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The	online	learning	scenario	

•  A	stream:	 x1	

y1	

y1	
^	

h1	

Loss(yt,	yt)	^	

x2	

y2	
^	

h2	

y2	

x3	

y3	

y3	

^	

h3	

xt	

yt	

yt	

^	

ht	

E.g.	Choice	of	melons.	I	see	one,	I	make	a	prediction	about	its	tastiness,		
								then	I	eat	it	and	know	the	answer.	
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Novelty	wrt.	Statistical	learning	

1.  Learning	and	testing	are	intermingled	

–  No	distinction	between	training	set,	validation	set	and	test	set	
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Novelty	wrt.	Statistical	learning	

1.  Learning	and	testing	are	intermingled	

–  No	distinction	between	training	set,	validation	set	and	test	set	

2.  The	environment	may	change	over	time	

–  The	learner	should	adapt		

3.  Dilemma	

–  Keep	as	much	as	possible	memory	from	the	past	to	gain	in	precision	

–  But	be	ready	to	adapt	to	changes	(and	reduce	the	size	of	the	memory)	
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Desirable	properties	of	a	system	that	handle	concept	drift	

•  Adapt	to	concept	drift	as	soon	as	possible	

•  Distinguish	noise	from	true	changes	

–  Robust	to	noise	but	adaptive	to	changes	

•  Recognize	and	react	to	recurring	contexts	

•  Adapt	with	limited	resources	(time	and	memory)	

What CD is About :: Types of Drifts & Approaches :: Techniques in Detail :: Evaluation :: MOA Demo :: Types of Applications :: Outlook

Desired Properties of a System To 
Handle Concept Drift

• Adapt to concept drift asap

• Distinguish noise from changes
– robust to noise, but adaptive to changes

• Recognizing and reacting                                        
to reoccurring contexts

• Adapting with limited resources 
– time and memory

PAKDD-2011 Tutorial,  
May 27, Shenzhen, China

15
A. Bifet, J.Gama, M. Pechenizkiy, I.Zliobaite
Handling Concept Drift: Importance, Challenges and Solutions
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Two	main	approaches	

1.  Directly	control	the	memory	

–  Adapt	the	window	size	
[Widmer	G.	&	Kubat	M.	(1996).	Learning	in	the	
presence	of	concept	drift	and	hidden	contexts.	Mach.	
Learning,	23,	69-101]	

	

–  Weight	the	past	examples	

What CD is About :: Types of Drifts & Approaches :: Techniques in Detail :: Evaluation :: MOA Demo :: Types of Applications :: Outlook

Weighting examples
• Full Memory.
– Store in memory sufficient statistics over all the examples.
– Weighting the examples accordingly to their age.
– Oldest examples are less important.

• Weighting examples based on the age:

where  example x was found tx time steps ago

)exp()( xtxw λλ −=

PAKDD-2011 Tutorial,  
May 27, Shenzhen, China

55
A. Bifet, J.Gama, M. Pechenizkiy, I.Zliobaite  
Handling Concept Drift: Importance, Challenges and Solutions

w(x) = e�� tx
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Two	main	approaches	

2.  	Adapt	the	hypothesis	at	each	time	step	

w

x

xi

w0O

wt = wt�1 + ⌘ yt xt

Past	 Controls	adaptivity	
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Two	main	approaches	

2.  	Adapt	the	hypothesis	at	each	time	step	
What CD is About :: Types of Drifts & Approaches :: Techniques in Detail :: Evaluation :: MOA Demo :: Types of Applications :: Outlook

Dynamic Ensemble

Classifier 1

Classifier 2

Classifier 3

Classifier 4

vote

PAKDD-2011 Tutorial,  

May 27, Shenzhen, China
34

A. Bifet, J.Gama, M. Pechenizkiy, I.Zliobaite
Handling Concept Drift: Importance, Challenges and Solutions

ht(·) =
X

i

↵i(t) classifier
i
t(·)
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Online	learning:	general	perspectives	

1.  	Non	Lipschitzian	scenario	
–  Successive	entries	are	independent,	possibly	adversarial	

–  Online	learning	theory	[Cesa-Bianchi	&	Lugosi,	2006]	

2.  	Temporal	consistency		

–  Heuristic	online	learning	methods	(sliding	windows,	adaptation,	…)	

–  Tracking:	Adapt	to	the	past	and	always	be	behind	the	changes	

3.  	Extrapolate	the	likely	changes	of	ht			
–  [Ghazal	Jaber,	2013]	

–  Needs	extrapolation	from	past	observed	behavior		

4.  	Transduction:	take	into	account	the	future	“questions”	xt+1			
–  As	in	semi-supervised	learning	

5.  	Both	(3)	and	(4)	
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Online	learning:	general	perspectives	

1.  	Non	Lipschitzian	scenario	
–  Successive	entries	are	independent,	possibly	adversarial	

–  Online	learning	theory	[Cesa-Bianchi	&	Lugosi,	2006]	

2.  	Temporal	consistency		

–  Heuristic	online	learning	methods	(sliding	windows,	adaptation,	…)	

–  Tracking:	Adapt	to	the	past	and	always	be	behind	the	changes	

3.  	Extrapolate	the	likely	changes	of	ht			
–  [Ghazal	Jaber,	2013]	

–  Needs	extrapolation	from	past	observed	behavior		

4.  	Transduction:	take	into	account	the	future	“question(s)”	xt+1			
–  Learn	ht	using	xt+1	as	well.		(As	in	semi-supervised	learning)	

5.  	Both	(3)	and	(4)	
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Online	learning	and	transfer	learning	

•  Each	step	implies	a	“small”	transfer	

–  From	the	environment	at	time	t-1	to	the	environment	at	time	t			

•  Use	“source	knowledge”	(ht-1)		

and	the	current	batch			

to	learn	target	ht	by	adapting	from	past	to	current	environment	

�
(xi

t, y
i
t)
 
1im
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Learning	Using	Privileged	Information		

Inspired	by	learning	at	school	

•  The	goal	is	to	learn	a	function		

•  Suppose	that	at	learning	time	there	is	more	available	information		

than	at	test	time	

	

•  Can	we	then	improve	the	generalization	performance	wrt.		

the	one	obtained	with	S	only?	

V.	Vapnik	and	A.	Vashist	(2009)	“A	new	learning	paradigm:	Learning	using	privileged	
information”.	Neural	Networks,	vol.	22,	no.	5,	pp.	544–557,	2009	
	

S⇤ = {(xi,x
⇤
i , yi)}1im

h : x 2 X ! y 2 {�1,+1}
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One	solution:	SVM+	

•  The	classical	optimization	problem	

•  is	changed	into	

•  Intuition:	

–  Identify	the	difficult	examples	

–  And	relax	/	tighten	the	SVM	constraints	accordingly		->		better	generalization	performances	

Understanding LUPI
(Learning using Privileged Information)

Ahmadreza Momeni, Kedar Tatwawadi
Stanford University,

Stanford, US
{amomenis,kedart}@stanford.edu

I. INTRODUCTION

The idea of using privileged information was first sug-
gested by V. Vapnik and A. Vashist in [1], in which they
tried to capture the essence of teacher-student based learning
which is very effective in case of human beings learning.
More specifically, when a human is learning a novel notion,
he exploits his teacher’s comments, explanations, and ex-
amples to facilitate the learning procedure. Vapnik proposed
the following framework : assume that we want to build a
decision rule for determining some labels y based on some
features X , but in the training stage in addition to X , we are
also provided with some additional information, denoted as
the ”privileged information” x⇤ which is not present in the
testing stage.

In such a scenario how can we utilize X⇤ to improve
the learning? In this project report, we try to understand
the framework of LUPI using a variety of experiments. We
also try to propose a new algorithm based on priviledged
information for Neural Networks based on the intuition
obtained from the experiments.

A. LUPI Framework

We first briefly describe the mathematical framework of
LUPI: In the classical binary classification problems we are
given m number of pairs (xi, yi), i = 1, . . . ,m where xi 2
X , yi 2 {�1,+1}, and each pair is independently generated
by some underlying distribution PXY , which is unknown.
The goal here is to find a function f : X ! {�1,+1} in the
function class F to assign the labels with the lowest error
possible averaged over the unknown distribution PXY .

In the LUPI framework, the model is slightly different,
as we are provided with triplets (xi, x⇤

i , yi), i = 1, . . . ,m
where xi 2 X , x⇤

i 2 X ⇤, yi 2 {�1,+1} with each triplet
is independently generated by some underlying distribution
PXX⇤Y , which is again unknown. However, the goal is the
same as before: we still aim to find a function f : X !
{�1,+1} in the function class F to assign the labels with
the lowest error possible.

The important question which Vapnik asks is: can the
generalization performance be improved using the privileged
information? Vapnik also showed this is true in the case of
SVM. We will next briefly describe the SVM and the SVM+
LUPI based framework proposed by Vapnik.

B. SVM and SVM+

We briefly describe the SVM and SVM+ methods that we
solve for classification, which in this case is finding some
! 2 X and b 2 R to build the following predictor:

f(x) = sgn [h!, xi+ b] .

1) SVM: The SVM learning method (non-separable
SVM) to find ! and b is equivalent to solving the following
optimization problem:

min
1

2
h!,!i+ C

mX

i=1

⇠i

s.t. yi[h!, xii+ b] � 1� ⇠i, i = 1, . . . ,m.

As a short remark, we should mention that C is a parameter
that needs tuning. In addition, if the slacks ⇠i are all equal
to zero then we call the set of given examples separable,
otherwise they are non-separable.

2) SVM+: In order to take into account the privileged
information X⇤ Vapnik modified the SVM formulation as
follows:

min
1

2
[h!,!i+ �h!⇤,!⇤i] + C

mX

i=1

[h!⇤, x⇤i+ b⇤]

s.t. yi[h!, xii+ b] � 1� [h!⇤, x⇤
i i+ b⇤], i = 1, . . . ,m,

[h!⇤, x⇤
i i+ b⇤] � 0, i = 1, . . . ,m,

where !⇤ 2 X ⇤ and b⇤ 2 R. In this problem C and � are
hyper parameters to be tuned.

Intuitively, we can think of [h!⇤, x⇤
i i+ b⇤]’s as some

estimators for the slacks ⇠i’s in the previous optimization
problem. However, the reduced freedom and better prediction
of the slacks using the privileged information improves the
learning. Another intuition here is that, in some sense the
margins [h!⇤, x⇤

i i+ b⇤] capture the difficulty of the training
examples in the privileged space. This difficulty information
is then used to relax/tighten the SVM constraints to improve
the learning.

We next describe some methodologies which capture this
intuition relating to difficulty of examples to construt LUPI
based frameworks.
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C	and	γ	are	hyperparameters	
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Classification	of	time	series	

•  Monitoring	of	consumer	actions	on	a	web	site:	 	will	buy			or			not	

•  Monitoring	of	a	patient	state:	 	 	 	critical					or			not	

•  Early	prediction	of	daily	electrical	consumption:	 	high									or			low	

x(t)

T

Training	set	
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Standard	classification	of	time	series	

•  What	is	the	class	of	the	new	time	series	xT?	

x(t)

!

T
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Early	classification	of	time	series	

•  What	is	the	class	of	the	new	incomplete	time	series	xt?	

x(t)

T

!

t
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New	set	of	decision	problems	:	early	classification	

•  Data	stream	

•  Classification	task	

•  As	early	as	possible	

•  A	trade-off	

–  Classification	performance		(better	if	t								)	

–  Cost	of	delaying	prediction		(better	if	t								)	
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Early	classification	of	time	series	

Online	decision	problem	

•  With	option	to	defer	at	each	time	step	

–  If	the	expected	future	performance	overcomes		

			the	cost	of	delaying	decision	

x(t)

T

!

t
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Early	classification	and	LUPI	

•  This	is	a	LUPI	setting	 x(t)

T

!

t

•  How	to	take	advantage	of	this?	
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Decision	making	(1)		

•  Given	an	incoming	sequence	

•  And	given:	

–  A	miss-classification	cost	function	

–  A	delaying	decision	cost	function		

•  What	is	the	optimal	time	to	make	a	decision?		

Expected	cost	for	a	decision	at	time	t		
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Decision	making	(1)		

•  Given	an	incoming	sequence	

•  And	given:	

–  A	miss-classification	cost	function	

–  A	delaying	decision	cost	function		

•  What	is	the	optimal	time	to	make	a	decision?		

Expected	cost	for	a	decision	at	time	t		

Optimal	time:			
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Early	classification	and	LUPI	

•  This	is	a	LUPI	setting	 x(t)

T

!

t

•  How	to	take	advantage	of	this?	

1.  Knowledge	of	possible	future	sequences	

2.  Possibility	to	learn	classifiers	for	all	time	steps	
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The	principle	

1.   	During	training:		

–  identify	meaningful	subsets	of	time	sequences	in	the	training	set:	ck		

Clustering	

…		
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The	principle	

1.   	During	training:		

–  identify	meaningful	subsets	of	time	sequences	in	the	training	set:	ck		

–  For	each	of	these	subsets	ck,	and	for	each	time	step	t		

•  Estimate	the	confusion	matrices		
Clustering	

…		

–  T	classifiers	are	learnt	

–  And	their	confusion	matrices																									are	estimated	on	a	test	set				

…		

0 …
		

T…tc1

ck
0 …

		
T…
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The	principle	

1.   	During	training:		

–  identify	meaningful	subsets	of	time	sequences	in	the	training	set:	ck		

–  For	each	of	these	subsets	ck,	and	for	each	time	step	t		

•  Estimate	the	confusion	matrices		

2.   	Testing:	For	any	new	incomplete	incoming	sequence	xt	
–  Identify	the	most	likely	subset:	the	closer	class	of	shapes	to	xt	

Clustering	

…		
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The	principle	

1.   	During	training:		

–  identify	meaningful	subsets	of	time	sequences	in	the	training	set:	ck		

–  For	each	of	these	subsets	ck,	and	for	each	time	step	t		

•  Estimate	the	confusion	matrices		

2.   	Testing:	For	any	new	incomplete	incoming	sequence	xt	
–  Identify	the	most	likely	subset:	the	closer	shape	to	xt	

–  Compute	the	expected	cost	of	decision	for	all	future	time	steps	

Clustering	

…		
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A	non	myopic	decision	process	

•  Optimal	estimated	time	relative	to	current	time	t		

0 T-t

t	 T	

X

Continue	
monitoring	
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A	non	myopic	decision	process	

•  Optimal	estimated	time	relative	to	current	time	t		

t+1	 T	

X

0 T-ti

T-
(t+1)

0

Continue	
monitoring	



36	/	64	

A	non	myopic	decision	process	

•  Optimal	estimated	time	relative	to	current	time	t		

X

0 T-ti

T-
(t+1)

0

t+2	 T	

=
0

T-(t+2)

Take	
decision	
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Controlled	data	

•  Control	of	

–  The	time-dependent	information	provided	to	distinguish	between	classes	

–  The	shapes	of	time	series	within	each	class	

–  The	noise	level	
xt = t⇥ slope⇥ class| {z }

information gain

+ xmax sin(!i ⇥ t + 'j)| {z }
sub shape within class

+ ⌘(t)|{z}
noise factor
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Results:	effect	of	the	noise	level	

Increasing	the	noise	

level	increases	the	

waiting	time,	and	then	

it’s	no	longer	worth	it	

12 Asma Dachraoui et al.

±b 0.02 0.05 0.07
C(t)

⇤(t) ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC

0.01

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 0.99
5.0 26.0 7.78 0.84 30.0 18.91 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

0.05

0.2 8.0 2.00 0.98 8.0 2.00 0.98 9.0 0.0 1.00
0.5 10.0 2.80 0.96 8.0 4.0 0.98 14.0 0.41 0.99
1.5 5.0 0.40 0.68 20.0 0.42 0.95 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

0.10

0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 2.40 0.93 10.0 0.0 0.95
1.5 4.0 0.0 0.67 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 4.0 0.0 0.56 48.0 1.79 0.74 4.0 0.22 0.56
15.0 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 4.0 0.0 0.52 11.0 11.38 0.55 4.0 0.0 0.52

Table 1. Experimental results in function of the waiting cost C(t) = {0.01, 0.05, 0.1}�
t, the noise level ⇤(t) and the trend parameter b.
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Results:	effect	of	the	waiting	cost	

Increasing	the	
waiting	cost		
reduces	the	waiting	
time	

Early Classification of Time Series 13

E�ect of the waiting cost

±b 0.02 0.05 0.07
C(t)

⇤(t) ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC

0.01

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 0.99
5.0 26.0 7.78 0.84 30.0 18.91 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

0.05

0.2 8.0 2.00 0.98 8.0 2.00 0.98 9.0 0.0 1.00
0.5 10.0 2.80 0.96 8.0 4.0 0.98 14.0 0.41 0.99
1.5 5.0 0.40 0.68 20.0 0.42 0.95 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

0.10

0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 2.40 0.93 10.0 0.0 0.95
1.5 4.0 0.0 0.67 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 4.0 0.0 0.56 48.0 1.79 0.74 4.0 0.22 0.56
15.0 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 4.0 0.0 0.52 11.0 11.38 0.55 4.0 0.0 0.52

Table 2. Experimental results in function of the waiting cost C(t) = {0.01, 0.05, 0.1}�
t, the noise level ⇤(t) and the trend parameter b.
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Results:	effect	of	the	difference	between	classes	

Increase	of	the	
difference	between	
classes	

	

The	performance	
increases	(AUC)	

	

The	waiting	time	is	not	
much	changed	in	these	
experiments	

14 Asma Dachraoui et al.

E�ect of the di�erence between the classes

±b 0.02 0.05 0.07
C(t)

⇤(t) ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC ⇥� �(⇥�) AUC

0.01

0.2 9.0 2.40 0.99 9.0 2.40 0.99 10.0 0.0 1.00
0.5 13.0 4.40 0.98 13.0 4.40 0.98 15.0 0.18 1.00
1.5 24.0 10.02 0.98 32.0 2.56 1.00 30.0 12.79 0.99
5.0 26.0 7.78 0.84 30.0 18.91 0.87 30.0 19.14 0.88
10.0 38.0 18.89 0.70 48.0 1.79 0.74 46.0 5.27 0.75
15.0 23.0 15.88 0.61 32.0 13.88 0.64 29.0 17.80 0.62
20.0 7.0 8.99 0.52 11.0 11.38 0.55 4.0 1.22 0.52

0.05

0.2 8.0 2.00 0.98 8.0 2.00 0.98 9.0 0.0 1.00
0.5 10.0 2.80 0.96 8.0 4.0 0.98 14.0 0.41 0.99
1.5 5.0 0.40 0.68 20.0 0.42 0.95 14.0 4.80 0.88
5.0 8.0 3.87 0.68 6.0 1.36 0.64 5.0 0.50 0.65
10.0 4.0 0.29 0.56 4.0 0.25 0.56 4.0 0.34 0.57
15.0 4.0 0.0 0.54 4.0 0.25 0.56 4.0 0.0 0.55
20.0 4.0 0.0 0.52 4.0 0.0 0.52 4.0 0.0 0.52

0.10

0.2 6.0 0.80 0.95 7.0 1.60 0.94 8.0 0.40 0.96
0.5 6.0 0.80 0.84 9.0 2.40 0.93 10.0 0.0 0.95
1.5 4.0 0.0 0.67 5.0 0.43 0.68 6.0 0.80 0.74
5.0 4.0 0.07 0.64 4.0 0.05 0.64 4.0 0.11 0.64
10.0 4.0 0.0 0.56 48.0 1.79 0.74 4.0 0.22 0.56
15.0 4.0 0.0 0.55 4.0 0.0 0.55 4.0 0.0 0.55
20.0 4.0 0.0 0.52 11.0 11.38 0.55 4.0 0.0 0.52

Table 3. Experimental results in function of the waiting cost C(t) = {0.01, 0.05, 0.1}�
t, the noise level ⇤(t) and the trend parameter b.
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[Dachraoui,	A.,	Bondu,	A.,	&	Cornuéjols,	A.	(2015).]		
[Dachraoui,	A.,	Bondu,	A.,	&	Cornuéjols,	A.	(2016).]		

1.   	Formalized	the	problem	as	a	sequential	decision	making	problem	

–  	Explicit	trade-off	
•  Classification	performance	
•  Cost	of	delaying	the	decision	

2.   	Proposed	an	algorithm	which	is 		

–  	Adaptive		
•  Takes	into	account	the	peculiarities	of	xt		

–  	Non	myopic	
•  At	each	time	step,	estimates	the	expected	future	time	for	optimal	decision	

3.   	Showed	promising	experimental	results 		

–  	The	delay	before	decision	exhibited	what	should	be	expected	
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Outline	

1.  	The	online	learning	perspective	

2.  	Early	classification	of	time	series	

3.  	Early	classification	of	time	series	and	transfer	learning	

4.  	The	TransBoost	algorithm	

5.  	Conclusion	
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Algorithms	for	games	

25/46 Cours IA  (A. Cornuéjols) 

L�algorithme alpha-beta : Illustration (9) 

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α  = + 10
β  = + ∞

6 7

Coup à jouerCoup à jouer

Taking	decision	when	the	current	
information	is	incomplete	

Aheuristic
No Specific Domain Knowledge

• Available actions for a given state (legal moves)

• Whether a given state is terminal (game over)

No Heuristics

• Intelligent moves with no strategic or tactical knowledge(!)

• Ideal for General Game Players (GGPs)

• Robust to delayed rewards, e.g. Go

Cameron Browne, 2010

Asymmetric
Kalah (b.f. ~6) Mancala variant
5,000 UCT iterations

Cameron Browne, 2010

Williams (2010)

MCTS	
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Algorithms	for	games	

•  Which	move	to	play?	

The	evaluation	function	is	insufficiently	informed	at	the	root	(current	situation)	

1.   	Query	experts	that	have	more	information	about		
potential	outcomes	

2.   	Combination	of	the	estimates	through	MinMax	

“Experts”	may	live	in	input	spaces	that	are	different	

25/46 Cours IA  (A. Cornuéjols) 

L�algorithme alpha-beta : Illustration (9) 

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α  = + 10
β  = + ∞

6 7

Coup à jouerCoup à jouer

Aheuristic
No Specific Domain Knowledge

• Available actions for a given state (legal moves)

• Whether a given state is terminal (game over)

No Heuristics

• Intelligent moves with no strategic or tactical knowledge(!)

• Ideal for General Game Players (GGPs)

• Robust to delayed rewards, e.g. Go

Cameron Browne, 2010

Asymmetric
Kalah (b.f. ~6) Mancala variant
5,000 UCT iterations

Cameron Browne, 2010

Williams (2010)

MCTS	

Taking	decision	when	the	current	
information	is	incomplete	
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Early	classification	of	time	series	

•  What	is	the	class	of	the	new	incomplete	time	series	xt?	

x(t)

T

!

t
XT

XS
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Principle	

•  Learn	a	classifier	over	the	training	set	of	complete	times	series	

•  Try	to	make	use	of	this	classifier	to	predict	the	class	of	
incomplete	series	

SS = {(xS
i , y

S
i )}1im ! hS

hT = Function using hS
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Algorithms	for	games	and	transfer	learning	

			Which	move?	
–  Better	evaluation	function	in	XS
–  Backup	it	(by	transfer)	for	XT
–  Combine	the	results	using	MaxMin	

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

α  = − ∞

β  = + ∞

1

α  = − ∞
β  = + ∞

α  = − ∞
β  = + ∞

α  = − ∞
β  = + ∞

α  = − ∞
β  = + 10

?	 ?	

2 XS

2 XT
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Outline	

1.  	The	online	learning	perspective	

2.  	Early	classification	of	time	series	

3.  	Early	classification	of	time	series	and	transfer	learning	

4.  	The	TransBoost	algorithm	

5.  	Conclusion	
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TransBoost	

HT (x
T ) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T )
��

+

+

+

+
+

-

-

-

-

-

xi

X

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
⇡1
⇡2

⇡N

⇡j

⇧

hS
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TransBoost	

•  Principle:	
–  Learn	“weak	projections”:		

•  From:	

	

–  Using	boosting	

•  Projection								such	that	:		

•  Re-weight	the	training	time	series	and	loop	until	termination	

–  Result	

⇡i : XS ! XT

SS = {(xS
i , y

S
i )}1im

"n
.
= Pi⇠Dn [hS(⇡n(xi)) 6= yi] < 0.5⇡n

HT (x
T ) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T )
��
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TransBoost	

+

+

+

+
+

-

-

-

-

-

-
-

-

-
-
--

-

+

+ +

+

+
+

+

+

+
xi

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
�1
�2

�N

�j(xi)
�j

�

hS

XSXT

Figure 1: The principle of prediction using TransBoost. A given target exemple x
T

i is projected in the source
domain using a set of identified weak projections fij and the prediction for x

T

i is computed as: HT (xT

i ) =

sign
;qN

j=1 hS

!
fij(xT

i )
"<

.

Algorithm 1: Transfer learning by boosting
Input: hS : XS æ YS the source hypothesis

ST = {(xT

i , y
T

i }1ÆiÆm: the target training set

Initialization of the distribution on the training set: D1(i) = 1/m for i = 1, . . . , m ;

for n = 1, . . . , N do

Find a projection fii : XT æ XS st. hS(fii(·)) performs better than random on Dn(ST ) ;
Let Án be the error rate of hS(fii(·)) on Dn(ST ) : Án

.= Pi≥Dn [hS(fin(xi)) ”= yi] (with Án < 0.5) ;
Computes –i = 1

2 log2
! 1≠Ái

Ái

"
;

Update, for i = 1 . . . , m:

Dn+1(i) = Dn(i)
Zn

◊
I

e
≠–n if hS

!
fin(xT

i )
"

= y
T

i

e
–n if hS

!
fin(xT

i )
"

”= y
T

i

=
Dn(i) exp

!
≠–n y

(T )
i hS(fin(x(T )

i ))
"

Zn

where Zn is a normalization factor chosen so that Dn+1 be a distribution on ST ;
end

Output: the final target hypothesis HT : XT æ YT :

HT (xT ) = sign
; Nÿ

n=1
–n hS

!
fin(xT )

"<
(2)

5
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Results	

The source domain comprises the complete time series (tS = 200), while the target domain contains
time series truncated to their first tT time steps (in our experiments, tT 2 {20, 50, 100}). On
each domain, a classifier (Gaussian SVM as implemented in Scikit Learn) was trained using the
corresponding training time series.

In these experiments, the set of projections ⇧ was chosen as a set of “hinge functions”, defined by
three parameters, the slope of the first linear part, the time where the hinge takes place, and the slope
of the second linear part. The set is explored randomly by the algorithm and a projection is retained
if its error rate on the current weighted data is better than 0.45.

Table 1 provides representative examples of the results obtained (see the supplementary material for
more comprehensive results). Each cell of the table shows the average performance (and the standard
deviations) computed from 100 experiments repeated under the same conditions. It is apparent that
TransBoost yields very significantly superior results in conditions where there is signal in the target
data set, but the learning task is not so easy as to not require transfer learning.

slope, noise, tT hT (train) hT (test) HT (train) HT (test) hS (test) H
0
T (test)

0.001, 0.001, 20 0.46 ± 0.02 0.50 ± 0.08 0.08 ± 0.03 0.08 ± 0.02 0.05 0.49 ± 0.01
0.005, 0.001, 20 0.46 ± 0.02 0.49 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 0.45 ± 0.01
0.005, 0.002, 20 0.46 ± 0.02 0.49 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.02 0.43 ± 0.01
0.005, 0.02, 20 0.44 ± 0.02 0.48 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.01 0.47 ± 0.01
0.001, 0.2, 20 0.46 ± 0.02 0.50 ± 0.01 0.46 ± 0.02 0.51 ± 0.02 0.11 0.49 ± 0.01
0.01, 0.2, 20 0.42 ± 0.03 0.47 ± 0.03 0.34 ± 0.02 0.35 ± 0.02 0.02 0.35 ± 0.01
0.001, 0.001, 50 0.46 ± 0.02 0.50 ± 0.01 0.08 ± 0.03 0.08 ± 0.02 0.06 0.41 ± 0.01
0.005, 0.001, 50 0.25 ± 0.07 0.28 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.01 0.28 ± 0.01
0.005, 0.002, 50 0.27 ± 0.07 0.30 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.02 0.28 ± 0.01
0.005, 0.02, 50 0.26 ± 0.07 0.30 ± 0.08 0.04 ± 0.01 0.04 ± 0.01 0.01 0.31 ± 0.01
0.001, 0.2, 50 0.44 ± 0.02 0.50 ± 0.01 0.38 ± 0.03 0.44 ± 0.02 0.15 0.43 ± 0.01
0.01, 0.2, 50 0.10 ± 0.03 0.12 ± 0.04 0.10 ± 0.02 0.11 ± 0.02 0.03 0.15 ± 0.02
0.001, 0.001, 100 0.43 ± 0.03 0.47 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.02 0.23 ± 0.01
0.005, 0.001, 100 0.06 ± 0.03 0.07 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.01 0.07 ± 0.02
0.005, 0.002, 100 0.08 ± 0.03 0.10 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.02 0.07 ± 0.01
0.005, 0.02, 100 0.08 ± 0.03 0.09 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.01 0.07 ± 0.01
0.001, 0.2, 100 0.04 ± 0.03 0.46 ± 0.02 0.28 ± 0.02 0.31 ± 0.01 0.16 0.31 ± 0.01
0.01, 0.2, 100 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.02 0.05 ± 0.01

Table 1: Comparison of learning directly in the target domain (columns hT (train) and hT (test)), using
TransBoost (columns HT (train) and HT (test)), learning in the source domain (column hS (test)) and, finally,
completing the time series with a SVR regression and using hS (naïve transfer). Test errors are highlighted in
the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without
transfer and learning with naïve transfer.

Figures 3 and 4 sum up all results. In both tables, the x-axis reports the error rate obtained using
TransBoost, while the y-axis reports the error rate of the competing algorithm: either the hypothesis
hT learnt on the target training data alone (Figure 3), or the hypothesis H

0

T
learned on the target data

completed using a SVR regression (Figure 4). The remarquable efficiency of TransBoost in a large
spectrum of situations is readily apparent. Transboost is less dominant when either the data is so
noisy that no method can learn from the data (right part of the graphs near the diagonal), or when the
task is so easy (large slope and/or low noise) that nothing can be gained from transfer learning (left
part).

When the source problem is a priori unrelated to the target learning problem

In this set of experiments, the source hypothesis hS : RtS ! {�1, +1} is chosen independently
from the target data set. TransBoost tries to find a set of projections from RtT to RtS so that a

combined hypothesis HT (xT ) = sign
⇢PN

n=1 ↵n hS

�
⇡n(xT )

��
can be computed for use in the

target domain DT .

7

Learning	from	
target	data	only	 TransBoost	

On	the	source	
domain	

Naïve	transfert	
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Results	

Figure 3: Comparison of error rates. y-axis:
test error of the SVM classifier (without trans-
fer). x-axis : test error of the TransBoost clas-
sifier with 10 boosting steps. The results of
75 experiments (each one repeated 100 times)
are summed up in this graph.

Figure 4: Comparison of error rates. y-axis:
test error of the “naïve” transfer method. x-
axis : test error of the TransBoost classifier
with 10 boosting steps. The results of 75
experiments (each one repeated 100 times)
are summed up in this graph.

In these experiments the target domain is R70 while the source domain is R40. The source hypothesis
is chosen randomly in a set of functions completely independently from the target classification
problem, which, here, is the same as in the first set of experiments. The set of projections is the same
as in the first set of experiments.

Table 2 shows a representative set of results. Again, even in this a priori difficult transfer problem,
TransBoost brings remarkable gains wrt. learning without transfer, except when the learning task is
easy using directly the target data. (Note that there is no error rate given for the source hypothesis
since it was not learnt using a data set. Indeed, even if it had been so, this error rate would not have
any meaning as regards to the target learning task).

slope, noise, tT hT (train) hT (test) HT (train) HT (test)
0.001, 0.001, 70 0.44 ± 0.02 0.48 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
0.005, 0.005, 70 0.11 ± 0.04 0.13 ± 0.05 0.02 ± 0.01 0.02 ± 0.02
0.005, 0.005, 70 0.10 ± 0.04 0.11 ± 0.05 0.01 ± 0.01 0.01 ± 0.01
0.005, 0.05, 70 0.11 ± 0.04 0.12 ± 0.05 0.04 ± 0.02 0.03 ± 0.01
0.001, 0.001, 70 0.42 ± 0.03 0.48 ± 0.02 0.33 ± 0.02 0.37 ± 0.02
0.01, 0.1, 70 0.06 ± 0.03 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.02

Table 2: Learning without transfer and with transfer using an apriori irrelevant source hypothesis.

7 Conclusions

In this paper, we have introduced a new perspective on transfer learning and a new method. The notion
of difference or distance between the source and target domains is seen differently. Whereas previous
works on domain adaptation and transfer learning emphasized finding a common representation of the
source and target training sets, thus limiting the possible differences between source and target, our
view is that what matters is to be able to translate questions in the target domain into questions that
can be answered by the available source hypothesis. In fact, as long as we can find “weak translators”,
we can use any source hypothesis at all, without any regard to its internal function or its purpose. In
this perspective, the core of transfer learning is to be able to identify an adequate set of projections or
translations ⇡: one with the weak transfer property and with limited capacity.

This is similar to the choice of a good regularization term. Here, the source hypothesis forces the
target hypothesis space to be of the form hS � ⇡ with ⇡ : XT ! XS . If the source hypothesis
(regularizer) is ill-chosen, then the learning task is made difficult or even impossible. In fact, negative
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1 Overview

Nowadays, several classification methods exist to split different classes of data. In order to do this, one could
mention classic binary classifiers such as the K- nearest neighbours (kNN) or the Linear SVC algorithms.

Assuming that you have a data that contains pictures of dogs and cats, using one of the basic binary class
methods is an obvious option to learn on this dataset, which we are about to call the dataset source in this
report. What about now if you have another dataset, so-called dataset target, composed of clip-arts of dogs
and cats ? Will you start over and train another independent model on this new dataset or will you use the one
you already have on the former data and adapt it ? Basically, our team has tried to answer this question by
comparing the accuracy of both approaches on different datasets.

Figure 1: Trained model on the data source : is it a picture of a dog or a cat ?

Figure 2: Model source transferred on the data target : is it a clip-art of a dog or a cat ?

In this study, we will let you know how we managed to do this classification transfer, by using a boosting
algorithm on the source model : Adaptive Boosting (AdaBoost). This being said, we will try to see how to
optimize the transferred model’s accuracy analytically. After that, we will see its performances on the classic
Half-moons dataset, which has been rotated. Then, we will use this process to compare the accuracy of a new
independent model trained on the data target in the one hand, and, on the other hand, the accuracy of the
method that we implemented using at the same time transfer and adaptive boosting methods. At least, we will
describe how this process had been employed on the convolutional neural artificial networks model trained on
the data source to make it able to classify the data target with a high level of accuracy from a very few data
training thanks to deep learning.

2 Adaptive Boosting or AdaBoost

2.1 Principle of AdaBoost
Obviously, all data cannot be fully well classified by a linear hypothesis (or classifier). This is the case of the

half-moons dataset for instance. That is why it is called a non linear dataset 3. It is composed of n vectors (x1,
y1), (x2,y2), ..., (xn, yn), where yj is the label associated to the feature xj .

AdaBoost is based on this idea that, after using a simple linear classifier on the data, some points will be
neglected and affected to the wrong class. Well, at the next iteration, these points will be overweighted as the
most important points of the dataset to well classify. Then, a second linear hypothesis is used to split again
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3 Application to MNIST and sklearn digits

3.1 Summary
MNIST and sklearn digits datasets are two commonly used hand-written digits datasets with two different

resolutions. MNIST is made of 28 by 28 hand-written digits images while digits from scikit-learn library is only
8 by 8.

Once we have studied TransBoost method on half-moons two-dimensional datasets, we tackle larger dimen-
sions, respectively d = 784 for MNIST and d = 64 for sklearn digits. We first transfer on MNIST only from 0
and 1 classification to 7 and 8. Then we transfer from 0 and 1 in MNIST to 0 and 1 in sklearn digits, and finally
the other way, from 0 and 1 in sklearn digits to 0 and 1 in MNIST.

The main targets remain scoring TransBoost method and comparing it to relearning from target training
set, in particular via linear SVC classifier.

3.2 Method
We first introduce a canonical projection matrix P between the two spaces we would transfer. It is supposed

to be an simple and relatively good transformation, without any form of boosting.
Then comes TransBoost, so the ⇧ projection function at each step is chosen to have the lowest error between

1000 random samples, given by :
⇧(x) = (P +A) ⇤ x+ y (12)

where P is the canonical projection matrix of size (dsource, dtarget), A a Gaussian matrix and y a Gaussian
vector (with standard normal distribution).

The projection between the two spaces is thereby a random variation of the canonical projection. Never-
theless, choosing the projection within relatively high-dimensional randomly generated matrices is of course an
unoptimized method which lead to longer calculation time.

3.2.1 From 0/1 in MNIST to 7/8 in MNIST

(a) Is it a zero or a one ? (b) Is it an eight or a seven ?

Figure 13: Transfer learning of the source model 0/1 so that it can distinguish 8/7

In this case, P is chosen to be the identity matrix. The intuitive idea is that representations of 7 are quite
close to 1’s, as 0’s are to 8’s. Transfer methods are thought all the more relevant to use as the distance between
source and target datasets are small. Therefore we expected a very low error by classifying sevens and eights
with the original classifier hsource trained on ones and zeros.

Figure 14: Canonical projection from MNIST (clipped to 24 by 24) to sklearn digits (8 by 8)

Project Report - Telecom Paris 10

3.2.2 Between 0/1 in MNIST and 0/1 sklearn digits

(a) Is it a zero or a one ? (b) Is it a zero or a one ?

Figure 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

In these cases, P are chosen to be whether an image compression matrix or a scaling up matrix, depending
on the direction of transfer. In order to increase performance and calculation speed, we clipped MNIST images
from 28 by 28 to 24 by 24 pixels. Not only we simplify compression as 24 is multiple of 8, and reduce the MNIST
dimension from d = 784 to d = 576, but also we equate the two datasets as sklearn digits are cut-short images.

3.3 Results
3.3.1 Scoring the canonical projection

For transferring from 0/1 in MNIST to 7/8 in MNIST, the average error was surprisingly evaluated at 70%
which contradict initial intuition. A posteriori, pairing zeros with sevens ans ones with eights leads to positive
results.

For projection between MNIST and sklearn digits, the use of the original model hsource composed with
canonical projection matrix, i.e. no TransBoost yet, leads to good accuracy results :

- less than 15% for transferring from MNIST to sklearn digits : 16

Figure 16: Accuracy comparison between both methods on a data test of variable proportion p

(a) Blue : TransBoost method

(b) Orange : Relearning SVC method

- less than 10% for transferring from sklearn Digit to MNIST : 18

3.3.2 Comparing TransBoost method with relearning from target training set

With TransBoost, minimal error on target test set is barely reached within at most 15 steps. Again, the
better the weak classifier hsource �⇧i is chosen, fewer are steps needed to achieve maximal accuracy.

Again, we compared this method to relearning via linear SVC, depending on the ratio of target test dataset
among total target data.

The result are quite similar within the 3 transfers tested.

3.4 Conclusion
Though TransBoost method allow reasonable low error levels, it seems to be less efficient than relearning

from a linear SVC, whatever the ratio of target test set is.
Moreover, TransBoost method takes certainly longer time to process as the projection are chosen randomly

between huge sample at each steps, but there is no doubt picking off weak classifier could largely be optimized.
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(a) kNN source model trained on
the data source : it fits to the data
source

(b) kNN source model trained on
the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target

Figure 5

(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.
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(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.

Using	Transboost	Learning	on	the	target	data	
(without	transfer)	



57	/	64	

Conclusion	

•  	Ensemble	method	for	transfer	learning	

–  Learn	weak	translator	from	target	to	source!!	

–  The	learning	problem	now	becomes	the	problem		

of	choosing	a	good	set	of	(weak)	projections	

–  Theoretical	guarantees	exist:		
from	the	theory	for	boosting	and	for	transfer	as	well	
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Theoretical	guarantees	

•  theorem	
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Transfer Learning by Learning Projections from Target to Source

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS , PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧

have the property given by Equation (2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.

Then, with probability at least 1 � � (� 2 (0, 1)) over pairs of training sets for tasks S and T :

RT (bhT )  !
� bRS(bhS)

�

+ 2

s
2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

s
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

(3)

Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probabil-

ity at least 1 � �:

RT (hS � b⇡)  bRT (hS � b⇡)

+ 2

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 bRT (hS � ⇡⇤)

+ 2

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 RT (hS � ⇡⇤)

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 !
�
RS(bhS)

�

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 !
� bRS(bhS)

�

+ 2

r
2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

This follows from the fact that (?) (p.48) using m train-
ing points and a hypothesis class of VC dimension d, with
probability at least 1 � �, for all hypotheses h simultane-
ously, the true risk R(h) and empirical risk bR(h) satisfy

|(R(h)� bR(h)|  2
q

2 d log(2em/d)+2 log(4/�)
m . For hS �⇧,

this yields the first and third inequalities with probabilities
at least 1 � �/2. For HS , this yields the fifth inequality
with probability at least 1 � �/2. Applying the union bound
archives the desired results. The second inequality follows
from the definition of b⇡, and the fourth inequality is where
we inject our assumption about the transferability (or prox-
imity) between the source and the target problem. ⇤

We can thus control the generalization error on the transfer
domain by controlling dhS�⇧ , mS and ! which measures
the link between the domain and the target domain. The
number of target training data mT is typically supposed to
be small in transfer learning and thus cannot be employed

to control the error.

3.2. Boosting projections from target to source

The above analysis bounds the generalization error of the
learned target hypothesis hS � b⇡ in terms, among others,
of the VC dimension of the space hS � ⇧. The problem
of controlling the capacity of such a space of functions in
order to prevent under or over-fitting is the same as in the
traditional supervised learning setting. The difficulty lies in
choosing the right space ⇧ of projection functions from XT

to XS . It might be much easier to define a space of “weak
projections” from X

T to X
S , and this is the basis of the

TransBoost algorithm.

Then, the space of hypothesis functions considered is:

L
�
hS � ⇧B

�
:=

⇢
x 7! sign

 NX

n=1

↵n

�
hS � ⇡n(xT )

���

where n, ↵n 2 IR, and ⇡n 2 ⇧B the space of weak projec-
tions satisfying definition (2.1) .

Now, from (?) (p. 109), the VC dimension of the space
hS � ⇧B satisfies:

dL(hS�⇧B)  N(dhS�⇧B+1) (3 log(N(dhS�⇧B+1)) + 2)

If dhS�⇧B ⌧ dhS�⇧, then dL(hS�⇧B) can also be much less
than dhS�⇧, and theorem (1) provides tighter bounds.

Using the TransBoost method, we can thus gain both
on the theoretical bounds on the generalization error and
on the ease of finding an appropriate space of projections
XT ! XS .

——————————————–
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Transfer Learning by Learning Projections from Target to Source

For the latter term, we adapt the theoretical study of Mc-
Namara and Balcan (?) on the transfer of representation
in deep neural networks. We suppose that PS , PT , hS ,
hT = bhS � ⇡ (⇡ 2 ⇧), bhS and ⇧ have the property:

8 bhS 2 HS : Min
⇡2⇧

RT (bhS � ⇡)  !
�
RS(hS)

�
(2)

where ! : IR ! IR is a non-decreasing function.

Equation (2) means that the best target hypothesis expressed
using the learned source hypothesis has a true risk bounded
by a non-decreasing function of the true risk on the source
domain of the learned source hypothesis.
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Transfer	learning	for	deep	neural	networks	

•  Illustration	

09/01/2019 16(58applied-deep-learning-1103-convolutional-neural-networks-74-638.jpg 638 × 479 pixels

Page 1 sur 1https://image.slidesharecdn.com/adl1103-161027023044/95/applied-deep-learning-1103-convolutional-neural-networks-74-638.jpg?cb=1479405398
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Outline	

1.  	The	online	learning	perspective	

2.  	Early	classification	of	time	series	

3.  	Early	classification	of	time	series	and	transfer	learning	

4.  	The	TransBoost	algorithm	

5.  	Conclusion	



61	/	64	

Conclusion	

1.  	Online	learning		
–  Links	with	transfer	learning	

–  New	scenarios	must	be	explored	

•  Extrapolate	likely	changes	of	h			
•  Transduction	(“weak	LUPI”)			

2.  	Early	classification	of	time	series		

–  Can	be	solved	as	a	LUPI	framework	

–  Can	be	seen	as	involving	transfer	learning	

3.  	The	Transboost	algorithm	

–  From	LUPI	to	transfer	learning	
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Online	learning:	back	to	the	future	

•  Central	question	

–  Controlling	the	memory	

•  What	to	keep	from	the	past?	

–  How	to	adapt	the	current	hypothesis?	

•  Can	TransBoost	help?	
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Online	learning	

•  Suppose		
–  Online	with	small	batches	at	each	time	step	

–  The	current	batch	is	labeled	(after	prediction	has	been	performed)	

–  The	source	hypothesis	is	kNN	(k≥3)	with	(all)	past	examples	

•  Use	Transboost	to	learn	projections		
–  To	past	points	

–  With	constraints	preventing	to	project	on	points	close	to	the	point	
projected	

–  Make	statistics	about	the	most	useful	points	
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