Comparaison

d'algorithmes de classification supervisée

Antoine Cornuéjols

AgroParisTech – INRAE Paris-Saclay

antoine.cornuejols@agroparistech.fr

Plan

1. Introduction

2. Comparaison sur les mêmes jeux de données

- 1. T-test couplé
- 2. Test de McNemar
- 3. 5 x 2 cv tests couplés

3. Comparaison sur des jeux de données différents

1. Test de rang signé de Wilcoxon

4. Conclusions

Rappels : un algorithme de classification binaire

- Soit un classifieur d'erreur ε
 - La probabilité qu'il classe mal *m*' exemples parmi *m* est :

$$\binom{m}{m'}\epsilon^{m'}(1-\epsilon)^{m-m'}$$

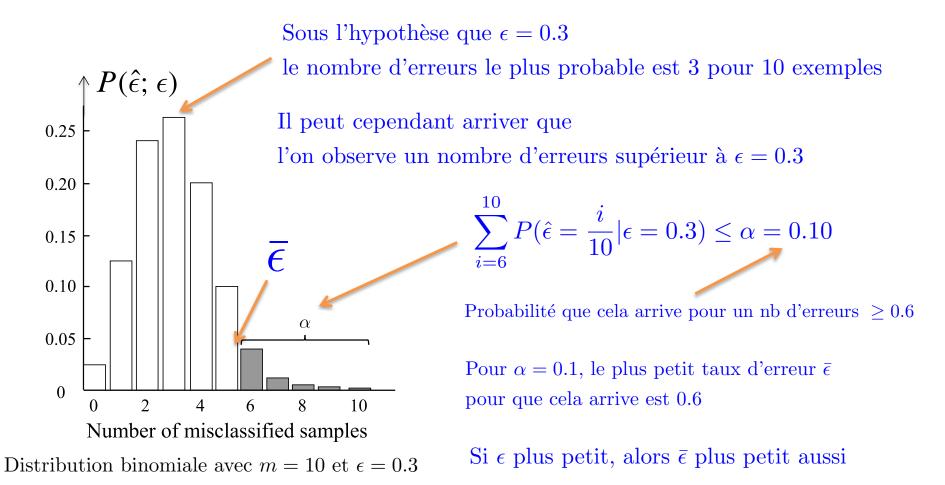
- D'où la probabilité qu'il classe mal $\hat{\epsilon} \times m$ exemples est :

$$P(\hat{\epsilon};\epsilon) = \binom{m}{\hat{\epsilon} \times m} \epsilon^{\hat{\epsilon} \times m} (1-\epsilon)^{m-\hat{\epsilon} \times m}$$

Ce qui est la probabilité que son erreur apparente sur un ensemble de test de taille *m* soit

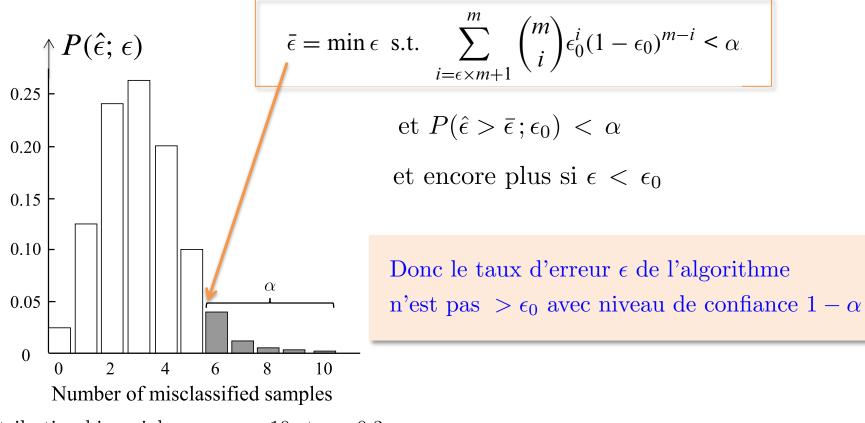
Rappels : un algorithme de classification binaire (2)

• On voudrait tester si $\epsilon \leq \epsilon_0$ (e.g. $\epsilon \leq 0.3$)



Rappels : un algorithme de classification binaire (2)

• On voudrait tester si $\epsilon \leq \epsilon_0$ (e.g. $\epsilon \leq 0.3$)



Distribution binomiale avec m = 10 et $\epsilon = 0.3$

Un algorithme et plusieurs tests (e.g. 10-CV)

- Soient $\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_k$ les k taux d'erreur mesurés
- Alors on a la moyenne et la variance :

$$\mu = \frac{1}{k} \sum_{i=1}^{k} \hat{\epsilon}_i \qquad \sigma^2 = \frac{1}{k-1} \sum_{i=1}^{k} (\hat{\epsilon}_i - \mu)^2$$

En considérant que les k taux d'erreur sont des tirages i.i.d. du taux d'erreur en généralisation, alors la variable \$\aupsilon_t\$ suit une distribution t à k-1 degrés de liberté.

$$\tau_{t} = \frac{\sqrt{k}(\mu - \epsilon_{0})}{\sigma}$$
Probability density $\begin{pmatrix} 0.3 \\ 0.2 \\ 0.1 \\ \frac{\alpha}{2} \end{pmatrix}$
pour $k = 10$

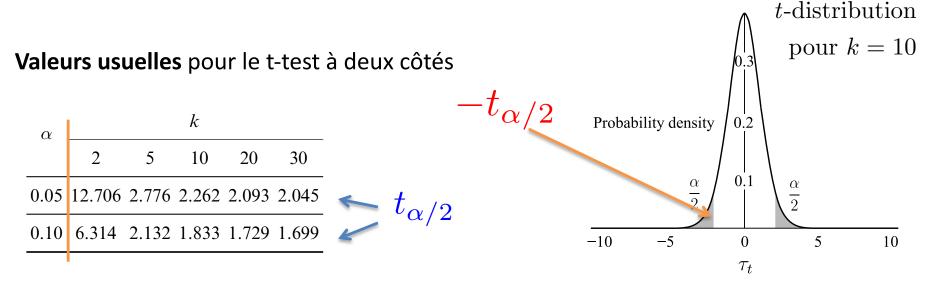
$$\frac{\alpha}{\tau_{t}}$$

Un algorithme et plusieurs tests (e.g. 10-CV) (2)

- Pour l'hypothèse $\mu = \epsilon_0$ et le niveau de confiance α , on peut calculer l'erreur observable maximale avec une probabilité 1- α (ici avec une hypothèse à deux côtés (« two-sided »))
- Si $au_t \in [t_{\alpha/2}, t_{\alpha/2}]$

$$\tau_t = \frac{\sqrt{k}(\mu - \epsilon_0)}{\sigma}$$

 Alors l'hypothèse que μ (taux d'erreur apparent) est significativement différent de [€]0 peut être rejetée



Comparaison de 2 algorithmes

sur un même jeu de données

Comparaison d'algorithmes

- Principe général
 - Caractériser la distribution de probabilité sur les différences possibles
 de performances sous hypothèse nulle H₀ : pas de différence en fait
 entre les algorithmes
 - Décider qu'il y a une différence si la probabilité des différences observées est suffisamment petite sous H₀.
 (donc, c'est peu probable sous H₀)

Le two-match-sample t-test

- Teste si la différence entre deux échantillons (de performances) est significative
 - Fonction de la différence de moyennes
 - Fonction de la différence de variance

- On fait souvent l'hypothèse suivante sur la distribution de la différence des moyennes
 - Tend vers une loi normale

2 algorithmes : t-test en validation croisée

- Soient deux algorithmes A et B avec les erreurs respectives : $\epsilon_1^A, \epsilon_2^A, \ldots, \epsilon_k^A$ et $\epsilon_1^B, \epsilon_2^B, \ldots, \epsilon_k^B$
- On calcule les différences pour chaque **paire** de résultats

$$\Delta_i = \epsilon_i^A - \epsilon_i^B$$

- Si les deux algorithmes sont de performances équivalentes, la moyenne des différences devrait être proche de 0.
- On réalise donc un t-test sur les valeurs $\Delta_1, \Delta_2, \dots, \Delta_k$ avec l'hypothèse H_0 : A et B sont de même performance

2 algorithmes : t-test en validation croisée (2)

- Soient deux algorithmes A et B
- Avec les différences de performances $\Delta_i = \epsilon_i^A \epsilon_i^B$
- On calcule la moyenne μ_{-} et la variance σ^{2} des Δ_{i}

Et si
$$\tau_t = \left| \frac{\sqrt{k} \mu}{\sigma} \right| < t_{\alpha/2,k-1}$$
 au niveau de signification α
Alors H_0 (même performance) ne peut être rejetée

• Rq : Les Δ_i ne sont pas i.i.d. d'où la suggestion de 5x2 validation croisée de Tom Dietterich (1998)

Illustration : Comparaison de performances sur 10-CV

Fold	Naive Bayes	Decision tree	Nearest neighbour
1	0.6809	0.7524	0.7164
2	0.7017	0.8964	0.8883
3	0.7012	0.6803	0.8410
4	0.6913	0.9102	0.6825
5	0.6333	0.7758	0.7599
6	0.6415	0.8154	0.8479
7	0.7216	0.6224	0.7012
8	0.7214	0.7585	0.4959
9	0.6578	0.9380	0.9279
10	0.7865	0.7524	0.7455
avg	0.6937	0.7902	0.7606
stdev	0.0448	0.1014	0.1248

From [Peter Flach (2012) Machine Learning. *The art and science of algorithms that make sense of data*. Cambridge University Press]

Illustration : Comparaison de performances sur 10-CV

Fold	Naive Bayes	Decision tree	Nearest neighbour
1	0.6809	0.7524	0.7164
2	0.7017	0.8964	0.8883
3	0.7012	0.6803	0.8410
4	0.6913	0.9102	0.6825
5	0.6333	0.7758	0.7599
6	0.6415	0.8154	0.8479
7	0.7216	0.6224	0.7012
8	0.7214	0.7585	0.4959
9	0.6578	0.9380	0.9279
10	0.7865	0.7524	0.7455
avg	0.6937	0.7902	0.7606
stdev	0.0448	0.1014	0.1248

Fold	NB-DT	NB-NN	DT-NN
1	-0.0715	-0.0355	0.0361
2	-0.1947	-0.1866	0.0081
3	0.0209	-0.1398	-0.1607
4	-0.2189	0.0088	0.2277
5	-0.1424	-0.1265	0.0159
6	-0.1739	-0.2065	-0.0325
7	0.0992	0.0204	-0.0788
8	-0.0371	0.2255	0.2626
9	-0.2802	-0.2700	0.0102
10	0.0341	0.0410	0.0069
avg	-0.0965	-0.0669	0.0295
stdev	0.1246	0.1473	0.1278
<i>p</i> -value	0.0369	0.1848	0.4833

La p-valeur dans la dernière ligne est calculée en utilisant la *t*-distribution avec k - 1 = 9 degrés de liberté. Et seule la différence entre Naïve Bayes et les Arbres de Décision est jugée significative au niveau $\alpha = 0.05$. (0.0369 < 0.05)

From [Peter Flach (2012) Machine Learning. *The art and science of algorithms that make sense of data*. Cambridge University Press]

Le test de McNemar

- Au lieu de regarder la différence de taux d'erreur, on peut comparer les taux de classifications correcte et incorrecte
- Si les performances de A et B sont équivalentes alors on devrait avoir : $e_{01} = e_{10}$
- La variable $|e_{01} e_{10}|$ suit une distribution gaussienne
- Le test de McNemar considère la variable qui suit une loi du chi2
- H_0 ne peut être rejetée au niveau α si

Algorithm B	Algorithm A			
	Correct	Incorrect		
Correct	e ₀₀	<i>e</i> ₀₁		
Incorrect	<i>e</i> ₁₀	<i>e</i> ₁₁		

$$\tau_{\chi^2} = \frac{(|e_{01} - e_{10}| - 1)^2}{e_{01} + e_{10}}$$

$$\tau_{\chi^2} = \frac{(|e_{01} - e_{10}| - 1)^2}{e_{01} + e_{10}} < \chi_{\alpha}^2$$

Comparaison de 2 algorithmes

sur plusieurs jeux de données

Remarque fondamentale

- La **performance** des algorithmes **dépend de** leur adéquation au • jeu de données traité
- **On ne peut plus** faire l'hypothèse que les taux d'erreur sur les différents jeux de données sont distribués selon une loi normale

Il faut recourir à des tests non paramétriques

On calcule la somme des rangs :

$$W_{s1} = \sum_{i=1}^{n} I(d_i > 0) \operatorname{rank}(d_i) \quad \text{et} \quad W_{s2} = \sum_{i=1}^{n} I(d_i < 0) \operatorname{rank}(d_i)$$

où $d_i = \operatorname{Perf}_{moy}(h_2) - \operatorname{Perf}_{moy}(h_1)$

Puis :

$$T_{wilcox} = \min(W_{s1}, W_{s2})$$

La distribution de T_{wilcox} peut être approchée par une loi normale quand $n \ge 25$ (sinon regarder dans une table)

- On calcule la statistique z

$$z_{wilcox} = \frac{T_{wilcox} - \mu_{T_{wilcox}}}{\sigma_{T_{wilcox}}}$$
- Avec :
$$\mu_{wilcox} = \frac{n(n+1)}{4} \quad \text{et} \quad \sigma_{T_{wilcox}} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$$

Application

 $T_{wilcox} = \min(W_{s1}, W_{s2}) = 17$

Avec n-1 = 9 degrés de liberté

ou $T_{wilcox} < 5$ (two-sided)

(d'après la table pour p=0.05)

Il faut $T_{wilcox} < 8$ (one-sided)

Domain no.	NB accuracy	SVM accuracy	NB-SVM	NB-SVM	Ranks (NB–SVM)	± Ranks (NB–SVM)
1	0.9643	0.9944	-0.0301	0.0301	3	-3
2	0.7342	0.8134	-0.0792	0.0792	6	-6
3	0.7230	0.9151	-0.1921	0.1921	8	-8
4	0.7170	0.6616	+0.0554	0.0554	5	+5
5	0.7167	0.7167	0	0	Remove	Remove
6	0.7436	0.7708	-0.0272	0.0272	2	-2
7	0.7063	0.6221	+0.0842	0.0842	7	+7
8	0.8321	0.8063	+0.0258	0.0258	1	+1
9	0.9822	0.9358	+0.0464	0.0464	4	+4
10	0.6962	0.9990	-0.3028	0.3028	9	-9

Table 6.4. Classifiers NB and SVM data ran on 10 realistic domains and used inthe Wilcoxon test example

Donc on ne peut pas rejeter l'hypothèse nulle d'égalité entre les algorithmes à p = 0.05

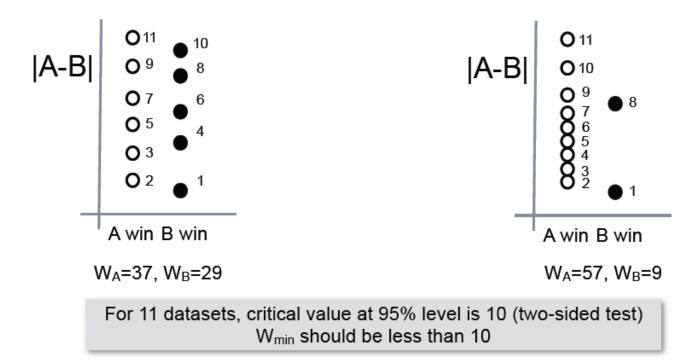
*W*_{s1} = 28 *W*_{s2} = 17

From [Japowicz & Shah (2011) "Evaluating Learning Algorithms. A classification perspective", p.235]

• Wilcoxon signed rank test

For paired data -algorithms A and B:

- Sort result by absolute size of differences
- If no systematic difference then average ranks of A wins and B wins will be roughly the same



Data set	NB-DT	Rank
1	-0.0715	4
2	-0.1947	8
3	0.0209	1
4	-0.2189	9
5	-0.1424	6
6	-0.1739	7
7	0.0992	5
8	-0.0371	3
9	-0.2802	10
10	0.0341	2

Est-ce que l'un des deux algorithmes est significativement meilleur que l'autre ?

From [Peter Flach (2012) Machine Learning. *The art and science of algorithms that make sense of data*. Cambridge University Press]

	Two-Ta	iled Test	One-Tai	led Test
n	$\alpha = .05$	$\alpha = .01$	$\alpha = .05$	$\alpha = .01$
5			0	
6	0		2	
7	2		3	0
8	3	0	5	1
9	5	1	8	3
10	8	3	10	5
11	10	5	13	7
12	13	7	17	9
13	17	9	21	12
14	21	12	25	15
15	25	15	30	19
16	29	19	35	23
17	34	23	41	27
18	40	27	47	32
19	46	32	53	37
20	52	37	60	43

http://www.bios.unc.edu/~mhudgens/bios/662/2008fall/wilcox_t.pdf

Comparaison de **N** algorithmes

sur plusieurs jeux de données

Le test de Friedman

- Chaque algorithme est testé sur chaque jeu de données (par CV ou par jeu de test (« holdout »)
- Les algorithmes sont alors triés pour chaque jeu de données
- Les algorithmes de performances équivalentes devraient avoir des rangs moyens proches
- Soient k algorithmes et N jeux de données et r_i le rang moyen de l'algorithme A_i
- La moyenne et la variance de r_i sont alors :

Data set	Algorithm A	Algorithm B	Algorithm C
D_1	1	2	3
D_2	1	2.5	2.5
D_3	1	2	3
D_4	1	2	3
Average rank	x 1	2.125	2.875

Exemple pour 3 algorithmes et 4 jeux de données

$$\frac{k+1}{2} \quad \text{et} \quad \frac{k^2-1}{12\,N}$$

Le test de Friedman (2)

• La variable

$$\tau_{\chi^2} = \frac{k-1}{k} \cdot \frac{12N}{k^2 - 1} \sum_{i=1}^k \left(r_i - \frac{k+1}{2} \right)^2$$
$$= \frac{12N}{k(k+1)} \left(\sum_{i=1}^k r_i^2 - \frac{k(k+1)^2}{4} \right)$$

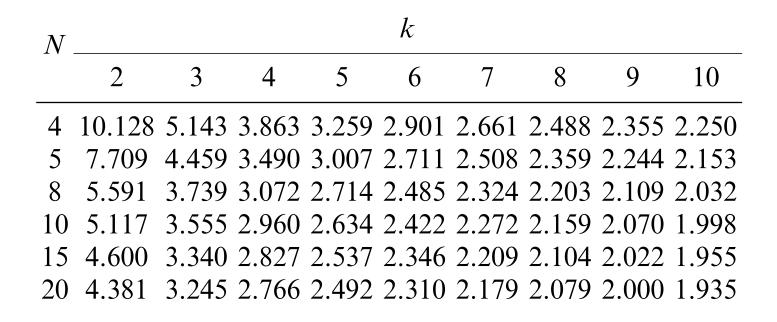
- Suit une loi du chi2 à *k*-1 degrés de liberté quand *k* et *N* sont grands
- On utilise souvent la variable suivante qui est valable pour de plus petites valeurs de k et N $(N-1)\tau^2$

$$\tau_F = \frac{(N-1)\tau_{\chi}^2}{N(k-1) - \tau_{\chi}^2}$$

 Et on teste si elle est plus petite qu'une valeur critique donnée par les tables

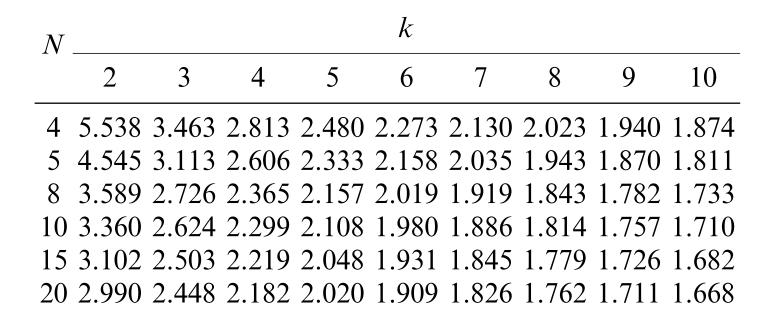
Le test de Friedman (3)

• Table de valeurs critiques pour $\alpha = 0.05$



Le test de Friedman (4)

• Table de valeurs critiques pour $\alpha = 0.1$



• Wilcoxon signed rank test

Domain no.	NB accuracy	SVM accuracy	NB–SVM	NB-SVM	Ranks (NB–SVM)	± Ranks (NB–SVM)
1	0.9643	0.9944	-0.0301	0.0301	3	-3
2	0.7342	0.8134	-0.0792	0.0792	6	-6
3	0.7230	0.9151	-0.1921	0.1921	8	-8
4	0.7170	0.6616	+0.0554	0.0554	5	+5
5	0.7167	0.7167	0	0	Remove	Remove
6	0.7436	0.7708	-0.0272	0.0272	2	-2
7	0.7063	0.6221	+0.0842	0.0842	7	+7
8	0.8321	0.8063	+0.0258	0.0258	1	+1
9	0.9822	0.9358	+0.0464	0.0464	4	+4
10	0.6962	0.9990	-0.3028	0.3028	9	-9

Table 6.4. Classifiers NB and SVM data ran on 10 realistic domains and used inthe Wilcoxon test example

From [Japowicz & Shah (2011) "Evaluating Learning Algorithms. A classification perspective"]

- Situation du **test d'hypothèses multiples**
 - Problème : un algorithme **peut sembler meilleur** par le hasard des tests (cf. lien entre risque empirique et risque réel)

- Post hoc tests
 - Une fois que des tests statistiques ont montré une différence entre algorithmes, les tests post hoc cherchent quels algorithmes sont effectivement différents
 - Le test de Nemenyi est un test post-hoc très employé

Le test de Nemenyi

- Calcule une *q* statistique sur la différence entre les rangs moyens
 - Let R_{ij} be the rank of classifier f_j on dataset S_i .
 - We compute the mean rank of classifier f_j on all datasets:

$$\overline{R}_{.j} = \frac{1}{n} \sum_{i=1}^{n} R_{ij}.$$

• For any two classifiers f_{j1} and f_{j2} , we compute the q statistic as

$$q = \frac{\overline{R}_{.j_1} - \overline{R}_{.j_2}}{\sqrt{\frac{k(k+1)}{6n}}}.$$

• The null hypothesis is rejected after a comparison of the obtained q value with the q value for the desired significance table for critical q_{α} values, where α refers to the significance level.²⁵ Reject the null hypothesis if the obtained q value exceeds q_{α} .

Exemple pour trois algorithmes f_A, f_B et f_C

Domain	Classifier f_A	Classifier f_B	Classifier f_C
1	85.83	75.86	84.19
2	85.91	73.18	85.90
3	86.12	69.08	83.83
4	85.82	74.05	85.11
5	86.28	74.71	86.38
6	86.42	65.90	81.20
7	85.91	76.25	86.38
8	86.10	75.10	86.75
9	85.95	70.50	88.03
10	86.12	73.95	87.18

Table 6.6. Sample accuracy results for classifiers f_A , f_B , and f_C on 10 domains

Table 6.9. Rewriting Table 6.6 as ranks

Domain	Classifier f_A	Classifier f_B	Classifier f_C
1	1	3	2
2	1.5	3	1.5
3	1	3	2
4	1	3	2
5	2	3	1
6	1	3	2
7	2	3	1
8	2	3	1
9	2	3	1
10	2	3	1
Rank Sums $(R_{.j})$	15.5	30	14.5

Exemple pour trois algorithmes f_A, f_B et f_C

Table 6.9. Rewriting Table 6.6 as ranks					
Domain	Classifier f_A	Classifier f_B	Classifier f_C		
1	1	3	2		
2	1.5	3	1.5		
3	1	3	2		
4	1	3	2		
5	2	3	1		
6	1	3	2		
7	2	3	1		
8	2	3	1		
9	2	3	1		
10	2	3	1		
Rank Sums $(R_{.j})$	15.5	30	14.5		

$$q_{12} = \frac{\overline{R}_{.1} - \overline{R}_{.2}}{\sqrt{\frac{3(3+1)}{6\times 10}}} = \frac{15.5 - 30}{\sqrt{\frac{3(3+1)}{6\times 10}}} = \frac{-14.5}{0.45} = -32.22,$$
$$q_{13} = \frac{\overline{R}_{.1} - \overline{R}_{.3}}{\sqrt{\frac{3(3+1)}{6\times 10}}} = \frac{15.5 - 14.5}{\sqrt{\frac{3(3+1)}{6\times 10}}} = \frac{1}{0.45} = 2.22,$$
$$q_{23} = \frac{\overline{R}_{.2} - \overline{R}_{.3}}{\sqrt{\frac{3(3+1)}{6\times 10}}} = \frac{30 - 14.5}{\sqrt{\frac{3(3+1)}{6\times 10}}} = \frac{15.5}{0.45} = 34.44.$$

Ici CD = 2,55 (Critical Difference)

Donc
$$f_B > f_A$$
, et $f_B > f_C$, mais pas $f_A > f_C$

- Reprenons la comparaison :
- Table de valeurs critiques

α	k								
	2	3	4	5	6	7	8	9	10
0.05	1.960	2.344	2.569	2.728	2.850	2.949	3.031	3.102	3.164
0.10	1.645	2.052	2.291	2.459	2.589	2.693	2.780	2.855	2.920

Data set	Algorithm A	Algorithm B	Algorithm C
D_1	1	2	3
D_2	1	2.5	2.5
D_3	1	2	3
D_4	1	2	3
Average rank	: 1	2.125	2.875

Exemple pour 3 algorithmes et 4 jeux de données

• On a alors :

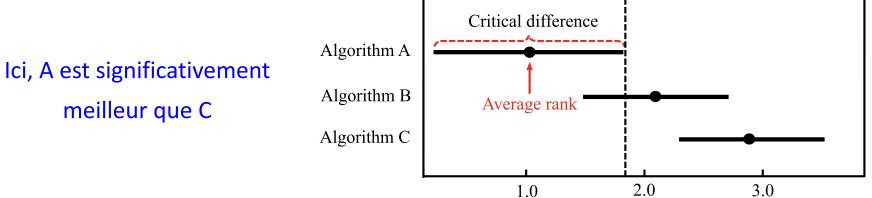
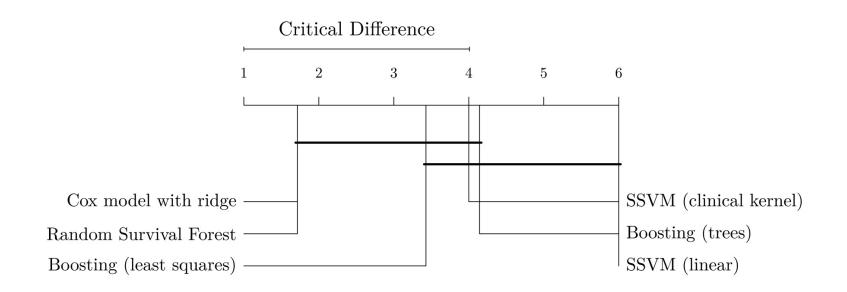


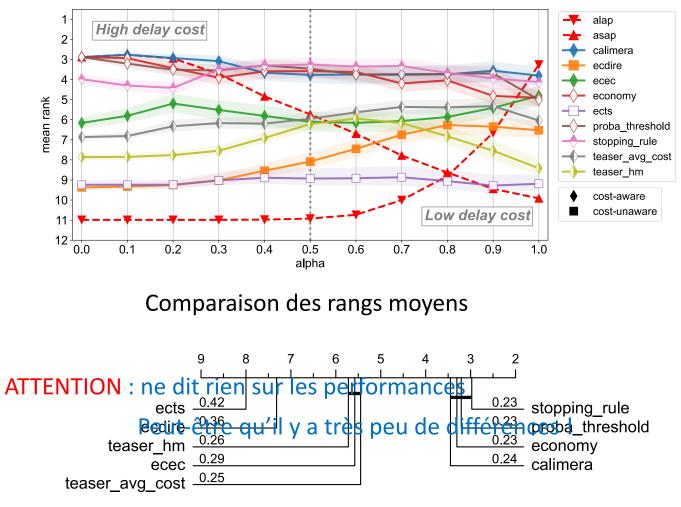
Illustration : test de Nemenyi

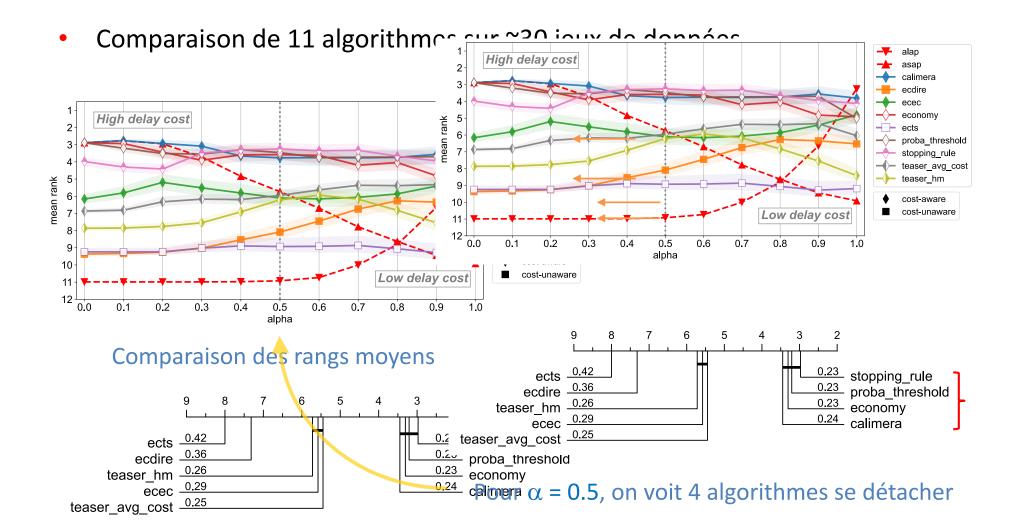


Les méthodes sont **triées par rang moyen** (de la gauche vers la droite) et les groupes de méthodes non significativement différents sont **connectés** (p-value > 0.05)

[Sebastian Pölsterl et al. (2017) "Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients", F1000Research.]

• Comparaison de 11 algorithmes sur ~30 jeux de données





Références

- Nathalie Japkowicz & Mohak Shah (2011) Evaluating Learning Algorithms. A classification perspective. Cambridge University Press.
- Demsar, J. (2006) Statistical Comparison of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7:1-30.

