using a∗ = argmax

a∈AGain(D,a)
as the splitting feature on the line 8

of . Algorithm 4.1. The well-known decision tree algorithm
ID3 Quinlan (1986) takes information gain as the guideline for
selecting the splitting features.

The term ID in ID3 stands for
Iterative Dichotomiser.

Let us see a more concrete example with the watermelon
data set 2.0 in . Table 4.1. This data set includes 17 training
samples, which are used to train a decision tree classifier for
predicting the ripeness of uncut watermelons, where |Y| = 2.
In the beginning, the root node includes all samples inD, where
p1 = 8

17 of them are positive and p2 = 9
17 of them are negative.

According to (4.1), the entropy of the root node is

Ent(D) = −
2∑

k=1

pk log2 pk = −
(

8
17

log2
8
17

+ 9
17

log2
9
17

)
= 0.998.

Then, we need to calculate the information gain of each
feature in the current feature set {color, root, sound , tex-
ture,umbilicus, surface}. Suppose that we have selected color,
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Illustration	

For	the	“color”	attribute	:	
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4.2 Split Selection
83 4

. Tab. 4.1 The watermelon data set 2.0

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

10 green straight crisp clear flat soft false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

which has three possible values {green,dark, light}. IfD is split
by color, then there are three subsets:D1 (color = green), D2

(color = dark), and D3 (color = light).
SubsetD1 includes six samples {1, 4, 6, 10, 13, 17}, in which

p1 = 3
6 of them are positive and p2 = 3

6 of them are negative.
SubsetD2 includes six samples {2, 3, 7, 8, 9, 15}, in whichp1 =
4
6 of them are positive andp2 = 2

6 of them are negative. Subset
D3 includes five samples {5, 11, 12, 14, 16}, in which p1 = 1

5 of
them are positive and p2 = 4

5 of them are negative. According
to (4.1), the entropy of the three child nodes are

Ent(D1) = −
(
3
6
log2

3
6
+ 3

6
log2

3
6

)
= 1.000,

Ent(D2) = −
(
4
6
log2

4
6
+ 2

6
log2

2
6

)
= 0.918,

Ent(D3) = −
(
1
5
log2

1
5
+ 4

5
log2

4
5

)
= 0.722.

Then, we use (4.2) to calculate the information gain of splitting
by color as

Gain(D,color) = Ent(D) −
3∑

v=1

∣∣Dv∣∣

|D| Ent(D
v)

= 0.998 −
(

6
17

× 1.000+ 6
17

× 0.918+ 5
17

× 0.722
)

= 0.109.
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4.2.1 Information Gain

One of themost commonly usedmeasures for purity is informa-
tion entropy, or simply entropy. Let pk denotes the proportion
of thekth class in the currentdata setD,wherek = 1, 2, . . . , |Y|.
Then, the entropy is defined as

Ent(D) = −
|Y|∑

k=1

pk log2 pk. (4.1)In the calculation of entropy,
p log2 p = 0 when p = 0.

The lower the Ent(D), the higher the purity of D.The minimum of Ent(D) is 0
and the maximum is log2 |Y|. Suppose that the discrete feature a has V possible values

{a1, a2, . . . , aV }. Then, splitting the data set D by feature a
producesV childnodes,where the vth childnodeDv includes all
samples inD taking the value av for feature a. Then, the entropy
of Dv can be calculated using (4.1). Since there are different
numbers of samples in the child nodes, a weight |Dv| / |D| is
assigned to reflect the importance of each node, that is, the
greater the number of samples, the greater the impact of the
branch node. Then, the information gain of splitting the data
set D with feature a is calculated as

Gain(D, a) = Ent(D) −
V∑

v=1

|Dv|
|D| Ent(D

v). (4.2)

In general, the higher the information gain, the more purity
improvementwecanexpect by splittingDwith featurea. There-
fore, information gain can be used for split selection, that is,
using a∗ = argmax

a∈AGain(D,a)
as the splitting feature on the line 8

of . Algorithm 4.1. The well-known decision tree algorithm
ID3 Quinlan (1986) takes information gain as the guideline for
selecting the splitting features.

The term ID in ID3 stands for
Iterative Dichotomiser.

Let us see a more concrete example with the watermelon
data set 2.0 in . Table 4.1. This data set includes 17 training
samples, which are used to train a decision tree classifier for
predicting the ripeness of uncut watermelons, where |Y| = 2.
In the beginning, the root node includes all samples inD, where
p1 = 8

17 of them are positive and p2 = 9
17 of them are negative.

According to (4.1), the entropy of the root node is

Ent(D) = −
2∑

k=1

pk log2 pk = −
(

8
17

log2
8
17

+ 9
17

log2
9
17

)
= 0.998.

Then, we need to calculate the information gain of each
feature in the current feature set {color, root, sound , tex-
ture,umbilicus, surface}. Suppose that we have selected color,

3	subsets		 D1 (color = green)

D3 (color = light)

D2 (color = dark)
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. Tab. 4.1 The watermelon data set 2.0

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

10 green straight crisp clear flat soft false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

which has three possible values {green,dark, light}. IfD is split
by color, then there are three subsets:D1 (color = green), D2

(color = dark), and D3 (color = light).
SubsetD1 includes six samples {1, 4, 6, 10, 13, 17}, in which

p1 = 3
6 of them are positive and p2 = 3

6 of them are negative.
SubsetD2 includes six samples {2, 3, 7, 8, 9, 15}, in whichp1 =
4
6 of them are positive andp2 = 2

6 of them are negative. Subset
D3 includes five samples {5, 11, 12, 14, 16}, in which p1 = 1

5 of
them are positive and p2 = 4

5 of them are negative. According
to (4.1), the entropy of the three child nodes are

Ent(D1) = −
(
3
6
log2

3
6
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6
log2

3
6

)
= 1.000,

Ent(D2) = −
(
4
6
log2
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6
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6
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2
6

)
= 0.918,

Ent(D3) = −
(
1
5
log2

1
5
+ 4

5
log2

4
5

)
= 0.722.

Then, we use (4.2) to calculate the information gain of splitting
by color as

Gain(D,color) = Ent(D) −
3∑

v=1

∣∣Dv∣∣

|D| Ent(D
v)

= 0.998 −
(

6
17

× 1.000+ 6
17

× 0.918+ 5
17

× 0.722
)

= 0.109.
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. Tab. 4.1 The watermelon data set 2.0

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

10 green straight crisp clear flat soft false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

which has three possible values {green,dark, light}. IfD is split
by color, then there are three subsets:D1 (color = green), D2

(color = dark), and D3 (color = light).
SubsetD1 includes six samples {1, 4, 6, 10, 13, 17}, in which

p1 = 3
6 of them are positive and p2 = 3

6 of them are negative.
SubsetD2 includes six samples {2, 3, 7, 8, 9, 15}, in whichp1 =
4
6 of them are positive andp2 = 2

6 of them are negative. Subset
D3 includes five samples {5, 11, 12, 14, 16}, in which p1 = 1

5 of
them are positive and p2 = 4

5 of them are negative. According
to (4.1), the entropy of the three child nodes are

Ent(D1) = −
(
3
6
log2

3
6
+ 3

6
log2

3
6

)
= 1.000,

Ent(D2) = −
(
4
6
log2

4
6
+ 2

6
log2

2
6

)
= 0.918,

Ent(D3) = −
(
1
5
log2

1
5
+ 4

5
log2

4
5

)
= 0.722.

Then, we use (4.2) to calculate the information gain of splitting
by color as

Gain(D,color) = Ent(D) −
3∑

v=1

∣∣Dv∣∣

|D| Ent(D
v)

= 0.998 −
(

6
17

× 1.000+ 6
17

× 0.918+ 5
17

× 0.722
)

= 0.109.
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. Tab. 4.1 The watermelon data set 2.0

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

10 green straight crisp clear flat soft false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

which has three possible values {green,dark, light}. IfD is split
by color, then there are three subsets:D1 (color = green), D2

(color = dark), and D3 (color = light).
SubsetD1 includes six samples {1, 4, 6, 10, 13, 17}, in which

p1 = 3
6 of them are positive and p2 = 3

6 of them are negative.
SubsetD2 includes six samples {2, 3, 7, 8, 9, 15}, in whichp1 =
4
6 of them are positive andp2 = 2

6 of them are negative. Subset
D3 includes five samples {5, 11, 12, 14, 16}, in which p1 = 1

5 of
them are positive and p2 = 4

5 of them are negative. According
to (4.1), the entropy of the three child nodes are

Ent(D1) = −
(
3
6
log2

3
6
+ 3

6
log2

3
6

)
= 1.000,

Ent(D2) = −
(
4
6
log2

4
6
+ 2

6
log2

2
6

)
= 0.918,

Ent(D3) = −
(
1
5
log2

1
5
+ 4

5
log2

4
5

)
= 0.722.

Then, we use (4.2) to calculate the information gain of splitting
by color as

Gain(D,color) = Ent(D) −
3∑

v=1

∣∣Dv∣∣

|D| Ent(D
v)

= 0.998 −
(

6
17

× 1.000+ 6
17

× 0.918+ 5
17

× 0.722
)

= 0.109.
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Fig. 4.2 Splitting the root node by texture

Similarly, we calculate the information gain of other fea-
tures:

Gain(D, root) = 0.143; Gain(D, sound) = 0.141;
Gain(D, texture) = 0.381; Gain(D,umbilicus) = 0.289;
Gain(D, surface) = 0.006.

Since splitting by texture gives the highest information
gain, it is chosen as the splitting feature. . Figure 4.2 shows
the result of splitting the root node by texture.

Then, each child node is further split by the decision tree
algorithm. For example, the first child node (i.e., texture =
clear) includes nine samples:D1 = {1, 2, 3, 4, 5, 6, 8, 10, 15},
and the available feature set is {color, root, sound,umbilicus,
surface}.We calculate the information gains of these candidate

texture is no longer a candidate
splitting feature.

features on D1:

Gain(D1, color) = 0.043; Gain(D1, root) = 0.458;
Gain(D1, sound) = 0.331; Gain(D1,umbilicus) = 0.458;
Gain(D1, surface) = 0.458.

Since root,umbilicus, and surface lead to the highest infor-
mation gains, any of themcanbe chosen as the splitting feature.
Repeating this process for every node, we can obtain the final
decision tree, as shown in . Figure 4.3.

4.2.2 Gain Ratio

The process described above intentionally ignored the column
ID. If we consider ID as a candidate splitting feature, then,
from (4.2), we know its information gain is 0.998, which is
much higher than that of any other features. This is reasonable
since ID produces 17 child nodes, and each node has only a
single sample with maximum purity. However, such a decision

Texture	is	the	best	attribute	

4

84 Chapter 4 · Decision Trees

Fig. 4.2 Splitting the root node by texture

Similarly, we calculate the information gain of other fea-
tures:

Gain(D, root) = 0.143; Gain(D, sound) = 0.141;
Gain(D, texture) = 0.381; Gain(D,umbilicus) = 0.289;
Gain(D, surface) = 0.006.

Since splitting by texture gives the highest information
gain, it is chosen as the splitting feature. . Figure 4.2 shows
the result of splitting the root node by texture.

Then, each child node is further split by the decision tree
algorithm. For example, the first child node (i.e., texture =
clear) includes nine samples:D1 = {1, 2, 3, 4, 5, 6, 8, 10, 15},
and the available feature set is {color, root, sound,umbilicus,
surface}.We calculate the information gains of these candidate

texture is no longer a candidate
splitting feature.

features on D1:

Gain(D1, color) = 0.043; Gain(D1, root) = 0.458;
Gain(D1, sound) = 0.331; Gain(D1,umbilicus) = 0.458;
Gain(D1, surface) = 0.458.

Since root,umbilicus, and surface lead to the highest infor-
mation gains, any of themcanbe chosen as the splitting feature.
Repeating this process for every node, we can obtain the final
decision tree, as shown in . Figure 4.3.

4.2.2 Gain Ratio

The process described above intentionally ignored the column
ID. If we consider ID as a candidate splitting feature, then,
from (4.2), we know its information gain is 0.998, which is
much higher than that of any other features. This is reasonable
since ID produces 17 child nodes, and each node has only a
single sample with maximum purity. However, such a decision
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4.2.1 Information Gain

One of themost commonly usedmeasures for purity is informa-
tion entropy, or simply entropy. Let pk denotes the proportion
of thekth class in the currentdata setD,wherek = 1, 2, . . . , |Y|.
Then, the entropy is defined as

Ent(D) = −
|Y|∑

k=1

pk log2 pk. (4.1)In the calculation of entropy,
p log2 p = 0 when p = 0.

The lower the Ent(D), the higher the purity of D.The minimum of Ent(D) is 0
and the maximum is log2 |Y|. Suppose that the discrete feature a has V possible values

{a1, a2, . . . , aV }. Then, splitting the data set D by feature a
producesV childnodes,where the vth childnodeDv includes all
samples inD taking the value av for feature a. Then, the entropy
of Dv can be calculated using (4.1). Since there are different
numbers of samples in the child nodes, a weight |Dv| / |D| is
assigned to reflect the importance of each node, that is, the
greater the number of samples, the greater the impact of the
branch node. Then, the information gain of splitting the data
set D with feature a is calculated as

Gain(D, a) = Ent(D) −
V∑

v=1

|Dv|
|D| Ent(D

v). (4.2)

In general, the higher the information gain, the more purity
improvementwecanexpect by splittingDwith featurea. There-
fore, information gain can be used for split selection, that is,
using a∗ = argmax

a∈AGain(D,a)
as the splitting feature on the line 8

of . Algorithm 4.1. The well-known decision tree algorithm
ID3 Quinlan (1986) takes information gain as the guideline for
selecting the splitting features.

The term ID in ID3 stands for
Iterative Dichotomiser.

Let us see a more concrete example with the watermelon
data set 2.0 in . Table 4.1. This data set includes 17 training
samples, which are used to train a decision tree classifier for
predicting the ripeness of uncut watermelons, where |Y| = 2.
In the beginning, the root node includes all samples inD, where
p1 = 8

17 of them are positive and p2 = 9
17 of them are negative.

According to (4.1), the entropy of the root node is

Ent(D) = −
2∑

k=1

pk log2 pk = −
(

8
17

log2
8
17

+ 9
17

log2
9
17

)
= 0.998.

Then, we need to calculate the information gain of each
feature in the current feature set {color, root, sound , tex-
ture,umbilicus, surface}. Suppose that we have selected color,
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Root,	surface	and	umbilicus	are	the	best	attributes	

Any	one	of	them	can	be	chosen	
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Fig. 4.2 Splitting the root node by texture

Similarly, we calculate the information gain of other fea-
tures:

Gain(D, root) = 0.143; Gain(D, sound) = 0.141;
Gain(D, texture) = 0.381; Gain(D,umbilicus) = 0.289;
Gain(D, surface) = 0.006.

Since splitting by texture gives the highest information
gain, it is chosen as the splitting feature. . Figure 4.2 shows
the result of splitting the root node by texture.

Then, each child node is further split by the decision tree
algorithm. For example, the first child node (i.e., texture =
clear) includes nine samples:D1 = {1, 2, 3, 4, 5, 6, 8, 10, 15},
and the available feature set is {color, root, sound,umbilicus,
surface}.We calculate the information gains of these candidate

texture is no longer a candidate
splitting feature.

features on D1:

Gain(D1, color) = 0.043; Gain(D1, root) = 0.458;
Gain(D1, sound) = 0.331; Gain(D1,umbilicus) = 0.458;
Gain(D1, surface) = 0.458.

Since root,umbilicus, and surface lead to the highest infor-
mation gains, any of themcanbe chosen as the splitting feature.
Repeating this process for every node, we can obtain the final
decision tree, as shown in . Figure 4.3.

4.2.2 Gain Ratio

The process described above intentionally ignored the column
ID. If we consider ID as a candidate splitting feature, then,
from (4.2), we know its information gain is 0.998, which is
much higher than that of any other features. This is reasonable
since ID produces 17 child nodes, and each node has only a
single sample with maximum purity. However, such a decision

D1 = Dtexture=clear = {(1,+), (2,+), (3,+), (4,+), (5,+), (6,+), (8,�), (10,�), (15,�)}
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Fig. 4.2 Splitting the root node by texture

Similarly, we calculate the information gain of other fea-
tures:

Gain(D, root) = 0.143; Gain(D, sound) = 0.141;
Gain(D, texture) = 0.381; Gain(D,umbilicus) = 0.289;
Gain(D, surface) = 0.006.

Since splitting by texture gives the highest information
gain, it is chosen as the splitting feature. . Figure 4.2 shows
the result of splitting the root node by texture.

Then, each child node is further split by the decision tree
algorithm. For example, the first child node (i.e., texture =
clear) includes nine samples:D1 = {1, 2, 3, 4, 5, 6, 8, 10, 15},
and the available feature set is {color, root, sound,umbilicus,
surface}.We calculate the information gains of these candidate

texture is no longer a candidate
splitting feature.

features on D1:

Gain(D1, color) = 0.043; Gain(D1, root) = 0.458;
Gain(D1, sound) = 0.331; Gain(D1,umbilicus) = 0.458;
Gain(D1, surface) = 0.458.

Since root,umbilicus, and surface lead to the highest infor-
mation gains, any of themcanbe chosen as the splitting feature.
Repeating this process for every node, we can obtain the final
decision tree, as shown in . Figure 4.3.

4.2.2 Gain Ratio

The process described above intentionally ignored the column
ID. If we consider ID as a candidate splitting feature, then,
from (4.2), we know its information gain is 0.998, which is
much higher than that of any other features. This is reasonable
since ID produces 17 child nodes, and each node has only a
single sample with maximum purity. However, such a decision

...	
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A	possible	final	decision	tree	for	the	database	

...	

4.2 Split Selection
85 4

Fig. 4.3 The information gain-based decision tree generated from . Table
4.1

tree does not have generalization ability and cannot effectively
predict new samples.

It turns out that the information gain criterion is biased
toward features with more possible values. To reduce this bias,
the renowned decision tree algorithm C4.5 (Quinlan 1993)
employs gain ratio to select features instead of employing infor-
mation gain. Using a notation similar to (4.2), the gain ratio of
feature a is defined as

Gain_ratio(D, a) = Gain(D, a)
IV(a)

, (4.3)

where

IV(a) = −
V∑

v=1

|Dv|
|D| log2

|Dv|
|D| (4.4)

is called the intrinsic value of feature a (Quinlan 1993). IV(a) is
large when feature a has many possible values (i.e., large V ).
Taking the watermelon data set 2.0 as an example, we have:
IV(surface) = 0.874 (V = 2), IV(color) = 1.580 (V = 3), and
IV(ID) = 4.088 (V = 17).

It should be noted that, in contrast to information gain, the
gain ratio is biased toward features with fewer possible values.
For this reason, the C4.5 algorithm does not use gain ratio
directly for selecting the splitting feature, but uses a heuristic
method (Quinlan 1993): selecting the feature with the highest
gain ratio from the set of candidate features with an informa-
tion gain above the average.
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•  Ideally: 

–  The measure should be zero if the sub-populations are homogeneous (only one class) 

–  The measure should be maximal if the classes are maximally mixed in the sub-
populations 

•  Index Gini   [Breiman et al.,84]   

Impurity	measure:	the	Gini	criterion	
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Some	problems		

And	their	solutions	
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Here,	two	candidate	thresholds:	16°C	and	30°C	

The	attribute	Temp>16°C	is	the	most	informative,	hence	it	is	chosen	

Temp.	6°C	 8°C	 14°C	 18°C	 20°C	 28°C	 32°C	

No	 No	 No	 Yes	 Yes	 Yes	 No	
Play	golf	

Discretizing	continuous	attributes	
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•  Problem:  
Entropy gain unduly favors the attributes with high branching factors 

•  Two solutions: 

–  Binarize all attributes 
•  But the resulting tree lose interpretability 

–  Introduce a normalizing factor to correct the bias 

Gain _ norm(S, A) =  
Gain(S, A)

Si
S
⋅ log 

Si
Si=1

nb  valeurs de  A

∑

Different	branching	factors	
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•  Given example 〈 x	,	c(x)	〉	with missing values for attribute A 

•  How can we compute gain(S, A) ? 

1.  Take	the	most	frequent	value	for	A	in	S	

2.  Take	the	most	frequent	value	for	A	in	the	node		

3.  Distribute	the	example	into	fictive	examples	with	the	possible	values	of	A	
weighted	by	their	respective	frequencies	

❏  E.g.	if	6	examples	in	this	node	take	the	value	A=a1	and	4	examples	the	value	A=a2	
A(x)	=	a1	with	prob=0.6	and	A(x)	=	a2	with	prob=0.4	

❏  When	predicting,	give	the	label	corresponding	to	the	most	likely	leave	

Missing	values	
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Outline	

1.  	Decision	trees	

2.  	Learning	decision	trees	

3.  	Pruning	decision	trees	

4.  	Bias	in	decision	trees	and	oblique	trees	

5.  	Regression	trees	

«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	 37	



/	72	

•  Ensemble d’apprentissage. Ensemble test. 

•  Courbe d’apprentissage 

•  Méthodes d’évaluation de la généralisation 

–  Sur un ensemble test 

–  Validation croisée 

–  “Leave-one-out” 

A-t-on	appris	un	bon	arbre	de	décision	?	

Le	problème	de	la	généralisation	
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•  Types	de	bruits	

–  Erreurs	de	description	

–  Erreurs	de	classification	

–  “clashes”	

–  valeurs	manquantes	

•  Effet	

–  Arbre	trop	développé	:			«	touffus	»,	trop	profond	

Sur-apprentissage	
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Overfitting	
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Overfitting	in	decision	trees	

...	
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Pre	and	post	pruning	

•  The	unpruned	decision	tree	
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4.3 Pruning
87 4

Fig. 4.4 The unpruned decision tree generated from. Table 4.2

method to reserve part of the data as a validation set for per-
formance evaluation. Given the watermelon data set 2.0 in
. Table 4.1, suppose the samples are randomly partitioned
into a training set {1, 2, 3, 6, 7, 10, 14, 15, 16, 17} and a valida-
tion set {4, 5, 8, 9, 11, 12, 13}, as shown in . Table 4.2.

. Tab. 4.2 Splitting the watermelon data set 2.0 into a training set (above
the double dividing line) and a validation set (below the double dividing line)

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

10 green straight crisp clear flat soft false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

ID color root sound texture umbilicus surface ripe

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

Suppose we use the information gain criterion described in
Sect. 4.2.1 for deciding the splitting features, then. Figure 4.4
shows the decision tree trained on the data set in . Table 4.2.
For ease of discussion, we numbered some nodes in the figures.
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Fig. 4.4 The unpruned decision tree generated from. Table 4.2

method to reserve part of the data as a validation set for per-
formance evaluation. Given the watermelon data set 2.0 in
. Table 4.1, suppose the samples are randomly partitioned
into a training set {1, 2, 3, 6, 7, 10, 14, 15, 16, 17} and a valida-
tion set {4, 5, 8, 9, 11, 12, 13}, as shown in . Table 4.2.

. Tab. 4.2 Splitting the watermelon data set 2.0 into a training set (above
the double dividing line) and a validation set (below the double dividing line)

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

10 green straight crisp clear flat soft false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

ID color root sound texture umbilicus surface ripe

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

Suppose we use the information gain criterion described in
Sect. 4.2.1 for deciding the splitting features, then. Figure 4.4
shows the decision tree trained on the data set in . Table 4.2.
For ease of discussion, we numbered some nodes in the figures.

Training	set	

Validation	set	
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Fig. 4.5 The pre-pruned decision tree generated from. Table 4.2

4.3.1 Pre-pruning

Let us take a look at pre-pruning first. According to the infor-
mation gain criterion, umbilicus should be chosen to split
the training set into three branches, as shown in . Figure 4.5.
However, shall we proceed with this split? Pre-pruning decides
by comparing the generalization abilities before and after split-
ting.

Prior to splitting, all samples are in the root node. When
When there is more than one
class with the largest number of
samples, we randomly select one
of the classes.

no splitting is performed, this node is marked as a leaf node
according to line 6 of . Algorithm 4.1, and its label is set to
the majority class (i.e., ripe). By evaluating this single-node
decision tree using the validation set in. Table 4.2,we have the
samples {4, 5, 8} correctly classified and the other four samples
misclassified. Then, the validation accuracy is 3

7 × 100% =
42.9%.

After splitting the root node by umbilicus, the samples
are placed into three child nodes, as shown in . Figure 4.5:
node 2 with the samples {1, 2, 3, 14}, node 3 with the samples
{6, 7, 15, 17}, and node 4 with the samples {10, 16}. We mark
these 3 nodes as leaf nodes and set the labels to the majority
classes, that is, 2 is ripe, 3 is ripe, and 4 is unripe. Then, the
validation accuracy is 5

7 × 100% = 71.4% > 42.9%. Since the
validation accuracy is improved, the splitting using umbilicus
is adopted.

After that, the decision tree algorithm moves on to split
node 2 , and color is chosen based on the information gain
criterion. However, since the sample {5} in the validation set is
misclassified, the validation accuracy drops to 57.1%. Hence,
the pre-pruning strategy stops splitting node 2 . For node 3 ,
the best feature to split on is root.However, since the validation
accuracy after splitting remains the same as 71.4%, pre-pruning
strategy stops splitting node 3 . For node 4 , no splitting is
needed since all samples belong to the same class.

Pre-pruning	

Here,	“umbilicus”	should	be	chosen	to	split	the	the	training	set	into	3	branches		

Should	we	do	it?	

Comparing	the	validation	accuracy	before	splitting	and	after	gives:	

–  Before:	majority	class	“ripe”	(decided	on	the	training	set)	=>	{4,	5,	8}	well-classified	and	{9,	11,	12,	
13}	missclassified	on	the	validation	set	
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3

7
⇥ 100 ⇡ 42.9%

{4,	5,	8,	9,	11,	12,	13}	
from	the	validation	set	
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Fig. 4.5 The pre-pruned decision tree generated from. Table 4.2

4.3.1 Pre-pruning

Let us take a look at pre-pruning first. According to the infor-
mation gain criterion, umbilicus should be chosen to split
the training set into three branches, as shown in . Figure 4.5.
However, shall we proceed with this split? Pre-pruning decides
by comparing the generalization abilities before and after split-
ting.

Prior to splitting, all samples are in the root node. When
When there is more than one
class with the largest number of
samples, we randomly select one
of the classes.

no splitting is performed, this node is marked as a leaf node
according to line 6 of . Algorithm 4.1, and its label is set to
the majority class (i.e., ripe). By evaluating this single-node
decision tree using the validation set in. Table 4.2,we have the
samples {4, 5, 8} correctly classified and the other four samples
misclassified. Then, the validation accuracy is 3

7 × 100% =
42.9%.

After splitting the root node by umbilicus, the samples
are placed into three child nodes, as shown in . Figure 4.5:
node 2 with the samples {1, 2, 3, 14}, node 3 with the samples
{6, 7, 15, 17}, and node 4 with the samples {10, 16}. We mark
these 3 nodes as leaf nodes and set the labels to the majority
classes, that is, 2 is ripe, 3 is ripe, and 4 is unripe. Then, the
validation accuracy is 5

7 × 100% = 71.4% > 42.9%. Since the
validation accuracy is improved, the splitting using umbilicus
is adopted.

After that, the decision tree algorithm moves on to split
node 2 , and color is chosen based on the information gain
criterion. However, since the sample {5} in the validation set is
misclassified, the validation accuracy drops to 57.1%. Hence,
the pre-pruning strategy stops splitting node 2 . For node 3 ,
the best feature to split on is root.However, since the validation
accuracy after splitting remains the same as 71.4%, pre-pruning
strategy stops splitting node 3 . For node 4 , no splitting is
needed since all samples belong to the same class.

Pre-pruning	

The	validation	accuracy	after	splitting	gives:	

	{(4,	ripe),	(5,	ripe),	(8,	ripe),	(9,	unripe),	(11,	unripe),	(12,	unripe),	(13,	unripe)}	

–  After:	=>	{4,	5,	8,	11,	12}	well-classified	and	{9,	13}	missclassified	on	the	validation	set	
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{4,	5,	8,	9,	11,	12,	13}	
from	the	validation	set	

{1,	2,	3,	14}	
from	the	training	set	
Majority	=	“ripe”	 {6,	7,	15,	17}	

	Majority	=	“ripe”	
{10,	16}	

	Majority	=	“unripe”	
{4,	5,	13}	

{8,	9}	 {11,	12}	

5

7
⇥ 100 ⇡ 71.4% > 42.9% Splitting	improves	the	validation	accuracy	
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Pre-pruning	

The		pre-pruned	decision	tree	
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Fig. 4.5 The pre-pruned decision tree generated from. Table 4.2

4.3.1 Pre-pruning

Let us take a look at pre-pruning first. According to the infor-
mation gain criterion, umbilicus should be chosen to split
the training set into three branches, as shown in . Figure 4.5.
However, shall we proceed with this split? Pre-pruning decides
by comparing the generalization abilities before and after split-
ting.

Prior to splitting, all samples are in the root node. When
When there is more than one
class with the largest number of
samples, we randomly select one
of the classes.

no splitting is performed, this node is marked as a leaf node
according to line 6 of . Algorithm 4.1, and its label is set to
the majority class (i.e., ripe). By evaluating this single-node
decision tree using the validation set in. Table 4.2,we have the
samples {4, 5, 8} correctly classified and the other four samples
misclassified. Then, the validation accuracy is 3

7 × 100% =
42.9%.

After splitting the root node by umbilicus, the samples
are placed into three child nodes, as shown in . Figure 4.5:
node 2 with the samples {1, 2, 3, 14}, node 3 with the samples
{6, 7, 15, 17}, and node 4 with the samples {10, 16}. We mark
these 3 nodes as leaf nodes and set the labels to the majority
classes, that is, 2 is ripe, 3 is ripe, and 4 is unripe. Then, the
validation accuracy is 5

7 × 100% = 71.4% > 42.9%. Since the
validation accuracy is improved, the splitting using umbilicus
is adopted.

After that, the decision tree algorithm moves on to split
node 2 , and color is chosen based on the information gain
criterion. However, since the sample {5} in the validation set is
misclassified, the validation accuracy drops to 57.1%. Hence,
the pre-pruning strategy stops splitting node 2 . For node 3 ,
the best feature to split on is root.However, since the validation
accuracy after splitting remains the same as 71.4%, pre-pruning
strategy stops splitting node 3 . For node 4 , no splitting is
needed since all samples belong to the same class.

Here,	gives	a	“decision	stump”:	only	one	splitting	node	



/	72	

Post-pruning	

•  Post-pruning	allows	a	decision	tree	to	grow	into	a	complete	tree		
(here,	validation	accuracy	=	42.9%)	

•  And	then	examines	the	splitting	nodes	starting	from	the	deepest	ones	(here	node	6)	

–  If	the	subtree	led	by	node	(6)	is	pruned,	then	it	includes	{7,	15}	and	the	majority	class	is	set	
to	“ripe”	

–  The	validation	accuracy	increases	to	57.1%	and	pruning	is	performed	
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4.3 Pruning
87 4

Fig. 4.4 The unpruned decision tree generated from. Table 4.2

method to reserve part of the data as a validation set for per-
formance evaluation. Given the watermelon data set 2.0 in
. Table 4.1, suppose the samples are randomly partitioned
into a training set {1, 2, 3, 6, 7, 10, 14, 15, 16, 17} and a valida-
tion set {4, 5, 8, 9, 11, 12, 13}, as shown in . Table 4.2.

. Tab. 4.2 Splitting the watermelon data set 2.0 into a training set (above
the double dividing line) and a validation set (below the double dividing line)

ID color root sound texture umbilicus surface ripe

1 green curly muffled clear hollow hard true

2 dark curly dull clear hollow hard true

3 dark curly muffled clear hollow hard true

6 green slightly curly muffled clear slightly hollow soft true

7 dark slightly curly muffled slightly blurry slightly hollow soft true

10 green straight crisp clear flat soft false

14 light slightly curly dull slightly blurry hollow hard false

15 dark slightly curly muffled clear slightly hollow soft false

16 light curly muffled blurry flat hard false

17 green curly dull slightly blurry slightly hollow hard false

ID color root sound texture umbilicus surface ripe

4 green curly dull clear hollow hard true

5 light curly muffled clear hollow hard true

8 dark slightly curly muffled clear slightly hollow hard true

9 dark slightly curly dull slightly blurry slightly hollow hard false

11 light straight crisp blurry flat hard false

12 light curly muffled blurry flat soft false

13 green slightly curly muffled slightly blurry hollow hard false

Suppose we use the information gain criterion described in
Sect. 4.2.1 for deciding the splitting features, then. Figure 4.4
shows the decision tree trained on the data set in . Table 4.2.
For ease of discussion, we numbered some nodes in the figures.

4
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bottom-up strategy to examine every non-leaf node in a com-
pletely grown decision tree.

4.4 Continuous andMissing Values

4.4.1 Handling Continuous Values

Ourdiscussions so far are limited to discrete features.However,
since continuous features are also common in practice, it is
necessary to knowhow to incorporate continuous features into
decision trees.

We cannot directly split nodes with continuous features
since their values are infinite. The discretization techniques
come in handy in such cases. The most straightforward dis-
cretization strategy is bi-partition, which is used by C4.5 deci-
sion tree (Quinlan 1993).

Given a data set D and a continuous feature a, suppose n
values ofaareobserved inD, andwe sort these values in ascend-
ing order, denoted by {a1,a2, . . . ,an }. With a split point t,D is
partitioned into the subsetsD−

t andD+
t , whereD

−
t includes the

samples with the value of anot greater than t, andD+
t includes

the samples with the value ofagreater than t. For adjacent fea-
ture valuesai andai+1, the partitions are identical for choosing
any t in the interval [ai,ai+1). As a result, for continuous fea-
turea, there are n −1 elements in the following set of candidate
split points:

Ta=
{
ai + ai+1

2
| 1 ! i ! n − 1

}

, (4.7)

where the midpoint ai+ai+1

2 is used as the candidate split point
for the interval [ai,ai+1). Then, the split points are examined in

The split point can be set to the
maximum observed value of this
feature in

[
ai , a

i+ai+1
2

]
. Doing

so ensures that all split points
are the values appeared in the
training set (Quinlan 1993).

the same way as discrete features, and the optimal split points

Fig. 4.6 The post-pruned decision tree generated from. Table 4.2
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Outline	

1.  	Decision	trees	

2.  	Learning	decision	trees	

3.  	Pruning	decision	trees	

4.  	Bias	in	decision	trees	and	oblique	trees	

5.  	Regression	trees	
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Données artificielles générées pour illustrer notre propos: 

napp = 100 individus pour l’apprentissage, ntest = 5000 

pour l’évaluation ; p = 10 variables prédictives, dont 2 

sont pertinentes (x1 et x2) ; problème à 2 classes ; 

absence de bruit sur la classe.
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si (1) x2 > 2 * x1 pour x1 < 0.5

ou (2) x2 > (2 – 2 * x1) pour x1 ≥ 0.5

« rouge » autrement 
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Algorithme récursif de découpage de l’espace de 

représentation. Découpage forcément parallèle aux axes. 

Modèle linéaire par morceaux, non-linéaire au final.

Cf. Introduction aux arbres de décision.
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Un des enjeux de la construction des arbres est de 

détecter la profondeur « optimale » correspondant 

au meilleur arbitrage entre biais et variance (cf. le 

paramètre cp dans rpart de R par ex. – Tutoriel 

package rpart.)

Arbre profond : biais faible, variance forte

Arbre court : biais fort, variance faible
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Un des enjeux de la construction des arbres est de 

détecter la profondeur « optimale » correspondant 
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paramètre cp dans rpart de R par ex. – Tutoriel 

package rpart.)

Arbre profond : biais faible, variance forte
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n= 100 

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 100 46 2 (0.46000000 0.54000000)  
2) x2>=0.4271354 58 15 1 (0.74137931 0.25862069)  

4) x2>=0.733562 27  1 1 (0.96296296 0.03703704) *
5) x2< 0.733562 31 14 1 (0.54838710 0.45161290)  
10) x1>=0.7221232 8  0 1 (1.00000000 0.00000000) *
11) x1< 0.7221232 23  9 2 (0.39130435 0.60869565)  

22) x1< 0.3639227 10  1 1 (0.90000000 0.10000000) *
23) x1>=0.3639227 13  0 2 (0.00000000 1.00000000) *

3) x2< 0.4271354 42  3 2 (0.07142857 0.92857143) *

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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0.
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0.
6

0.
8

1.
0

d$x1

d$
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• La modélisation est contrainte par le nombre 

d’observations disponibles dans TRAIN

• Si on tente de forcer les segmentations, des 

« mauvaises » variables peuvent s’insérer.

arbre.p <- rpart(y ~ ., data = d.train, 
control=list(cp=0,minsplit=2,minbucket=1))
print(arbre.p)

1) root 100 46 2 (0.46000000 0.54000000)  
2) x2>=0.4271354 58 15 1 (0.74137931 0.25862069)  

4) x2>=0.733562 27  1 1 (0.96296296 0.03703704)  
8) x4>=0.1231597 26  0 1 (1.00000000 0.00000000) *
9) x4< 0.1231597 1  0 2 (0.00000000 1.00000000) *

5) x2< 0.733562 31 14 1 (0.54838710 0.45161290)  
10) x1>=0.7221232 8  0 1 (1.00000000 0.00000000) *
11) x1< 0.7221232 23  9 2 (0.39130435 0.60869565)  

22) x1< 0.3639227 10  1 1 (0.90000000 0.10000000)  
44) x4>=0.02095698 9  0 1 (1.00000000 0.00000000) *
45) x4< 0.02095698 1  0 2 (0.00000000 1.00000000) *

23) x1>=0.3639227 13  0 2 (0.00000000 1.00000000) *
3) x2< 0.4271354 42  3 2 (0.07142857 0.92857143)  

6) x1< 0.1139017 3  0 1 (1.00000000 0.00000000) *
7) x1>=0.1139017 39  0 2 (0.00000000 1.00000000) *

library(rpart)
arbre <- rpart(y ~ ., data = d.train)
print(arbre)

TRAIN
(5 feuilles dans 

l’arbre = 5 zones 

sont définies)

TEST

H = 0.1632
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Composantes	de	l’erreur	

L’erreur	résulte	de	deux	composantes	
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Le faible effectif de l’échantillon 

d’apprentissage ne permet pas de trouver 

avec exactitude les « bonnes » frontières.

On construit un modèle à partir d’un échantillon, que 

l’on souhaite performant sur la population. Deux 

composantes pèsent sur l’erreur de prédiction.

Traduit l’incapacité du modèle à 

traduire le concept (la « vraie » 

fonction) reliant Y aux X.
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Oblique	trees	
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Oblique	trees	
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Oblique	decision	trees	

...	
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96 Chapter 4 · Decision Trees

. Tab. 4.5 The watermelon data set 3.0α

ID density sugar ripe

1 0.697 0.460 true
2 0.774 0.376 true
3 0.634 0.264 true
4 0.608 0.318 true
5 0.556 0.215 true
6 0.403 0.237 true
7 0.481 0.149 true
8 0.437 0.211 true

9 0.666 0.091 false
10 0.243 0.267 false
11 0.245 0.057 false
12 0.343 0.099 false
13 0.639 0.161 false
14 0.657 0.198 false
15 0.360 0.370 false
16 0.593 0.042 false
17 0.719 0.103 false

Fig. 4.9 The decision tree generated from. Table 4.5

For example, . Figure 4.9 shows the decision tree trained
on the watermelon data set 3.0α in. Table 4.5, and the corre-
sponding decision boundaries are shown in . Figure 4.10.

The watermelon data set 3.0α is
a copy of the watermelon data
set 3.0 excluding discrete
features.

From . Figure 4.10, we can observe that every segment
is parallel to the axis. Since every segment corresponds to
a specific value of a feature, such decision boundaries make
the learning outcome easy to interpret. In practice, the deci-
sion boundaries often need many segments for good approxi-
mations, e.g., . Figure 4.11. However, such complex decision
trees are often slow to make predictions since they contain
many feature tests.
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4.5 Multivariate Decision Trees
97 4

Fig. 4.10 The decision boundaries of the decision tree in. Figure 4.9

Fig. 4.11 The piecewise approximation of complex decision boundaries

If we can make the decision boundaries oblique, as shown
by the red line in. Figure 4.11, then thedecision treemodel can
be significantly simplified. Multivariate decision tree enables

Also known as oblique decision
tree.

oblique partitions or even more complicated decision bound-
aries.With oblique boundaries, each non-leaf node is no longer
a test for a particular feature but a linear combination of
features. In other words, each non-leaf node is a linear clas-
sifier in the form of

∑d
i=1 wiaa = t, where wi is the weight of
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98 Chapter 4 · Decision Trees

Fig. 4.12 The multivariate decision tree generated from. Table 4.5

Fig. 4.13 The decision boundaries of the decision tree in. Figure 4.12

feature ai , andwi and t are learned from the data set and feature
set of the node. Unlike the traditional univariate decision tree,
the learning process of multivariate decision tree does not look
for an optimal splitting feature but tries to establish a suitable
linear classifier. . Figure 4.12 shows the multivariate decision

See Chap. 3 for linear classifier. tree learned from the watermelon data set 3.0α, and the corre-
sponding decision boundaries are shown in . Figure 4.13.

4.6 Further Reading

Representative decision tree learning algorithms include ID3
(Quinlan1979, 1986),C4.5 (Quinlan1993), andCART(Breiman
et al. 1984). Murthy (1989) surveyed decision tree techniques.
C4.5Rule (Quinlan 1993) is an algorithm that converts C4.5
decision trees into symbolic rules by rewriting each split as a
rule. The converted rule set may possess even better general-
ization ability compared to the original decision tree due to
the merge, addition, and subtraction operations on the rules
during the conversion process.
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Bilan	sur	les	arbres	de	décision	

1.  Avantages	

–  Interprétables		
•  Sélection	automatique	de	variables	«	pertinentes	»	
•  Les	branches	des	arbres	peuvent	se	lire	comme	des	règles	

–  Non	paramétrique	
•  Traitement	indifférencié	des	différents	types	de	variables	prédictives	
•  Robuste	face	aux	données	aberrantes		
•  Solutions	pour	traiter	les	données	manquantes	

–  Complexité	calculatoire	faible	

2.  Inconvénients	

–  Problèmes	de	stabilité	sur	les	petites	bases	de	données		
(feuilles	à	très	petits	effectifs)	

–  Méthode	gloutonne	et	myope		
(pb	pour	identifier	des	interactions	entre	variables	(e.g.	le	XOR)	
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Outline	

1.  	Decision	trees	

2.  	Learning	decision	trees	

3.  	Pruning	decision	trees	

4.  	Bias	in	decision	trees	and	oblique	trees	

5.  	Regression	trees	

«	Introduction	to	Decision	Trees	»							(A.	Cornuéjols)	 59	



/	72	

Limites	des	méthodes	classiques	de	régression	

•  Y	comme	fonction	linéaire	d’une	variable	à	valeur	réelle	

•  Régression	multiple	:	Y	fonction	linéaire	d’un	ensemble	de	variables	

indépendantes	

•  Régression	non	linéaire	

Immensité	de	l’espace	de	recherche	si	on	cherche	à	prendre	en	compte	toutes	
les	combinaisons	des	attributs	
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Régression	linéaire	vs.	arbres	de	régression	

•  Modèle	global	défini	sur	l’ensemble	de	l’espace	de	description	

•  Partition	de	l’espace	avec	des	modèles	locaux	
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Arbres	de	décision	:	quels	concepts	?	
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Domaine	continu	
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Régression	linéaire		vs.		Arbre	de	régression	
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11.2. TREES 259

Figure 11.8: Comparison of CART and Linear Regression

11.2.3 CART versus Linear Models

See Figure 11.8.

...	



/	72	

Particularités	des	arbres	de	régression	

•  Les	attributs	et	la	classe	sont	à	valeur	continue	

•  On	associe	à	chaque	région	Ri	de	X	une	valeur	constante	ci.	

•  On	cherche	en	général	à	minimiser	l’erreur	quadratique	:		
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MSE =
m∑

i=1

K∑

k=1

I(Rk)(yi − ck)2
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Induction	des	arbres	de	régression	

•  Choix	de	l’attribut	et	du	point	de	division	minimisant	la	somme	des	

écarts	quadratique	à	la	moyenne	dans	chacune	des	régions	de	l’espace	

créées	

•  Arrêt	lorsque		

–  Plus	assez	de	points	par	région	

–  Différence	des	moyennes	entre	régions	sous	un	seuil	fixé	
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Regression	trees		(model	trees)	

-  Real-valued	output	y	
-  Object	function:	maximize	
	

measure	of	fit	of	model	

e.g.	linear	model	y	=	ax+b,		
Or	just	constant	model	

data
x

y

S

S1 S2

regression	tree
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Arbres	de	régression	:	exemple	
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	Tiré	de	[Anne-Emmanuelle	BADEL*,	Olivier	MICHEL*	et	Alfred	HERO,	«	Arbres	de	régression	modélisation	non	

paramétrique	et	analyse	des	séries	temporelles	»,	1996]	
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Arbres	de	régression	:	exemple	
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Quand	utiliser	des	arbres	de	régression	

•  La	régression	classique	ne	marche	pas	

–  Dimension		de	l’espace	d’entrée	élevée	

•  L’interprétabilité	du	modèle	est	importante	

•  Le	problème	se	prête	bien	à	une	division	selon	les	axes	
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Conclusions 
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Conclusions	

•  	Good	if	

–  Vectorial	input	space	

–  The	target	concept	corresponds	to	recursive	boxes	with	borders	parallel	
to	the	axes	

•  	Very	simple	

•  	Computational	complexity	of	learning	in	O(A2	.	m)	

–  A	attributes	

–  m	examples	
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•  ..	
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