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Abstract

We study the problem of identifying a class of interest
in an unsupervised data set. Assuming that a set F of
score functions is available, of unknown performance
for the task at hand, we propose a method in order
to select useful functions from the set. Each of these
functions induces a ranking over the data set.

We then show how to combine the base rankings thus
obtained. Experimental results demonstrate that the
combined performance is almost as good, or better,
than the performance of the best, but unknown, score
function in F . In addition, we show, under some sim-
plifying assumptions, how a proper combination of the
base rankings allows one to end up with DNF formulas
involving the selected score functions that converge to
optimal precision and recall with respect to the target
concept, if the capacity of F permits it. Such formu-
las, easily interpretable, are very desirable in the ex-
ploratory context of data mining.

Mots-clef : Unsupervised learning, Ensemble meth-
ods.

1 Introduction

Data exploration aimed at discovering interesting
classes of patterns is an essential part of scientific dis-
covery or, more mundanely, of data mining. For in-
stance, in bioinformatics, many research works look for
the identification of genes that respond to some condi-
tions in the environment, or for finding proteins that
could potentially interact with some given target drugs.
In a different context, the IRS (Internal Revenue Ser-
vice) would like to identify the most likely tax evaders.
More generally, fraud detection is a growing applica-

tion area. In each case, there is one class of interest
that gathers objects the expert is looking for against
the other data points.

In this exploratory setting, it is difficult to come up
with informative functions good at distinguishing be-
tween the interesting data points versus the non inter-
esting ones. While it might be easy to get candidate
evaluation functions from experts or from libraries of
functions commonly used in statistics or in Machine
Learning, or even to generate such functions automati-
cally, it is difficult in an unsupervised context to assess
their merit. Therefore one is left guessing which one(s)
of these functions to rely on. Additionally, for many
application domains, and especially those where data
is described by a large number of features, it is highly
desirable that the class of interest be described in an
interpretable way. This means that the class of interest
should be expressed as much as possible using under-
standable features. For most experts, understanding
and the capacity for reasoning imply descriptions that
use combinations of predicates like disjunctive normal
forms (DNF). This allows him/her to gain insight in
what makes the class of interest apart and how this
can be related to the current domain theory, possibly
stimulating some revision of the theory.

In this work, we study the following problem. We
suppose that there exists a set S of m data points from
the input space X with no labels: S = {x1, . . . ,xm}
that has been generated by an unknown mixture of
distributions of which some components, belonging to
P+
X , correspond to the class of interest that we call S+,

and the other components, P−X , correspond to the set
of the remaining data points S−. The sets S+ and S−,
such that S+ ∪ S− = S, are unknown and must be
identified as well as possible.

In addition, we suppose that a set F of evaluation
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functions (or score functions) is available, each func-
tion associating a score to a data point: fi : X → R.
Nothing is assumed a priori about the usefulness of
each function fi ∈ F , and in particular, one does not
know if any given function is “aligned” with the target
concept, that is if it tends to put the data points of the
class of interest toward the top of the induced ranking
over the data set S.

We propose a method for identifying useful score
functions in F , if some exist, in this completely un-
supervised setting. The basic idea is to look at the
correlation between the rankings induced by the score
functions over S and to select functions with a par-
ticular property. We explain how one can use the base
rankings in order to get a combined ranking of the data
points in S with good performances.

We end up by demonstrating, under some simplify-
ing assumptions, how a proper combination of the base
rankings allows one to end up with DNF formulas that
converges to optimal precision and recall with respect
to the target concept, if the capacity of F permits it.

2 The selection of useful evalua-
tion functions

2.1 Principle of the method

In supervised learning . . .

2.2 Correlation measures

A measure of correlation between rankings . . .
In the proposed method, . . .
Figure ?? depicts a typical difference. Here the eval-

uation functions are ANOVA and Relief [Kon94] and
the data corresponds to 6,400 genes. The task was to
find out if some genes were sensitive to low radioactiv-
ity levels. The upper curve |∩i,jn | shows the correlation
over the data, while the lower curve with confidence in-
tervals is obtained by computing the intersections |∩i,jn |
over random samples S0 (here 100).

The difference in . . .

2.3 A theoretical analysis

In this section, we develop a simple model in order to
allow us (in Section 5) to devise a strategy for discover-
ing interpretable expressions of the hidden regularities
in the data.

We start by assuming that the evaluation functions
are characterized by a positive (or negative) propensity

200 400 600 800 1000

0.2

0.4

0.6

0.8

1

no relevant attribute

intersection size
n

Ratio : 

n

p = 400
p = 200
p = 50

200 400 600 800 1000

0.2

0.4

0.6

0.8

1

no relevant attribute

intersection sizeRatio : 

n

p = 400
p = 200
p = 50

n

Figure 2: Correlation curves between rankings of an ar-
tificial data set of 1,000 elements for various numbers of
elements of class ‘+’, here 50, 200 and 400. The peaks
are accentuated on the right graph which corresponds
to an easier problem.

to put the elements of class ‘+’ at the top of their
ranking. This propensity can be modeled by a ROC
curve [Fla12].

(. . . )
In the simple analysis reported here, we suppose that

we consider two evaluation functions fi and fj of the
same strength (defined by εx and εy), that is they
share a common ROC curve. The theoretical study
with functions exhibiting different ROC curves does
not change qualitatively the results.

Let us compute the size of the intersection of the
topn elements: | ∩i,jn |. Let x be the number of false
positive elements. Therefore, x varies on the FP axis.
Let m+ be the number of positive elements in S and
m− be the number of negative elements. Then, we
have two phases to consider.

1. 1st phase: x ≤ εx. One finds: n = xm− +
1−εy
εx

xm+

| ∩i,jn | = x2m− +
( 1−εy

εx

)2
x2m+

(1)

giving, for the first part of the curve, the equation:

| ∩i,jn |
n

=
x2m− +

( 1−εy
εx

)2
x2m+

xm− +
1−εy
εx

xm+

= x
m− +

( 1−εy
εx

)2
m+

m− +
1−εy
εx

m+
(2)

For the special value x = εx (point P ), we get:{
n = εxm

− + (1− εy)m+

| ∩i,jn | = ε2xm
− + (1− εy)2m+

(3)

corresponding to the value on the y-axis:

| ∩i,jn |
n

=
ε2xm

− + (1− εy)2m+

εxm− + (1− εy)m+
(4)
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Figure 1: The curve |∩i,jn |/n function of n. Two independent draws should approximately result in the diagonal
law. (Left) Two maximally correlated draws give |∩i,jn |/n = 1 (∀n). Two draws maximally inversely correlated
give the red curve at the bottom. All possible behaviors fall between these two extreme curves. (Right) The
characteristic curve for two rankings from uncorrelated but perfectly informed evaluation functions.

2. 2nd phase: εx < x.
n = xm− +

[
(1− εy) +

εy
1−εx (x− εx)

]
m+

| ∩i,jn | = x2m− +
[
(1− εy) +

εy
1−εx (x− εx)

]2
m+

(5)
giving, for the second part of the curve, the equa-
tion:

| ∩i,jn |
n

=
x2m− +

[
(1− εy) +

εy
1−εx (x− εx)

]2
m+

xm− +
[
(1− εy) +

εy
1−εx (x− εx)

]
m+

(6)

These equations give the most probable value for
|∩i,j

n |
n , as shown on the right hand side of Figure ??.

While computed from an idealized model, this curve is
in good accordance with empirical observations.

2.4 The algorithm

The selection of the useful base scoring functions is
done according to algorithm1. . . .

3 Experimental studies

These experiments address the question as to which
extent the proposed method is able to select relevant
evaluation functions in F , . . .

In order to test for this, we have realized experiments
with artificial data. The data where generated using
two probability distributions over the input space Rd

(here d = 20): distribution P+
X for the ‘+’ instances

and distribution P−X for the ‘+’ instances. In the ex-
periments reported here we have used two Gaussian

Algorithm 1: Selection of “good enough” base
scoring functions

Input: The data set S
The set F of the base scoring functions

Output: A subset F ′′ ∈ F of base functions

Generation of N random samples S0;

forall the pairs of scoring functions (fi, fj)(i 6=j)

∈ F do
compute the over-correlation of (fi, fj) on
S compared to the mean correlation on the
samples S0

end forall

Select the scoring functions fi ∈ F with
over-correlation ≥ τmin overcor: producing F ′

Initialization : F ′′ = ∅
forall the fi ∈ F ′ do

if
∑

j 6=i overcorr(fi, fj) ≥ τsum overcorr then

Put fi in F ′′

end forall

distributions with means separated by a euclidian dis-
tance of 3. The difficulty of the task was controlled
by adding noise of varying standard deviation σ to the
data points (σ = 1.5, 2.5, 3.5 and 4.5).

(. . . )

Table 1 reports the minimal AUC (aucm) and the
maximum AUC (aucM ) for the functions in F . Like-
wise, it reports the minimal AUC (aucm), the maximal
AUC (aucM ) and the mean AUC (auc) for the func-
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tions selected by the method: in F ′′. Finally, the last
column gives the AUC obtained by combining the re-
sults of the evaluation functions selected in F ′′ (see
Section 4 for an explanation).

(. . . )

4 A method for combining re-
sults

(. . . )

5 Towards interpretable combi-
nations of selected features

Assuming that there exists a class of m+ objects of
interest from a distribution P+

X and a class of m− other
objects in the data set S from a distribution P−X , is
there any hope of identifying the objects of the class
‘+’? It all depends on the number and properties of
the evaluation functions contained in F .

(. . . )
One can compute the ROC curve obtained when con-

sidering the intersection
|∩i,j

n |
n of the topn of each func-

tion.
Using the equations of Section 2.3, one obtains:

For x ≤ εx:

| ∩i,jn | = x2m−︸ ︷︷ ︸
FP

+

[
1− εy
εx

]2
x2m+︸ ︷︷ ︸

TP

(7)

and for x > εx:

| ∩i,jn | = x2m−︸ ︷︷ ︸
FP

+

[
(1− εy) +

εy
1− εx

(x− εx)

]2
m+︸ ︷︷ ︸

TP

(8)
(. . . )
What is interesting is that while the AUC of the

function
|∩i,j

n |
n is not much larger than the AUC of each

base function, its slope in the left part of the curve is
much steeper. That means that the precision in this
part seems very much improved. Does the theoretical
analysis confirms this? Let us see how the precision and
recall evolve when one goes from a random selection of
objects in S (stage 0), to using the base score function
(stage 1), up to using the function | ∩i,jn | (stage 2).

1. Stage 0. We suppose that a fraction η of the m ob-
jects are randomly selected in S and are assigned

to the class ‘+’. We let: m− = αm+, with α ≥ 0
and εx = β (1 − εy) with 0 ≤ β < 1 (note that
0 ≤ β < 1 entails an AUC > 0.5 while β > 1 en-
tails an AUC < 0.5). Then, we get the precision
(prec.) and recall:

prec. =
TP

TP + FP
=

ηm+

η(m+ +m−)
=

1

1 + α

recall =
TP

TP + FN
=

ηm+

m+
= η

2. Stage 1. We look at the point on the ROC curve
that maximizes precision and recall: x = εx on
Figure ??.

prec. =
(1− εy)m+

(1− εy)m+ + εx αm+

=
1− εy

1− εy + αβ (1− εy)
=

1

1 + αβ

recall =
(1− εy)m+

m+
= 1− εy

3. Stage 2. We now use the function | ∩i,jn |, again at
the point with best precision and recall.

prec. =
(1− εy)2m+

(1− εy)2m+ + εx2 αm+

=
(1− εy)2

(1− εy)2 + αβ2 (1− εy)2
=

1

1 + αβ2

recall =
(1− εy)2m+

m+
= (1− εy)2

It is apparent that at each stage one looses on the
recall, meaning that a smaller part of the class ‘+’ gets
recognized. At the same time, . . .

prec. =
(1− εy)km+

(1− εy)km+ + εxk αm+
=

1

1 + αβk

recall =
(1− εy)km+

m+
= (1− εy)k

(. . . )
The method is therefore in principle able to “invent”

new predicates and to produces expressions, DNF, that
are conducive to easier interpretation.

However, . . .
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Before selection After selection
σ m+

m aucm aucM aucm aucM auc AUC comb

1.5

40
320 0± 0 1± 0 0.92± 0.03 1± 0 0.98± 0.01 1± 0
80
320 0± 0 1± 0 0.87± 0.06 1± 0 0.97± 0.01 1± 0
120
320 0± 0 1± 0 0.84± 0.07 1± 0 0.95± 0.01 1± 0

2.5

40
320 0.02± 0.01 0.98± 0.01 0.94± 0.03 0.98± 0.00 0.96± 0.02 0.98± 0.01
80
320 0.03± 0.01 0.98± 0.01 0.85± 0.05 0.98± 0.01 0.91± 0.02 0.97± 0.01
120
320 0.03± 0.01 0.98± 0.01 0.76± 0.03 0.98± 0.01 0.88± 0.02 0.97± 0.01
160
320 0.03± 0.01 0.98± 0.01 0.73± 0.04 0.97± 0.01 0.85± 0.02 0.95± 0.01

3.5

40
320 0.09± 0.02 0.91± 0.02 0.75± 0.06 0.90± 0.03 0.83± 0.01 0.90± 0.03
80
320 0.09± 0.02 0.92± 0.02 0.65± 0.05 0.92± 0.02 0.79± 0.02 0.90± 0.02
120
320 0.09± 0.02 0.91± 0.01 0.64± 0.04 0.91± 0.01 0.77± 0.02 0.89± 0.02
160
320 0.10± 0.01 0.91± 0.02 0.63± 0.03 0.91± 0.02 0.76± 0.02 0.88± 0.02

4.5

40
320 0.13± 0.02 0.86± 0.02 0.67± 0.03 0.86± 0.02 0.76± 0.02 0.86± 0.02
80
320 0.15± 0.02 0.85± 0.02 0.65± 0.03 0.84± 0.03 0.75± 0.02 0.84± 0.03
120
320 0.15± 0.02 0.84± 0.02 0.62± 0.06 0.84± 0.02 0.73± 0.03 0.84± 0.02
160
320 0.15± 0.01 0.85± 0.01 0.61± 0.03 0.85± 0.01 0.72± 0.02 0.83± 0.03

Table 1: Experimental results in function of the noise parameter σ and the proportion of the class ‘+’.

6 Related works

Ensemble methods have first been studied in the con-
text of supervised learning (see [SF12, Zho12] for com-
prehensive studies). It is indeed . . .

7 Conclusion and future works

In this paper, we addressed . . .

Acknowledgments. Part of this work has been sup-
ported by the French ANR project “Coclico” (2013-
2016).

References

[Fla12] Peter Flach. Machine learning: the art and
science of algorithms that make sense of data.
Cambridge University Press, 2012.

[Kon94] Igor Kononenko. Estimating attributes:
analysis and extensions of relief. In Ma-
chine Learning: ECML-94, pages 171–182.
Springer, 1994.

[SF12] Robert E Schapire and Yoav Freund. Boost-
ing: Foundations and Algorithms. MIT Press,
2012.

[Zho12] Zhi-Hua Zhou. Ensemble methods: founda-
tions and algorithms. CRC Press, 2012.

5


