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Rappels : un algorithme de classification binaire

• Soit un classifieur d’erreur e 

– La probabilité qu’il classe mal m’ exemples parmi m est :

– D’où la probabilité qu’il classe mal             exemples est :

– Ce qui est la probabilité que son erreur apparente sur un ensemble de test 
de taille m soit  

3

2
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Hence, we can use the testing error rate distribution to infer
the generalization error rate distribution.

A generalization error rate of εmeans that the learner has a
probability of ε tomake an incorrect prediction. A testing error
rate of ε̂means that the learner misclassified ε̂×m samples in a
testing set ofm samples. Suppose the testing samples are drawn
i.i.d . from the population distribution. Then, the probability
that a learner with a generalization error rate of ε misclassifies
m′ samples and correctly classifies the rest is

(m
m′

)
εm

′
(1−ε)m−m′

.
Consequently, for a learner with a generalization error rate of
ε, the probability of misclassifying ε̂×m samples, which is also
the probability that the testing error rate being ε̂ on a testing
set of m samples, is

P(ε̂; ε) =
(

m
ε̂ × m

)
εε̂×m(1 − ε)m−ε̂×m. (2.26)

By solving ∂P(ε̂; ε)/∂ε = 0 with the testing error rate, we
observe that P(ε̂; ε) is maximized when ε = ε̂, and P(ε̂; ε)
decreases as

∣∣ε − ε̂
∣∣ increases. The observation follows the bino-

mial distribution, and, as shown in . Figure 2.6, the learner is
most likely to misclassify 3 samples out of 10 samples when
ε = 0.3.

We can use binomial test to verify hypotheses such as ‘‘ε !
0.3’’, that is, the generalization error rate is not greater than 0.3.
More generally, for the hypothesis ‘‘ε ! ε0’’, (2.27) gives the
maximum observable error rate within a probability of 1 − α.
The probability is also known as confidence, corresponding to
the non-shaded part of . Figure 2.6.

Common values of α include
0.05 and 0.1. We use a large α in
. Figure 2.6 for illustration
purposes.

Fig. 2.6 Binomial distribution (m = 10, ε = 0.3)
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Rappels : un algorithme de classification binaire (2)

• On voudrait tester si               (e.g.                   )
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Distribution binomiale avec m = 10 et ✏ = 0.3
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Rappels : un algorithme de classification binaire (2)

• On voudrait tester si               (e.g.                   )
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Distribution binomiale avec m = 10 et ✏ = 0.3

2.4 Comparison Test
43 2

ε̄ = min ε s.t.
m∑

i=ε×m+1

(
m
i

)
εi0(1 − ε0)

m−i < α. (2.27) ‘‘s.t.’’ stands for ‘‘subject to’’,
indicating that the expression on
the right-hand side must be met
while solving the expression on
the left-hand side.If the testing error rate ε̂ is greater than the critical value ε,

We can compute the critical
value with the assistance of
qbinom(1 − α,m, ε0) in R or
icdf(’Binomial’,1 − α,m, ε0) in
MATLAB.

then, according to the binomial test, the hypothesis ‘‘ε ! ε0’’
cannot be rejected at the significance level of α, that is, the
learner’s generalization error rate is not greater than ε0 at the
confidence level of 1 − α; otherwise, we reject the hypothesis,
that is, the learner’s generalization error rate is greater than ε0
at the significance level of α.

R is an open-source scripting
language for statistical
computing. See
7 http://www.r-project.org.

We often obtain multiple testing error rates from cross-
validation or by doing multiple hold-out evaluations. In such
cases, we can use t-test. Let ε̂1, ε̂2, . . . , ε̂k denote the k testing
error rates, then the average testing error rate µ and variance
σ2 are, respectively,

µ = 1
k

k∑

i=1

ε̂i, (2.28)

σ2 = 1
k − 1

k∑

i=1

(ε̂i − µ)2. (2.29)

We can regard these k testing error rates as i.i.d . samples
of the generalization error rate ε0, and hence the variable

τt =
√
k(µ − ε0)

σ
(2.30)

follows a t-distributionwith k−1 degrees of freedom, as shown
in . Figure 2.7.

Fig. 2.7 t-distribution (k = 10)

et P (✏̂ > ✏̄ ; ✏0) < ↵

et encore plus si ✏ < ✏0
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Un algorithme et plusieurs tests (e.g. 10-CV)

• Soient                                les k taux d’erreur mesurés

• Alors on a la moyenne et la variance : 

• En considérant que les k taux d’erreur sont des tirages i.i.d. du taux 
d’erreur en généralisation, alors la variable        suit une distribution t à k-1 
degrés de liberté. 

6
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σ2 = 1
k − 1
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We can regard these k testing error rates as i.i.d . samples
of the generalization error rate ε0, and hence the variable

τt =
√
k(µ − ε0)

σ
(2.30)

follows a t-distributionwith k−1 degrees of freedom, as shown
in . Figure 2.7.
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Un algorithme et plusieurs tests (e.g. 10-CV)  (2)

• Pour l’hypothèse                   et le niveau de confiance a, on peut calculer 
l’erreur observable maximale avec une probabilité 1- a  (ici avec une 
hypothèse à deux côtés  (« two-sided »))

• Si             

• Alors l’hypothèse que µ (taux d’erreur apparent) est significativement 
différent de       peut être rejetée

7
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For the hypothesis ‘‘µ = ε0’’and significance levelα, we can
calculate the maximum observable error rate (i.e., the critical
value) within a probability of 1 − α, where ε0 is the average
testing error rate. Here, we employ a two-tailed hypothesis,
and there are α/2 shaded areas at both tails of the distribu-
tion, as shown in . Figure 2.7. Let (−∞, t−α/2] and [tα/2,∞)

denote the ranges of the two shaded areas, respectively. If τt is
within the critical value range [t−α/2, tα/2], then the hypothesis
‘‘µ = ε0’’ cannot be rejected, that is, the generalization error
rate is ε0 at the confidence level of 1 − α; otherwise, we reject
the hypothesis, that is, the generalization error rate is signifi-
cantly different from ε0 at this confidence level. 0.05 and 0.1
are commonly used significance levels, and . Table 2.3 shows
some commonly used critical values for t-test.

The critical values tα/2 can be
computed by qt(1 − α/2, k − 1)
in R or icdf(′T′, 1 − α/2, k − 1)
in MATLAB. . Tab. 2.3 Commonly used critical values for two-tailed t-test

α
k

2 5 10 20 30

0.05 12.706 2.776 2.262 2.093 2.045

0.10 6.314 2.132 1.833 1.729 1.699

Both methods introduced above compare the generaliza-
tion performance of a single learner. In the following section,
we discuss several hypothesis testing methods for comparing
the generalization performance of multiple learners.

2.4.2 Cross-Validated t-Test

For two learners A and B, let εA1 , ε
A
2 , . . . , ε

A
k and εB1 , ε

B
2 , . . . ,

εBk denote their testing error rates obtained from k-fold cross-
validation, where i indicates the ith fold. Then, we can use k-
fold cross-validated paired t-tests to compare the two learners.
The basic idea is that if the performance of the two learners is
the same, then the testing error rates should be the same on the
same training and testing sets, that is, εAi = εBi .

To be specific, for the k pairs of testing error rates obtained
from the k-fold cross-validation, we calculate the difference
of each pair of results as !i = εAi − εBi . Then, the mean of
the differences should be zero if the two learners have the
same performance. Consequently, based on the differences
!1,!2, . . . ,!k , we perform a t-test on the hypothesis ‘‘learner
A and learner B have the same performance’’. We calculate the
mean µ and variance σ2 of the differences, and if
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Comparaison de 2 algorithmes

sur un même jeu de données

8
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Comparaison d’algorithmes

• Principe général

– Caractériser la distribution de probabilité sur les différences possibles 

de performances sous hypothèse nulle H0 : pas de différence en fait 

entre les algorithmes

– Décider qu’il y a une différence si la probabilité des différences 

observées est suffisamment petite sous H0. 

(donc, c’est peu probable sous H0)

9
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Le two-match-sample t-test

• Teste si la différence entre deux échantillons (de performances) 
est significative

– Fonction de la différence de moyennes

– Fonction de la différence de variance

• On fait souvent l’hypothèse suivante sur la distribution de la 
différence des moyennes

– Tend vers une loi normale

10
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2 algorithmes : t-test en validation croisée

• Soient deux algorithmes A et B avec les erreurs respectives : 
                                et  

• On calcule les différences pour chaque paire de résultats

• Si les deux algorithmes sont de performances équivalentes, la 
moyenne des différences devrait être proche de 0.

• On réalise donc un t-test sur les valeurs

avec l’hypothèse H0 : A et B sont de même performance 

11

✏A1 , ✏
A
2 , . . . , ✏

A
k ✏B1 , ✏

B
2 , . . . , ✏

B
k

�i = ✏Ai � ✏Bi

�1,�2, . . . ,�k
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2 algorithmes : t-test en validation croisée  (2)

• Soient deux algorithmes A et B

• Avec les différences de performances 

• On calcule la moyenne       et la variance        des 

     Et si 

     Alors     H0 (même performance) ne peut être rejetée 

• Rq : Les         ne sont pas i.i.d. d’où la suggestion de 5x2 validation croisée de 
Tom Dietterich (1998)

12

�i = ✏Ai � ✏Bi

µ �2
�i

⌧t =

����

p
k µ

�
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Illustration : Comparaison de performances sur 10-CV

From [Peter Flach (2012) Machine Learning. The art and science of algorithms that make sense of data. 
Cambridge University Press]

13

350 12. Machine learning experiments

our accuracy estimate is 0 or 1, but by averaging n of those we get an approximately

normal distribution by the central limit theorem. If we expect the learning algorithm

to be sensitive to the class distribution we should apply stratified cross-validation: this

aims at achieving roughly the same class distribution in each fold. Cross-validation

runs can be repeated for different random partitions into folds and the results aver-

aged again to further reduce variance in our estimates: this is referred to as, e.g., 10

times 10-fold cross-validation. It should be kept in mind that this leads increasingly to

independence assumptions being violated – if we take this too far our accuracy esti-

mate will overfit the given data and not be representative for new data.

Example 12.4 (Cross-validation). The following table gives a possible result of

evaluating three learning algorithms on a data set with 10-fold cross-validation:

Fold Naive Bayes Decision tree Nearest neighbour

1 0.6809 0.7524 0.7164

2 0.7017 0.8964 0.8883

3 0.7012 0.6803 0.8410

4 0.6913 0.9102 0.6825

5 0.6333 0.7758 0.7599

6 0.6415 0.8154 0.8479

7 0.7216 0.6224 0.7012

8 0.7214 0.7585 0.4959

9 0.6578 0.9380 0.9279

10 0.7865 0.7524 0.7455

avg 0.6937 0.7902 0.7606

stdev 0.0448 0.1014 0.1248

The last two lines give the average and standard deviation over all ten folds. We

can see that nearest neighbour has the highest standard deviation. Clearly the

decision tree achieves the best result, but should we completely discard nearest

neighbour?

Cross-validation can also be applied to ROC curves obtained from a scoring clas-

sifier. This is because every instance participates in exactly one test fold and receives

a score from the corresponding model. We can therefore simply merge all test folds

which produces a single ranking.
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which produces a single ranking.

12.3 How to interpret it 353

tion is referred to as Student’s t-distribution or simply the t-distribution.4 The extent

to which the t-distribution is more heavy-tailed than the normal distribution is regu-

lated by the number of degrees of freedom: in our case this is equal to 1 less than the

number of folds (since the final fold is completely determined by the other ones). The

whole procedure is known as the paired t-test.

Example 12.6 (Paired t -test). The following table demonstrates the calculation

of a paired t-test on the results in Example 12.4. The numbers show pairwise

differences in each fold. The null hypothesis in each case is that the differences

come from a normal distribution with mean 0 and unknown standard deviation.

Fold NB−DT NB−NN DT−NN

1 -0.0715 -0.0355 0.0361

2 -0.1947 -0.1866 0.0081

3 0.0209 -0.1398 -0.1607

4 -0.2189 0.0088 0.2277

5 -0.1424 -0.1265 0.0159

6 -0.1739 -0.2065 -0.0325

7 0.0992 0.0204 -0.0788

8 -0.0371 0.2255 0.2626

9 -0.2802 -0.2700 0.0102

10 0.0341 0.0410 0.0069

avg -0.0965 -0.0669 0.0295

stdev 0.1246 0.1473 0.1278

p-value 0.0369 0.1848 0.4833

The p-value in the last line of the table is calculated by means of the t-

distribution with k −1 = 9 degrees of freedom, and only the difference between

the naive Bayes and decision tree algorithms is found significant at the α = 0.05

level.

4It was published by William Sealy Gosset in 1908 under the pseudonym ‘Student’ because his employer,

the Guinness brewery in Dublin, did not want the competition to know that they were using statistics.

La p-valeur dans la dernière ligne est calculée en uAlisant 
la t-distribuAon avec k – 1 = 9 degrés de liberté. Et seule la  
différence entre Naïve Bayes et les Arbres de Décision est 
jugée significaAve au niveau a = 0.05.  (0.0369 < 0.05)
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Le test de McNemar

• Au lieu de regarder la différence de taux 
d’erreur, on peut comparer les taux de 
classifications correcte et incorrecte 

• Si les performances de A et B sont 
équivalentes alors on devrait avoir :

• La variable                      suit une distribution 
gaussienne

• Le test de McNemar considère la variable 
qui suit une loi du chi2

• H0 ne peut être rejetée au niveau a si 

15
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one correct while the other incorrect. These numbers form a
contingency table, as shown in . Table 2.4.

. Tab. 2.4 The contingency table of two learners

Algorithm B
Algorithm A

Correct Incorrect

Correct e00 e01

Incorrect e10 e11

If the performance of the two learners are the same, then
we should have e01 = e10. The variable |e01 − e10| follows a
Gaussian distribution. McNemar’s test considers the variable

τχ2 = (|e01 − e10| − 1)2

e01 + e10
, (2.33)

which follows a chi-square distribution with one degree of free-

Since e01 + e10 is often small, we
need the continuity correction,
that is, −1 in the numerator.

dom, that is, the distribution of the sum of squared standard
normal random variables. At the significance level of α, the

The critical values χ2
α can be

computed by
qchisq(1 − α, k − 1) in R or
icdf(′Chisquare′, 1 − α, k − 1)
in MATLAB, where k = 2 is
the number of algorithms being
compared.

hypothesis cannot be rejected if the variable is less than the crit-
ical value χ2

α, that is, there is no significant difference between
the performance of those two learners; otherwise, the hypoth-
esis is rejected, that is, the performance of those two learners
is significantly different, and the learner with smaller average
error rate is superior. The critical value of χ2 test with one
degree of freedom is 3.8415 when α = 0.05 and 2.7055 when
α = 0.1.

2.4.4 Friedman Test and Nemenyi Post-hoc Test

Both the cross-validated t-test and McNemar’s test compare
two algorithms on a single data set. However, in some cases,
comparisons aremade formultiple algorithms onmultiple data
sets. In such cases, we can compare each pair of algorithms on
each data set using a cross-validated t-test or aMcNemar’s test.
Alternatively, we can use the following ranking-based Fried-
man test to compare all algorithms on all data sets at once.

Suppose that we are comparing algorithms A, B, and C on
four data sets D1, D2, D3, and D4. We first use either hold-out
or cross-validation to obtain each algorithm’s testing result on
each data set. Then, we sort the algorithms on each data set by
their testing performance and assign the ranks 1, 2, . . ., accord-
ingly, where the algorithms with the same testing performance
share the averaged rank. For example, as shown in . Table
2.5, on data sets D1 and D3, A is the best, B is the second, and
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Gaussian distribution. McNemar’s test considers the variable

τχ2 = (|e01 − e10| − 1)2

e01 + e10
, (2.33)

which follows a chi-square distribution with one degree of free-

Since e01 + e10 is often small, we
need the continuity correction,
that is, −1 in the numerator.

dom, that is, the distribution of the sum of squared standard
normal random variables. At the significance level of α, the

The critical values χ2
α can be

computed by
qchisq(1 − α, k − 1) in R or
icdf(′Chisquare′, 1 − α, k − 1)
in MATLAB, where k = 2 is
the number of algorithms being
compared.

hypothesis cannot be rejected if the variable is less than the crit-
ical value χ2

α, that is, there is no significant difference between
the performance of those two learners; otherwise, the hypoth-
esis is rejected, that is, the performance of those two learners
is significantly different, and the learner with smaller average
error rate is superior. The critical value of χ2 test with one
degree of freedom is 3.8415 when α = 0.05 and 2.7055 when
α = 0.1.

2.4.4 Friedman Test and Nemenyi Post-hoc Test

Both the cross-validated t-test and McNemar’s test compare
two algorithms on a single data set. However, in some cases,
comparisons aremade formultiple algorithms onmultiple data
sets. In such cases, we can compare each pair of algorithms on
each data set using a cross-validated t-test or aMcNemar’s test.
Alternatively, we can use the following ranking-based Fried-
man test to compare all algorithms on all data sets at once.

Suppose that we are comparing algorithms A, B, and C on
four data sets D1, D2, D3, and D4. We first use either hold-out
or cross-validation to obtain each algorithm’s testing result on
each data set. Then, we sort the algorithms on each data set by
their testing performance and assign the ranks 1, 2, . . ., accord-
ingly, where the algorithms with the same testing performance
share the averaged rank. For example, as shown in . Table
2.5, on data sets D1 and D3, A is the best, B is the second, and

⌧�2 =
(|e01 � e10|� 1)2

e01 + e10

⌧�2 =
(|e01 � e10|� 1)2

e01 + e10
< �2

↵
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Comparaison de 2 algorithmes

sur plusieurs jeux de données

16
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Remarque fondamentale

• La performance des algorithmes dépend de leur adéquation au 

jeu de données traité

• On ne peut plus faire l’hypothèse que les taux d’erreur sur les 

différents jeux de données sont distribués selon une loi normale

        Il faut recourir à des tests non paramétriques

17
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On calcule la somme des rangs :

Puis :

La distribution de Twilcox peut être approchée par une loi normale quand n ≥ 25 
(sinon regarder dans une table)

– On calcule la statistique z 

– Avec :                                                                      et

Le test de rang signé de Wilcoxon

18

Ws1 =
nX

i=1

I(di > 0) rank(di) Ws2 =
nX

i=1

I(di < 0) rank(di)

di = Perfmoy(h2)� Perfmoy(h1)

Twilcox = min(Ws1,Ws2)

µwilcox =
n(n+ 1)

4
�Twilcox =

r
n(n+ 1)(2n+ 1)

24

et

où

zwilcox =
Twilcox � µTwilcox

�Twilcox
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Le test de rang signé de Wilcoxon

Application

Avec n-1 = 9 degrés de liberté

Il faut Twilcox < 8 (one-sided)

     ou Twilcox < 5 (two-sided)

(d’après la table pour p=0.05)

Donc on ne peut pas rejeter l’hypothèse nulle d’égalité entre les 
algorithmes à p = 0.05

6.6 Comparing Two Classifiers on Multiple Domains 235

Table 6.4. Classifiers NB and SVM data ran on 10 realistic domains and used in
the Wilcoxon test example

nb svm Ranks ± Ranks
Domain no. accuracy accuracy nb–svm |nb–svm| (|nb–svm|) (|nb–svm|)

1 0.9643 0.9944 −0.0301 0.0301 3 −3
2 0.7342 0.8134 −0.0792 0.0792 6 −6
3 0.7230 0.9151 −0.1921 0.1921 8 −8
4 0.7170 0.6616 +0.0554 0.0554 5 +5
5 0.7167 0.7167 0 0 Remove Remove
6 0.7436 0.7708 −0.0272 0.0272 2 −2
7 0.7063 0.6221 +0.0842 0.0842 7 +7
8 0.8321 0.8063 +0.0258 0.0258 1 +1
9 0.9822 0.9358 +0.0464 0.0464 4 +4

10 0.6962 0.9990 −0.3028 0.3028 9 −9

and σTwilcox is the standard deviation of normally approximated Twilcox when
the null hypothesis holds:

σTwilcox =
√

n(n + 1)(2n + 1)
24

.

! Next, we look up the table for normal distribution to assess if the null
hypothesis can be rejected for the desired significance level.! In both cases, i.e., for smaller n’s as well as large n’s, the null hypothesis
is rejected if Twilcox is smaller than the critical values listed for n and the
appropriate significance test considered in the respective tables.

Let us now illustrate this test with the following example that compares the nb
and the svm classifiers on 10 domains, as per the first two columns of Table 6.3,
but divided by 100 to obtain accuracy rates in the [0, 1] interval. The results of
the analysis performed to apply the Wilcoxon test are shown in Table 6.4.

The sum of signed ranks is then computed, yielding the values of WS1 = 17
and WS2 = 28. According to the algorithm previously listed,

Twilcox = min(WS1, WS2) = 17.

We look through the Wilcoxon table in Appendix A.5 for n = 10 − 1 = 9
degrees of freedom and find that the critical value V , which must be larger
than Twilcox for the null hypothesis (which states that the two classifiers are not
significantly different) to be rejected at the 0.05 level, is V = 8 for the one-sided
test and V = 5 for the two-sided test. In both cases, we thus conclude that the
hypothesis cannot be rejected at significance level p = 0.05.

This example is repeated in R in Subsection 6.9.2.

From [Japowicz & Shah (2011) “EvaluaAng Learning Algorithms. A classificaAon perspecAve”, p.235]

Twilcox = min(Ws1,Ws2) = 17

Ws1 = 28
Ws2 = 17

19
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Le test de rang signé de Wilcoxon

• Wilcoxon signed rank test

20
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Le test de rang signé de Wilcoxon

21

From [Peter Flach (2012) Machine Learning. The art and science of algorithms that make sense of data. 
Cambridge University Press]

Est-ce que l’un des deux algorithmes est significativement meilleur que l’autre ?

354 12. Machine learning experiments

Interpretation of results over multiple data sets

The t-test can be applied for comparing two learning algorithms over a single data set,

typically using results obtained in cross-validation. It is not appropriate for multiple

data sets because performance measures cannot be compared across data sets (they

are not ‘commensurate’). In order to compare two learning algorithms over multiple

data sets we need to use a test specifically designed for that purpose such as Wilcoxon’s

signed-rank test. The idea is to rank the performance differences in absolute value,

from smallest (rank 1) to largest (rank n). We then calculate the sum of ranks for posi-

tive and negative differences separately, and take the smaller of these sums as our test

statistic. For a large number of data sets (at least 25) this statistic can be converted

to one which is approximately normally distributed, but for smaller numbers the crit-

ical value (the value of the statistic at which the p-value equals α) can be found in a

statistical table.

Example 12.7 (Wilcoxon’s signed-rank test). We use the performance differ-

ences between naive Bayes and decision tree as in the previous example, but

now assume for the sake of argument that they come from 10 different data sets.

Data set NB−DT Rank

1 -0.0715 4

2 -0.1947 8

3 0.0209 1

4 -0.2189 9

5 -0.1424 6

6 -0.1739 7

7 0.0992 5

8 -0.0371 3

9 -0.2802 10

10 0.0341 2

The sum of ranks for positive differences is 1+5+2 = 8 and for negative differ-

ences 4+8+9+6+7+3+10 = 47. The critical value for 10 data sets at the α= 0.05

level is 8, which means that if the smallest of the two sums of ranks is less than or

equal to 8 the null hypothesis that the ranks are distributed the same for positive

and negative differences can be rejected. This applies in this case, so we con-

clude that the performance difference between naive Bayes and decision trees is
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Le test de rang signé de Wilcoxon
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Comparaison de N algorithmes

sur plusieurs jeux de données

23
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Le test de Friedman

• Chaque algorithme est testé sur chaque jeu 
de données (par CV ou par jeu de test (« hold-
out »)

• Les algorithmes sont alors triés pour chaque 
jeu de données

• Les algorithmes de performances 
équivalentes devraient avoir des rangs 
moyens proches

• Soient k algorithmes et N jeux de données et 
ri   le rang moyen de l’algorithme Ai  

• La moyenne et la variance de ri sont alors : 

24

2.4 Comparison Test
47 2

C is the last; on data setD2, A is the best, and B and C have the
same performance. After collecting all the ranks, we calculate
the average rank of each algorithm as the last row of . Table
2.5.

. Tab. 2.5 The ranking table of algorithms

Data set Algorithm A Algorithm B Algorithm C

D1 1 2 3
D2 1 2.5 2.5
D3 1 2 3
D4 1 2 3

Average rank 1 2.125 2.875

According to the Friedman test, the algorithms with the
same performance should have the same average rank. Let k
denote the number of algorithms,N denote the number of data
sets, and ri denote the average rank of the ith algorithm. Here,
we ignore the ties to simplify our discussion. Then, the mean
and the variance of ri are (k + 1)/2 and (k2 − 1)/12N , respec-
tively. The variable

τχ2 = k − 1
k

· 12N
k2 − 1

k∑

i=1

(
ri − k + 1

2

)2

= 12N
k(k + 1)




k∑

i=1

r2i − k(k + 1)2

4



 (2.34)

follows a χ2 distribution with k − 1 degrees of freedom when
k and N are large.

The ‘‘original Friedman test’’described above is too conser-
The ‘‘original Friedman test’’
requires a large k (e.g., > 30),
and tends to return no
significant difference when k is
small.

vative, and hence the following variable is often used instead:

τF =
(N − 1)τ2χ

N(k − 1) − τ2χ
, (2.35)

where τχ2 is given by (2.34). τF follows a F -distribution with
k−1 and (k−1)(N−1) degrees of freedom.. Table 2.6 shows
some commonly used critical values for F -test.

Exemple pour 3 algorithmes et 4 
jeux de données 

k + 1

2

k2 � 1

12N
et
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Le test de Friedman (2)

• La variable

• Suit une loi du chi2 à k-1 degrés de liberté quand k et N sont grands

• On u,lise souvent la variable suivante qui est valable pour de plus 
pe,tes valeurs de k et N  

• Et on teste si elle est plus pe,te qu’une valeur cri,que donnée par les 
tables

25
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we ignore the ties to simplify our discussion. Then, the mean
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k(k + 1)




k∑

i=1

r2i − k(k + 1)2
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and tends to return no
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vative, and hence the following variable is often used instead:

τF =
(N − 1)τ2χ

N(k − 1) − τ2χ
, (2.35)

where τχ2 is given by (2.34). τF follows a F -distribution with
k−1 and (k−1)(N−1) degrees of freedom.. Table 2.6 shows
some commonly used critical values for F -test.



/ 37

Le test de Friedman (3)

• Table de valeurs critiques pour a = 0.05

26

2
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. Tab. 2.6 Commonly used critical values for F -test

α = 0.05

N k

2 3 4 5 6 7 8 9 10

4 10.128 5.143 3.863 3.259 2.901 2.661 2.488 2.355 2.250
5 7.709 4.459 3.490 3.007 2.711 2.508 2.359 2.244 2.153
8 5.591 3.739 3.072 2.714 2.485 2.324 2.203 2.109 2.032
10 5.117 3.555 2.960 2.634 2.422 2.272 2.159 2.070 1.998
15 4.600 3.340 2.827 2.537 2.346 2.209 2.104 2.022 1.955
20 4.381 3.245 2.766 2.492 2.310 2.179 2.079 2.000 1.935

α = 0.1

N k

2 3 4 5 6 7 8 9 10

4 5.538 3.463 2.813 2.480 2.273 2.130 2.023 1.940 1.874
5 4.545 3.113 2.606 2.333 2.158 2.035 1.943 1.870 1.811
8 3.589 2.726 2.365 2.157 2.019 1.919 1.843 1.782 1.733
10 3.360 2.624 2.299 2.108 1.980 1.886 1.814 1.757 1.710
15 3.102 2.503 2.219 2.048 1.931 1.845 1.779 1.726 1.682
20 2.990 2.448 2.182 2.020 1.909 1.826 1.762 1.711 1.668

The performance of algorithms is significantly different

The critical values for F -test can
be computed by qf(1 − α, k − 1,
(k − 1)(N − 1)) in R or icdf(′F′,
1 − α, k − 1, (k − 1) ∗ (N − 1))
in MATLAB.

if the hypothesis ‘‘algorithms’ performance is the same’’ is
rejected. Then, we use a post-hoc test to further distinguish the
algorithms. A common choice is the Nemenyi post-hoc test,
which calculates the critical difference CD of the average rank
difference as

CD = qα

√
k(k + 1)

6N
. (2.36)

. Table 2.7 shows some commonly used values of qα for
qα is the critical value of Tukey
distribution, which can be
computed by qtukey(1 − α, k,
inf) / sqrt(2) in R.

α = 0.05 and α = 0.1. If the average rank difference of
two algorithms is greater than the critical difference, then the
hypothesis ‘‘algorithms’performance is the same’’ is rejected at
the corresponding confidence level.

. Tab. 2.7 Commonly used values of qα for Nemenyi test

α
k

2 3 4 5 6 7 8 9 10

0.05 1.960 2.344 2.569 2.728 2.850 2.949 3.031 3.102 3.164

0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

Taking the data in . Table 2.5 as an example, we first cal-
culate τF = 24.429 according to (2.34) and (2.35). Then, from
. Table 2.6, we realize τF is greater than the critical value 5.143
when α = 0.05. Hence, the hypothesis ‘‘algorithms’ perfor-
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Le test de Friedman (4)

• Table de valeurs critiques pour a = 0.1
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. Tab. 2.6 Commonly used critical values for F -test

α = 0.05

N k

2 3 4 5 6 7 8 9 10
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15 3.102 2.503 2.219 2.048 1.931 1.845 1.779 1.726 1.682
20 2.990 2.448 2.182 2.020 1.909 1.826 1.762 1.711 1.668

The performance of algorithms is significantly different

The critical values for F -test can
be computed by qf(1 − α, k − 1,
(k − 1)(N − 1)) in R or icdf(′F′,
1 − α, k − 1, (k − 1) ∗ (N − 1))
in MATLAB.

if the hypothesis ‘‘algorithms’ performance is the same’’ is
rejected. Then, we use a post-hoc test to further distinguish the
algorithms. A common choice is the Nemenyi post-hoc test,
which calculates the critical difference CD of the average rank
difference as

CD = qα

√
k(k + 1)

6N
. (2.36)

. Table 2.7 shows some commonly used values of qα for
qα is the critical value of Tukey
distribution, which can be
computed by qtukey(1 − α, k,
inf) / sqrt(2) in R.

α = 0.05 and α = 0.1. If the average rank difference of
two algorithms is greater than the critical difference, then the
hypothesis ‘‘algorithms’performance is the same’’ is rejected at
the corresponding confidence level.

. Tab. 2.7 Commonly used values of qα for Nemenyi test

α
k

2 3 4 5 6 7 8 9 10

0.05 1.960 2.344 2.569 2.728 2.850 2.949 3.031 3.102 3.164

0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

Taking the data in . Table 2.5 as an example, we first cal-
culate τF = 24.429 according to (2.34) and (2.35). Then, from
. Table 2.6, we realize τF is greater than the critical value 5.143
when α = 0.05. Hence, the hypothesis ‘‘algorithms’ perfor-
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Le test de rang signé de Wilcoxon

• Wilcoxon signed rank test6.6 Comparing Two Classifiers on Multiple Domains 235

Table 6.4. Classifiers NB and SVM data ran on 10 realistic domains and used in
the Wilcoxon test example

nb svm Ranks ± Ranks
Domain no. accuracy accuracy nb–svm |nb–svm| (|nb–svm|) (|nb–svm|)

1 0.9643 0.9944 −0.0301 0.0301 3 −3
2 0.7342 0.8134 −0.0792 0.0792 6 −6
3 0.7230 0.9151 −0.1921 0.1921 8 −8
4 0.7170 0.6616 +0.0554 0.0554 5 +5
5 0.7167 0.7167 0 0 Remove Remove
6 0.7436 0.7708 −0.0272 0.0272 2 −2
7 0.7063 0.6221 +0.0842 0.0842 7 +7
8 0.8321 0.8063 +0.0258 0.0258 1 +1
9 0.9822 0.9358 +0.0464 0.0464 4 +4

10 0.6962 0.9990 −0.3028 0.3028 9 −9

and σTwilcox is the standard deviation of normally approximated Twilcox when
the null hypothesis holds:

σTwilcox =
√

n(n + 1)(2n + 1)
24

.

! Next, we look up the table for normal distribution to assess if the null
hypothesis can be rejected for the desired significance level.! In both cases, i.e., for smaller n’s as well as large n’s, the null hypothesis
is rejected if Twilcox is smaller than the critical values listed for n and the
appropriate significance test considered in the respective tables.

Let us now illustrate this test with the following example that compares the nb
and the svm classifiers on 10 domains, as per the first two columns of Table 6.3,
but divided by 100 to obtain accuracy rates in the [0, 1] interval. The results of
the analysis performed to apply the Wilcoxon test are shown in Table 6.4.

The sum of signed ranks is then computed, yielding the values of WS1 = 17
and WS2 = 28. According to the algorithm previously listed,

Twilcox = min(WS1, WS2) = 17.

We look through the Wilcoxon table in Appendix A.5 for n = 10 − 1 = 9
degrees of freedom and find that the critical value V , which must be larger
than Twilcox for the null hypothesis (which states that the two classifiers are not
significantly different) to be rejected at the 0.05 level, is V = 8 for the one-sided
test and V = 5 for the two-sided test. In both cases, we thus conclude that the
hypothesis cannot be rejected at significance level p = 0.05.

This example is repeated in R in Subsection 6.9.2.

From [Japowicz & Shah (2011) “Evaluating Learning Algorithms. A classification perspective”]
28
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• Situation du test d’hypothèses multiples

– Problème : un algorithme peut sembler meilleur par le hasard des tests 

(cf. lien entre risque empirique et risque réel)

• Post hoc tests

– Une fois que des tests statistiques ont montré une différence entre 

algorithmes, les tests post hoc cherchent quels algorithmes sont 

effectivement différents

– Le test de Nemenyi est un test post-hoc très employé

29
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Le test de Nemenyi

• Calcule une q sta@s@que sur la différence entre les rangs moyens

30

256 Statistical Significance Testing

to discover if the rank differences obtained as a result of the Friedman test are,
indeed, significant. This can be done using the Nemenyi test.

The Nemenyi Test
The Nemenyi test computes a q statistic over the difference in average mean
ranks of the classifier.! Recall the ranking done in the Friedman test: Each algorithm is ranked

for each dataset separately, according to the performance measure pm,
in ascending order from the best-performing classifier to the worst-
performing classifier. Hence, for dataset Si , classifier fj such that pmij >

pmij ′∀j ′, j, j ′ ∈ {1, 2, . . . , k} , j $= j ′, is ranked 1.24 In the case of a d-way
tie just after rank r , assign a rank of [(r + 1) + (r + 2) + · · · + (r + d)]/d
to each of the tied classifiers.! Let Rij be the rank of classifier fj on dataset Si .! We compute the mean rank of classifier fj on all datasets:

R.j = 1
n

n∑

i=1

Rij .

! For any two classifiers fj1 and fj2, we compute the q statistic as

q = R.j1 − R.j2√
k(k+1)

6n

.

! The null hypothesis is rejected after a comparison of the obtained q value
with the q value for the desired significance table for critical qα values,
where α refers to the significance level.25 Reject the null hypothesis if the
obtained q value exceeds qα .

Note the similarity in the statistic with the Tukey test. However, if expressed
as a critical difference (CD) over ranks analogous to the HSD statistic, this CD
would represent a different quantity (not the absolute mean difference but the
rank difference). Also, qα would correspond to the q values from the Tukey
test but scaled by dividing it by

√
2. In this respect, the Nemenyi test works by

computing the average rank of each classifiers and taking their difference. In
the cases in which these average rank differences are larger than or equal to the
CD just computed, we can say, with the appropriate amount of certainty, that
the performances of the two classifiers corresponding to these differences are
significantly different from one another.

Example of the Nemenyi Test. To illustrate the process of the Nemenyi test, as
for the other post hoc tests, we go back to the comparison of the three classifiers,

24 See footnote 22 in the Friedman Test.
25 The critical values of q basically are a studentized range statistic scaled by a division factor of

√
2.
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performing classifier. Hence, for dataset Si , classifier fj such that pmij >

pmij ′∀j ′, j, j ′ ∈ {1, 2, . . . , k} , j $= j ′, is ranked 1.24 In the case of a d-way
tie just after rank r , assign a rank of [(r + 1) + (r + 2) + · · · + (r + d)]/d
to each of the tied classifiers.! Let Rij be the rank of classifier fj on dataset Si .! We compute the mean rank of classifier fj on all datasets:

R.j = 1
n

n∑

i=1

Rij .

! For any two classifiers fj1 and fj2, we compute the q statistic as

q = R.j1 − R.j2√
k(k+1)

6n

.

! The null hypothesis is rejected after a comparison of the obtained q value
with the q value for the desired significance table for critical qα values,
where α refers to the significance level.25 Reject the null hypothesis if the
obtained q value exceeds qα .

Note the similarity in the statistic with the Tukey test. However, if expressed
as a critical difference (CD) over ranks analogous to the HSD statistic, this CD
would represent a different quantity (not the absolute mean difference but the
rank difference). Also, qα would correspond to the q values from the Tukey
test but scaled by dividing it by

√
2. In this respect, the Nemenyi test works by

computing the average rank of each classifiers and taking their difference. In
the cases in which these average rank differences are larger than or equal to the
CD just computed, we can say, with the appropriate amount of certainty, that
the performances of the two classifiers corresponding to these differences are
significantly different from one another.

Example of the Nemenyi Test. To illustrate the process of the Nemenyi test, as
for the other post hoc tests, we go back to the comparison of the three classifiers,

24 See footnote 22 in the Friedman Test.
25 The critical values of q basically are a studentized range statistic scaled by a division factor of

√
2.
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Table 6.6. Sample accuracy results for classifiers fA, fB ,
and fC on 10 domains

Domain Classifier fA Classifier fB Classifier fC

1 85.83 75.86 84.19
2 85.91 73.18 85.90
3 86.12 69.08 83.83
4 85.82 74.05 85.11
5 86.28 74.71 86.38
6 86.42 65.90 81.20
7 85.91 76.25 86.38
8 86.10 75.10 86.75
9 85.95 70.50 88.03

10 86.12 73.95 87.18

Dividing all the results by 100 to obtain an accuracy rate estimate that can
be modeled by the statistical tests for Table 6.6, we have pm = 81.47

100 = 0.8147
and the corresponding pmi. and pm.j values as shown in Tables 6.7 and 6.8
respectively. Let us calculate the relevant quantities:

SSpm = n

k∑

j=1

(pm.j − pm)2

= 10
3∑

j=1

(pm.j − 0.8147)2

= 10 [(0.8605 − 0.8147)2 + (0.7286 − 0.8147)2 + (0.8550 − 0.8147)2]

= 0.11135,

SSBlock = k

n∑

i=1

(pmi. − pm)2

= 3
10∑

i=1

(pmi. − 0.8147)2

= 3 [(0.8196 − 0.8147)2 + (0.8166 − 0.8147)2 + (0.7968 − 0.8147)2

+ (0.8166 − 0.8147)2 + (0.8246 − 0.8147)2 + (0.7784 − 0.8147)2

+ (0.8285 − 0.8147)2 + (0.8265 − 0.8147)2 + (0.8149 − 0.8147)2

+ (0.8242 − 0.8147)2]

= 0.006555.

250 Statistical Significance Testing

Table 6.9. Rewriting Table 6.6 as ranks

Domain Classifier fA Classifier fB Classifier fC

1 1 3 2
2 1.5 3 1.5
3 1 3 2
4 1 3 2
5 2 3 1
6 1 3 2
7 2 3 1
8 2 3 1
9 2 3 1

10 2 3 1

Rank Sums (R.j ) 15.5 30 14.5

we could not notice any patterns. (fA, fB and fC denote the classifiers output
by the algorithms A, B and C respectively).

Consider the example previously used in the case of ANOVA. In our example,
we see a pattern: Classifier fB is always ranked third, whereas Classifiers fA and
fC share the first and second places more or less equally. (There may not be any
difference between fA and fC , but this is not what is getting tested here. This
question is considered in the next subsection, which discusses post hoc tests.)

We then compute the following statistics for the Friedman test:

χ2
F =

[
12

n × k × (k + 1)

k∑

j=1

(R.j )2
]

− 3 × n × (k + 1),

with k − 1 degrees of freedom and where k is the number of algorithms and n

is the number of domains. In our example, this gives

χ2
F =

[
12

10 × 3 × (3 + 1)

3∑

j=1

(R.j )2
]

− 3 × 10 × (3 + 1)

=
{

1
10

× [(15.5)2 + (30)2 + (14.5)2]
}

− 120

= 15.05,

with 2 degrees of freedom.
The critical values for the χ2

F distribution for k = 3 and n = 10 are 6.2 for a
0.05 level of significance and 9.6 at the 0.01 level of significance for a single-
tailed test; and 7.8 for a 0.05 level of significance and 12.60 for a 0.002 level of
significance for a two-tailed test. Because 15.05 is larger than all these values,
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fA, fB , and fC , over 10 domains. This time, however, rather than computing
the average performance of each classifier on the 10 domains, we compute
their average ranks. We thus have R.A = 15.5, R.B = 30, and R.C = 14.5, as
per Table 6.9. The difference in average rank between fA and fB is thus 14.5,
that between fB and fC is 15.5, and that between fA and fC is 1. To answer
the question of which of these differences are significant in the context of the
Friedman and Nemenyi tests, we compute the critical difference by using the
preceding formula. We get the following three q statistics:

q12 = R.1 − R.2√
3(3+1)
6×10

= 15.5 − 30
√

3(3+1)
6×10

= −14.5
0.45

= −32.22,

q13 = R.1 − R.3√
3(3+1)
6×10

= 15.5 − 14.5
√

3(3+1)
6×10

= 1
0.45

= 2.22,

q23 = R.2 − R.3√
3(3+1)
6×10

= 30 − 14.5
√

3(3+1)
6×10

= 15.5
0.45

= 34.44.

We recall from Appendix A.8 that qα = 3.61 for α = 0.05 and df = (n −
1)(k − 1) = 9 × 2 = 18 for the Tukey test. For the Nemenyi test, we divide this
value by

√
2. This yields qα = 2.55. So we conclude that the null hypothesis

can be rejected in both the cases of q12, the comparison of classifiers fA and fB ,
and q23, the comparison of classifiers fB and fC , because the absolute values of
these q statistics are greater than 2.55, but not in the case of q13, the comparison
of classifiers fA and fC , because 2.22 < 2.55. Please note that 2.22, however,
is not that far from 2.55, which suggests that the Nemenyi test may consider the
difference between fA and fC to be more significant than the Tukey test did,
and thus be more sensitive.

Other Methods
Other methods exist that basically compute a statistic similar to those previously
discussed but scale the significance level values so as to account for the family-
wise error rate over multiple-classifier comparisons. Some examples include
Hommel’s test, Holm’s test, and Hochberg’s test. Hommel’s test (Hommel,
1988) is a slightly more powerful nonparametric post hoc test. However, its
practical use is difficult as a result of the added complexity in implementing it.
Hence we have not discussed it here. Interested readers are encouraged to look
these up in statistics texts.

6.7.9 Discussion on ANOVA and Friedman Tests

We have already outlined the critical assumptions that ANOVA makes. To reit-
erate, although ANOVA can be relatively robust to the normality assumption,

Ici CD = 2,55 (Critical Difference)

Donc fB > fA, et fB > fC, mais pas fA > fC
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C is the last; on data setD2, A is the best, and B and C have the
same performance. After collecting all the ranks, we calculate
the average rank of each algorithm as the last row of . Table
2.5.

. Tab. 2.5 The ranking table of algorithms

Data set Algorithm A Algorithm B Algorithm C

D1 1 2 3
D2 1 2.5 2.5
D3 1 2 3
D4 1 2 3

Average rank 1 2.125 2.875

According to the Friedman test, the algorithms with the
same performance should have the same average rank. Let k
denote the number of algorithms,N denote the number of data
sets, and ri denote the average rank of the ith algorithm. Here,
we ignore the ties to simplify our discussion. Then, the mean
and the variance of ri are (k + 1)/2 and (k2 − 1)/12N , respec-
tively. The variable

τχ2 = k − 1
k

· 12N
k2 − 1

k∑

i=1

(
ri − k + 1

2

)2

= 12N
k(k + 1)




k∑

i=1

r2i − k(k + 1)2

4



 (2.34)

follows a χ2 distribution with k − 1 degrees of freedom when
k and N are large.

The ‘‘original Friedman test’’described above is too conser-
The ‘‘original Friedman test’’
requires a large k (e.g., > 30),
and tends to return no
significant difference when k is
small.

vative, and hence the following variable is often used instead:

τF =
(N − 1)τ2χ

N(k − 1) − τ2χ
, (2.35)

where τχ2 is given by (2.34). τF follows a F -distribution with
k−1 and (k−1)(N−1) degrees of freedom.. Table 2.6 shows
some commonly used critical values for F -test.

Exemple pour 3 algorithmes et 4 jeux 
de données 

2
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. Tab. 2.6 Commonly used critical values for F -test

α = 0.05

N k

2 3 4 5 6 7 8 9 10

4 10.128 5.143 3.863 3.259 2.901 2.661 2.488 2.355 2.250
5 7.709 4.459 3.490 3.007 2.711 2.508 2.359 2.244 2.153
8 5.591 3.739 3.072 2.714 2.485 2.324 2.203 2.109 2.032
10 5.117 3.555 2.960 2.634 2.422 2.272 2.159 2.070 1.998
15 4.600 3.340 2.827 2.537 2.346 2.209 2.104 2.022 1.955
20 4.381 3.245 2.766 2.492 2.310 2.179 2.079 2.000 1.935

α = 0.1

N k

2 3 4 5 6 7 8 9 10

4 5.538 3.463 2.813 2.480 2.273 2.130 2.023 1.940 1.874
5 4.545 3.113 2.606 2.333 2.158 2.035 1.943 1.870 1.811
8 3.589 2.726 2.365 2.157 2.019 1.919 1.843 1.782 1.733
10 3.360 2.624 2.299 2.108 1.980 1.886 1.814 1.757 1.710
15 3.102 2.503 2.219 2.048 1.931 1.845 1.779 1.726 1.682
20 2.990 2.448 2.182 2.020 1.909 1.826 1.762 1.711 1.668

The performance of algorithms is significantly different

The critical values for F -test can
be computed by qf(1 − α, k − 1,
(k − 1)(N − 1)) in R or icdf(′F′,
1 − α, k − 1, (k − 1) ∗ (N − 1))
in MATLAB.

if the hypothesis ‘‘algorithms’ performance is the same’’ is
rejected. Then, we use a post-hoc test to further distinguish the
algorithms. A common choice is the Nemenyi post-hoc test,
which calculates the critical difference CD of the average rank
difference as

CD = qα

√
k(k + 1)

6N
. (2.36)

. Table 2.7 shows some commonly used values of qα for
qα is the critical value of Tukey
distribution, which can be
computed by qtukey(1 − α, k,
inf) / sqrt(2) in R.

α = 0.05 and α = 0.1. If the average rank difference of
two algorithms is greater than the critical difference, then the
hypothesis ‘‘algorithms’performance is the same’’ is rejected at
the corresponding confidence level.

. Tab. 2.7 Commonly used values of qα for Nemenyi test

α
k

2 3 4 5 6 7 8 9 10

0.05 1.960 2.344 2.569 2.728 2.850 2.949 3.031 3.102 3.164

0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

Taking the data in . Table 2.5 as an example, we first cal-
culate τF = 24.429 according to (2.34) and (2.35). Then, from
. Table 2.6, we realize τF is greater than the critical value 5.143
when α = 0.05. Hence, the hypothesis ‘‘algorithms’ perfor-
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Fig. 2.8 The plot of the Friedman test

mance is the same’’ is rejected. We proceed with the Nemenyi
post-hoc test. From . Table 2.7, we find q0.05 = 2.344 for
k = 3, and hence the critical difference is CD = 1.657 accord-
ing to (2.36). Based on the average ranks in. Table 2.5, neither
the difference between algorithms A and B nor the difference
between algorithms B and C is greater than the critical differ-
ence, that is, there is no significant difference between their
performance. However, the test confirms that the performance
of algorithms A and C are significantly different since their
difference is greater than the critical difference.

We can use a plot to illustrate the Friedman test, e.g.,
. Figure 2.8 illustrates the Friedman test for . Table 2.5,
where the y-axis shows the algorithms, and the x-axis shows the
average ranks. The dots mark the average ranks of algorithms,
and the line segments centered at the dots are the corresponding
critical difference.Theperformanceof the twoalgorithms is not
significantly different if their line segments overlap; otherwise,
their performance is significantly different. From. Figure 2.8,
we can easily observe that there is no significant difference
between algorithms A and B since their line segments over-
lap. On the other hand, algorithm A is better than algorithm
C since their line segments do not overlap while A has a higher
rank.

2.5 Bias and Variance

In addition to estimating the generalization performance of
learning algorithms, people often wish to understand ‘‘why’’
learning algorithms have such performance. An essential tool
for understanding the generalization performance of algo-
rithms is the bias-variance decomposition, which decomposes
the expected generalization error of learning algorithms.

For different training sets, the learning outcomes are often
different, although the training samples are drawn from the
same distribution. Let x be a testing sample, yD be the label
of x in the data set D, y be the ground-truth label of x, and

Potential noise may lead to
yD != y.

Ici, A est significativement 
meilleur que C
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Illustration : test de Nemenyi

Les méthodes sont triées par rang moyen (de la gauche vers la droite) et 
les groupes de méthodes non significativement différents sont connectés 
(p-value > 0.05)

34

Figure 3. Performance results using hold-out data from from the ASCENT-2, VENICE, and MAINSAIL trial. One trial was used as hold-
out data (indicated by the name to the right of the arrow) and one or two of the remaining trials as training data. Numbers indicate Harrell’s 
concordance index on the hold-out data.

Figure 4. Comparison of methods based on experiments in Figure 2 with the Nemenyi post-hoc test34. Methods are sorted by average 
rank (left to right) and groups of methods that are not significantly different are connected (p-value >0.05).
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2.4.2.2 Results and analysis

For comparability reasons, this �rst set of experiments is analyzed over the classical ETSC benchmark used in the lite-

rature so far (blue cylinder in Figure 2.2). Results over the new, non z-normalized, datasets can be found in Appendix

of [IR2].

(a)

(b)

Figure 2.3 – The ranking plot (a) shows that, across all values of ↵, a top group of four approaches distinguishes itself.
The signi�cance of this result is supported by statistical tests. Speci�cally, we report this for ↵ = 0.5 as shown in (b).

Figure 2.3b provides a global views about the relative performances of the tested methods. The Wilcoxon-Holm

Ranked test provides an overall statistical analysis. It examines the critical di�erence among all techniques to plot

themethod’s average rank in a horizontal bar. Lower ranks denote better performance, and themethods connected

by a horizontal bar are similar in terms of statistical signi�cance. When evaluated by their average rank on all data

sets with respect to the average cost (Equation 2.16), here for ↵ = 0.5, four methods signi�cantly outperform the

others :

Methods Con�dence Anticipation Cost awareness
Stopping Rule 3 train
Proba Threshold 3 train
Economy-�-max 3 train & test
Calimera 3 train

Figure 2.3a allows a closer look, this time varying the relative costs of misclassi�cation and delaying prediction using

Equation 2.16, where a small value of ↵ means that delay cost is paramount. 90% level con�dence intervals have

51

Comparaison des rangs moyens

ATTENTION : ne dit rien sur les performances
                       Peut-être qu’il y a très peu de différences !
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Pour a = 0.5, on voit 4 algorithmes se détacher
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