What is the place of knowledge in Machine Learning?

Antoine Cornuéjols

AgroParisTech – INRA MIA 518

LINK research group

A basic principle

- Machine Learning "just" reformulates what has been given as input
- A conservation theorem:
 - No information is "added
 - Data + prior knowledge

A basic principle

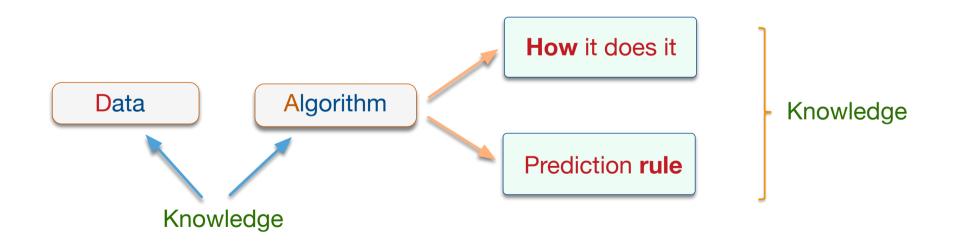
- Machine Learning "just" reformulates what has been given as input
- A conservation theorem:
 - No information is "added"
 - Data + prior knowledge

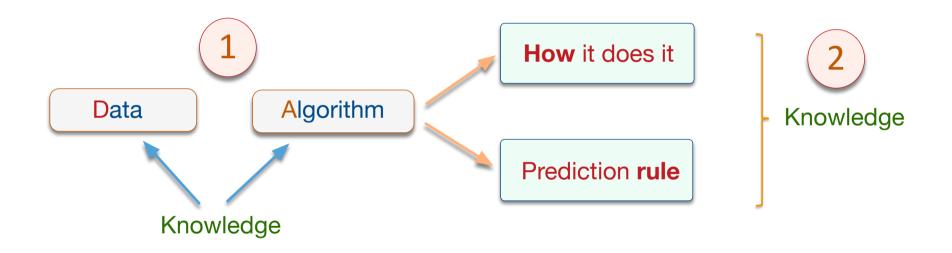
Little data+lots of prior knowledgeBigdata+less prior knowledge

A basic principle

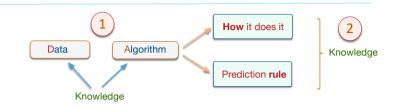
- Machine Learning "just" reformulates what has been given as input •
- A conservation theorem: •
 - No information is "added" Little data + lots of prior knowledge
 - Data + prior knowledge _

Big data + **less** prior knowledge





Knowledge as **input** to ML



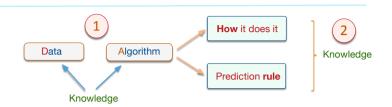
- Knowledge in the data
 - The experimental apparatus
 - Choice of **the descriptors** (the features)
 - Enrichment using ontologies
 - Normalization of the values
 - Missing values

. . .

- Possibly added data point
 - With invariances in mind

Knowledge as **input** to ML

• Knowledge in the learning algorithm



- Constraints on the hypothesis space: representation bias

$$h^{\star} = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{R_{\operatorname{Emp}}(h) + \lambda \operatorname{reg}(h)}{2} \right]$$

Looking for **sparse linear hypotheses**

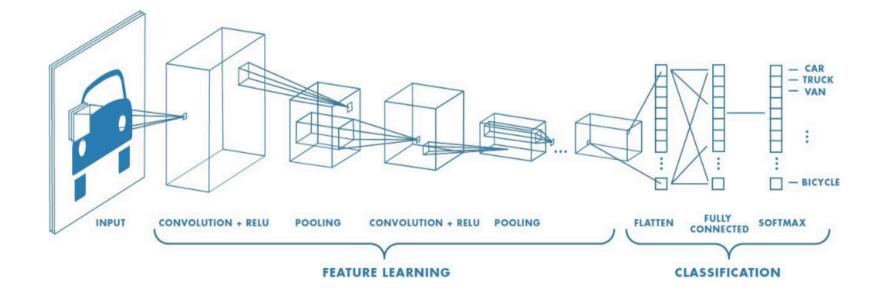
$$h^{\star} = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{1}{m} \sum_{i=1}^{m} \ell(h(\mathbf{x}_{i}), y_{i}) + \lambda ||h||_{1} \right]$$

Favors hypotheses with few non null coefficient

1ts 7/31

Knowledge as **input** to ML

- Convolutional Neural Networks
 - Knowledge embedded in the architecture of the network

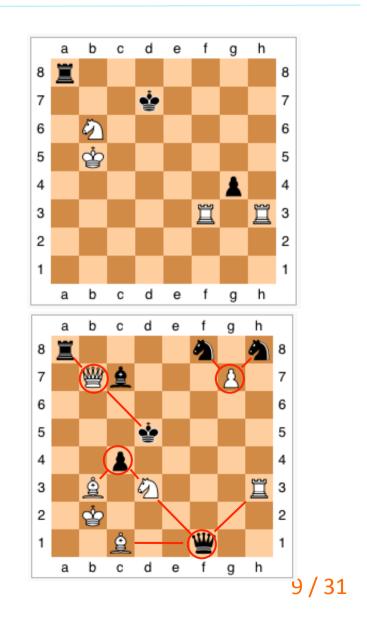


From https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 8 / 31

Learning from a single example

Explanation-Based Learning

- 1. A single example
- 2. Search for a proof of a « fork »
- **3**. Generalization



Explanation-Based Learning

Ex:learn a concept stackable(Object1, Object2)

• Theory:

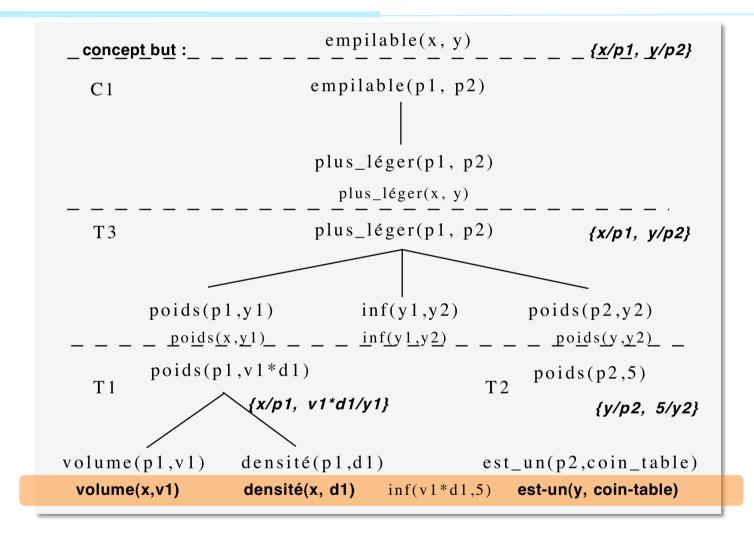
(T1): weight(X, W) :- volume(X, V), density(X, D), W is V*D.
(T2): weight (X, 50) :- is-a(X, table).
(T3): lighter(X, Y) :- weight (X, W1), weight(X, W2), W1 < W2.

• Operationality constraint:

- Concept to express with predicates volume, density, color, ...
- **Positive example** (solution) :

on(obj1, obj2).	volume(object1, 1).	
<pre>is_a(object1, box).</pre>	volume(object2, 0.1).	
<pre>is_a(object2, table).</pre>	owner(object1, frederic).	
color(object1, red).	<pre>density(object1, 0.3).</pre>	
color(object2, blue).	<pre>material(object1, cardboard).</pre>	
<pre>matter(object2, wood).</pre>	owner (object2, marc).	10/31

Explanation-Based Learning

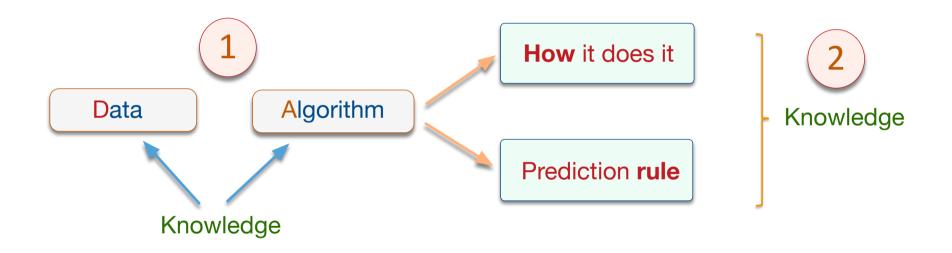


Arbre de preuve généralisé obtenu par régression du concept cible dans l'arbre de preuve en calculant à chaque étape les littéraux les plus généraux permettant cette étape. 11 / 31

Explanation-Based Learning

- Induction **from a single example**
 - ... and a **strong domain theory**
- Language of **logics**
- **Operators** for reasoning (deduction, ...)

Now used in « solvers » of SAT problems because the "data" is clean



• The hypothesis returned: a decision function

- The hypothesis returned: a decision function
 - Recommending a movie
 - Recommending a life partner
 - Written character recognition
 - Recognize traffic signs
 - Decide the value of a position in go
 - Predict the risk of crime occurrence
 - Decide if someone should get a loan
 - Decide to **hire or not** someone

• Just a decision function?

• Or included in a larger inference system? E.g. in legal cases

Question where that decision come from

- Interpretability of the decision function
 - Decision trees seem readily interpretable
 - Linear decision functions are less so
 - Random forests are much less still
 - SVM
 - Neural Networks

Require a difficult analysis

- Interpretability of the learning process leading to a decision function
 - Sensitivity analysis
 - If this input value is changed, what happens
 - Explanation-Based Learning

• When interpretability is **NOT** needed?

- When interpretability is **NOT** needed?
 - When **low risk** associated with the decision
 - E.g. recommendation for a movie
 - When **good guarantees** on performance exist
 - E.g. character recognition

• When interpretability IS needed?

- When interpretability IS needed?
 - 1. With high risk decisions
 - E.g. chirurgical operation
 - E.g. shutting down a nuclear plant
 - E.g. autonomous vehicle

- When interpretability IS needed?
 - 1. With high risk decisions
 - E.g. chirurgical operation
 - E.g. shutting down a nuclear plant
 - E.g. autonomous vehicle
 - 2. Satisfying **curiosity** (what science is about)
 - E.g. explain surprising results
 - E.g. when no easy explanation exists
 - E.g. when the decision function must be included in a larger inference system (a domain theory)

• When interpretability IS needed?

• When interpretability IS needed?

3. Debugging

- *E.g.* why is that decision wrong (counterfactual)
- E.g. if a bicycle is recognized because it has two wheels, what if one is hidden behind side bags?
- E.g. why the system seems gender biased?

• When interpretability IS needed?

3. Debugging

- *E.g.* why is that decision wrong (counterfactual)
- E.g. if a bicycle is recognized because it has two wheels, what if one is hidden behind side bags?
- E.g. why the system seems gender biased?
- 4. Interpretability demands higher standard predictive systems
 - An interpretable system can be manipulated
 - E.g. if someone knows that a loan is granted if you have more than 2 credit cards
 - In order not to be manipulated, the predictive system must use causal factors

• To recognize cars

Is this less of a car because the context is wrong?

- To decide the value of a position in go
 - The "hand of God"

How to **revise** or **reconstruct** a theory of go?

28/31

- Why is Machine Learning currently **lacking**?
 - The exclusive focus on predictive performance leads
 to an incomplete learning problem formulation

- Why is Machine Learning currently **lacking**?
 - The exclusive focus on predictive performance leads to an incomplete learning problem formulation
 - We want also
 - Interpretability of the results
 - Interpretability of the process
 - Gaining a **better understanding of the world** when including the learned decision function in an existing theory

- Why is Machine Learning currently **lacking**?
 - The exclusive focus on predictive performance leads to an incomplete learning problem formulation
 - We want also
 - Interpretability of the results
 - Interpretability of the process
 - Gaining a **better understanding of the world** when including the learned decision function in an existing theory

Somehow, we have to change the inductive criterion used in Machine Learning