On-line learning, Learning Using Privileged Information (LUPI) and transfer learning

Antoine Cornuéjols

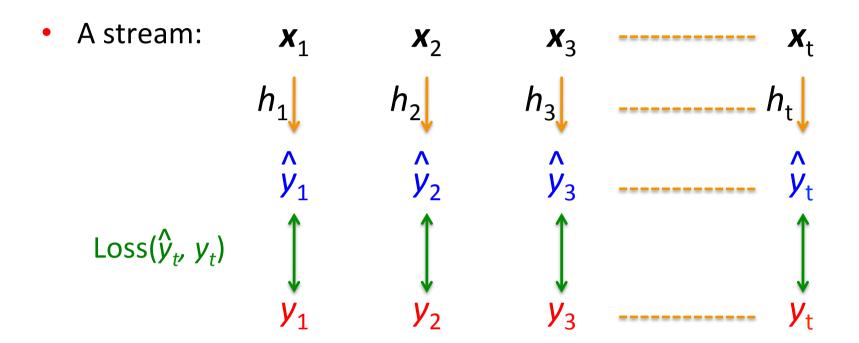
AgroParisTech – INRA MIA 518

Équipe LINK

Outline

- 1. The online learning perspective
- 2. Early classification of time series
- 3. Early classification of time series and transfer learning
- 4. The TransBoost algorithm
- 5. Conclusion

The online learning scenario



E.g. *Choice of melons*. I see one, I make a prediction about its tastiness, then I eat it and know the answer.

Novelty wrt. Statistical learning

- 1. Learning and testing are intermingled
 - No distinction between training set, validation set and test set

Novelty wrt. Statistical learning

- 1. Learning and testing are intermingled
 - No distinction between training set, validation set and test set
- 2. The environment may change over time
 - The learner should adapt

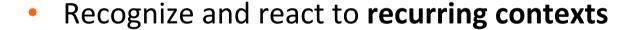
Novelty wrt. Statistical learning

- Learning and testing are intermingled
 - No distinction between training set, validation set and test set
- 2. The environment may change over time
 - The learner should adapt
- 3. Dilemma
 - Keep as much as possible memory from the past to gain in precision
 - But be ready to adapt to changes (and reduce the size of the memory)

Desirable properties of a system that handle concept drift

Adapt to concept drift as soon as possible

- Distinguish noise from true changes
 - Robust to noise but adaptive to changes



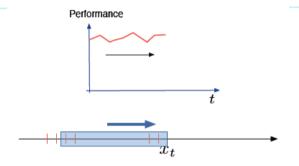
Adapt with limited resources (time and memory)

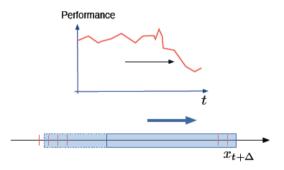
Two main approaches

1. Directly control the memory

Adapt the window size

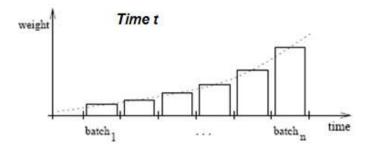
[Widmer G. & Kubat M. (1996). *Learning in the presence of concept drift and hidden contexts*. Mach. Learning, 23, 69-101]

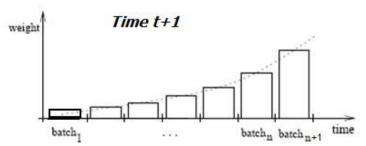




Weight the past examples v

$$w(\mathbf{x}) = e^{-\lambda t_{\mathbf{x}}}$$

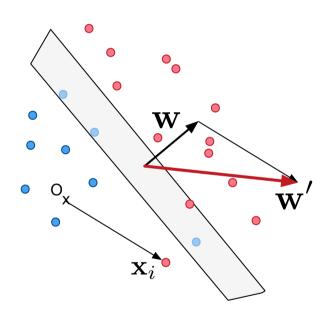




Two main approaches

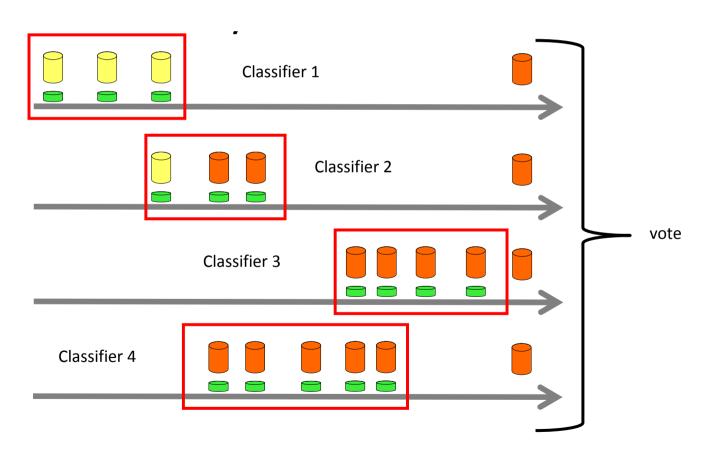
2. Adapt the hypothesis at each time step

$$\mathbf{w}_t = \mathbf{w}_{t-1} + \eta y_t \mathbf{x}_t$$



Two main approaches

2. Adapt the hypothesis at each time step



Online learning and transfer learning

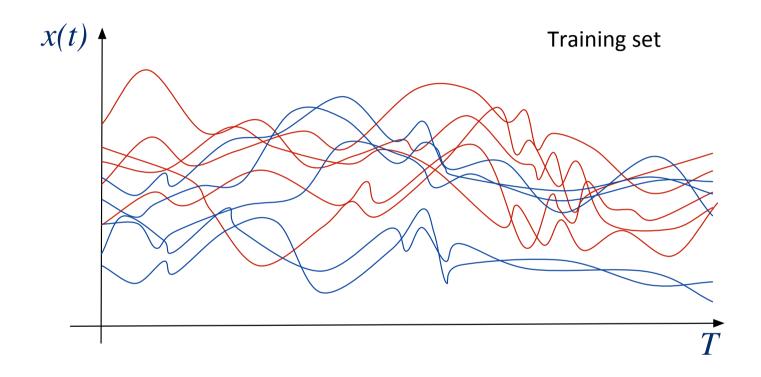
- Each step implies a "small" transfer
 - From the environment at time t-1 to the environment at time t

• Use "source knowledge" $(h_{t\text{-}1})$ and the current batch $\left\{(\mathbf{x}_t^i, y_t^i)\right\}_{1 \leq i \leq m}$ to learn target h_t by adapting from past to current environment

Outline

- 1. The online learning perspective
- 2. Early classification of time series
- 3. Early classification of time series and transfer learning
- 4. The TransBoost algorithm
- 5. Conclusion

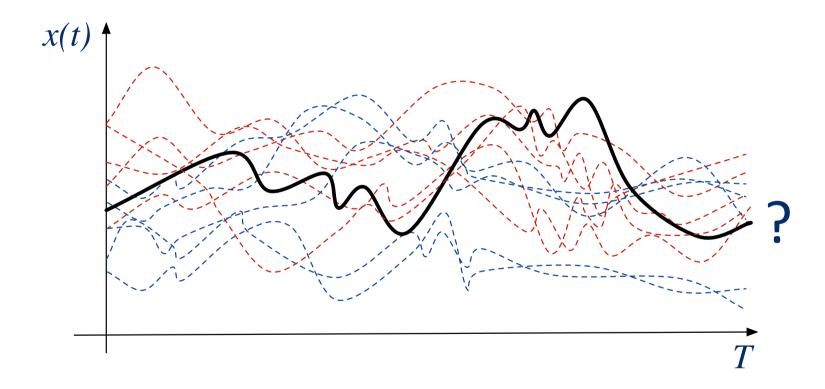
Classification of time series



- Monitoring of consumer actions on a web site: will buy or not
- Monitoring of a *patient state*: critical or not
- Early prediction of daily *electrical consumption*: high or low

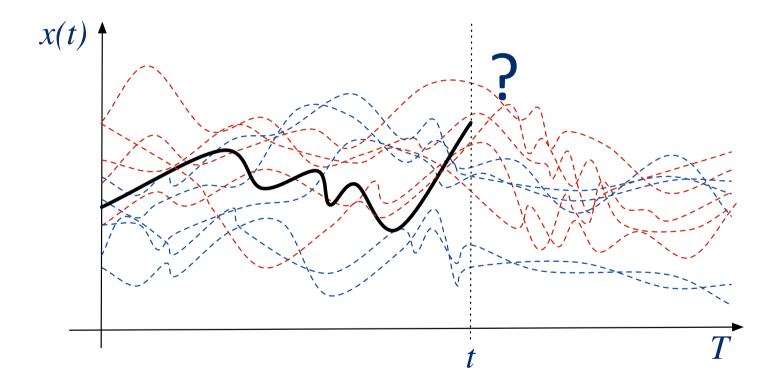
Standard classification of time series

• What is the class of the new time series x_T ?



Early classification of time series

• What is the class of the new incomplete time series x_t ?



New set of decision problems: early classification

- Data stream
- Classification task
- As early as possible
- A trade-off
 - Classification **performance** (better if $t \nearrow$)
 - Cost of **delaying** prediction (better if $t \searrow$)

Decision making (1)

- Given an incoming sequence $\mathbf{x}_t = \langle x_1, x_2, \dots, x_t \rangle$ where $x_t \in \mathbb{R}$
- And given:
 - A miss-classification cost function $C_t(\hat{y}|y): \mathcal{Y} imes \mathcal{Y} \longrightarrow \mathbb{R}$
 - A delaying decision cost function $C(t): \mathbb{N} \longrightarrow \mathbb{R}$
- What is the optimal time to make a decision?

Expected cost for a decision at time t

$$f(\mathbf{x}_t) = \sum_{y \in \mathcal{Y}} P(y|\mathbf{x}_t) \sum_{\hat{y} \in \mathcal{Y}} P(\hat{y}|y, \mathbf{x}_t) \frac{C_t(\hat{y}|y)}{C_t(\hat{y}|y)} + \frac{C(t)}{C_t(\hat{y}|y)}$$

expected miss-classification cost given \mathbf{x}_t

Decision making (1)

- Given an incoming sequence $\mathbf{x}_t = \langle x_1, x_2, \dots, x_t \rangle$ where $x_t \in \mathbb{R}$
- And given:
 - A miss-classification cost function $C_t(\hat{y}|y): \mathcal{Y} imes \mathcal{Y} \longrightarrow \mathbb{R}$
 - A delaying decision cost function $C(t): \mathbb{N} \longrightarrow \mathbb{R}$
- What is the optimal time to make a decision?

Expected cost for a decision at time t

$$f(\mathbf{x}_t) = \underbrace{\sum_{y \in \mathcal{Y}} P(y|\mathbf{x}_t) \sum_{\hat{y} \in \mathcal{Y}} P(\hat{y}|y, \mathbf{x}_t) C_t(\hat{y}|y)}_{\text{expected miss-classification cost given } \mathbf{x}_t} + C(t)$$

Optimal time:
$$t^* = \underset{t \in \{1,...,T\}}{\operatorname{ArgMin}} f(\mathbf{x}_t)$$

$P(y|\mathbf{x}_k)$

1. During **training**:

 \longrightarrow – identify **meaningful subsets** of time sequences in the training set: c_k

Clustering

The principle

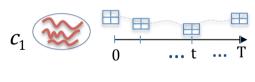
During **training**:

- identify **meaningful subsets** of time sequences in the training set: c_k

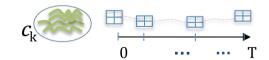
For each of these subsets c_k , and for each time step t

Estimate the confusion matrices

- T classifiers are learnt $h_t(\mathbf{x}_t): \mathcal{X}_t o \mathcal{Y}$ - And their confusion matrices $P_t(\hat{y}|y,\mathfrak{c}_k)$ are estimated on a test set



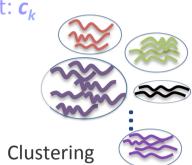
Clustering



The principle

1. During **training**:

- identify **meaningful subsets** of time sequences in the training set: c_k
- For each of these subsets c_k , and for each time step t
 - Estimate the confusion matrices $P_t(\hat{y}|y,\mathfrak{c}_k)$

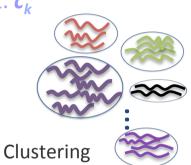


- **2. Testing**: For any new incomplete incoming sequence x_t
- \longrightarrow Identify the **most likely subset**: the closer class of shapes to x_t

The principle

1. During **training**:

- identify **meaningful subsets** of time sequences in the training set: c_k
- For each of these subsets c_k , and for each time step t
 - Estimate the confusion matrices $P_t(\hat{y}|y,\mathfrak{c}_k)$



- **2. Testing**: For any new incomplete incoming sequence x_{t}
 - Identify the most likely subset: the closer shape to x_t
- Compute the expected cost of decision for all future time steps

$$f_{\tau}(\mathbf{x}_{t}) = \sum_{\mathbf{c}_{k} \in \mathcal{C}} P(\mathbf{c}_{k}|\mathbf{x}_{t}) \sum_{y \in \mathcal{Y}} P(y|\mathbf{c}_{k}) \sum_{\hat{y} \in \mathcal{Y}} P_{t+\tau}(\hat{y}|y, \mathbf{c}_{k}) C(\hat{y}|y) + \frac{C(t+\tau)}{C(t+\tau)}$$

expected miss-classification cost given \mathbf{x}_t

1. Formalized the problem as a sequential decision making problem

- Explicit trade-off
 - Classification performance
 - Cost of delaying the decision

2. Proposed an algorithm which is

- Adaptive
 - Takes into account the peculiarities of x,
- Non myopic
 - At each time step, estimates the expected future time for optimal decision

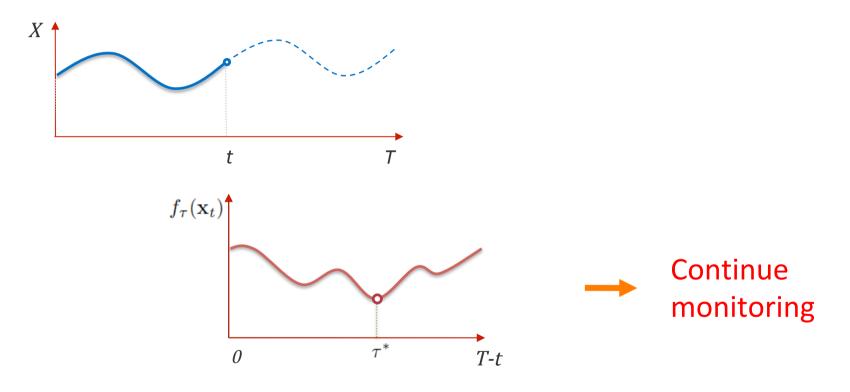
3. Showed promising experimental results

The delay before decision exhibited what should be expected

A non myopic decision process

• Optimal estimated time relative to current time *t*

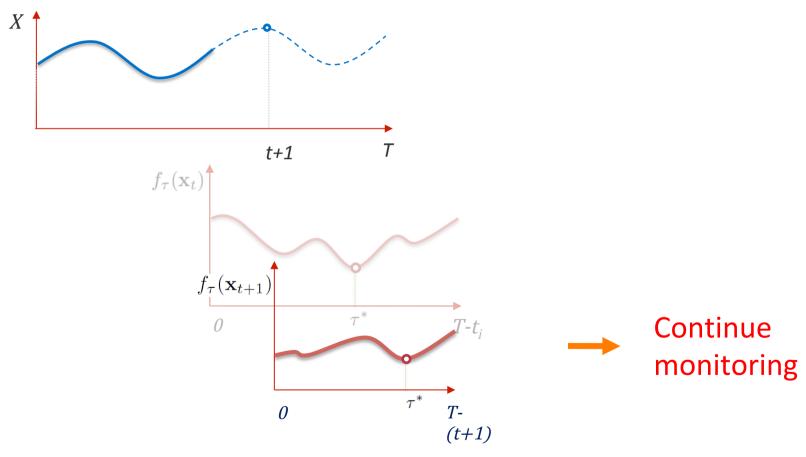
$$\tau^* = \underset{\tau \in \{0, \dots, T-t\}}{\operatorname{ArgMin}} f_{\tau}(\mathbf{x}_t)$$



A non myopic decision process

Optimal estimated time relative to current time t

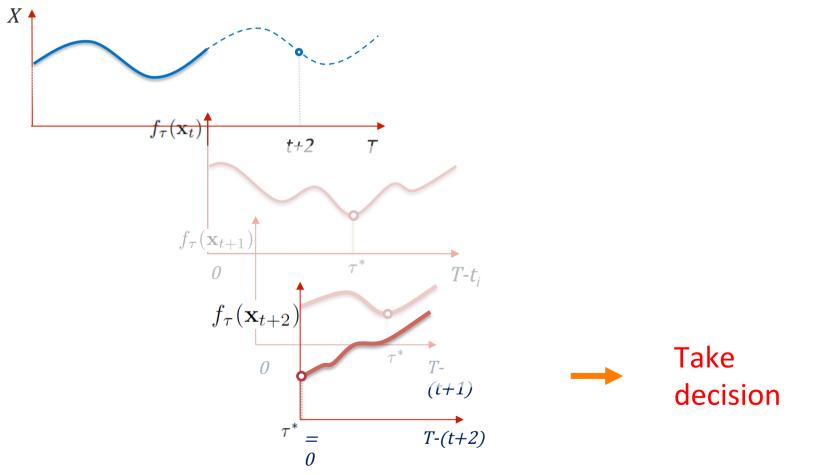
$$\tau^* = \underset{\tau \in \{0, \dots, T-t\}}{\operatorname{ArgMin}} f_{\tau}(\mathbf{x}_t)$$



A non myopic decision process

Optimal estimated time relative to current time t

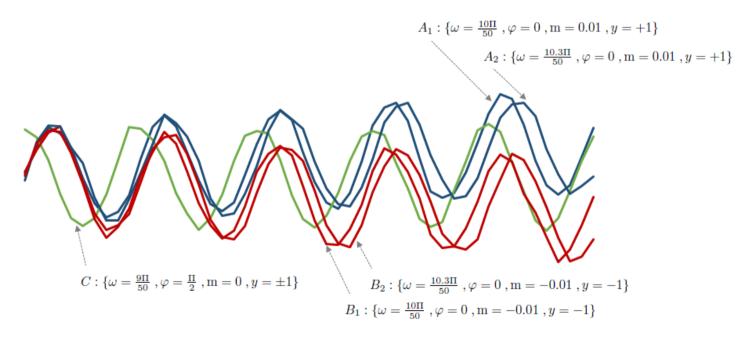
$$\tau^* = \underset{\tau \in \{0, \dots, T-t\}}{\operatorname{ArgMin}} f_{\tau}(\mathbf{x}_t)$$



Controlled data

- Control of
 - The time-dependent information provided to distinguish between classes
 - The shapes of time series within each class
 - The noise level

$$\mathbf{x}_t = \underbrace{t \times \text{slope} \times \text{class}}_{\text{information gain}} + \underbrace{\mathbf{x}_{max} \sin(\omega_i \times t + \varphi_j)}_{\text{sub shape within class}} + \underbrace{\eta(t)}_{\text{noise factor}}$$



Results: effect of the noise level

Increasing the noise

level increases the

waiting time, and then

it's no longer worth it

C(4)	$\pm b$	0.02			0.05			0.07		
C(t)	$\varepsilon(t)$	$\overline{ au}^{\star}$	$\sigma(au^\star)$	AUC	$\overline{ au}^{\star}$	$\sigma(au^\star)$	AUC	$\overline{ au}^{\star}$	$\sigma(au^\star)$	AUC
	0.2	9.0	2.40	0.99	9.0	2.40	0.99	10.0	0.0	1.00
	0.5	13.0	4.40	0.98	13.0	4.40	0.98	15.0	0.18	1.00
0.01	1.5	24.0	10.02	0.98	32.0	2.56	1.00	30.0	12.79	0.99
	5.0	26.0	7.78	0.84	30.0	18.91	0.87	30.0	19.14	0.88
	10.0	38.0	18.89	0.70	48.0	1.79	0.74	46.0	5.27	0.75
	15.0	23.0	15.88	0.61	32.0	13.88	0.64	29.0	17.80	0.62
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20.0	7.0	8.99	0.52	11.0	11.38	0.55	4.0	1.22	0.52
	0.2	8.0	2.00	0.98	8.0	2.00	0.98	9.0	0.0	1.00
	0.5	10.0	2.80	0.96	8.0	4.0	0.98	14.0	0.41	0.99
0.05	1.5	5.0	0.40	0.68	20.0	0.42	0.95	14.0	4.80	0.88
	5.0	8.0	3.87	0.68	6.0	1.36	0.64	5.0	0.50	0.65
	10.0	4.0	0.29	0.56	4.0	0.25	0.56	4.0	0.34	0.57
	15.0	4.0	0.0	0.54	4.0	0.25	0.56	4.0	0.0	0.55
	20.0	4.0	0.0	0.52	4.0	0.0	0.52	4.0	0.0	0.52
	0.2	6.0	0.80	0.95	7.0	1.60	0.94	8.0	0.40	0.96
	0.5	6.0	0.80	0.84	9.0	2.40	0.93	10.0	0.0	0.95
0.10	1.5	4.0	0.0	0.67	5.0	0.43	0.68	6.0	0.80	0.74
	5.0	4.0	0.07	0.64	4.0	0.05	0.64	4.0	0.11	0.64
	10.0	4.0	0.0	0.56	48.0	1.79	0.74	4.0	0.22	0.56
	15.0	4.0	0.0	0.55	4.0	0.0	0.55	4.0	0.0	0.55
	20.0	4.0	0.0	0.52	11.0	11.38	0.55	4.0	0.0	0.52

Table 1. Experimental results in function of the waiting cost $C(t) = \{0.01, 0.05, 0.1\} \times t$, the noise level $\varepsilon(t)$ and the trend parameter b.

Results: effect of the waiting cost

Increasing the
waiting cost
reduces the waiting
time

C(t)	$\pm b$		0.02			0.05			0.07	
C(t)	$\varepsilon(t)$	$\overline{ au}^{\star}$	$\sigma(\tau^{\star})$	AUC	$\overline{ au}^{\star}$	$\sigma(au^\star)$	AUC	$\overline{ au}^{\star}$	$\sigma(au^\star)$	AUC
1	0.2	9.0	2.40	0.99	9.0	2.40	0.99	10.0	0.0	1.00
	0.5	13.0	4.40	0.98	13.0	4.40	0.98	15.0	0.18	1.00
0.01	1.5	24.0	10.02	0.98	32.0	2.56	1.00	30.0	12.79	0.99
	5.0	26.0	7.78	0.84	30.0	18.91	0.87	30.0	19.14	0.88
	10.0	38.0	18.89	0.70	48.0	1.79	0.74	46.0	5.27	0.75
	15.0	23.0	15.88	0.61	32.0	13.88	0.64	29.0	17.80	0.62
	20.0	7.0	8.99	0.52	11.0	11.38	0.55	4.0	1.22	0.52
	0.2	8.0	2.00	0.98	8.0	2.00	0.98	9.0	0.0	1.00
	0.5	10.0	2.80	0.96	8.0	4.0	0.98	14.0	0.41	0.99
0.05	1.5	5.0	0.40	0.68	20.0	0.42	0.95	14.0	4.80	0.88
	5.0	8.0	3.87	0.68	6.0	1.36	0.64	5.0	0.50	0.65
	10.0	4.0	0.29	0.56	4.0	0.25	0.56	4.0	0.34	0.57
	15.0	4.0	0.0	0.54	4.0	0.25	0.56	4.0	0.0	0.55
	20.0	4.0	0.0	0.52	4.0	0.0	0.52	4.0	0.0	0.52
	0.2	6.0	0.80	0.95	7.0	1.60	0.94	8.0	0.40	0.96
	0.5	6.0	0.80	0.84	9.0	2.40	0.93	10.0	0.0	0.95
0.10	1.5	4.0	0.0	0.67	5.0	0.43	0.68	6.0	0.80	0.74
	5.0	4.0	0.07	0.64	4.0	0.05	0.64	4.0	0.11	0.64
	10.0	4.0	0.0	0.56	48.0	1.79	0.74	4.0	0.22	0.56
*	15.0	4.0	0.0	0.55	4.0	0.0	0.55	4.0	0.0	0.55
	20.0	4.0	0.0	0.52	11.0	11.38	0.55	4.0	0.0	0.52

Table 2. Experimental results in function of the waiting cost $C(t) = \{0.01, 0.05, 0.1\} \times t$, the noise level $\varepsilon(t)$ and the trend parameter b.

Results: effect of the difference between classes

Increase of the difference between classes

The **performance** increases (AUC)

The *waiting time* is not much changed in these experiments

~(·)	$\pm b$	0.02			0.05			0.07		
C(t)	$\varepsilon(t)$	$\overline{ au}^{\star}$	$\sigma(\tau^{\star})$	AUC	$\overline{ au}^{\star}$	$\sigma(\tau^{\star})$	AUC	$\overline{ au}^{\star}$	$\sigma(au^\star)$	AUC
			· · · ·							
	0.2	9.0	2.40	0.99	9.0	2.40	0.99	10.0	0.0	1.00
	0.5	13.0	4.40	0.98	13.0	4.40	0.98	15.0	0.18	1.00
0.01	1.5	24.0	10.02	0.98	32.0	2.56	1.00	30.0	12.79	0.99
	5.0	26.0	7.78	0.84	30.0	18.91	0.87	30.0	19.14	0.88
	10.0	38.0	18.89	0.70	48.0	1.79	0.74	46.0	5.27	0.75
	15.0	23.0	15.88	0.61	32.0	13.88	0.64	29.0	17.80	0.62
	20.0	7.0	8.99	0.52	11.0	11.38	0.55	4.0	1.22	0.52
	0.2	8.0	2.00	0.98	8.0	2.00	0.98	9.0	0.0	1.00
	0.5	10.0	2.80	0.96	8.0	4.0	0.98	14.0	0.41	0.99
0.05	1.5	5.0	0.40	0.68	20.0	0.42	0.95	14.0	4.80	0.88
	5.0	8.0	3.87	0.68	6.0	1.36	0.64	5.0	0.50	0.65
	10.0	4.0	0.29	0.56	4.0	0.25	0.56	4.0	0.34	0.57
	15.0	4.0	0.0	0.54	4.0	0.25	0.56	4.0	0.0	0.55
	20.0	4.0	0.0	0.52	4.0	0.0	0.52	4.0	0.0	0.52
	0.2	6.0	0.80	0.95	7.0	1.60	0.94	8.0	0.40	0.96
	0.5	6.0	0.80	0.84	9.0	2.40	0.93	10.0	0.0	0.95
0.10	1.5	4.0	0.0	0.67	5.0	0.43	0.68	6.0	0.80	0.74
	5.0	4.0	0.07	0.64	4.0	0.05	0.64	4.0	0.11	0.64
	10.0	4.0	0.0	0.56	48.0	1.79	0.74	4.0	0.22	0.56
	15.0	4.0	0.0	0.55	4.0	0.0	0.55	4.0	0.0	0.55
	20.0	4.0	0.0	0.52	11.0	11.38	0.55	4.0	0.0	0.52

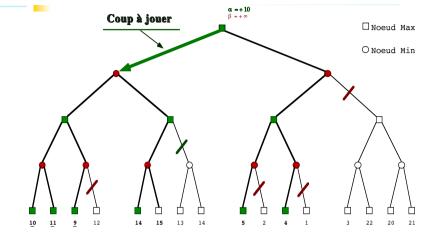
Table 3. Experimental results in function of the waiting cost $C(t) = \{0.01, 0.05, 0.1\} \times t$, the noise level $\varepsilon(t)$ and the trend parameter b.

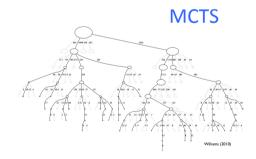
Outline

- 1. The online learning perspective
- 2. Early classification of time series
- 3. Early classification of time series and transfer learning
- 4. The TransBoost algorithm
- 5. Conclusion

Algorithms for games

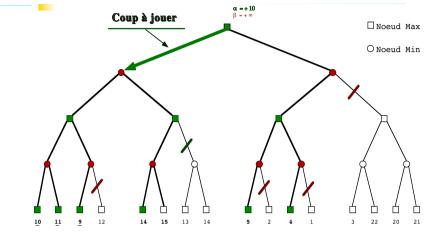
Taking decision when the current information is **incomplete**





Algorithms for games

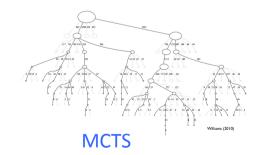
Taking decision when the current information is **incomplete**



Which move to play?

The evaluation function is **insufficiently informed** at the root (current situation)

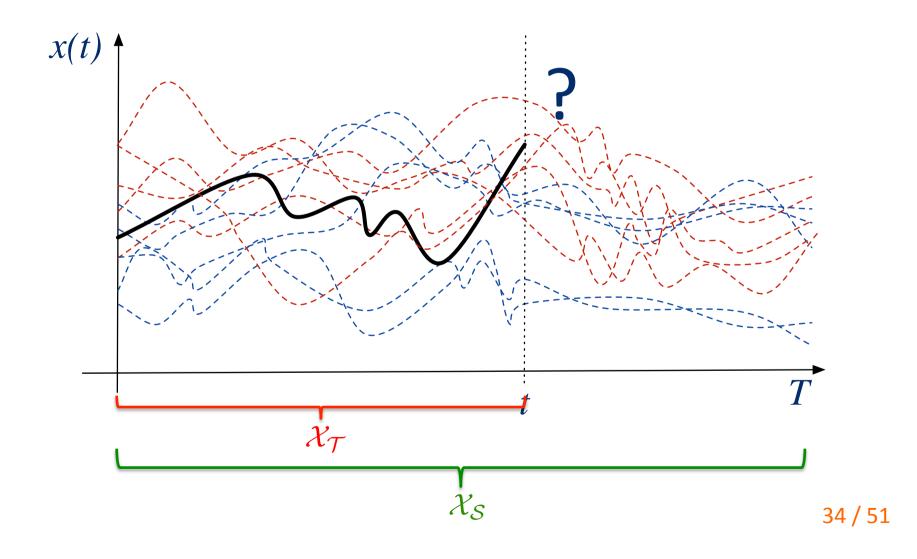
- Query experts that have more information about potential outcomes
- **2. Combination** of the estimates through MinMax



"Experts" may live in **input spaces** that are **different**

Early classification of time series

• What is the class of the new incomplete time series x_t ?



Principle

Learn a classifier over the training set of complete times series

$$S_{\mathcal{S}} = \{(\mathbf{x}_i^{\mathcal{S}}, y_i^{\mathcal{S}})\}_{1 \le i \le m} \rightarrow h_{\mathcal{S}}$$

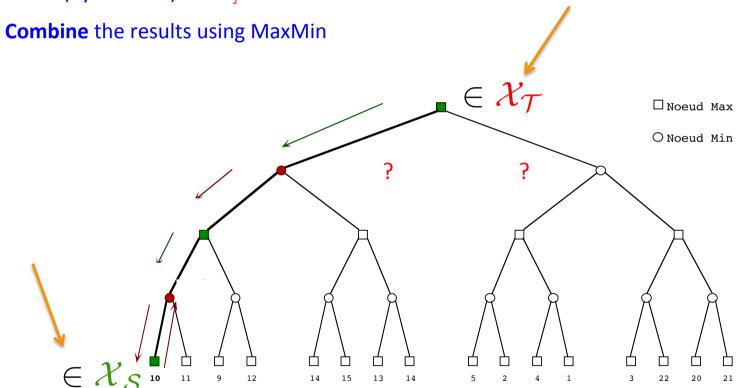
 Try to make use of this classifier to predict the class of incomplete series

$$h_{\mathcal{T}}$$
 = Function using $h_{\mathcal{S}}$

Algorithms for games and transfer learning

Which move?

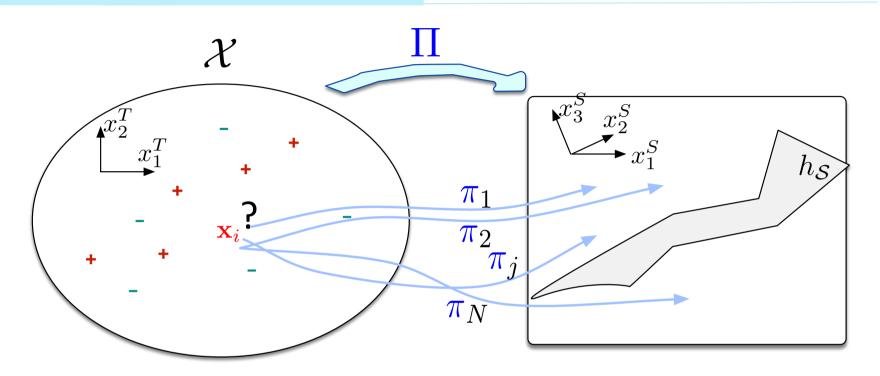
- Better evaluation function in X_S
- Use it (by transfer) for X_T



Outline

- 1. The online learning perspective
- 2. Early classification of time series
- 3. Early classification of time series and transfer learning
- 4. The TransBoost algorithm
- 5. Conclusion

TransBoost



Target Domain

Source Domain

$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$

TransBoost

Principle:

– Learn "weak projections":
$$\pi_i:\mathcal{X}_{\mathcal{S}} o \mathcal{X}_{\mathcal{T}}$$

• From:
$$S_{\mathcal{S}} = \{(\mathbf{x}_i^{\mathcal{S}}, y_i^{\mathcal{S}})\}_{1 \leq i \leq m}$$

- Using boosting
 - Projection π_n such that : $\varepsilon_n \doteq \mathbf{P}_{i \sim D_n}[h_{\mathcal{S}}(\pi_n(\mathbf{x}_i)) \neq y_i] < 0.5$
 - Re-weight the training time series and loop until termination

- Result
$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$

TransBoost

Algorithm 1: Transfer learning by boosting

Input: $h_{\mathcal{S}}: \mathcal{X}_{\mathcal{S}} \to \mathcal{Y}_{\mathcal{S}}$ the source hypothesis $\mathcal{S}_{\mathcal{T}} = \{(\mathbf{x}_i^{\mathcal{T}}, y_i^{\mathcal{T}}\}_{1 \leq i \leq m}: \text{ the target training set } \}$

Initialization of the distribution on the training set: $D_1(i) = 1/m$ for i = 1, ..., m;

for n = 1, ..., N do

Find a projection $\pi_i: \mathcal{X}_{\mathcal{T}} \to \mathcal{X}_{\mathcal{S}}$ st. $h_{\mathcal{S}}(\pi_i(\cdot))$ performs better than random on $D_n(\mathcal{S}_{\mathcal{T}})$; Let ε_n be the error rate of $h_{\mathcal{S}}(\pi_i(\cdot))$ on $D_n(\mathcal{S}_{\mathcal{T}}): \varepsilon_n \doteq \mathbf{P}_{i \sim D_n}[h_{\mathcal{S}}(\pi_n(\mathbf{x}_i)) \neq y_i]$ (with $\varepsilon_n < 0.5$); Computes $\alpha_i = \frac{1}{2} \log_2(\frac{1-\varepsilon_i}{\varepsilon_i})$; Update, for $i = 1 \dots, m$:

$$D_{n+1}(i) = \frac{D_n(i)}{Z_n} \times \begin{cases} e^{-\alpha_n} & \text{if } h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{\mathcal{T}})) = y_i^{\mathcal{T}} \\ e^{\alpha_n} & \text{if } h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{\mathcal{T}})) \neq y_i^{\mathcal{T}} \end{cases}$$
$$= \frac{D_n(i) \exp(-\alpha_n y_i^{(\mathcal{T})} h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{(\mathcal{T})})))}{Z_n}$$

where Z_n is a normalization factor chosen so that D_{n+1} be a distribution on $\mathcal{S}_{\mathcal{T}}$;

end

Output: the final target hypothesis $H_{\mathcal{T}}: \mathcal{X}_{\mathcal{T}} \to \mathcal{Y}_{\mathcal{T}}$:

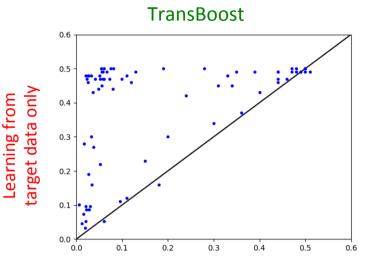
$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$
 (2)

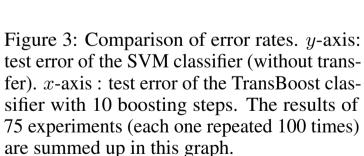
Results

	On the source						
	Learnin	g from 🕒			domain		c .
	target data only		TransBoost		- 1	Naïve transfert	
					V		
slope, noise, $t_{\mathcal{T}}$	$h_{\mathcal{T}}$ (train)	$h_{\mathcal{T}}$ (test)	$H_{\mathcal{T}}$ (train)	$H_{\mathcal{T}}$ (test)	$h_{\mathcal{S}}$ (test)	$H'_{\mathcal{T}}$ (test)	
0.001, 0.001, 20	0.46 ± 0.02	0.50 ± 0.08	0.08 ± 0.03	0.08 ± 0.02	0.05	0.49 ± 0.01	
0.005, 0.001, 20	0.46 ± 0.02	0.49 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.01	0.45 ± 0.01	
0.005, 0.002, 20	0.46 ± 0.02	0.49 ± 0.03	0.03 ± 0.02	0.04 ± 0.02	0.02	0.43 ± 0.01	
0.005, 0.02, 20	0.44 ± 0.02	0.48 ± 0.03	0.09 ± 0.01	0.10 ± 0.01	0.01	0.47 ± 0.01	
0.001, 0.2, 20	0.46 ± 0.02	0.50 ± 0.01	0.46 ± 0.02	0.51 ± 0.02	0.11	0.49 ± 0.01	
0.01, 0.2, 20	0.42 ± 0.03	0.47 ± 0.03	0.34 ± 0.02	0.35 ± 0.02	0.02	0.35 ± 0.01	
0.001, 0.001, 50	0.46 ± 0.02	0.50 ± 0.01	0.08 ± 0.03	0.08 ± 0.02	0.06	0.41 ± 0.01	
0.005, 0.001, 50	0.25 ± 0.07	0.28 ± 0.09	0.01 ± 0.01	0.01 ± 0.01	0.01	0.28 ± 0.01	
0.005, 0.002, 50	0.27 ± 0.07	0.30 ± 0.08	0.02 ± 0.01	0.02 ± 0.01	0.02	0.28 ± 0.01	
0.005, 0.02, 50	0.26 ± 0.07	0.30 ± 0.08	0.04 ± 0.01	0.04 ± 0.01	0.01	0.31 ± 0.01	
0.001, 0.2, 50	0.44 ± 0.02	0.50 ± 0.01	0.38 ± 0.03	0.44 ± 0.02	0.15	0.43 ± 0.01	
0.01, 0.2, 50	0.10 ± 0.03	0.12 ± 0.04	0.10 ± 0.02	0.11 ± 0.02	0.03	0.15 ± 0.02	
0.001, 0.001, 100	0.43 ± 0.03	0.47 ± 0.03	0.07 ± 0.02	0.07 ± 0.02	0.02	0.23 ± 0.01	
0.005, 0.001, 100	0.06 ± 0.03	0.07 ± 0.03	0.01 ± 0.01	0.01 ± 0.01	0.01	0.07 ± 0.02	
0.005, 0.002, 100	0.08 ± 0.03	0.10 ± 0.04	0.02 ± 0.01	0.02 ± 0.01	0.02	0.07 ± 0.01	
0.005, 0.02, 100	0.08 ± 0.03	0.09 ± 0.03	0.02 ± 0.01	0.03 ± 0.01	0.01	0.07 ± 0.01	
0.001, 0.2, 100	0.04 ± 0.03	0.46 ± 0.02	0.28 ± 0.02	0.31 ± 0.01	0.16	0.31 ± 0.01	
0.01, 0.2, 100	0.03 ± 0.01	0.05 ± 0.02	0.04 ± 0.01	0.05 ± 0.01	0.02	0.05 ± 0.01	

Table 1: Comparison of learning directly in the target domain (columns $h_{\mathcal{T}}$ (train) and $h_{\mathcal{T}}$ (test)), using TransBoost (columns $H_{\mathcal{T}}$ (train) and $H_{\mathcal{T}}$ (test)), learning in the source domain (column $h_{\mathcal{S}}$ (test)) and, finally, completing the time series with a SVR regression and using $h_{\mathcal{S}}$ (naïve transfer). Test errors are highlighted in the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without transfer and learning with naïve transfer.

Results





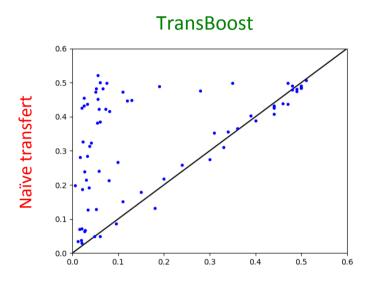


Figure 4: Comparison of error rates. *y*-axis: test error of the "naïve" transfer method. *x*-axis: test error of the TransBoost classifier with 10 boosting steps. The results of 75 experiments (each one repeated 100 times) are summed up in this graph.

Transfer learning

Illustrations

FIGURE 1: Trained model on the data source: is it a picture of a dog or a cat?

Figure 2: Model source transferred on the data target : is it a clip-art of a dog or a cat?

Transfer learning

Illustrations

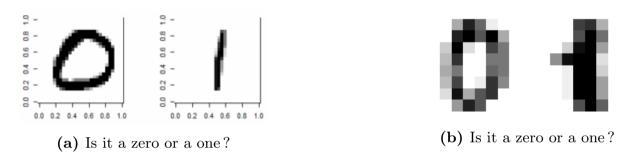
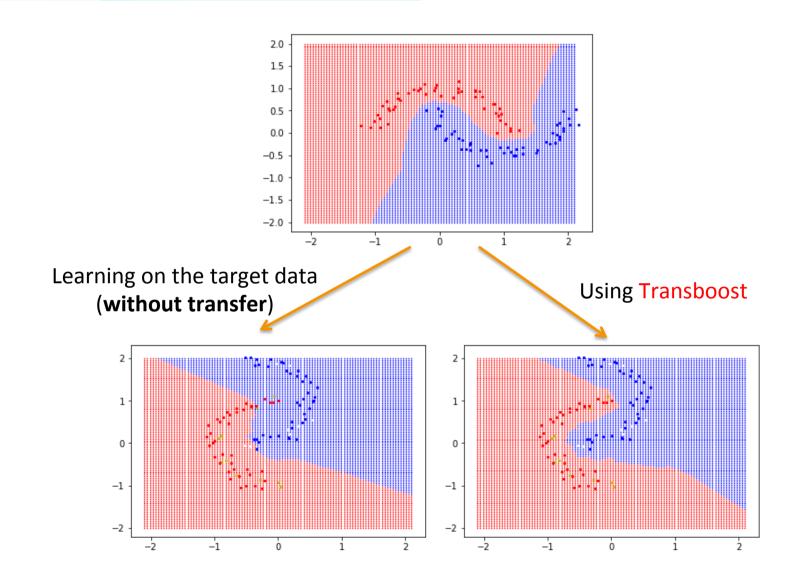


FIGURE 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

Transfer learning



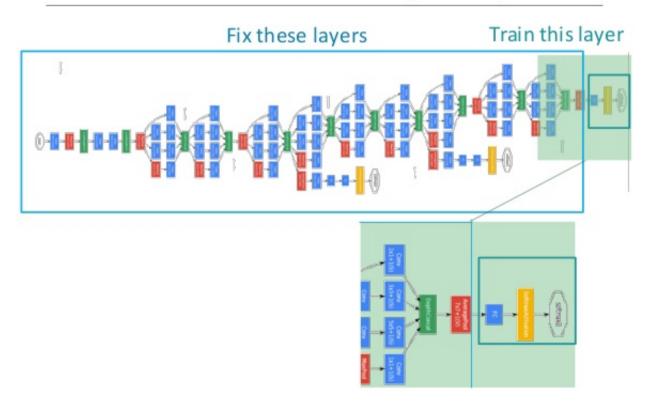
Conclusion

- Ensemble method for transfer learning
 - Learn weak translator from target to source!!
 - The learning problem now becomes the problem
 of choosing a good set of (weak) projections
 - Theoretical guarantees exist:
 from the theory for boosting and for transfer as well

Transfer learning for deep neural networks

Illustration

Tensorflow Transfer Learning Example



Outline

- 1. The online learning perspective
- 2. Early classification of time series
- 3. Early classification of time series and transfer learning
- 4. The TransBoost algorithm
- 5. Conclusion

Conclusion

1. Online learning

- Dilemma stability vs. plasticity
- Links with transfer learning
- 2. **Early** classification of time series
 - Can be solved as a LUPI framework
 - Can be seen as involving transfer learning
- 3. The **Transboost** algorithm
 - From LUPI to transfer learning
- 4. Back to online learning?

Online learning: back to the future

- Central question
 - Controlling the memory
 - What to keep from the past?
 - How to adapt the current hypothesis?

Can TransBoost help?

Online learning

Suppose

- Online with small batches at each time step
- The current batch is labeled (after prediction has been performed)
- The source hypothesis is kNN (k≥3) with (all) past examples
- Use Transboost to learn projections
 - To past points
 - With constraints preventing to project on points close to the point projected
 - Make statistics about the most useful points

Bibliography

- A. Cornuéjols, S. Akkoyunlu, P-A. Murena and Raphaël Olivier (2017). Transfer Learning by boosting projections from target to source. *Conférence Francophone sur l'Apprentissage Automatique* (CAP'17), Grenoble, France, 28-30 juin 2017.
- Dachraoui, A., Bondu, A., & Cornuéjols, A. (2015). Early classification of time series as a non myopic sequential decision making problem. In *Joint European Conf. on Mach. Learning and Knowledge Discovery in Databases* (pp. 433-447).
- Dachraoui, A., Bondu, A., & Cornuéjols, A. (2016). A novel algorithm for online classification of time series when delaying decision is costly. In *Proc. of CAP-2016 (Conférence francophone sur l'Apprentissage Automatique)*, Marseilles, France, July 4-7, 2016.
- V. Vapnik and A. Vashist (2009) "A new learning paradigm: Learning using privileged information". Neural Networks, vol. 22, no. 5, pp. 544–557, 2009

Supplementary material