An Introduction
to Monte-Carlo Tree Search

Antoine Cornuéjols

AgroParisTech — INRAe Paris-Saclay

antoine.cornuejols@agroparistech.fr

eroParisTech /90



Plan

1. | Limites de I'approche classique

2. Evaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits
4. Approche e-greedy

5. UCT =MCTS + UCB

6. lllustrations

7. AlaphaGo Zero

AvgroParisTech « Introduction to Monte-Carlo Tree Search »  (A. Cornuéjols) 2 /90
———



Conventional game tree search

1. Perfect-information games

All aspects of the states are fully observable

2. Technique: MinMax algorithm
(with Alpha-Beta pruning)

MAX

MIN

Effective for

MAX

* Modest branching factor

MIN

MAX

* When a good evaluation function is
available
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L’ algorithme MinMax. Des jeux pathologiques ?!

* Analyse des raisons du succes de MinMax (et de ses limites)

* Un comportement bizarre

A

Un maximum !??
Performance

[

Profondeur
d'exploration
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Importance de |la fonction d’évaluation
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Problems with Go

* The branching factor is large

b = 250 on average ; depth > 200 moves

 We do not know a good evaluation function

Similar looking positions may have completely different outcomes

Alpha-Beta gives weak to intermediate level of play
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Naive approach: but interesting

) . ] Move m;
Basic Monte-Carlo simulations
31 state s;
: : . L . V(m)=2/4=0.5
1. Simulate games using random moves | e ] s
'
fu el 1N
2. Score each game at the end S W W -
‘3;‘iw .- ='_E,~ %:
}TW = EEet S Bt
3. Store winning statistics Se % | e % Simulations
¢ ; ; —_ .
S| B PR
4. Play move with best winning percentage S -
ket

5.  Repeat

= @Z"
" @1
- b -

)

0 Outcomes

Use this a the evaluation function,
hoping it will preserve difference between a
good position and a bad one
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Limits

* Use simulations directly as an evaluation function for o3

e Problems

— Single simulation gives very noisy evaluation: 0/1 signal
— Running many simulations is required for each position (move to consider)

— [llustration

* Typical speed of chess programs = 1 million eval/sec; 30 moves to consider

=> 33,000 eval/move

* Go: 1 million eval/sec; 250 moves to consider ;

=> 4,000 eval/move.sec (not a lot for a complicated game)

— Monte-Carlo was ignored for over 10 years in Go
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Limits

* Does not allocate search and evaluation wisely:

based on promise of the positions

* Evaluation is costly

— We would like to have precise evaluation in the promising regions of the
search space. It does not matter to be precise elsewhere as long as we are

certain it is worthless.

The exploration vs. exploitation tradeoff
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ldea

Use results of previous simulations to guide growth

of the game tree

Politique de « sélection »

* Exploitation: play the seemingly best move

* Exploration: explore moves where the uncertainty is highest

Theory of bandits
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Multi-Armed Bandit problem: illustration

Bras A;

7\d/

Jeton

Figure

A'gron—wisTech « Introduction to Monte-Carlo Tree Search »  (A. Cornuéjols) 13 /90
-_———



Multi-Armed Bandit problem

Assumptions

— Choice among several arms
— Each arm pull is independent of other pulls

— Each arm pull is determined by a distribution of unknown mean

Which arm has the best average payoff?
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Multi-Armed Bandit problem: illustration

>

P(B wins) =
55%

Consider a row with three slot machines

— Each pull of an arm is either
* A win: payoff 1
* Aloss: payoff 0

— Here A is the best arm = but we do not know that

A'gronu'isTech « Introduction to Monte-Carlo Tree Search »  (A. Cornuéjols) 15 /90
———



Plan

1. Limites de l'approche classique
2. Evaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits

4. | Approche e-greedy

5. UCT = MCTS + UCB
6. lllustrations

7. AlaphaGo Zero

A‘groParisTech « Introduction to Monte-Carlo Tree Search »  (A. Cornuéjols) 16 /90
-



Multi-Armed Bandit problem: illustration

P(A wins) = P(B wins) = P(C wins) =
60% 55% 40%

We want to minimize the “regret” = loss wrt. the best sequence of

pulls (if we had known the best arm at the start)

Need to balance exploration and exploitation

Uniform policy Greedy policy
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The e-greedy algorithm

* By default, actions are chosen greedily.

The action with the highest estimated reward is the selected action.

* However, at each time step, an action may instead be selected at random

from the set of all possible actions.

A random action is chosen with a probability ‘c” (Epsilon).
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The e-greedy algorithm

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) <0
N(a) <0

Loop forever:
A . | argmax, Q(a) with probability 1 —e  (breaking ties randomly)
a random action with probability e
R < bandit(A)
N(A)«+ N(A) +1
Q(A) + Q(A) + 3ty [R — Q(A)]

Q(a) : estimate of the value of arm a
N(a) : number of draws of arm a

R :reward

From Sutton & Barto (2018). « Reinforcement learning. An introduction » (2"d edition)
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The e-greedy algorithm

lllustration

* Suppose 5 arms with mean rewards :

— Arm1l:6 Arm2:4 Arm:3:8 Arm4:12

Epsilon Greedy: 100 time-steps per run
Mean Total Reward per Time Step vs Epsilon

Socket Selection Percentage vs Epsilon
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The optimal value for € seems to be ~ 0.2
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The e-greedy algorithm

3
2
«(3)
1 ! 0.(5)
2-(9)
Reward ¢.(1) »i
. . . - - = - - = - = - = - = - = _*(_) -~ - =
distribution I 4.(10)
q+(2)
1 q«(8)
q+(6)
2
-3

Action

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value ¢.(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g¢.(a), unit-variance
normal distribution, as suggested by these gray distributions.

From Sutton & Barto (2018). « Reinforcement learning. An introduction » (2"9 edition)
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The e-greedy algorithm : choice for ¢

Reward
distribution

eroParisTech
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e =0 (greedy)
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Figure 2.2: Average performance of e-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with different bandit problems. All methods used sample
averages as their action-value estimates.
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“Regret ”

e Optimal action a, = argmax E[R;|A; = a]
a

* Regret [ after T time steps

T
L = T]E[Rt|At — a,.,] — ZE[RtlAt — a]
=1

Y i
If I had known the best arm The choices | actually made
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T
L = TE[Rt|At = a*] — E E[Rt|At — a]
1 ' , (=1 ' [
If | had known the best arm The choices | actually made

A’ Linearintime T

(k—1) (k—1)
< L <
p A< L <eT T

el

k arms
A = difference between best arm and the next one

A’ = difference between best arm and the worst one

PROOF : Over T time steps, €T of the actions will have been chosen randomly.
Only one of the k arms gives maximal reward.

The remaining k-1 arms give sub-optimal reward.

Therefore, there are €T(k-1)/k rounds in which a sub-optimal arm is selected.
If at each time, this is the second best arm, then the left inequality follows.
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“Regret”

* Regret [ after T time steps

—(k_l)A < L < eT—(k_l)

A/
k - - k

el

Epsilon Greedy Regret

Cumulative Reward vs Time Regret vs Time
12000 { — Actual
~—— QOptimal 800 4
—— Regret
10000
600 -
8000
b=l
s "
& 6000 %‘
B 2 400
e
4000
200 -
2000
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Steps Time Steps
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7 4 y

(k—1)
A < L < T
2 = b =¢° 2

eT A’ linearintime T

k arms
A = difference between best arm and the next one

A’ = difference between best arm and the worst one
Good for a naive approach. But we can do better

See below the UCB algorithm
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The Upper Confidence Bound algorithm

Principle: Optimism in the face of uncertainty @
— Choose the action as if the environment is as nice as is
plausibly possible

The unknown mean payoff of each arm is as large as plausibly

possible based on the data that has been observed

Intuition. One of two things can happen

1. The optimism was justified: the learner is acting optimally

2. The optimism was not justified: the agent takes some action that he believes
might give large reward when in fact it does not.

If this happens sufficiently often, then the learner will learn what is the true
payoff of this action and not choose it in the future
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The Upper Confidence Bound algorithm

*  Optimism in the face of uncertainty

Arm A : i |
Arm B | : :
— Estimated mean of arm B > estimated mean of arm A
But | — Estimated upper bound ofarm B < estimated upper bound of arm A

Choose arm A

A'groParisTech « Introduction to Monte-Carlo Tree Search »  (A. Cornuéjols)
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What “plausible” means

If X1, Xs,...,X, are independent and 1-subgaussian (which means

that E(X;) =0), and o= >, X¢/n, then:
P(ii>¢) < exp(—ne?/2)
Equating the right-hand side with 0 and solving for ¢ leads to

P{ﬂ >\/%log(%>} <3

Suggests a definition of “as large as plausibly possible”:

. 2 1
Take o+ \/5 10g<5> as the plausible value
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Choice of a good action

When the agent is deciding what to do in round ¢, it has observed
T;(t — 1) samples from arm ¢ and observed rewards with an empirical
mean of [i(t — 1) for it. Then the agent should choose the action

1 that maximizes:

2 1
1 = ArgMax < [ (t—1) + log| —
jegctions{ﬂj( | \/Tj(t—l) g<5)}

Explore more the arms with highest mean
and not well explored

0 1s called the “confidence level” and different choices lead to

different algorithms. We will take: 1/6 = f(t) = 1 + tlog*(t)
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Upper Confidence Bound (UCB)

UCB1 formula [Auer et al. 2002]

The “true value” of arm i is expected to be in some confidence interval
around v;

w; :nbde parties gagnées a partir du nceud i

7; :nb de de fois ou le nceud i a été visité

w;
" In (V).
total number of trials
V; T+ (' x
. \ N; —— .
value estimate tunable parameter num trials for armi
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Upper Confidence Bound (UCB)

UCB1 formula [Auer et al. 2002]

* Policy

1. First, try each arm once

2. Then at each time step:

Choose arm i that maximizes the UCB1 formula

V.
/ ?/

value estimate

eroParisTech
———

() X
\

In(/NVY.

total number of trials

tunable parameter

TV ;

num trials for arm i
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* Let uslook at a very simple scenario with two arms

— Arm 1 with mean value of 6

— Arm 2 with mean value of 4
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Upper Confidence Bound (UCB)

* The solid part of each bar represents the exploration part of the equation, therefore

diminishing with increasing number of tests

* The shaded part of the bar represents the estimate of each arm’s actual value, which

converges to the true value

UCB Exploration-Exploitation

10

UCB Value

04

eroParisTech

2

<«
2

1

Draw arm 1 Draw arm 2

3 K
7
5 > 82 92 102 332 131
2 2
3

4 5 6 7 8 9 10 11 12 13 14
Time Steps
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Upper Confidence Bound (UCB)

e Suppose 5 arms with mean rewards :

— Arm1l:6 Arm2:4 Arm:3:8 Arm4:12 Arm5:10

Upper Confidence Bound: 100 time-steps per run

Socket Selection Percentage vs Confidence Level Mean Total Reward per Time Step vs Confidence Level
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Here, the problem is simple and almost no exploration is needed
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Upper Confidence Bound (UCB)

Mean Total Reward per Time Step vs Confidence Level

—
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e i
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Looking more carefully, a small value of exploration (e.g. C~ 0.7)

00 02 04 06 08 10 12 14 16 18 20

yields the best result (here). The theory would favor C = \/§
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Upper Confidence Bound (UCB)

* Audébut, les 5 bras sont explorés, puis ensuite c’est pratiguement toujours le

bras 4 qui est tiré

UCB Number of Trials vs Time

25 | Sockets
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— 2
—3
—
0] — 5
n 151
9
=
5
g
E
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Time Steps
« Introduction to Monte-Carlo Tree Search »  (A. Cornuéjols) 38 /90

eroParisTech
-_———



Upper Confidence Bound (UCB)

12000

10000 +

8000

Total Reward

4000 A

2000 |

eroParisTech
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Presque tout le regret vient de I'exploration des 5 bras au début,

puis il varie approximativement en log(n)

Upper Confidence Bound (UCB) R

Cumulative Reward vs Time
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- Actual
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ret

Regret vs Time
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Theoretical properties of UCB1

The main question: rate of convergence to optimal arm

Typical goal: achieve a regret of P (log n) for n trials
*  For many kinds of problems, it is not possible to do better

* UCB1 is a simple algorithm that achieves this asymptotic bound for

many input distributions

* Huge amount of literature on different bandit problems and their

properties
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UCB vs. &-greedy
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e-greedy UCB

e Choix aléatoire parfois e Choix déterministe

 Favorise les meilleurs coups apparents | e Favorise les meilleurs coups en
en probabilité apparence par la formule

* Se généralise facilement pour grands e Ne se généralise pas facilement

' 7
espace d’états et pour des - environnement non stationnaire

environnements non stationnaires . ).
- trés grand espace d’états

(apprentissage par renforcement)
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Monte Carlo Tree Search
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e Au lieu de se concentrer sur un seul « bandit »

 MCTS réalise I'exploration d’arbres MinMax
— Chaque successeur est considéré comme un bandit

— Une séquence de bandits est explorée a chaque épisode

e Contrairement a l'algorithme MinMax

— MCTS réalise une exploration a profondeur et largeur variables

MH il

I WL ] ;
li \WHHW\H NHIM

Ty T Ly \&Hmﬁ.w.b“ﬁ 9,, MWMWH\M H.\%.wu'l
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MCTS

S0
0
* A generic way of exploring a @ @
game tree
* Four steps
1. Selection

* Of aleaf to expand

2. Expansion
3.  Simulation (roll out)

4. Back-propagation

e Updating the value of each
ancestor node of the
expanded leaf
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Upper Confidence Tree = MCTS + UCB

Repeat while time remains [
L>Selection — Expansion —— Simulation ——— Backup —J

L

Tree Rollout
Policy Policy

From Sutton & Barto (2018). « Reinforcement learning. An introduction » (2"d edition)
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Upper Confidence Tree = MCTS + UCB

* How to perform the selection?

* Answer: use UCB

 Upper Confidence Tree:
use a look-ahead tree with selection guided by UCB and

exploration/evaluation performed by Monte-Carlo sampling
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Upper Confidence Tree = MCTS + UCB

1. Tree traversal

2. Node expansion

3. Rollout (random simulations)

4. Backpropagation
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Upper Confidence Tree = MCTS + UCB

1. Selection NOT using UCB (here)

Max

Max wins 12 out of 21 plays @
Min

Max wins 7 out of 10 plays, ... @ @ @
Max

Max wins 5 out of 6 plays @ @ @ @ @
i @ @

Max wins 3 out of 3 plays, ...

From [Wikipedia « Monte-Carlo Tree Search ».]
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Upper Confidence Tree = MCTS + UCB

2. Node expansion / rollout

0/1
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Upper Confidence Tree = MCTS + UCB

4. Backpropagation
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Upper Confidence Tree =

MCTS + UCB

* Note that the node selection could have been different

according to the value of Cin:

eroParisTech
a———

’Ui—FCX

value estimate

\

In( VY.

total number of trials

tunable parameter

TV ;

num trials for arm i
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UCT : the algorithm

current = s,

{

iscurrent
leaf node?

YES

Rollout

Is the n; value
for current = 0?

d not the start nod

For each available

action from current

add a new state to
the tree

current = child node

{

of current that
maximizes UCB1(s)

Current = first new
child node

Tree traversal and node expansion

A'gro Pari<sTech « Introduction to Monte-Carlo Tree Search »
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Procedure Rollout

Rollout(s))

— Loop until s; is a terminal state 10

1. a;=random(available_actions(s;))

2. s;:=simulate(a;, s;)

— Return value(s;)

Here, an example where the return

is not win or loose, but a number 10
Terminal state
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Worked out example:

Example Number of trials

UCB]_(S,L) p— U_’L _I_ 2 lnN/ of the parentnode

T %~ Number of trials
of the node n;

S ~
S O
Il
o O
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Worked out example: 15t iteration

Number of trials
In N/ of the parent node

Uz %~ Number of trials
of the node n;

Choice of action

t=20
=0
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Worked out example: 1%t iteration

Number of trials
In N/ of the parent node

U2 %~ Number of trials
of the node n,

Choice of an action

. Choice of action a;
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Worked out example: 1%t iteration

Number of trials
In N/ of the parent node

U2 %~ Number of trials
of the node n,

Choice of action

— Choice of action a;

>
Rollout —
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Worked out example: 15t iteration

Number of trials
In NL/ of the parent node

U2 %~ Number of trials
of the node n,

Choice of action

Rollout

v =20
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Worked out example: 15t iteration

Example Number of trials

UCBl(SZ) p— U_’L _I_ 2 lnN/ of the parentnode

Uz %~ Number of trials
of the node n;

t =
n =
Back-propagation
v = 20
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Worked out example: 2"d iteration

Example Number of trials

In N/ of the parent node
Uz %~ Number of trials
of the node n,

Choice of an action
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Worked out example: 2"d jteration

Example Number of trials
In NL/ of the parent node

U2 %~ Number of trials
of the node n,

Rollout

v =10
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Worked out example: 2"d jteration

Example Number of trials

UCBl(SZ) p— U_’L _I_ 2 lnN/ of the parentnode

Uz %~ Number of trials
of the node n;

Back-propagation

v =10
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Worked out example: 3" iteration

Example
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Worked out example: 3" iteration

Example
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Worked out example: 3" iteration

Example

Rollout

v=20
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Worked out example: 3" iteration

Example
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Worked out example: 4t iteration

Example
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Worked out example: 4t iteration

Example
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Worked out example: 4t iteration

Example
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Worked out example: 4t iteration

What would be
the best action

to take from s,?

Back-propagation

v=14
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Conclusions sur UCT

On continue le processus jusqu’a épuisement des ressources

calcul allouées

+ Preuve de convergence vers MinMax,
mais lent dans la version de base montrée ici

+ Pas besoin de fonction d’évaluation

+ Tres bon quand le facteur de branchement est important.

Controble bien le compromis exploration vs. Exploitation

+ Algorithme « anytime »
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Conclusions (2)

e UCT (= MCTS + UCB) is powerful in order
to chose among alternatives

— By exploring “intelligently” the tree of possible consequences of

potential decisions

* Works when it is possible to explore possible scenarios by

simulation

Requires a good model of the world
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Conclusions (3)

* Compétitions “General Game Playing” : toutes gagnées
par des algorithmes utilisant MCTS depuis 2007

* AlphaGo, AlphaGo Zero et Alpha Zero
utilisent une variante de MCTS (PUCT)

* Peut-étre combiné avec de I'apprentissage par
renforcement profond (Deep RL)
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Predicting the structure of large protein
complexes using AlphaFold and Monte
Carlo tree search

Patrick Bryant'?*, Gabriele Pozzati'?, Wensi Zhu'?, Aditi Shenoy'?, Petras Kundrotas™?® and
Arne Elofsson'?

'Science for Life Laboratory, 172 21 Solna, Sweden

2Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm,
Sweden

*Center for Computational Biology, The University of Kansas, Lawrence, KS 66047, USA

*Corresponding author, email: patrick.bryant@scilifelab.se

Abstract

AlphaFold can predict the structure of single- and multiple-chain proteins with very high
accuracy. However, the accuracy decreases with the number of chains, and the available
GPU memory limits the size of protein complexes which can be predicted. Here we show
that one can predict the structure of large complexes starting from predictions of
subcomponents. We assemble 91 out of 175 complexes with 10-30 chains from predicted
subcomponents using Monte Carlo tree search, with a median TM-score of 0.51. There are
30 highly accurate complexes (TM-score 20.8, 33% of complete assemblies). We create a
scoring function, mpDockQ, that can distinguish if assemblies are complete and predict their
accuracy. We find that complexes containing symmetry are accurately assembled, while
asymmetrical complexes remain challenging. The method is freely available and accesible
as a Colab notebook
https://colab.research.google.com/github/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb.
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Protein structure prediction
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Complex assembly 76
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Wind farm layout optimization using adaptive evolutionary algorithm with
Monte Carlo Tree Search reinforcement learning
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ARTICLE INFO ABSTRACT

Keywords: Recent years have witnessed an enormous growth of wind farm capacity worldwide. Due to the wake effect, the
EVOlufionﬂfY C‘fmputafions velocity of incoming wind is reduced for the wind turbines in the downwind directions, thus causing discounted
Ad_apuve genetic “lg_"”d"m power generation in a wind farm. Previously, a self-informed adaptivity mechanism in evolutionary algorithms
Reinforcement learning was introduced by the authors, which is inspired by the individuals® self-adaptive capability to fit the envi-
Monte-Carlo Tree Search . . . . . :
Wi R ronment in the natural world, where relocating the worst wind turbine with a surrogate model informed
ind farm layout optimization L ) N
mechanism was found to be effective in improving the power conversion efficiency. In this paper, the exploi-
tation capability in the adaptive genetic algorithm is further improved by casting the relocation of multiple wind
turbines into a single-player reinforcement learning problem, which is further addressed by Monte-Carlo Tree
Search embedded within the evolutionary algorithm. In contrast to the moderate improvements of the authors’
previous algorithms, significant improvement is achieved due to the enhanced algorithmic exploitation. The new
algorithm is also applied to solve the optimal layout problem for a recently approved wind farm in New Jersey,
and showed better performance against the benchmark algorithms.

layout of the wind turbines to reduce the wake effect [10]. Wake effect
refers to the situation when the input wind speed for the wind turbines in
the downwind directions are discounted after the wind turbines in the
upwind directions absorb the kinetic energy from the wind [11]. In
addition to the energy output decrease caused by the wake effect, the
wake effect can also cause fatigue loads due to the increased turbulence
of wind flow, which can cause mechanical failure and shorten the life
expectancy of wind turbines [12]. Every percentage of improvement in
efficiency can mean significant profit income, thus requires a meticulous
effort of investigation. The wind farm layout optimization problem
(WFLOP) is a highly complicated problem as even 30 wind turbines
could lead to a high 10** potential solutions given discrete and uniform
turbine types [13] and suffer from “curse of dimensionality” for increase
numbers of wind turbines [14]. With the recent trend of constructing
wind farms with larger capacities, the WFLOP is even more challenging
to solve. The nonconvex and NP-hard nature in WFLOP poses challenges
for exact solution methods such as linear programming, mixed integer
programming. However, there are some attempts using mixed integer
programming [15,16]. Many nature-inspired, population-based meta-
heuristic algorithms have been proposed to solve the WFLOP, such as

1. Introduction

Climate change and global warming have been a major concern for
sustainable social and economic development around the world. It is
estimated that the portion of renewable energy should be at least 67%
among all resources of energies in 2050 compared to 20% in 2018 [1],in
order to meet the target of limiting the global temperature within 1.5 °C
above the preindustrial level according to Intergovernmental Panel on
Climate Change (IPCC) [2] on Climate Change [2]. Wind energy has
become an indispensable altemative to fossil fuels given its advantage of
being sustainable, economically competitive, and abundant [ 3], which
has shown steady growth of capacity and power generation over the past
decades. In 2020 alone, the US has grown the capacity of wind energy by
23 Gigawatts (GW), the largest in history. Optimal design of wind farms
has been thoroughly investigated from different perspectives, such as
cite selection [4], wind turbine design [5], electrical cable placement
[6], wake effect modeling [7], wind speed forecasting [8], and wind
power prediction [9].

One challenge for maximizing the power output is to find an optimal
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Abstract

Maintaining tracks on space objects with limited sets of observers is a critical problem, made more urgent with exponential growth in
the population of near-Earth satellites. An optimally convergent decision making methodology is proposed for sensor tasking, using the
Monte Carlo Tree Search methodology. This methodology is underpinned by the partially observable Markov decision process frame-
work: it utilizes polynomial exploration of the action space, and double progressive widening to avoid curses of history. The developed
tasking techniques are applied to a large-scale application considering the tracking problem in the emerging cislunar regime. Uncertainty
studies are performed for a set of 500 objects in a variety of candidate periodic and highly elliptical orbits, with realistic sensor models
incorporating physical parameters and explicit probability of detection. These simulations are utilized as a means to evaluate observer
quality, considering candidate space-based sensors following L1 Lyapunov and L2 Northern Halo orbits. Results demonstrate the
importance of space-based observers for maintaining estimates on objects in cislunar space and give insight into the criticality of relative

motion between observers and targets when optical measurements are utilized.

© 2022 COSPAR. Published by Elsevier B.V. All rights reserved.

Keywords: Sensor Tasking; Monte Carlo Tree Search; Cislunar SSA; Optical Sensor Systems; Orbit Determination

1. Introduction

Choosing tasking policies for a set of sensors maintain-
ing custody of space objects in various orbit regimes has
long been a relevant problem in Space Domain Awareness
(SDA). As a result of accelerating growth in space object
(SO) populations, it is imperative that limited observa-
tional assets are utilized efficiently. Collision concerns have
increased in recent years, especially in well-populated envi-
ronments such as low-Earth orbit; as such, ensuring colli-
sion avoidance requires careful tracking of in-orbit
satellites and debris. The problem at hand quickly becomes
combinatoric as the object catalog considered expands, and

* Corresponding author.

E-mail addresses: samuel.fedeler@colorado.edu (S. Fedeler), marcus.
holzinger@colorado.edu (M.  Holzinger), wwhitacre@draper.com
(W. Whitacre).
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multiple competing objectives are often desired to leverage
uncued detection of objects in addition to catalog mainte-
nance. As such, the sensor tasking problem is largely bro-
ken into tractable subproblems, in which the objective is
to capture a single aspect of the overarching goal.

Also of interest when considering the sensor tasking
problem is application to the cislunar regime of space. Rel-
atively little literature has been produced on the subject,
and the region is expected to be a growing frontier for
space exploration in coming years (Holzinger et al., 2021;
Bobskill, 2012). As volumes of space further from Earth
are considered, dynamic complexities are introduced, and
it is no longer sufficient to neglect perturbations from the
Moon and the Sun. Trajectories in the cislunar regime
are not necessarily stable, and many initial conditions are
chaotic even when the circular restricted three-body simpli-
fication is applied for analysis. Periodic orbits exist in the
circular and elliptic-restricted three-body problems (Folta
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equations via Monte Carlo tree search
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Abstract

Nonlinear dynamics is ubiquitous in nature and commonly seen in various science
and engineering disciplines. Distilling analytical expressions that govern nonlinear
dynamics from limited data remains vital but challenging. To tackle this funda-
mental issue, we propose a novel Symbolic Physics Learner (SPL) machine to
discover the mathematical structure of nonlinear dynamics. The key concept is
to interpret mathematical operations and system state variables by computational
rules and symbols, establish symbolic reasoning of mathematical formulas via
expression trees, and employ a Monte Carlo tree search (MCTS) agent to explore
optimal expression trees based on measurement data. The MCTS agent obtains an
optimistic selection policy through the traversal of expression trees, featuring the
one that maps to the arithmetic expression of underlying physics. Salient features
of the proposed framework include search flexibility and enforcement of parsimony
for discovered equations. The efficacy and superiority of the PSL machine are
demonstrated by numerical examples, compared with state-of-the-art baselines.

1 Introduction

We usually learn the behavior of a nonlinear dynamical system through its nonlinear governing
differential equations. These equations can be formulated as

y(t) = dy/dt = F(y(t)) 1

where y () = {y1(t), y2(t), ..., yn(t)} € R?*™ denotes the system state at time ¢, F(-) a nonlinear
function set defining the state motions and n the system dimension. The explicit form of F(-) for
some nonlinear dynamics remains underexplored. For example, in a mounted double pendulum
system, the mathematical description of the underlying physics might be unclear due to unknown
viscous and frictional damping forms. These uncertainties yield critical demands for the discovery
of nonlinear dynamics given observational data. Nevertheless, distilling the analytical form of the
governing equations from limited and noisy measurement data, commonly seen in practice, is an
intractable challenge.

Ever since the early work on the data-driven discovery of nonlinear dynamics [ 1, 2], many scientists
have stepped into this field of study. In the recent decade, the escalating advances in machine learning,
data science, and computing power enabled several milestone efforts of unearthing the governing
equations for nonlinear dynamical systems. Notably, a breakthrough model named SINDy based on

“Corresponding author
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1. Limites de l'approche classique

2. Evaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits
4. Approche e-greedy

5. UCT=MCTS + UCB

6. lllustrations

7. | AlaphaGo Zero
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AlphaGo Zero

* Utilise MCTS pour générer des exemples d’apprentissage de qualité pour

I’entrainement du réseau de neurones profond.

* Qui est lui-méme utilisé pour générer de nouvelles parties d’Alpha Zero contre

Alpha Zero.
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AlphaGo Zero

* October 2015:
AlphaGo wins 5-0 against a Go professional Fan Hui

 March 2016:
AlphaGo wins 4-1 against Lee Sedol, winner of 18 world titles

* January 2017:
An improved online version of AlphaGo, called Master, achieved 60 straight wins
against top international players

«  May 2017:

Ke Jie, considered as the best human Go player, loses 3-0 against AlphaGo (Master)

* Late 2017:
AlphaGo Zero is revealed and wins 100-0 against AlphaGo
Self-taught using no human games
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AlphaGo Zero

* 4.9 millions training games

vs. 30 millions training games (using human history of games) for
AlphaGo

e 3 days of training

vs. Several months for AlphaGo

* A single machine with 4 TPUs (Tensor Processing Units)
vs. Multiple machines with 48 TPUs

* Input: the raw board description
vs. manually engineered descriptors of the board
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AlphaGo Zero

* uses a deep neural network fy with parameters 0.

— This neural network takes as an input the raw board representation s of
the position and its history (7 past positions for black and 7 for white),

and outputs both move probabilities and a value: (p, v) = fg(s).

— The vector of move probabilities p represents the probability of selecting
each move a (including pass), p, = Pr(a] s).

— The value v is a scalar evaluation, estimating the probability of the current
player winning from position s.

— This neural network combines the roles of both policy network and value
network into a single architecture.
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AlphaGo Zero

* Playing
— Using UCT = MCTS + UCB
— But no rollouts

— Until end of game

* MCTS
— Choses each move using Q(s,a) + U(s,a) (UCB)

— When a leaf node s’ is encountered: evaluate (P(s’, ), V(s') ) =fs(s’)
Instead of using a rollout
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AlphaGo Zero

a. S:Iect b. Expand and evaluate c. Backup d. Play

Repeat

. 1 te re
55 3 0130 % AP

% (P, v) = fo % % 174
g ) =

)

Figure 2: Monte-Carlo tree search in AlphaGo Zero. a Each simulation traverses the tree by selecting the edge
with maximum action-value (), plus an upper confidence bound U that depends on a stored prior probability P and
visit count N for that edge (which is incremented once traversed). b The leaf node is expanded and the associated
position s is evaluated by the neural network (P(s, ), V(s)) = fo(s); the vector of P values are stored in the outgoing
edges from s. ¢ Action-values () are updated to track the mean of all evaluations V' in the subtree below that action. d
Once the search is complete, search probabilities 7 are returned, proportional to N/7, where N is the visit count of

each move from the root state and 7 is a parameter controlling temperature.

[ Silver, David, et al. "Mastering the game of go without human knowledge. » Nature 550.7676 (2017): 354-359. ]
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AlphaGo Zero

g S1 $2
a. Self-Play a; ~ ' CL2 ~ Ty a; ~ T

) [} e— E.}....}%

™ Uy; 3 yA

Self-play in AlphaGoZero.
— The program plays a game s;, ..., St against itself.
— In each position s, a Monte Carlo Tree Search (MCTS) is executed using the latest neural network f,.
— Moves are selected according to the search probabilities a, computed by the MCTS, o ™ .

— The terminal position st is scored according to the rules of the game to compute the game winner z.
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b. Neural Network Training

S1 $9 S3
H tH
¢ ¢ ¢

Learning in AlphaGoZero.
fo

<
<»

P, () P, (O P3 U3
1} 1} 1} 1} 1} 1}

™ Uy’ 3

_ VA

The neural network takes the raw board position s; as its input, passes it through many convolutional layers
with parameters 6, and outputs both a vector p¢, representing a probability distribution over moves, and a scalar value
v, representing the probability of the current player winning in position s;. The neural network parameters 6 are
updated so as to maximise the similarity of the policy vector p¢ to the search probabilities 7, and to minimise the
error between the predicted winner v; and the game winner z (see Equation 1). The new parameters are used in the

next iteration of self-play a.
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AlphaGo Zero

* AlphaGo Zero plays like humans in the openings and in the end

games which seems to show that this is the way to play best

* Butits middle-game plays are often truly mysterious
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