
/ 90

Antoine Cornuéjols

AgroParisTech – INRAe Paris-Saclay

antoine.cornuejols@agroparistech.fr

An Introduction
to Monte-Carlo Tree Search

/ 90

Plan

1. Limites de l’approche classique

2. Évaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits

4. Approche e-greedy

5. UCT = MCTS + UCB

6. Illustrations

7. AlaphaGo Zero

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 2

/ 90

Conventional game tree search

1. Perfect-information games

All aspects of the states are fully observable

2. Technique: MinMax algorithm
(with Alpha-Beta pruning)

Effective for

• Modest branching factor

• When a good evaluation function is
available

3« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Conventional Game Tree Search

2

Perfect-information	games	 Minimax	algorithm	with	
alpha-beta	pruning

§ All	aspects	of	the	state	
are	fully	observable

§ Effective for
§ Modest branching factor
§ A good heuristic value

function is known

Conventional Game Tree Search

2

Perfect-information	games	 Minimax	algorithm	with	
alpha-beta	pruning

§ All	aspects	of	the	state	
are	fully	observable

§ Effective for
§ Modest branching factor
§ A good heuristic value

function is known

/ 90

L’algorithme MinMax. Des jeux pathologiques ?!

• Analyse des raisons du succès de MinMax (et de ses limites)

• Un comportement bizarre

Profondeur
d'exploration

Performance Un maximum !??

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 4

/ 90

Importance de la fonction d’évaluation

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 5

/ 90

Problems with Go

• The branching factor is large

b ≈ 250 on average ; depth > 200 moves

• We do not know a good evaluation function

Similar looking positions may have completely different outcomes

Alpha-Beta gives weak to intermediate level of play

Go

§ Level weak to intermediate with alpha-beta

§ Branching factor of Go is very large
§ 250 moves on average, game length > 200 moves

§ Order of magnitude greater than the branching factor of 20 for Chess

§ Lack of a good evaluation function
§ Too subtle to model: similar looking positions can have completely different

outcomes

3

6« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

Plan

1. Limites de l’approche classique

2. Évaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits

4. Approche e-greedy

5. UCT = MCTS + UCB

6. Illustrations

7. AlaphaGo Zero

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 7

/ 90

Naïve approach: but interesting

Basic Monte-Carlo simulations

1. Simulate games using random moves

2. Score each game at the end

3. Store winning statistics

4. Play move with best winning percentage

5. Repeat

8« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Use this a the evaluation function,
hoping it will preserve difference between a
good position and a bad one

Basic Monte Carlo Search

8

Move mi

/ 90

Limits

• Use simulations directly as an evaluation function for ab

• Problems

– Single simulation gives very noisy evaluation: 0/1 signal

– Running many simulations is required for each position (move to consider)

– Illustration

• Typical speed of chess programs = 1 million eval/sec ; 30 moves to consider
=> 33,000 eval/move

• Go: 1 million eval/sec ; 250 moves to consider ;
=> 4,000 eval/move.sec (not a lot for a complicated game)

9« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Monte-Carlo was ignored for over 10 years in Go

/ 90

Limits

• Does not allocate search and evaluation wisely:
based on promise of the positions

• Evaluation is costly

– We would like to have precise evaluation in the promising regions of the
search space. It does not matter to be precise elsewhere as long as we are
certain it is worthless.

10« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

The exploration vs. exploitation tradeoff

/ 90

Plan

1. Limites de l’approche classique

2. Évaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits

4. Approche e-greedy

5. UCT = MCTS + UCB

6. Illustrations

7. AlaphaGo Zero

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 11

/ 90

Use results of previous simulations to guide growth
of the game tree

• Exploitation: play the seemingly best move

• Exploration: explore moves where the uncertainty is highest

Theory of bandits

Idea

12« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Politique de « sélection »

/ 90

Multi-Armed Bandit problem: illustration

13« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Figure

/ 90

Multi-Armed Bandit problem

Assumptions

– Choice among several arms

– Each arm pull is independent of other pulls

– Each arm pull is determined by a distribution of unknown mean

Which arm has the best average payoff?

14« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Multi-Armed Bandit Problem

u Assumptions:

u Choice of several arms

u Each arm pull is independent of other pulls

u Each arm has fixed, unknown average payoff

u Which arm has the best average payoff?

13

/ 90

Multi-Armed Bandit problem: illustration

Consider a row with three slot machines

– Each pull of an arm is either

• A win: payoff 1
• A loss: payoff 0

– Here A is the best arm à but we do not know that

15« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Consider a row of three slot machines

u Each pull of an arm is either

u A win(payoff 1) or

u A loss (payoff 0)

u A is the best arm à but we don’t know that 14

A B C

P(A wins) =
60%

P(B wins) =
55%

P(C wins) =
40%

/ 90

Plan

1. Limites de l’approche classique

2. Évaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits

4. Approche e-greedy

5. UCT = MCTS + UCB

6. Illustrations

7. AlaphaGo Zero

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 16

/ 90

Multi-Armed Bandit problem: illustration

We want to minimize the “regret” = loss wrt. the best sequence of

pulls (if we had known the best arm at the start)

Need to balance exploration and exploitation

17« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Consider a row of three slot machines

u Each pull of an arm is either

u A win(payoff 1) or

u A loss (payoff 0)

u A is the best arm à but we don’t know that 14

A B C

P(A wins) =
60%

P(B wins) =
55%

P(C wins) =
40%

Uniform policy Greedy policy

/ 90

The e-greedy algorithm

• By default, actions are chosen greedily.

The action with the highest estimated reward is the selected action.

• However, at each time step, an action may instead be selected at random

from the set of all possible actions.

A random action is chosen with a probability ‘ε’ (Epsilon).

18« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

The e-greedy algorithm

19« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

From Sutton & Barto (2018). « Reinforcement learning. An introduction » (2nd edition)

32 Chapter 2: Multi-armed Bandits

method uses the step-size parameter 1

n
. In this book we denote the step-size parameter

by ↵ or, more generally, by ↵t(a).
Pseudocode for a complete bandit algorithm using incrementally computed sample

averages and "-greedy action selection is shown in the box below. The function bandit(a)
is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Loop forever:

A
⇢

argmax
a
Q(a) with probability 1� " (breaking ties randomly)

a random action with probability "
R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems,
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are e↵ectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average Qn of the n� 1 past rewards is modified to be

Qn+1

.
= Qn + ↵

h
Rn �Qn

i
, (2.5)

where the step-size parameter ↵ 2 (0, 1] is constant. This results in Qn+1 being a weighted
average of past rewards and the initial estimate Q1:

Qn+1 = Qn + ↵
h
Rn �Qn

i

= ↵Rn + (1� ↵)Qn

= ↵Rn + (1� ↵) [↵Rn�1 + (1� ↵)Qn�1]

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2Qn�1

= ↵Rn + (1� ↵)↵Rn�1 + (1� ↵)2↵Rn�2 +

· · · + (1� ↵)n�1↵R1 + (1� ↵)nQ1

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi. (2.6)

Q(a) : estimate of the value of arm a
N(a) : number of draws of arm a
R : reward

/ 90

The e-greedy algorithm

Illustration

• Suppose 5 arms with mean rewards :

– Arm 1 : 6 Arm 2 : 4 Arm : 3 : 8 Arm 4 : 12 Arm 5 : 10

20« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

The optimal value for e seems to be ~ 0.2

/ 90

The e-greedy algorithm

From Sutton & Barto (2018). « Reinforcement learning. An introduction » (2nd edition)

21« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

28 Chapter 2: Multi-armed Bandits

from among all the actions with equal probability, independently of the action-value
estimates. We call methods using this near-greedy action selection rule "-greedy methods.
An advantage of these methods is that, in the limit as the number of steps increases,
every action will be sampled an infinite number of times, thus ensuring that all the Qt(a)
converge to their respective q⇤(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1 � ", that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical e↵ectiveness of
the methods.

Exercise 2.1 In "-greedy action selection, for the case of two actions and " = 0.5, what is
the probability that the greedy action is selected? ⇤

2.3 The 10-armed Testbed

To roughly assess the relative e↵ectiveness of the greedy and "-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k -armed bandit problems with k = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, q⇤(a), a = 1, . . . , 10,

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)

Reward
distribution

1 2 63 54 7 8 9 10

Action
Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q⇤(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean q⇤(a), unit-variance
normal distribution, as suggested by these gray distributions.

/ 90

The e-greedy algorithm : choice for e

…

22« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

28 Chapter 2: Multi-armed Bandits

from among all the actions with equal probability, independently of the action-value
estimates. We call methods using this near-greedy action selection rule "-greedy methods.
An advantage of these methods is that, in the limit as the number of steps increases,
every action will be sampled an infinite number of times, thus ensuring that all the Qt(a)
converge to their respective q⇤(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1 � ", that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical e↵ectiveness of
the methods.

Exercise 2.1 In "-greedy action selection, for the case of two actions and " = 0.5, what is
the probability that the greedy action is selected? ⇤

2.3 The 10-armed Testbed

To roughly assess the relative e↵ectiveness of the greedy and "-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k -armed bandit problems with k = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, q⇤(a), a = 1, . . . , 10,

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)

Reward
distribution

1 2 63 54 7 8 9 10

Action
Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q⇤(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean q⇤(a), unit-variance
normal distribution, as suggested by these gray distributions.

2.3. The 10-armed Testbed 29

were selected according to a normal (Gaussian) distribution with mean 0 and variance 1.
Then, when a learning method applied to that problem selected action At at time step t,
the actual reward, Rt, was selected from a normal distribution with mean q⇤(At) and
variance 1. These distributions are shown in gray in Figure 2.1. We call this suite of test
tasks the 10-armed testbed. For any learning method, we can measure its performance
and behavior as it improves with experience over 1000 time steps when applied to one of
the bandit problems. This makes up one run. Repeating this for 2000 independent runs,
each with a di↵erent bandit problem, we obtained measures of the learning algorithm’s
average behavior.

Figure 2.2 compares a greedy method with two "-greedy methods ("=0.01 and "=0.1),
as described above, on the 10-armed testbed. All the methods formed their action-value
estimates using the sample-average technique (with an initial estimate of 0). The upper
graph shows the increase in expected reward with experience. The greedy method
improved slightly faster than the other methods at the very beginning, but then leveled
o↵ at a lower level. It achieved a reward-per-step of only about 1, compared with the best
possible of about 1.54 on this testbed. The greedy method performed significantly worse
in the long run because it often got stuck performing suboptimal actions. The lower graph

 (greedy)

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Steps

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

Steps

1

1

"=0.1

"=0.01

"=0.1

"=0.01

"=0

 (greedy)"=0

Figure 2.2: Average performance of "-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with di↵erent bandit problems. All methods used sample
averages as their action-value estimates.

/ 90

“ Regret ”

• Optimal action

• Regret L after T time steps

23« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

If I had known the best arm The choices I actually made

/ 90

“ Regret ” for the e-greedy algorithm
...

24« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

k arms
D = difference between best arm and the next one
D’ = difference between best arm and the worst one

Linear in time T

PROOF : Over T time steps, eT of the actions will have been chosen randomly.
Only one of the k arms gives maximal reward.
The remaining k-1 arms give sub-optimal reward.
Therefore, there are eT(k-1)/k rounds in which a sub-optimal arm is selected.
If at each time, this is the second best arm, then the left inequality follows.

"T
(k � 1)

k
�  L  "T

(k � 1)

k
�0

If I had known the best arm The choices I actually made

/ 90

“ Regret ”

• Regret L after T time steps

25« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

"T
(k � 1)

k
�  L  "T

(k � 1)

k
�0

/ 90

“ Regret ” for the e-greedy algorithm
...

26« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

k arms
D = difference between best arm and the next one
D’ = difference between best arm and the worst one

Linear in time T

Good for a naïve approach. But we can do better

"T
(k � 1)

k
�  L  "T

(k � 1)

k
�0

See below the UCB algorithm

/ 90

Plan

1. Limites de l’approche classique

2. Évaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits

4. Approche e-greedy

5. UCT = MCTS + UCB

6. Illustrations

7. AlaphaGo Zero

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 27

/ 90

The Upper Confidence Bound algorithm

Principle: Optimism in the face of uncertainty

– Choose the action as if the environment is as nice as is
plausibly possible

The unknown mean payoff of each arm is as large as plausibly
possible based on the data that has been observed

28« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Intuition. One of two things can happen

1. The optimism was justified: the learner is acting optimally

2. The optimism was not justified: the agent takes some action that he believes
might give large reward when in fact it does not.

If this happens sufficiently often, then the learner will learn what is the true
payoff of this action and not choose it in the future

/ 90

The Upper Confidence Bound algorithm

• Optimism in the face of uncertainty

– Estimated mean of arm B > estimated mean of arm A

– Estimated upper bound of arm B < estimated upper bound of arm A

29« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Arm A

Arm B

Choose arm A

But

/ 90

What “plausible” means

Suggests a definition of “as large as plausibly possible”:

30« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

If X1, X2, . . . , Xn are independent and 1-subgaussian (which means

that E(Xi) = 0), and µ̂ =
Pn

i=1 Xt/n, then:

P(µ̂ � ")  exp(�n"2/2)

Equating the right-hand side with � and solving for " leads to

P

⇢
µ̂ �

s
2

n
log

✓
1

�

◆�
 �

Take as the plausible value

<latexit sha1_base64="2NsZV32WYCNo63EX1hdiLtUcTnw=">AAAFlnicpVTbbtNAEJ0WAiXcUnipxItFgyhCREnETUJCFagCXlCo6EWqq8p2NokVxzbrdaGy/Ff8DLzCA/wFZ8ZrqaRqqYSt2LNnZs6cGW/WT6MwM93ut4XFCxcbly4vXWlevXb9xs3W8q3tLMl1oLaCJEr0ru9lKgpjtWVCE6ndVCtv5kdqx5++Zv/OodJZmMQfzVGq9mfeOA5HYeAZQAet9+120514pnBneem4L5yH/HCzTxrQSHtB0S+LGJ4oGbt+OB5HaxXcKwt3qCLjlQLrB6XTbLcPWqvdTlcu56TRs8Yq2WuQLC+ukEtDSiignGakKCYDOyKPMtx71KMupcD2qQCmYYXiV1RSE7k5ohQiPKBTPMdY7Vk0xpo5M8kOUCXCTyPToXvISRCnYXM1R/y5MDN6GnchnKztCG/fcs2AGpoA/VdeHXnePO7F0IieSw8hekoF4e4Cy5LLVFi5c6wrA4YUGNtD+DXsQDLrOTuSk0nvPFtP/L8kklFeBzY2p99WZQzks0xrJvpjsBfAOUuBsZRV3ZmPu6BNoKyV1XLV+8KaiRbfKh/aqhqVmOfsahvwp1JrvpoDX13NsTWraCU9xtJTtXu45gjvTbw91GQuntAXPDVYC3oHZCqZMT3CXuxQH3uSdVc9naVxgKxE9shxXh8Vj6+zuXUOpQVyS3vXU6vZPPz4a4eIPQKe0KH9yryLeabmTFXpf6hKz61qaL9wtW7a/XGaJl/+70ryY9kHRuL5LJiI0h4m/5jr4ozpzZ8oJ43tfqf3tPPkQ391/ZU9bZboDt2lNTA9o3V6C+VbYP9K3+kH/WysNF42NhpvqtDFBZtzm/66GoM/7/Amag==</latexit>

µ̂ +

s
2

n
log

✓
1

�

◆

/ 90

Choice of a good action

...
31« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

When the agent is deciding what to do in round t, it has observed

Ti(t� 1) samples from arm i and observed rewards with an empirical

mean of µ̂(t� 1) for it. Then the agent should choose the action

i that maximizes:

i = ArgMax
j 2 actions

⇢
µ̂j(t� 1) +

s
2

Tj(t� 1)
log

✓
1

�

◆�

� is called the “confidence level” and di↵erent choices lead to

di↵erent algorithms. We will take: 1/� = f(t) = 1 + t log2(t)

Explore more the arms with highest mean
and not well explored

/ 90

Upper Confidence Bound (UCB)

UCB1 formula [Auer et al. 2002]

• The “true value” of arm i is expected to be in some confidence interval
around vi

32« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Upper Confidence Bound

u UCB1 formula (Auer et al 2002)

u Policy

1. First, try each arm once

2. Then, at each time step:

u Choose arm i that maximizes the UCB1 formula for the upper confidence bound

17

<latexit sha1_base64="iCaES4cVuXLLoZT7YQPsihFDRVg=">AAAFV3icpVRNb9NAEJ2GpITw0QQuSFwsIgQXoqQq0GMFQoJbqUhbqa0i29m0Vpy1tV63jaz8Eq7wo/oP4FfAm8laCqkaKmEr9uzbmTdvxpMN0jjKbLd7tVa5U62t363fa9x/8PDRRrP1eD9LchOqfpjEiTkM/EzFkVZ9G9lYHaZG+ZMgVgfB+APvH5wrk0WJ/mqnqTqZ+Kc6GkWhbwENmhvHI+OHxcUgmhUaj0Gz3e105fKuGz1ntMldu0mr8pSOaUgJhZTThBRpsrBj8inDfUQ96lIK7IQKYAZWJPuKZtRAbA4vBQ8f6BjPU6yOHKqxZs5MokNkifEziPToBWIS+BnYnM2T/VyYGb2JuxBO1jbFO3BcE6CWzoD+K670vG0c12JpRNtSQ4SaUkG4utCx5NIVVu4tVGXBkAJje4h9AzuUyLLPnsRkUjv31pf9n+LJKK9D55vTL6dSA7mQbk1EvwZ7AZyjFBhnsiorC3AXtAeUtbJazvpSWDPREjjlQ5fVIBPzrM72Efup5FrO5mGvzOa5nHNvJTVqqWk+PZxzhPce3j5yMhd36BJPA9aCPgMZS6Sm15jFDm1iJln3vKZVGncRlciMLPIGyLi4zpbWOZQWiJ25u+xayebjx187gu8UeELn7ivzFHNP7UpV6X+oSm+taui+8HzdcPNxk6ZA/u9K4rXMgRV/PgvORGkPnd/ivDhjessnynVjf7PTe9t582WrvfPenTZ1ekbP6RWY3tEOfYLyvpw63+g7/aheVX/X1mv1uWtlzcU8ob+uWusPd1kQ6Q==</latexit>wi

ni

: nb de parties gagnées à partir du nœud i

: nb de de fois où le nœud i a été visité

<latexit sha1_base64="xnXqwGkA/Z0Q7zeaalFHpo4E/Ck=">AAAFSXicpVRNb9NAEJ2mLpTw0RYuSFwsIgQXorgqH8cKhAS3UkhbqVSV7WxSK/bastctkZWfwBV+FL+AfwBHbogTb8ZrKaRqqISt2LNvZ968GU82yOKoML3et6XWsrNy5erqtfb1Gzdvra1v3N4r0jIPVT9M4zQ/CPxCxZFWfROZWB1kufKTIFb7wfgl7++fqryIUv3eTDJ1lPgjHQ2j0DeA3p0dR8frnV63J5d73vCs0SF77aQbrbv0gQaUUkglJaRIk4Edk08F7kPyqEcZsCOqgOWwItlXNKU2Ykt4KXj4QMd4jrA6tKjGmjkLiQ6RJcYvR6RLDxCTwi+Hzdlc2S+FmdGLuCvhZG0TvAPLlQA1dAL0X3GN52XjuBZDQ3ouNUSoKROEqwstSyldYeXuTFUGDBkwtgfYz2GHEtn02ZWYQmrn3vqy/108GeV1aH1L+mFVaiBn0q1E9GuwV8A5SoFxKqumsgB3RbtAWSur5awPhbUQLYFVPrBZc2RinsXZXmE/k1zz2VzsNdlcm7P2VlKjlprq6eGcQ7x38faRk7m4Qx/xzMFa0RsgY4nU9Biz2KVNzCTrrmtapHEHUanMyCxvgIyz62JuXUJphdipvZuuNWw+fvy1I/hOgKd0ar8yTzH31CxUlf2HquzSqgb2C9frtp2PizQF8n9XEq9lDoz481lwIko9dH6L8+KM8eZPlPPG3mbXe9p98nars/3CnjardI/u0yMwPaNteg3lfbCP6BN9pi/OV+en88v5Xbu2lmzMHfrrWln+A8mVDSA=</latexit>wi
<latexit sha1_base64="dn3kJjhL/UnZXdmximKYXGS/w00=">AAAFSXicpVRNb9NAEJ2mLpTw1cIFiYtFhOBCFFeF9liBkOBWCmkrlaqynU1qxV5b9roQWfkJXOFH8Qv4B3DkhjjxZryWQqqGStiKPft25s2b8WSDLI4K0+t9W2otOytXrq5ea1+/cfPW7bX1O/tFWuah6odpnOaHgV+oONKqbyITq8MsV34SxOogGL/g/YMzlRdRqt+ZSaaOE3+ko2EU+gbQW30Snax1et2eXO55w7NGh+y1m6637tF7GlBKIZWUkCJNBnZMPhW4j8ijHmXAjqkClsOKZF/RlNqILeGl4OEDHeM5wurIohpr5iwkOkSWGL8ckS49REwKvxw2Z3NlvxRmRi/iroSTtU3wDixXAtTQKdB/xTWel43jWgwNaVtqiFBTJghXF1qWUrrCyt2ZqgwYMmBsD7Cfww4lsumzKzGF1M699WX/u3gyyuvQ+pb0w6rUQD5ItxLRr8FeAecoBcaprJrKAtwV7QFlrayWsz4S1kK0BFb5wGbNkYl5Fmd7if1Mcs1nc7HXZHNtztpbSY1aaqqnh3MO8d7D20dO5uIOfcQzB2tFr4GMJVLTE8xilzYwk6y7rmmRxl1EpTIjs7wBMs6ui7l1CaUVYqf2brrWsPn48deO4DsBntKZ/co8xdxTs1BV9h+qskurGtgvXK/bdj4u0hTI/11JvJY5MOLPZ8GpKPXQ+U3OizPGmz9Rzhv7G13vWffpm83OznN72qzSfXpAj8G0RTv0Csr7YB/RJ/pMX5yvzk/nl/O7dm0t2Zi79Ne1svwHnYgNFw==</latexit>ni

/ 90

Upper Confidence Bound (UCB)

UCB1 formula [Auer et al. 2002]

• Policy

1. First, try each arm once

2. Then at each time step:

Choose arm i that maximizes the UCB1 formula

33« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Upper Confidence Bound

u UCB1 formula (Auer et al 2002)

u Policy

1. First, try each arm once

2. Then, at each time step:

u Choose arm i that maximizes the UCB1 formula for the upper confidence bound

17

so far

/ 90

• Let us look at a very simple scenario with two arms

– Arm 1 with mean value of 6

– Arm 2 with mean value of 4

34« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

Upper Confidence Bound (UCB)

35« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

• The solid part of each bar represents the exploration part of the equation, therefore
diminishing with increasing number of tests

• The shaded part of the bar represents the estimate of each arm’s actual value, which
converges to the true value

Draw arm 1 Draw arm 2

/ 90

Upper Confidence Bound (UCB)

36« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Here, the problem is simple and almost no exploration is needed

• Suppose 5 arms with mean rewards :

– Arm 1 : 6 Arm 2 : 4 Arm : 3 : 8 Arm 4 : 12 Arm 5 : 10

/ 90

Upper Confidence Bound (UCB)

37« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Looking more carefully, a small value of exploration (e.g. C ~ 0.7)
yields the best result (here). The theory would favor C =

p
2

/ 90

Upper Confidence Bound (UCB)

38« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

• Au début, les 5 bras sont explorés, puis ensuite c’est pratiquement toujours le
bras 4 qui est tiré

/ 90

Upper Confidence Bound (UCB)

39« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

• Presque tout le regret vient de l’exploration des 5 bras au début,
puis il varie approximativement en log(n)

/ 90

Theoretical properties of UCB1

The main question: rate of convergence to optimal arm

• Typical goal: achieve a regret of O (log n) for n trials

• For many kinds of problems, it is not possible to do better

• UCB1 is a simple algorithm that achieves this asymptotic bound for
many input distributions

• Huge amount of literature on different bandit problems and their

properties

40« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

UCB vs. e-greedy

41« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

…

42« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

e-greedy UCB

• Choix aléatoire parfois

• Favorise les meilleurs coups apparents
en probabilité

• Se généralise facilement pour grands
espace d’états et pour des
environnements non stationnaires
(apprentissage par renforcement)

• Choix déterministe

• Favorise les meilleurs coups en
apparence par la formule

• Ne se généralise pas facilement

 - environnement non stationnaire

 - très grand espace d’états

/ 90

Monte Carlo Tree Search

43« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

• Au lieu de se concentrer sur un seul « bandit »

• MCTS réalise l’exploration d’arbres MinMax
– Chaque successeur est considéré comme un bandit

– Une séquence de bandits est explorée à chaque épisode

• Contrairement à l’algorithme MinMax
– MCTS réalise une exploration à profondeur et largeur variables

44« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

MCTS

• A generic way of exploring a
game tree

• Four steps
1. Selection

• Of a leaf to expand

2. Expansion

3. Simulation (roll out)

4. Back-propagation
• Updating the value of each

ancestor node of the
expanded leaf

45« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

s0 s0

s0 s0

1

3

2

4

/ 90

Upper Confidence Tree = MCTS + UCB

46« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

From Sutton & Barto (2018). « Reinforcement learning. An introduction » (2nd edition)

186 Chapter 8: Planning and Learning with Tabular Methods

extending the initial portions of trajectories that have received high evaluations from
earlier simulations. MCTS does not have to retain approximate value functions or policies
from one action selection to the next, though in many implementations it retains selected
action values likely to be useful for its next execution.

For the most part, the actions in the simulated trajectories are generated using a simple
policy, usually called a rollout policy as it is for simpler rollout algorithms. When both
the rollout policy and the model do not require a lot of computation, many simulated
trajectories can be generated in a short period of time. As in any tabular Monte Carlo
method, the value of a state–action pair is estimated as the average of the (simulated)
returns from that pair. Monte Carlo value estimates are maintained only for the subset
of state–action pairs that are most likely to be reached in a few steps, which form a tree
rooted at the current state, as illustrated in Figure 8.10. MCTS incrementally extends
the tree by adding nodes representing states that look promising based on the results
of the simulated trajectories. Any simulated trajectory will pass through the tree and
then exit it at some leaf node. Outside the tree and at the leaf nodes the rollout policy is
used for action selections, but at the states inside the tree something better is possible.
For these states we have value estimates for at least some of the actions, so we can pick
among them using an informed policy, called the tree policy, that balances exploration

Selection SimulationExpansion Backup
Repeat while time remains

Tree
 Policy

Rollout
Policy

Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).

/ 90

Upper Confidence Tree = MCTS + UCB

• How to perform the selection?

• Answer: use UCB

• Upper Confidence Tree:

use a look-ahead tree with selection guided by UCB and

exploration/evaluation performed by Monte-Carlo sampling

47« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

Upper Confidence Tree = MCTS + UCB

1. Tree traversal

2. Node expansion

3. Rollout (random simulations)

4. Backpropagation

48« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

Plan

1. Limites de l’approche classique

2. Évaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits

4. Approche e-greedy

5. UCT = MCTS + UCB

6. Illustrations

7. AlaphaGo Zero

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 49

/ 90

Upper Confidence Tree = MCTS + UCB

1. Selection NOT using UCB (here)

50« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Max

Max

Min

Min

From [Wikipedia « Monte-Carlo Tree Search ».]

Max wins 12 out of 21 plays

Max wins 7 out of 10 plays, ...

Max wins 5 out of 6 plays

Max wins 3 out of 3 plays, ...

Selection

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

Expansion

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

Simulation

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

0/1

Backpropagation

12/22

7/11 5/8 0/3

2/4 5/7 1/2 2/3 2/3

2/3 3/4

0/1

14/10/2024 09:58 upload.wikimedia.org/wikipedia/commons/0/04/MCTS.svg

https://upload.wikimedia.org/wikipedia/commons/0/04/MCTS.svg 1/1

/ 90

Upper Confidence Tree = MCTS + UCB

2. Node expansion / rollout

51« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Selection

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

Expansion

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

Simulation

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

0/1

Backpropagation

12/22

7/11 5/8 0/3

2/4 5/7 1/2 2/3 2/3

2/3 3/4

0/1

14/10/2024 09:58 upload.wikimedia.org/wikipedia/commons/0/04/MCTS.svg

https://upload.wikimedia.org/wikipedia/commons/0/04/MCTS.svg 1/1

Selection

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

Expansion

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

Simulation

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

0/1

Backpropagation

12/22

7/11 5/8 0/3

2/4 5/7 1/2 2/3 2/3

2/3 3/4

0/1

14/10/2024 09:58 upload.wikimedia.org/wikipedia/commons/0/04/MCTS.svg

https://upload.wikimedia.org/wikipedia/commons/0/04/MCTS.svg 1/1

/ 90

Upper Confidence Tree = MCTS + UCB

4. Backpropagation

52« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Selection

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

Expansion

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

Simulation

12/21

7/10 5/8 0/3

2/4 5/6 1/2 2/3 2/3

2/3 3/3

0/0

0/1

Backpropagation

12/22

7/11 5/8 0/3

2/4 5/7 1/2 2/3 2/3

2/3 3/4

0/1

14/10/2024 09:58 upload.wikimedia.org/wikipedia/commons/0/04/MCTS.svg

https://upload.wikimedia.org/wikipedia/commons/0/04/MCTS.svg 1/1

/ 90

Upper Confidence Tree = MCTS + UCB

• Note that the node selection could have been different

according to the value of C in:

53« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Upper Confidence Bound

u UCB1 formula (Auer et al 2002)

u Policy

1. First, try each arm once

2. Then, at each time step:

u Choose arm i that maximizes the UCB1 formula for the upper confidence bound

17

/ 90

UCT : the algorithm

Tree traversal and node expansion

54« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Start

current = s0

is current a
leaf node?

current = child node
of current that

maximizes UCB1(si)

Rollout

Is the ni value
for current = 0?

For each available
action from current
add a new state to

the tree

Current = first new
child node

Rollout

YES

YES

NO

NO

and not the start node

/ 90

Procedure Rollout

Rollout(si)

– Loop until si is a terminal state

1. ai = random(available_actions(si))

2. si := simulate(ai, si)

– Return value(si)

55« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Terminal state

si

10

10

Here, an example where the return
is not win or loose, but a number

/ 90

Worked out example:

Example

56« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

t0 = 0
n0 = 0s0

/ 90

Worked out example: 1st iteration

Choice of action

57« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

t0 = 0
n0 = 0s0

s1 s2

a1 a2
t = 0
n = 0

t = 0
n = 0

/ 90

Worked out example: 1st iteration

Choice of an action

58« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

t0 = 0
n0 = 0s0

s1 s2

a1 a2
t = 0
n = 0

t = 0
n = 0

UCB1(s2) = 1UCB1(s1) = 1

Choice of action a1

/ 90

Worked out example: 1st iteration

Choice of action

59« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

t0 = 0
n0 = 0s0

s1 s2

a1 a2
t = 0
n = 0

t = 0
n = 0

UCB1(s2) = 1UCB1(s1) = 1

Choice of action a1
not visited yet

Rollout

/ 90

Worked out example: 1st iteration

Choice of action

60« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

t0 = 0
n0 = 0s0

s1 s2

a1 a2
t = 0
n = 0

t = 0
n = 0

Rollout

v = 20

/ 90

Worked out example: 1st iteration

61« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

Example

s0

s1 s2

a1 a2
t = 0
n = 0

v = 20

Back-propagation

n0 = 1
t0 = 20

t = 20
n = 1

/ 90

Worked out example: 2nd iteration

62« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

Example

s0

s1 s2

a1 a2
t = 0
n = 0

n0 = 1
t0 = 20

t = 20
n = 1

UCB1(s1) = 20 + 2

r
ln 1

1
= 20 UCB1(s2) = 1

Choice of an action

/ 90

Worked out example: 2nd iteration

63« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

Example

s0

s1 s2

a1 a2
t = 0
n = 0

n0 = 1
t0 = 20

t = 20
n = 1

Rollout

v = 10

/ 90

Worked out example: 2nd iteration

64« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

UCB1(si) = vi + 2

r
lnN

ni

Number of trials
of the parent node

Number of trials
of the node ni

Example

s0

s1 s2

a1 a2
t = 20

n = 1

v = 10

Back-propagation

n = 1
t = 10

n0 = 2
t0 = 30

/ 90

Worked out example: 3rd iteration

65« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Example
s0

s1 s2

a1 a2
t = 20

n = 1n = 1
t = 10

n0 = 2
t0 = 30

Node expansion

a3 a4

s3 s4t = 0
n = 0

t = 0
n = 0

/ 90

Worked out example: 3rd iteration

66« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Example
s0

s1 s2

a1 a2
t = 20

n = 1n = 1
t = 10

n0 = 2
t0 = 30

Node expansion

a3 a4

s3 s4t = 0
n = 0

t = 0
n = 0

UCB1(s3) = 1 UCB1(s4) = 1

/ 90

Worked out example: 3rd iteration

67« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Example
s0

s1 s2

a1 a2
t = 20

n = 1n = 1
t = 10

n0 = 2
t0 = 30

a3 a4

s3 s4t = 0
n = 0

t = 0
n = 0

Rollout

v = 0

/ 90

Worked out example: 3rd iteration

68« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Example
s0

s1 s2

a1 a2
t = 20

n = 1
t = 10

t0 = 30

a3 a4

s3 s4t = 0 t = 0
n = 0

v = 0

Back-propagation

n = 1

n = 2

n0 = 3

/ 90

Worked out example: 4th iteration

69« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Example

s0

s1 s2

a1 a2
t = 20

n = 1
t = 10

t0 = 30

a3 a4

s3 s4t = 0 t = 0
n = 0n = 1

n = 2

n0 = 3

UCB1(s1) = 10 + 2

r
ln 3

2
= 11.48

UCB1(s2) = 10 + 2

r
ln 3

1
= 12.10

/ 90

Worked out example: 4th iteration

70« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Example

s0

s1 s2

a1 a2
t = 20

n = 1
t = 10

t0 = 30

a3 a4

s3 s4t = 0 t = 0
n = 0n = 1

n = 2

n0 = 3

a5 a6

s5 s6t = 0
n = 0

t = 0
n = 0

/ 90

Worked out example: 4th iteration

71« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Example
s0

s1 s2

a1 a2
t = 20

n = 1
t = 10

t0 = 30

a3 a4

s3 s4t = 0 t = 0
n = 0n = 1

n = 2

n0 = 3

a5 a6

s5 s6t = 0
n = 0

t = 0
n = 0

Rollout

v = 14

/ 90

Worked out example: 4th iteration

72« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

What would be
the best action

to take from s0?

s0

s1 s2

a1 a2
t = 20

a3 a4

s3 s4t = 0 t = 0
n = 0n = 1

n = 2

a5 a6

s5 s6 t = 0
n = 0

v = 14

Back-propagation

n = 1

n = 2

n0 = 4
t0 = 44

t = 14

t = 24

/ 90

Conclusions sur UCT

On continue le processus jusqu’à épuisement des ressources
 calcul allouées

+ Preuve de convergence vers MinMax,
mais lent dans la version de base montrée ici

+ Pas besoin de fonction d’évaluation

+ Très bon quand le facteur de branchement est important.
Contrôle bien le compromis exploration vs. Exploitation

+ Algorithme « anytime »

73« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

Conclusions (2)

• UCT (= MCTS + UCB) is powerful in order
to chose among alternatives

– By exploring “intelligently” the tree of possible consequences of
potential decisions

• Works when it is possible to explore possible scenarios by
simulation

Requires a good model of the world

74« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

Conclusions (3)

• Compétitions “General Game Playing” : toutes gagnées
par des algorithmes utilisant MCTS depuis 2007

• AlphaGo, AlphaGo Zero et Alpha Zero
utilisent une variante de MCTS (PUCT)

• Peut-être combiné avec de l’apprentissage par
renforcement profond (Deep RL)

75« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 9076« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 9077« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 9078« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 9079« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

Plan

1. Limites de l’approche classique

2. Évaluation par Monte-Carlo

3. Le compromis Exploration vs. Exploitation : algorithmes de bandits

4. Approche e-greedy

5. UCT = MCTS + UCB

6. Illustrations

7. AlaphaGo Zero

« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols) 80

/ 90

AlphaGo Zero

• Utilise MCTS pour générer des exemples d’apprentissage de qualité pour
l’entraînement du réseau de neurones profond.

• Qui est lui-même utilisé pour générer de nouvelles parties d’Alpha Zero contre
Alpha Zero.

81« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

AlphaGo Zero

• October 2015:
AlphaGo wins 5-0 against a Go professional Fan Hui

• March 2016:
AlphaGo wins 4-1 against Lee Sedol, winner of 18 world titles

• January 2017:
An improved online version of AlphaGo, called Master, achieved 60 straight wins
against top international players

• May 2017:

Ke Jie, considered as the best human Go player, loses 3-0 against AlphaGo (Master)

• Late 2017:

AlphaGo Zero is revealed and wins 100-0 against AlphaGo

Self-taught using no human games

82« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

AlphaGo Zero

• 4.9 millions training games
vs. 30 millions training games (using human history of games) for
AlphaGo

• 3 days of training
vs. Several months for AlphaGo

• A single machine with 4 TPUs (Tensor Processing Units)
vs. Multiple machines with 48 TPUs

• Input: the raw board description
vs. manually engineered descriptors of the board

83« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

AlphaGo Zero

• uses a deep neural network fθ with parameters θ.

– This neural network takes as an input the raw board representation s of
the position and its history (7 past positions for black and 7 for white),
and outputs both move probabilities and a value: (p, v) = fθ(s).

– The vector of move probabilities p represents the probability of selecting
each move a (including pass), pa = Pr(a| s).

– The value v is a scalar evaluation, estimating the probability of the current
player winning from position s.

– This neural network combines the roles of both policy network and value
network into a single architecture.

84« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

AlphaGo Zero

• Playing

– Using UCT = MCTS + UCB

– But no rollouts

– Until end of game

• MCTS

– Choses each move using Q(s,a) + U(s,a) (UCB)

– When a leaf node s’ is encountered: evaluate (P(sʹ , ·), V(s ʹ)) = fθ(sʹ)
Instead of using a rollout

85« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

AlphaGo Zero

[Silver, David, et al. "Mastering the game of go without human knowledge. » Nature 550.7676 (2017): 354-359.]

86« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Figure 2: Monte-Carlo tree search in AlphaGo Zero. a Each simulation traverses the tree by selecting the edge

with maximum action-value Q, plus an upper confidence bound U that depends on a stored prior probability P and

visit count N for that edge (which is incremented once traversed). b The leaf node is expanded and the associated

position s is evaluated by the neural network (P (s, ·), V (s)) = f✓(s); the vector of P values are stored in the outgoing

edges from s. c Action-values Q are updated to track the mean of all evaluations V in the subtree below that action. d

Once the search is complete, search probabilities ⇡⇡⇡ are returned, proportional to N1/⌧ , where N is the visit count of

each move from the root state and ⌧ is a parameter controlling temperature.

once by the network to generate both prior probabilities and evaluation, (P (s0, ·), V (s0)) = f✓(s0).

Each edge (s, a) traversed in the simulation is updated to increment its visit count N(s, a), and to

update its action-value to the mean evaluation over these simulations, Q(s, a) = 1/N(s, a)
P

s0|s,a!s0 V (s0),

where s, a ! s0 indicates that a simulation eventually reached s0 after taking move a from position

s.

MCTS may be viewed as a self-play algorithm that, given neural network parameters ✓ and

a root position s, computes a vector of search probabilities recommending moves to play, ⇡⇡⇡ =

↵✓(s), proportional to the exponentiated visit count for each move, ⇡a / N(s, a)1/⌧ , where ⌧ is a

temperature parameter.

The neural network is trained by a self-play reinforcement learning algorithm that uses

MCTS to play each move. First, the neural network is initialised to random weights ✓0. At each

subsequent iteration i � 1, games of self-play are generated (Figure 1a). At each time-step t,

an MCTS search ⇡⇡⇡t = ↵✓i�1(st) is executed using the previous iteration of neural network f✓i�1 ,

and a move is played by sampling the search probabilities ⇡⇡⇡t. A game terminates at step T when

5

/ 90

AlphaGo Zero

Self-play in AlphaGoZero.

– The program plays a game s1, ..., sT against itself.

– In each position st, a Monte Carlo Tree Search (MCTS) is executed using the latest neural network fq.

– Moves are selected according to the search probabilities aq computed by the MCTS, a ~ pq.

– The terminal position sT is scored according to the rules of the game to compute the game winner z.

87« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Figure 1: Self-play reinforcement learning in AlphaGo Zero. a The program plays a game s1, ..., sT against itself.

In each position st, a Monte-Carlo tree search (MCTS) ↵✓ is executed (see Figure 2) using the latest neural network

f✓. Moves are selected according to the search probabilities computed by the MCTS, at ⇠ ⇡⇡⇡t. The terminal position

sT is scored according to the rules of the game to compute the game winner z. b Neural network training in AlphaGo

Zero. The neural network takes the raw board position st as its input, passes it through many convolutional layers

with parameters ✓, and outputs both a vector pt, representing a probability distribution over moves, and a scalar value

vt, representing the probability of the current player winning in position st. The neural network parameters ✓ are

updated so as to maximise the similarity of the policy vector pt to the search probabilities ⇡t⇡t⇡t, and to minimise the

error between the predicted winner vt and the game winner z (see Equation 1). The new parameters are used in the

next iteration of self-play a.

4

/ 90

AlphaGo Zero

88« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

Figure 1: Self-play reinforcement learning in AlphaGo Zero. a The program plays a game s1, ..., sT against itself.

In each position st, a Monte-Carlo tree search (MCTS) ↵✓ is executed (see Figure 2) using the latest neural network

f✓. Moves are selected according to the search probabilities computed by the MCTS, at ⇠ ⇡⇡⇡t. The terminal position

sT is scored according to the rules of the game to compute the game winner z. b Neural network training in AlphaGo

Zero. The neural network takes the raw board position st as its input, passes it through many convolutional layers

with parameters ✓, and outputs both a vector pt, representing a probability distribution over moves, and a scalar value

vt, representing the probability of the current player winning in position st. The neural network parameters ✓ are

updated so as to maximise the similarity of the policy vector pt to the search probabilities ⇡t⇡t⇡t, and to minimise the

error between the predicted winner vt and the game winner z (see Equation 1). The new parameters are used in the

next iteration of self-play a.

4

Learning in AlphaGoZero.

Figure 1: Self-play reinforcement learning in AlphaGo Zero. a The program plays a game s1, ..., sT against itself.

In each position st, a Monte-Carlo tree search (MCTS) ↵✓ is executed (see Figure 2) using the latest neural network

f✓. Moves are selected according to the search probabilities computed by the MCTS, at ⇠ ⇡⇡⇡t. The terminal position

sT is scored according to the rules of the game to compute the game winner z. b Neural network training in AlphaGo

Zero. The neural network takes the raw board position st as its input, passes it through many convolutional layers

with parameters ✓, and outputs both a vector pt, representing a probability distribution over moves, and a scalar value

vt, representing the probability of the current player winning in position st. The neural network parameters ✓ are

updated so as to maximise the similarity of the policy vector pt to the search probabilities ⇡t⇡t⇡t, and to minimise the

error between the predicted winner vt and the game winner z (see Equation 1). The new parameters are used in the

next iteration of self-play a.

4

/ 90

AlphaGo Zero

• AlphaGo Zero plays like humans in the openings and in the end

games which seems to show that this is the way to play best

• But its middle-game plays are often truly mysterious

89« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

/ 90

References

• Vincent Barra, Antoine Cornuéjols & Laurent Miclet: “Apprentissage artificiel.
Concepts et algorithms. De Bayes et Hume au Deep Learning”. Eyrolles, 2021.

• Aske Plaat: “Deep Reinforcement Learning”. Springer, 2022

• Max Pumperla & Kevin Ferguson: “Deep Learning and the Game of Go”. Manning,
2019

• Stuart Russell & Peter Norvig: “Artificial Intelligence. A modern approach”. Global
Edition, 2022

• Richard Sutton & Andrew Barto: “Reinforcement Learning. An Introduction”. MIT
Press, 2018 (la bible par les pionniers du RL)

• https://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
(pour ceux qui aiment les maths)

• https://towardsdatascience.com/the-upper-confidence-bound-ucb-bandit-
algorithm-c05c2bf4c13f (très pédagogique, avec des bouts de code python)

90« Introduction to Monte-Carlo Tree Search » (A. Cornuéjols)

https://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
https://towardsdatascience.com/the-upper-confidence-bound-ucb-bandit-algorithm-c05c2bf4c13f
https://towardsdatascience.com/the-upper-confidence-bound-ucb-bandit-algorithm-c05c2bf4c13f

