
		

Antoine	Cornuéjols	

AgroParisTech	–	INRA			MIA	518	

Équipe	LINK	

Apprentissage	et	classification		
	 	 		par	méthodes	collaboratives		

d	
Comment	choisir	ses	collaborateurs	et	qu’échanger	avec	eux	?	

2	/	104	

Motivation

•  «	The	wisdom	of	crowd	»	

[James	Surowiecki,	2004]	

–  Estimation	du	poids	d’un	panier	dans	un	marché		
787	participants		

•  Le	meilleur	=	plus	d’un	centième	d’erreur	
•  Moyenne	:	moins	d’un	millième	d’erreur	

	[Francis	Galton1,	1906	(85	ans)]	

1	anthropologue,	explorateur,	géographe,	inventeur,	météorologue,	proto-généticien,		
			psychométricien	et	statisticien	

3	/	104	

Motivation

•  «	The	wisdom	of	crowd	»	

[James	Surowiecki,	2004]	

–  Estimation	du	poids	d’un	panier	dans	un	marché		
787	participants		

•  Le	meilleur	=	plus	d’un	centième	d’erreur	
•  Moyenne	:	moins	d’un	millième	d’erreur	

	[Francis	Galton1,	1906	(85	ans)]	

1	anthropologue,	explorateur,	géographe,	inventeur,	météorologue,	proto-généticien,		
			psychométricien	et	statisticien	

4	/	104	

Pourquoi	/	comment		ça	marche	

•  «	Experts	faibles	»	

Estimations	«	bruitées	»	

–  Non	biaisées	

–  Symétriques	

–  Indépendantes		

Combinaison	simple	:	
la	moyenne	

5	/	104	

Plan	

1.  	Contexte	et	motivations	

2.  	Méthodes	collaboratives	en	IA	

3.  	Méthodes	collaboratives	en	Apprentissage	Automatique	

4.  	Quid	du	clustering	?	

5.  	Bilan	

6	/	104	

Motivations		(1)	

•  Améliorer	les	performances	des	solutions	(clusterings)		

en	les	combinant		

Méthodes	«	d’ensemble	»	non	supervisées	

7	/	104	

Motivations		(2)	

•  Énormément	de	données	produites	«	localement	»	

–  Hôpitaux	

–  Succursales	d’entreprises	

–  Internet	des	Objets	

•  Difficile	de	centraliser	ces	données	->	traitements	locaux	

•  Qui	peuvent	cependant	bénéficier	d’échanges	

Les	méthodes	«	collaboratives	»	

8	/	104	

Combinaison	de	plusieurs	résultats	de	clustering	

1.  Sur	les	mêmes	données		

–  Des	algorithmes		différents										(biais	/	initialisation)	

–  Des	mesures								différentes		

•  Clustering		multi-vues	/	multi-objectifs	

•  Recherche	de	consensus																			:	clustering	«	coopératif	»	

9	/	104	

Combinaison	de	plusieurs	résultats	de	clustering	

1.  Sur	les	mêmes	données		

–  Des	algorithmes		différents										(biais	/	initialisation)	

–  Des	mesures								différentes		

•  Clustering		multi-vues	/	multi-objectifs	

•  Recherche	de	consensus																			:	clustering	«	coopératif	»	

2.  Sur	des	données	différentes	:	multi-sources	

•  Recherche	d’un	clustering	global	

•  Recherche	de	solutions	locales								:	clustering	«	collaboratif	»	
–  Sous	contraintes	d’échanges	limitées	avec	les	autres	«	experts	»	

ü  Vie	privée	

ü  Sécurité	sur	les	échanges	

10	/	104	

Combinaison	de	plusieurs	résultats	de	clustering	

1.  Sur	les	mêmes	données		

–  Des	algorithmes		différents										(biais	/	initialisation)	

–  Des	mesures								différentes		

•  Clustering		multi-vues	/	multi-objectifs	

•  Recherche	de	consensus																			:	clustering	«	coopératif	»	

2.  Sur	des	données	différentes	:	multi-sources	

•  Recherche	d’un	clustering	global	

•  Recherche	de	solutions	locales								:	clustering	«	collaboratif	»	
–  Sous	contraintes	d’échanges	limitées	avec	les	autres	«	experts	»	

ü  Vie	privée	

ü  Sécurité	sur	les	échanges	

11	/	104	

Plan	

1.  	Contexte	et	motivations	

2.  	Méthodes	collaboratives	en	IA	

3.  	Méthodes	collaboratives	en	Apprentissage	Automatique	

4.  	Quid	du	clustering	?	

5.  	Bilan	

12	/	104	

Méthodes	collaboratives		

en	Intelligence	Artificielle	

13	/	104	

Pandemonium	

•  First	Pandemonium	(1958)	

–  Oliver	Selfridge	«	Pandemonium:	A		
																															Paradigm	for	Learning	»	

14	/	104	

Pandemonium	

•  First	Pandemonium	(1958)	

–  Oliver	Selfridge	«	Pandemonium:	A		
																															Paradigm	for	Learning	»	

–  A	hierarchical	architecture	of	«	demons	»	to	
solve	problems	+		a	suggestion		
for	a	learning	mechanism	

•  «	Data	demons		:	specialized	in	some	types	of	
input	data	(horizontal	line,	circle	subparts,	…)	

•  «	Cognitive	demons	»:	integrate	information	
coming	from	sub-levels	demons	

•  «	Decision	demons	»	:	make	decisions	about	the	
interpretation	

Demons	shout	with	a	strength	in	proportion	to	their	
certainty	in	their	claim	

This	«	strength	»	is	set	through	learning	

15	/	104	

Hearsay	II		(1975)	

•  Speech	recognition	
–  The	DARPA	Speech	Understanding	Research	(SUR)	program	

HEARSAY-II / 355

LEVELS KNOWLEDGE SOURCES

DATA BASE
INTERFACE

4
SEMANT

PHRASE
8

PARSE

PREDICT STOPcr~~~~~Nt cr.—....N •

CONGA

WORD-SEOUENCE

()

WORD-SEO

WORD-SEO-CTL
CT --".• •

WORD VERIFY
WORD-CTL

• RPOL01.-"'N

SYLLABLE

()MOW

)POM
•

SEGMENT SEG •

PARAMETER

)

a

FIGURE 2. The levels and knowledge sources of September 1976. KSs are indicated by vertical
arcs with the circled ends indicating the input level and the pointed ends indicating output
level.

FIGURE 3. Functional description of the speech-understanding KSs.

Signal Acquisition, Parameter Extraction, Segmentation, and Labeling:
• SEG: Digitizes the signal, measures parameters, and produces a labeled segmentation.

Word Spotting:
• POM: Creates syllable-class hypotheses from segments.
• MOW: Creates word hypotheses from syllable classes.
• WORD-CTL: Controls the number of word hypotheses that MOW creates.

Phrase-Aland Generation:
• WORD-SEQ: Creates word-sequence hypotheses that represent potential phrases from word hypotheses and

weak grammatical knowledge.
• WORD-SEQ-CTL: Controls the number of hypotheses that WORD-SEQ creates.
• PARSE: Attempts to parse a word sequence and, if successful, creates a phrase hypothesis from it.

Phrase Extending:
• PREDICT: Predicts all possible words that might syntactically precede or follow a given phrase.

• VERIFY: Rates the consistency between segment hypotheses and a contiguous word-phrase pair.

• CONCAT: Creates a phrase hypothesis from a verified contiguous word-phrase pair.

Rating, Halting, and Interpretation:
• RPOL: Rates the credibility of each new or modified hypothesis, using information placed on the hypothesis

by other KSs.
• STOP: Decides to halt processing (detects a complete sentence with a sufficiently high rating, or notes the

system has exhausted its available resources) and selects the best phrase hypothesis or set of complementary

phrase hypotheses as the output.
• SEMANT: Generates an unambiguous interpretation for the information-retrieval system which the user has

queried.

HEARSAY-II / 355

LEVELS KNOWLEDGE SOURCES

DATA BASE
INTERFACE

4
SEMANT

PHRASE
8

PARSE

PREDICT STOPcr~~~~~Nt cr.—....N •

CONGA

WORD-SEOUENCE

()

WORD-SEO

WORD-SEO-CTL
CT --".• •

WORD VERIFY
WORD-CTL

• RPOL01.-"'N

SYLLABLE

()MOW

)POM
•

SEGMENT SEG •

PARAMETER

)

a

FIGURE 2. The levels and knowledge sources of September 1976. KSs are indicated by vertical
arcs with the circled ends indicating the input level and the pointed ends indicating output
level.

FIGURE 3. Functional description of the speech-understanding KSs.

Signal Acquisition, Parameter Extraction, Segmentation, and Labeling:
• SEG: Digitizes the signal, measures parameters, and produces a labeled segmentation.

Word Spotting:
• POM: Creates syllable-class hypotheses from segments.
• MOW: Creates word hypotheses from syllable classes.
• WORD-CTL: Controls the number of word hypotheses that MOW creates.

Phrase-Aland Generation:
• WORD-SEQ: Creates word-sequence hypotheses that represent potential phrases from word hypotheses and

weak grammatical knowledge.
• WORD-SEQ-CTL: Controls the number of hypotheses that WORD-SEQ creates.
• PARSE: Attempts to parse a word sequence and, if successful, creates a phrase hypothesis from it.

Phrase Extending:
• PREDICT: Predicts all possible words that might syntactically precede or follow a given phrase.

• VERIFY: Rates the consistency between segment hypotheses and a contiguous word-phrase pair.

• CONCAT: Creates a phrase hypothesis from a verified contiguous word-phrase pair.

Rating, Halting, and Interpretation:
• RPOL: Rates the credibility of each new or modified hypothesis, using information placed on the hypothesis

by other KSs.
• STOP: Decides to halt processing (detects a complete sentence with a sufficiently high rating, or notes the

system has exhausted its available resources) and selects the best phrase hypothesis or set of complementary

phrase hypotheses as the output.
• SEMANT: Generates an unambiguous interpretation for the information-retrieval system which the user has

queried.

16	/	104	

Plus	récemment	:	WATSON	

•  Search	the	best	answer	to	open	questions	

•  Require	a	the	exploration	of	a	huge	search	
space	

–  Documents		

–  Internet	

17	/	104	

Co-construction	d’une	interprétation		

–  Les	experts	sont	«	donnés	»	

–  Les	experts	interviennent	de	manière	opportuniste	ou	à	tour	de	rôle	

–  interagissent	par	échanges	de	contraintes	

Co-learning	et	co-clustering	

18	/	104	

Les	k	plus-proches-voisins	

–  Les	«	experts	»	(voisins)	sont	sollicités	en	fonction	de	la	question	

•  Approche	«	lazy	learning	»	ou	transductive	learning	

–  Questions		

•  Comment	choisir	ses	«	voisins	»	?	Quelle	distance	?		

•  Comment	combiner	les	réponses	:	(e.g.	vote	majoritaire	(pondéré))	

/	107	

IllustraMon	:	apprendre	à	classer	des	exemples	

•  Comment	faire	?	

x

y

EGC	-	2018			«	Qu’est-ce	qu’un	bon	système	d’apprenMssage	?	»			(A.	Cornuéjols)		 67	

?	Sélection	des	collaborateurs		

19	/	104	

Les	k	plus-proches-voisins	

–  Les	«	experts	»	(voisins)	sont	sollicités	en	fonction	de	la	question	

•  Approche	«	lazy	learning	»	ou	transductive	learning	

–  Questions		

•  Comment	choisir	ses	«	voisins	»	?	Quelle	distance	?		

•  Comment	combiner	les	réponses	:	(e.g.	vote	majoritaire	(pondéré))	

/	107	

IllustraMon	:	apprendre	à	classer	des	exemples	

•  Comment	faire	?	

x

y

EGC	-	2018			«	Qu’est-ce	qu’un	bon	système	d’apprenMssage	?	»			(A.	Cornuéjols)		 67	

?	Sélection	des	collaborateurs		

20	/	104	

Algorithmes	de	jeu	

25/46 Cours IA (A. Cornuéjols)

L�algorithme alpha-beta : Illustration (9)

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α = + 10
β = + ∞

6 7

Coup à jouerCoup à jouer

Construction	des	collaborateurs		 Aheuristic
No Specific Domain Knowledge

• Available actions for a given state (legal moves)

• Whether a given state is terminal (game over)

No Heuristics

• Intelligent moves with no strategic or tactical knowledge(!)

• Ideal for General Game Players (GGPs)

• Robust to delayed rewards, e.g. Go

Cameron Browne, 2010

Asymmetric
Kalah (b.f. ~6) Mancala variant
5,000 UCT iterations

Cameron Browne, 2010

Williams (2010)

MCTS	

21	/	104	

Algorithmes	de	jeu	

•  Quel	coup	jouer	?	

Fonction	d’évaluation	imprécise	à	la	racine	(situation	courante)	

1.   	Sollicitation	d’experts	ayant	une	évaluation	plus	précise		
sur	des	cas	possibles	liés	à	la	situation	courante	

2.   	Combinaison	hiérarchique	des	évaluations	par	MinMax	

Les	experts	peuvent	travailler	dans	des	espaces	différents	

25/46 Cours IA (A. Cornuéjols)

L�algorithme alpha-beta : Illustration (9)

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α = + 10
β = + ∞

6 7

Coup à jouerCoup à jouer

Construction	des	collaborateurs		 Aheuristic
No Specific Domain Knowledge

• Available actions for a given state (legal moves)

• Whether a given state is terminal (game over)

No Heuristics

• Intelligent moves with no strategic or tactical knowledge(!)

• Ideal for General Game Players (GGPs)

• Robust to delayed rewards, e.g. Go

Cameron Browne, 2010

Asymmetric
Kalah (b.f. ~6) Mancala variant
5,000 UCT iterations

Cameron Browne, 2010

Williams (2010)

MCTS	

22	/	104	

Plan	

1.  	Contexte	et	motivations	

2.  	Méthodes	collaboratives	en	IA	

3.  	Méthodes	collaboratives	en	Apprentissage	Automatique	

4.  	Quid	du	clustering	?	

5.  	Bilan	

23	/	104	

Méthodes	collaboratives		

en	Apprentissage	Automatique	

24	/	104	

Le	bagging	et	les	«	random	forests	»	

•  Construction	de	solutions	faibles	par	apprentissage		
sur	des	sous-échantillons	de	données	

General Idea

25	/	104	

Le	bagging	et	les	«	random	forests	»	

•  Illustration	

9

10

decision tree learning algorithm; very similar to ID3

shades of blue/red indicate strength of vote for particular classification

26	/	104	

Le	bagging	et	les	«	random	forests	»	

Random Forests

27	/	104	

Le	bagging	et	les	«	random	forests	»	

•  Random	forests	

Averaging	together	many	trees	in	a	forest	can	result	
in	decision	boundaries	that	look	very	sensible,	and	
are	even	quite	close	to	the	max	margin	classifier.	
(Shading	represents	entropy	–	darker	is	higher	
entropy).	

28	/	104	

Les	méthodes	d’ensemble	

•  La	«	sagesse	»	de	la	foule	:	combiner	des	méthodes	/	résultats	
–  Limites	d’une	solution	«	directe	»		

•  Biais	incertain	
•  Exploration	de	l’espace	des	solutions	sujettes	à	minima	locaux	

On	espère	additionner	les	forces	des	méthodes	faibles	
Et	compenser	/	annuler	les	faiblesses	

•  Approches	:		
–  Connaissances	complémentaires									:	architecture	«	blackboard	»	

–  Création	d’experts	indépendants									:	le	bagging	/	Random	Forests	

–  Création	d’experts	complémentaires		:	le	boosting	

•  Questions	:		
–  Comment	construire	des	experts	faibles	?	

–  Comment	combiner	les	solutions	faibles		

29	/	104	

Les	méthodes	d’ensemble	

•  La	«	sagesse	»	de	la	foule	:	combiner	des	méthodes	/	résultats	
–  Limites	d’une	solution	«	directe	»		

•  Biais	incertain	
•  Exploration	de	l’espace	des	solutions	sujettes	à	minima	locaux	

On	espère	additionner	les	forces	des	méthodes	faibles	
Et	compenser	/	annuler	les	faiblesses	

•  Approches	:		
–  Connaissances	complémentaires									:	architecture	«	blackboard	»	

–  Création	d’experts	indépendants									:	le	bagging	/	Random	Forests	

–  Création	d’experts	complémentaires		:	le	boosting	

•  Questions	:		
–  Comment	construire	des	experts	faibles	?	

–  Comment	combiner	les	solutions	faibles		

30	/	104	

Les	méthodes	d’ensemble	

•  La	«	sagesse	»	de	la	foule	:	combiner	des	méthodes	/	résultats	
–  Limites	d’une	solution	«	directe	»		

•  Biais	incertain	
•  Exploration	de	l’espace	des	solutions	sujettes	à	minima	locaux	

On	espère	additionner	les	forces	des	méthodes	faibles	
Et	compenser	/	annuler	les	faiblesses	

•  Approches	:		
–  Connaissances	complémentaires									:	architecture	«	blackboard	»	

–  Création	d’experts	indépendants									:	le	bagging	/	Random	Forests	

–  Création	d’experts	complémentaires		:	le	boosting	

•  Questions	:		
–  Comment	construire	des	experts	faibles	?	

–  Comment	combiner	les	solutions	faibles		

31	/	104	

Les	approches	collaboratives	

•  Motivation	:	pas	assez	d’informations	pour	résoudre		
la	question	«	localement	»	

•  Approche	:	recours	à	des	sources	d’information	externes	

–  kNN	:	CBR	

–  Analogie	/	Transfert	

•  Questions	:	
–  Choix	des	sources	externes	

–  Quelle	information	transmettre	(et	traduire)	?	

–  Comment	combiner	les	informations	externes	?	

32	/	104	

Les	approches	collaboratives	

•  Motivation	:	pas	assez	d’informations	pour	résoudre		
la	question	«	localement	»	

•  Approche	:	recours	à	des	sources	d’information	externes	

–  kNN	:	CBR	

–  Analogie	/	Transfert	

•  Questions	:	
–  Choix	des	sources	externes	

–  Quelle	information	transmettre	(et	traduire)	?	

–  Comment	combiner	les	informations	externes	?	

33	/	104	

Les	approches	collaboratives	

•  Motivation	:	pas	assez	d’informations	pour	résoudre		
la	question	«	localement	»	

•  Approche	:	recours	à	des	sources	d’information	externes	

–  kNN	:	CBR	

–  Analogie	/	Transfert	

•  Questions	:	
–  Choix	des	sources	externes	

–  Quelle	information	transmettre	(et	traduire)	?	

–  Comment	combiner	les	informations	externes	?	

34	/	104	

Méthodes	d’ensemble	supervisées	

35	/	104	

Justifications intuitives des méthodes d’ensemble

•						Dietterich	T.	(2000)	«	Ensemble	Methods	in	Machine	Learning	».	Proc.	1st	Int.	Workshop	on	
Multiple	Classifier	Systems,	Sardinia,	Italy,	2000.	

f

h1

h2

h3

!"#$%&'$()*
!"#$!$%&'

f
h1

h2

h3

!"#$%&'$()*
!"#$%&'("))*++*

f
h1

h2

h3

!"#$%&'$()*
!"#!$%"&'()*&&"++"

36	/	104	

Une question théorique

•  Apprentissage	«	fort	»	(PAC	learning)	
–  Une	classe	de	fonctions	F	est	apprenable	(au	sens	fort)	si	il	existe	un	algorithme	

d’apprentissage	A	qui	pour	toute	distribution	DX	sur	X,	et	pour	toute	fonction	f	
est	tel	que	:		

	

•  Apprentissage	«	faible	»	
–  Une	classe	de	fonctions	F	est	apprenable	(au	sens	faible)	si,	pour	γ	>	0,	il	existe	

un	algorithme	d’apprentissage	A	qui	pour	toute	distribution	DX	sur	X,	et	pour	
toute	fonction	f	est	tel	que	:		

•  Sont-ils	de	nature	différente	?	

37	/	104	

Comment engendrer les apprenants

•  Une	recette	historique	
Sm

Sm

Sm1

h1

38	/	104	

Sm

Sm1

h1 h2

Sm2

Comment engendrer les apprenants

•  Une	recette	historique	
Sm

39	/	104	

Sm

Sm1

h1 h2

Sm2
Sm3

h3

Comment engendrer les apprenants

•  Une	recette	historique	
Sm

H(x) = sign

(

h1(x) + h2(x) + h3(x)

)

40	/	104	

Comment engendrer les apprenants (suite)

•  Modifier	l’échantillon	d’apprentissage	à	chaque	étape	

–  En	diminuant	l’importance	des	exemples	bien	classés	

–  En	augmentant	---------------------------------	mal	--------	

–  De	combien	?	

41	/	104	

Le	boosting	

•  Schéma	général	

Apprentissage : h1

Apprentissage : h2

Apprentissage : h3

Apprentissage : hN

H = combine(h1, h2, ..., hN)

Échantillon
d'apprentissage

42	/	104	

Boosting

n  boosting	=	méthode	générale	pour	convertir	des	règles	de	
prédiction	peu	performantes	en	une	règle	de	prédiction	(très)	
performante	

n  Plus	précisément	:	

–  Étant	donné	un	algorithme	d’apprentissage	“faible”	qui	peut	toujours	
retourner	une	hypothèse	de	taux	d’erreur	≤1/2-γ	

–  Un	algorithme	de	boosting	peut	construire	(de	manière	prouvée)	une	
règle	de	décision	(hypothèse)	de	taux	d’erreur		≤	ε

AdaBoost en plus gros

⎩
⎨
⎧

≠

=
⋅=

−

+)(if
)(if

1
iti

iti

t

t
t xhye

xhye
Z
D

D
t

t

α

α

01ln
2
1

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

t

t
t ε

ε
α

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

t
tt xhxH)(sgn)(final α

43	

Exemple jouet

44	

Étape 1

45	

Étape 2

46	

Étape 3

47	

Hypothèse finale

48	

49	/	104	

Performances du boosting

50	/	104	

Transfert		

+			méthode	d’ensemble		

=																					Transboost	

Transduction	

51	/	104	

Examples:	transfer	learning	in	vision	

[Xu,	Saenko,	Tsang		“Domain	Transfer”	tutorial	–	CVPR’12]	

Hard to predict what will change in the new domain

[Xu,Saenko,Tsang, Domain Transfer Tutorial - CVPR’12]

(LaHC) Domain Adaptation - EPAT’14 18 / 95

52	/	104	

Apprentissage	par	transfert	

•  Illustrations	

Project Report - Telecom Paris 2

1 Overview

Nowadays, several classification methods exist to split different classes of data. In order to do this, one could
mention classic binary classifiers such as the K- nearest neighbours (kNN) or the Linear SVC algorithms.

Assuming that you have a data that contains pictures of dogs and cats, using one of the basic binary class
methods is an obvious option to learn on this dataset, which we are about to call the dataset source in this
report. What about now if you have another dataset, so-called dataset target, composed of clip-arts of dogs
and cats ? Will you start over and train another independent model on this new dataset or will you use the one
you already have on the former data and adapt it ? Basically, our team has tried to answer this question by
comparing the accuracy of both approaches on different datasets.

Figure 1: Trained model on the data source : is it a picture of a dog or a cat ?

Figure 2: Model source transferred on the data target : is it a clip-art of a dog or a cat ?

In this study, we will let you know how we managed to do this classification transfer, by using a boosting
algorithm on the source model : Adaptive Boosting (AdaBoost). This being said, we will try to see how to
optimize the transferred model’s accuracy analytically. After that, we will see its performances on the classic
Half-moons dataset, which has been rotated. Then, we will use this process to compare the accuracy of a new
independent model trained on the data target in the one hand, and, on the other hand, the accuracy of the
method that we implemented using at the same time transfer and adaptive boosting methods. At least, we will
describe how this process had been employed on the convolutional neural artificial networks model trained on
the data source to make it able to classify the data target with a high level of accuracy from a very few data
training thanks to deep learning.

2 Adaptive Boosting or AdaBoost

2.1 Principle of AdaBoost
Obviously, all data cannot be fully well classified by a linear hypothesis (or classifier). This is the case of the

half-moons dataset for instance. That is why it is called a non linear dataset 3. It is composed of n vectors (x1,
y1), (x2,y2), ..., (xn, yn), where yj is the label associated to the feature xj .

AdaBoost is based on this idea that, after using a simple linear classifier on the data, some points will be
neglected and affected to the wrong class. Well, at the next iteration, these points will be overweighted as the
most important points of the dataset to well classify. Then, a second linear hypothesis is used to split again

53	/	104	

Apprentissage	par	transfert	

•  Illustrations	

Project Report - Telecom Paris 9

3 Application to MNIST and sklearn digits

3.1 Summary
MNIST and sklearn digits datasets are two commonly used hand-written digits datasets with two different

resolutions. MNIST is made of 28 by 28 hand-written digits images while digits from scikit-learn library is only
8 by 8.

Once we have studied TransBoost method on half-moons two-dimensional datasets, we tackle larger dimen-
sions, respectively d = 784 for MNIST and d = 64 for sklearn digits. We first transfer on MNIST only from 0
and 1 classification to 7 and 8. Then we transfer from 0 and 1 in MNIST to 0 and 1 in sklearn digits, and finally
the other way, from 0 and 1 in sklearn digits to 0 and 1 in MNIST.

The main targets remain scoring TransBoost method and comparing it to relearning from target training
set, in particular via linear SVC classifier.

3.2 Method
We first introduce a canonical projection matrix P between the two spaces we would transfer. It is supposed

to be an simple and relatively good transformation, without any form of boosting.
Then comes TransBoost, so the ⇧ projection function at each step is chosen to have the lowest error between

1000 random samples, given by :
⇧(x) = (P +A) ⇤ x+ y (12)

where P is the canonical projection matrix of size (dsource, dtarget), A a Gaussian matrix and y a Gaussian
vector (with standard normal distribution).

The projection between the two spaces is thereby a random variation of the canonical projection. Never-
theless, choosing the projection within relatively high-dimensional randomly generated matrices is of course an
unoptimized method which lead to longer calculation time.

3.2.1 From 0/1 in MNIST to 7/8 in MNIST

(a) Is it a zero or a one ? (b) Is it an eight or a seven ?

Figure 13: Transfer learning of the source model 0/1 so that it can distinguish 8/7

In this case, P is chosen to be the identity matrix. The intuitive idea is that representations of 7 are quite
close to 1’s, as 0’s are to 8’s. Transfer methods are thought all the more relevant to use as the distance between
source and target datasets are small. Therefore we expected a very low error by classifying sevens and eights
with the original classifier hsource trained on ones and zeros.

Figure 14: Canonical projection from MNIST (clipped to 24 by 24) to sklearn digits (8 by 8)

Project Report - Telecom Paris 10

3.2.2 Between 0/1 in MNIST and 0/1 sklearn digits

(a) Is it a zero or a one ? (b) Is it a zero or a one ?

Figure 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

In these cases, P are chosen to be whether an image compression matrix or a scaling up matrix, depending
on the direction of transfer. In order to increase performance and calculation speed, we clipped MNIST images
from 28 by 28 to 24 by 24 pixels. Not only we simplify compression as 24 is multiple of 8, and reduce the MNIST
dimension from d = 784 to d = 576, but also we equate the two datasets as sklearn digits are cut-short images.

3.3 Results
3.3.1 Scoring the canonical projection

For transferring from 0/1 in MNIST to 7/8 in MNIST, the average error was surprisingly evaluated at 70%
which contradict initial intuition. A posteriori, pairing zeros with sevens ans ones with eights leads to positive
results.

For projection between MNIST and sklearn digits, the use of the original model hsource composed with
canonical projection matrix, i.e. no TransBoost yet, leads to good accuracy results :

- less than 15% for transferring from MNIST to sklearn digits : 16

Figure 16: Accuracy comparison between both methods on a data test of variable proportion p

(a) Blue : TransBoost method

(b) Orange : Relearning SVC method

- less than 10% for transferring from sklearn Digit to MNIST : 18

3.3.2 Comparing TransBoost method with relearning from target training set

With TransBoost, minimal error on target test set is barely reached within at most 15 steps. Again, the
better the weak classifier hsource �⇧i is chosen, fewer are steps needed to achieve maximal accuracy.

Again, we compared this method to relearning via linear SVC, depending on the ratio of target test dataset
among total target data.

The result are quite similar within the 3 transfers tested.

3.4 Conclusion
Though TransBoost method allow reasonable low error levels, it seems to be less efficient than relearning

from a linear SVC, whatever the ratio of target test set is.
Moreover, TransBoost method takes certainly longer time to process as the projection are chosen randomly

between huge sample at each steps, but there is no doubt picking off weak classifier could largely be optimized.

54	/	104	

La	classification	précoce		

de	séries	temporelles	

55	/	104	

(Early)	classification	of	time	series	

•  Early	prediction	of	daily	electrical	consumption:	 	high									or			low	

x(t)

T

Training	set	

56	/	104	

Early	classification	of	time	series	

•  What	is	the	class	of	the	new	incomplete	time	series	xt?	

x(t)

T

!

t

57	/	104	

Early	classification	of	time	series	

•  What	is	the	class	of	the	new	incomplete	time	series	xt?	

x(t)

T

!

t
XT

XS

58	/	104	

Principe	

•  Apprendre	un	classifieur	sur	les	données	complètes	

•  Chercher	à	l’utiliser	pour	classer	des	séries	incomplètes	

SS = {(xS
i , y

S
i)}1im ! hS

hT = Fonction utilisant hS

59	/	104	

Transfert	et	algorithmes	de	jeux	

			Que	jouer	?	
–  Fonction	d’évaluation	imparfaite	dans	XS
–  L’utiliser	dans	XT
–  Combiner	les	résultats	par	MaxMin	

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

α = − ∞

β = + ∞

1

α = − ∞
β = + ∞

α = − ∞
β = + ∞

α = − ∞
β = + ∞

α = − ∞
β = + 10

?	 ?	

2 XS

2 XT

60	/	104	

TransBoost	

HT (x
T) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T)
��

+

+

+

+
+

-

-

-

-

-

xi

X

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
⇡1
⇡2

⇡N

⇡j

⇧

hS

61	/	104	

TransBoost	

•  Idée	:	
–  Apprendre	des	«	projections	faibles	»	:		

•  À	partir	de	:	

	

–  Par	une	méthode	de	boosting	

•  Projection								telle	que	:		

•  Re-pondération	des	séries	temporelles	d’apprentissage	

–  Résultat	

⇡i : XS ! XT

SS = {(xS
i , y

S
i)}1im

"n
.
= Pi⇠Dn [hS(⇡n(xi)) 6= yi] < 0.5⇡n

HT (x
T) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T)
��

62	/	104	

TransBoost	

+

+

+

+
+

-

-

-

-

-

-
-

-

-
-
--

-

+

+ +

+

+
+

+

+

+
xi

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
�1
�2

�N

�j(xi)
�j

�

hS

XSXT

Figure 1: The principle of prediction using TransBoost. A given target exemple x
T

i is projected in the source
domain using a set of identified weak projections fij and the prediction for x

T

i is computed as: HT (xT

i) =

sign
;qN

j=1 hS

!
fij(xT

i)
"<

.

Algorithm 1: Transfer learning by boosting
Input: hS : XS æ YS the source hypothesis

ST = {(xT

i , y
T

i }1ÆiÆm: the target training set

Initialization of the distribution on the training set: D1(i) = 1/m for i = 1, . . . , m ;

for n = 1, . . . , N do

Find a projection fii : XT æ XS st. hS(fii(·)) performs better than random on Dn(ST) ;
Let Án be the error rate of hS(fii(·)) on Dn(ST) : Án

.= Pi≥Dn [hS(fin(xi)) ”= yi] (with Án < 0.5) ;
Computes –i = 1

2 log2
! 1≠Ái

Ái

"
;

Update, for i = 1 . . . , m:

Dn+1(i) = Dn(i)
Zn

◊
I

e
≠–n if hS

!
fin(xT

i)
"

= y
T

i

e
–n if hS

!
fin(xT

i)
"

”= y
T

i

=
Dn(i) exp

!
≠–n y

(T)
i hS(fin(x(T)

i))
"

Zn

where Zn is a normalization factor chosen so that Dn+1 be a distribution on ST ;
end

Output: the final target hypothesis HT : XT æ YT :

HT (xT) = sign
; Nÿ

n=1
–n hS

!
fin(xT)

"<
(2)

5

63	/	104	

Results	

The source domain comprises the complete time series (tS = 200), while the target domain contains
time series truncated to their first tT time steps (in our experiments, tT 2 {20, 50, 100}). On
each domain, a classifier (Gaussian SVM as implemented in Scikit Learn) was trained using the
corresponding training time series.

In these experiments, the set of projections ⇧ was chosen as a set of “hinge functions”, defined by
three parameters, the slope of the first linear part, the time where the hinge takes place, and the slope
of the second linear part. The set is explored randomly by the algorithm and a projection is retained
if its error rate on the current weighted data is better than 0.45.

Table 1 provides representative examples of the results obtained (see the supplementary material for
more comprehensive results). Each cell of the table shows the average performance (and the standard
deviations) computed from 100 experiments repeated under the same conditions. It is apparent that
TransBoost yields very significantly superior results in conditions where there is signal in the target
data set, but the learning task is not so easy as to not require transfer learning.

slope, noise, tT hT (train) hT (test) HT (train) HT (test) hS (test) H
0
T (test)

0.001, 0.001, 20 0.46 ± 0.02 0.50 ± 0.08 0.08 ± 0.03 0.08 ± 0.02 0.05 0.49 ± 0.01
0.005, 0.001, 20 0.46 ± 0.02 0.49 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 0.45 ± 0.01
0.005, 0.002, 20 0.46 ± 0.02 0.49 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.02 0.43 ± 0.01
0.005, 0.02, 20 0.44 ± 0.02 0.48 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.01 0.47 ± 0.01
0.001, 0.2, 20 0.46 ± 0.02 0.50 ± 0.01 0.46 ± 0.02 0.51 ± 0.02 0.11 0.49 ± 0.01
0.01, 0.2, 20 0.42 ± 0.03 0.47 ± 0.03 0.34 ± 0.02 0.35 ± 0.02 0.02 0.35 ± 0.01
0.001, 0.001, 50 0.46 ± 0.02 0.50 ± 0.01 0.08 ± 0.03 0.08 ± 0.02 0.06 0.41 ± 0.01
0.005, 0.001, 50 0.25 ± 0.07 0.28 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.01 0.28 ± 0.01
0.005, 0.002, 50 0.27 ± 0.07 0.30 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.02 0.28 ± 0.01
0.005, 0.02, 50 0.26 ± 0.07 0.30 ± 0.08 0.04 ± 0.01 0.04 ± 0.01 0.01 0.31 ± 0.01
0.001, 0.2, 50 0.44 ± 0.02 0.50 ± 0.01 0.38 ± 0.03 0.44 ± 0.02 0.15 0.43 ± 0.01
0.01, 0.2, 50 0.10 ± 0.03 0.12 ± 0.04 0.10 ± 0.02 0.11 ± 0.02 0.03 0.15 ± 0.02
0.001, 0.001, 100 0.43 ± 0.03 0.47 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.02 0.23 ± 0.01
0.005, 0.001, 100 0.06 ± 0.03 0.07 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.01 0.07 ± 0.02
0.005, 0.002, 100 0.08 ± 0.03 0.10 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.02 0.07 ± 0.01
0.005, 0.02, 100 0.08 ± 0.03 0.09 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.01 0.07 ± 0.01
0.001, 0.2, 100 0.04 ± 0.03 0.46 ± 0.02 0.28 ± 0.02 0.31 ± 0.01 0.16 0.31 ± 0.01
0.01, 0.2, 100 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.02 0.05 ± 0.01

Table 1: Comparison of learning directly in the target domain (columns hT (train) and hT (test)), using
TransBoost (columns HT (train) and HT (test)), learning in the source domain (column hS (test)) and, finally,
completing the time series with a SVR regression and using hS (naïve transfer). Test errors are highlighted in
the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without
transfer and learning with naïve transfer.

Figures 3 and 4 sum up all results. In both tables, the x-axis reports the error rate obtained using
TransBoost, while the y-axis reports the error rate of the competing algorithm: either the hypothesis
hT learnt on the target training data alone (Figure 3), or the hypothesis H

0

T
learned on the target data

completed using a SVR regression (Figure 4). The remarquable efficiency of TransBoost in a large
spectrum of situations is readily apparent. Transboost is less dominant when either the data is so
noisy that no method can learn from the data (right part of the graphs near the diagonal), or when the
task is so easy (large slope and/or low noise) that nothing can be gained from transfer learning (left
part).

When the source problem is a priori unrelated to the target learning problem

In this set of experiments, the source hypothesis hS : RtS ! {�1, +1} is chosen independently
from the target data set. TransBoost tries to find a set of projections from RtT to RtS so that a

combined hypothesis HT (xT) = sign
⇢PN

n=1 ↵n hS

�
⇡n(xT)

��
can be computed for use in the

target domain DT .

7

Learning	from	
target	data	only	 TransBoost	

On	the	source	
domain	

Naïve	transfert	

64	/	104	

Results	

Figure 3: Comparison of error rates. y-axis:
test error of the SVM classifier (without trans-
fer). x-axis : test error of the TransBoost clas-
sifier with 10 boosting steps. The results of
75 experiments (each one repeated 100 times)
are summed up in this graph.

Figure 4: Comparison of error rates. y-axis:
test error of the “naïve” transfer method. x-
axis : test error of the TransBoost classifier
with 10 boosting steps. The results of 75
experiments (each one repeated 100 times)
are summed up in this graph.

In these experiments the target domain is R70 while the source domain is R40. The source hypothesis
is chosen randomly in a set of functions completely independently from the target classification
problem, which, here, is the same as in the first set of experiments. The set of projections is the same
as in the first set of experiments.

Table 2 shows a representative set of results. Again, even in this a priori difficult transfer problem,
TransBoost brings remarkable gains wrt. learning without transfer, except when the learning task is
easy using directly the target data. (Note that there is no error rate given for the source hypothesis
since it was not learnt using a data set. Indeed, even if it had been so, this error rate would not have
any meaning as regards to the target learning task).

slope, noise, tT hT (train) hT (test) HT (train) HT (test)
0.001, 0.001, 70 0.44 ± 0.02 0.48 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
0.005, 0.005, 70 0.11 ± 0.04 0.13 ± 0.05 0.02 ± 0.01 0.02 ± 0.02
0.005, 0.005, 70 0.10 ± 0.04 0.11 ± 0.05 0.01 ± 0.01 0.01 ± 0.01
0.005, 0.05, 70 0.11 ± 0.04 0.12 ± 0.05 0.04 ± 0.02 0.03 ± 0.01
0.001, 0.001, 70 0.42 ± 0.03 0.48 ± 0.02 0.33 ± 0.02 0.37 ± 0.02
0.01, 0.1, 70 0.06 ± 0.03 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.02

Table 2: Learning without transfer and with transfer using an apriori irrelevant source hypothesis.

7 Conclusions

In this paper, we have introduced a new perspective on transfer learning and a new method. The notion
of difference or distance between the source and target domains is seen differently. Whereas previous
works on domain adaptation and transfer learning emphasized finding a common representation of the
source and target training sets, thus limiting the possible differences between source and target, our
view is that what matters is to be able to translate questions in the target domain into questions that
can be answered by the available source hypothesis. In fact, as long as we can find “weak translators”,
we can use any source hypothesis at all, without any regard to its internal function or its purpose. In
this perspective, the core of transfer learning is to be able to identify an adequate set of projections or
translations ⇡: one with the weak transfer property and with limited capacity.

This is similar to the choice of a good regularization term. Here, the source hypothesis forces the
target hypothesis space to be of the form hS � ⇡ with ⇡ : XT ! XS . If the source hypothesis
(regularizer) is ill-chosen, then the learning task is made difficult or even impossible. In fact, negative

8

TransBoost	 TransBoost	

Le
ar
ni
ng
	fr
om

	
ta
rg
et
	d
at
a	
on

ly
	

N
aï
ve
	tr
an
sf
er
t	

65	/	104	

Apprentissage	par	transfert	Project Report - Telecom Paris 5

(a) kNN source model trained on
the data source : it fits to the data
source

(b) kNN source model trained on
the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target

Figure 5

(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.

Project Report - Telecom Paris 5

(a) kNN source model trained on
the data source : it fits to the data
source

(b) kNN source model trained on
the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target

Figure 5

(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.

Par	Transboost	Apprentissage	sur	les	données	cibles	
(sans	transfert)	

66	/	104	

Conclusion	

•  	Méthode	d’ensemble	et	de	transfert	

–  Apprentissage	de	traducteurs	faibles	

–  Le	problème	de	l’apprentissage	est	maintenant	déplacé	vers		

le	choix	d’un	bon	espace	de	projections	

–  Des	garanties	théoriques	:	comme	dans	le	boosting	

67	/	104	

Transfer	with	deep	neural	networks	

	[X.	Liu,	J.	Gao,	X.g	He,	L.	Deng,	K.	Duh	and	Ye-Yi	Wang	(2015).	«	Representation	Learning	Using	Multi-
Task	Deep	Neural	Networks	for	Semantic	Classification	and	Information	Retrieval	».	Proc.	NAACL,	May	
2015]		

X: Bag-of-Words Input (500k)

l1: Letter 3gram (50k)

l2: Semantic Representation (300)

QC1 QC2 QSq DSd
1 DSd

2

H

W1

Wt=C1
2

Wt=C1
3

P (C1|Q)

Wt=C2
2

Wt=C2
3

P (C2|Q)

W
t=Sq

2 Wt=Sd
2

P (D1|Q)

Wt=Sd
2

P (D2|Q)

l3: Task-Specific
Representation
(128)

Query classifi-
cation posterior
probability com-
puted by sigmoid

Web search pos-
terior probability
computed by soft-
max

Relevance mea-
sured by cosine
similarity

Shared
layers

Query Classification Web Search

1

Figure 1: Architecture of the Multi-task Deep Neural Network (DNN) for Representation Learning:
The lower layers are shared across all tasks, while top layers are task-specific. The input X (either a query or
document, with vocabulary size 500k) is first represented as a bag of words, then hashed into letter 3-grams
l1. Non-linear projection W1 generates the shared semantic representation, a vector l2 (dimension 300) that
is trained to capture the essential characteristics of queries and documents. Finally, for each task, additional
non-linear projections W t

2 generate task-specific representations l3 (dimension 128), followed by operations
necessary for classification or ranking.

dimensional vector by

l2 = f(W1 · l1) (1)

where f(·) is the tanh nonlinear activation f(z) =
1�e�2z

1+e�2z . This 50k-by-300 matrix W1 is responsible
for generating the cross-task semantic representation
for arbitrary text inputs (e.g., Q or D).

Task-Specific Representation (l3): For each
task, a nonlinear transformation maps the 300-
dimension semantic representation l2 into the 128-
dimension task-specific representation by

l3 = f(Wt
2 · l2) (2)

where, t denotes different tasks (query classification
or web search).

Query Classification Output: Suppose QC1 ⇥
l3 = f(Wt=C1

2 · l2) is the 128-dimension task-
specific representation for a query Q. The proba-
bility that Q belongs to class C1 is predicted by a
logistic regression, with sigmoid g(z) = 1

1+e�z :

P (C1|Q) = g(Wt=C1
3 ·QC1) (3)

Web Search Output: For the web search
task, both the query Q and the document D are
mapped into 128-dimension task-specific represen-
tations QSq and DSd . Then, the relevance score is

Algorithm 1: Training a Multi-task DNN
Initialize model � : {W1,Wt

2,W
t
3} randomly

for iteration in 0...⇤ do
1. Pick a task t randomly
2. Pick sample(s) from task t

(Q, yt = {0, 1}) for query classification
(Q,L) for web search

3. Compute loss: L(�)
L(�)=Eq. 5 for query classification
L(�)=Eq. 6 for web search

4. Compute gradient: ⌅(�)
5. Update model: � = �� �⌅(�)

end
The task t is one of the query classification tasks or web search
task, as shown in Figure 1. For query classification, each train-
ing sample includes one query and its category label. For web
search, each training sample includes query and document list.

computed by cosine similarity as:

R(Q,D) = cos(QSq , DSd) =
QSq ·DSd

||QSq ||||DSd ||
(4)

2.3 The Training Procedure
In order to learn the parameters of our model, we use
mini-batch-based stochastic gradient descent (SGD)
as shown in Algorithm 1. In each iteration, a task t
is selected randomly, and the model is updated ac-

68	/	104	

Bilan	sur	l’apprentissage	supervisé	:	pourquoi	ça	marche	

•  On	peut	évaluer	la	performance	des	experts 		

					Et	donc	…		

–  Les	sélectionner		

–  Les	construire	pour	qu’ils	soient	complémentaires	(boosting)	

–  Les	combiner	(e.g.	vote	pondéré)	

69	/	104	

Plan	

1.  	Contexte	et	motivations	

2.  	Méthodes	collaboratives	en	IA	

3.  	Méthodes	collaboratives	en	Apprentissage	Automatique	

4.  	Quid	du	clustering	?	

5.  	Bilan	

70	/	104	

Méthodes	collaboratives		

en	Clustering	

71	/	104	

Grands	scénarios	et	motivations	

1.  Clustering	«	coopératif	»	:	Recherche	d’une	solution	consensus	

–  Experts	«	faibles	»	:	diminution	de	la	variance	

–  Expertises	différentes	et	complémentaires	(e.g.	blackboard)	

2.  Clustering	«	collaboratif	»	:		
Calcul	de	solutions	locales	avec	échanges	entre	les	«	experts	»	

–  Informations	utiles	disponibles	chez	les	autres	collaborateurs	

–  Perturbation	de	l’exploration	de	l’espace	des	solutions	:	échapper	aux	
minima	locaux	

–  Modification	du	biais	local	incertain	

72	/	104	

Grands	scénarios	et	motivations	

1.  Clustering	«	coopératif	»	:	Recherche	d’une	solution	consensus	

–  Experts	«	faibles	»	:	diminution	de	la	variance	

–  Expertises	différentes	et	complémentaires	(e.g.	blackboard)	

2.  Clustering	«	collaboratif	»	:		
Calcul	de	solutions	locales	avec	échanges	entre	les	«	experts	»	

–  Informations	utiles	disponibles	chez	les	autres	collaborateurs	

–  Perturbation	de	l’exploration	de	l’espace	des	solutions	:	échapper	aux	
minima	locaux	

–  Modification	du	biais	local	incertain	

73	/	104	

Les	questions	

1.  Clustering	«	coopératif	»	:	Recherche	d’une	solution	consensus	
1.  Comment	générer	des	solutions	«	faibles	»	?	

2.  Quelle	information	transmettre	?	

3.  Comment	combiner	les	informations	?	

2.  Clustering	«	collaboratif	»	:		
Calcul	de	solutions	locales	avec	échanges	entre	les	«	experts	»	

1.  Les	collaborateurs	existent	:	comment	en	sélectionner	/	les	pondérer	?	

2.  Quelle	information	transmettre	?	

3.  Comment	combiner	les	informations	?	

74	/	104	

Les	questions	

1.  Clustering	«	coopératif	»	:	Recherche	d’une	solution	consensus	
1.  Comment	générer	des	solutions	«	faibles	»	?	

2.  Quelle	information	transmettre	?	

3.  Comment	combiner	les	informations	?	

2.  Clustering	«	collaboratif	»	:		
Calcul	de	solutions	locales	avec	échanges	entre	les	«	experts	»	

1.  Les	collaborateurs	existent	:	comment	en	sélectionner	/	les	pondérer	?	

2.  Quelle	information	transmettre	?	

3.  Comment	combiner	les	informations	?	

75	/	104	

Les	questions	

1.  Clustering	«	coopératif	»	:	Recherche	d’une	solution	consensus	
1.  Comment	générer	des	solutions	«	faibles	»	?	

2.  Quelle	information	transmettre	?	

3.  Comment	combiner	les	informations	?	

2.  Clustering	«	collaboratif	»	:		
Calcul	de	solutions	locales	avec	échanges	entre	les	«	experts	»	

1.  Les	collaborateurs	existent	:	comment	en	sélectionner	/	les	pondérer	?	

2.  Quelle	information	transmettre	?	

3.  Comment	combiner	les	informations	?	

76	/	104	

Quels	échanges	d’information	?	

1.  Mêmes	données										/			même	espace	

–  Attribution	des	données	aux	clusters	

2.  Mêmes	données										/			espaces	différents		

–  Attribution	des	données	aux	clusters 	

3.  Données	différentes			/			même	espace	

–  Comparaison	des	solutions	 		

•  Centroïdes	;	nombre	de	clusters	;	… 	

4.  Données	différentes			/			espaces	différents	

–  Comparaison	des	solutions	 		

•  Nombre	de	clusters	;	… 	

77	/	104	

Mêmes	données	/	même	espace	ou	espaces	différents	

•  Illustration	
86 A. Cornuéjols et al. / Information Fusion 39 (2018) 81–95

The sequel of the paper is dedicated to collaborative clustering.
Section 2 gives the flavor of some issues raised in collaborative
learning through simple examples. In Section 3 , the questions of
why and when collaborative clustering should be expected to work
are examined. Then, Section 4 is devoted to the questions of how
to organize and control a collaborative process. Section 5 presents
previous works related to collaborative learning that have bearings
on the issue of collaborative clustering and reports some applica-
tions.
2. Simple illustrations of collaborative clustering

There are two kinds of information that clustering algorithms
use and update during their computations: information about the
membership of each data point (e.g. x 23 ∈ C 2 where C 2 is the label
given by one algorithm to a cluster), and information about inter-
nal parameters , like the current number of clusters envisioned, the
coordinates of prototypes, and so on. Exchanges of information can
take place at these two levels.
2.1. Examples of collaboration

In order to illustrate the issues raised by collaborative cluster-
ing, it is useful to contemplate simple examples. We will consider
different scenarios in turn:
1. The algorithms have access to the same dataset : same objects

and same attributes.
2. The algorithms have access to the same dataset , but they only

see partial views (a.k.a. vertical clustering scenario).
3. The algorithms have access to different objects supposedly

drawn from the same distribution (virtual dataset) measured
with the same set of attributes (horizontal clustering).

4. The algorithms have access to different objects supposedly
drawn from the same distribution (virtual dataset) measured
with different sets of attributes .
To simplify the discussion, we will suppose that all the algo-

rithms are of the k -means variety, but possibly with different val-
ues of k and/or different definitions of distances (e.g. ℓ 1 distance,
or ℓ 2 , or ...). They may also start from different initial states. Thus,
they can obtain different results even on the very same data set.
These algorithms can communicate:
• the number of clusters k they are contemplating
• the proportion of objects affected to each cluster
• the identifiers of the objects in each cluster
• the coordinates of the prototypes µi that define each cluster C i .

However, they do not change their own settings: k and the dis-
tance used.

Now, for each scenario above, we will examine what communi-
cation could be set up among the algorithms in order to carry out
a collaborative clustering.

Scenario 1: same data
This scenario is similar to the one of ensemble clustering where

a consensus solution that escapes the limits of each biased solu-
tion is hoped for. The difference with ensemble clustering may lie
in the protocol of exchanges between the learning algorithms. In
ensemble clustering, each algorithm computes its own local solu-
tion, and then a master algorithm computes a consensus solution.
In collaborative clustering, there is no master algorithm and the
communications between algorithms can alter the local computa-
tions for a solution. Furthermore, one can be happy with different
outputs from the local algorithms since alternative clusterings for
the same data may well be what is looked for. Collaborative clus-
tering is thus a means used to help local algorithms to escape local
minima and discover better solutions.

Fig. 3. (Left) the data set shared by the clustering algorithms, here in R 2 . (Right)
The clustering found by algorithm A: C a and C ′ a , and by algorithm B: C b , C ′ b and C ′′

b .
When the algorithms can share the identifiers of the objects, it

is an easy matter to compare cluster memberships. For instance, in
Fig. 3 , we have 8 data points and two clustering algorithms A and
B. The cluster memberships can be compared via the matrix:

Algorithm x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8
A C a C a C a C a C a C ′ a C ′ a C ′ a
B C b C b C b C ′

b C ′
b C ′′

b C ′′
b C ′′

b
In this case, it is apparent that the cluster C b found by algorithm

B is compatible with cluster C a found by algorithm A since C b ⊆ C a .
Similarly, C ′

b ⊆ C ′ a . However, there is a conflict regarding the clus-
ter C ′′

b since it has an intersection with both C a and C ′ a . Aware of
this conflict, each algorithm could take steps to eliminate it. For
instance, algorithm A could start its next loop by putting the of-
fending point x 8 in cluster C a before updating the prototype µa ,
therefore biasing its own solution toward a solution compatible
with the current one of algorithm B. Simultaneously, algorithm B
could put x 8 in cluster C ′

b . Of course, if this is done simultaneously
by both algorithms, the conflict will persist.

It is apparent that this naïve collaborative approach needs much
work out before it can be implemented and extended to more
than 2 algorithms. First, the communication bandwidth tends to
increase as O(P 2) where P is the number of participating algo-
rithms. Second, the computation of the “offending” data points is
more complicated than the simple example above shows. Finally,
it is not obvious to define collaboration so that the whole process
tends to discover stable local solutions. Indeed, a change in the so-
lution of algorithm A i can trigger changes in solutions by other al-
gorithms which themselves can modify the solution of A i . These
kinds of loops are not easy to control if an energy function of the
whole system cannot be identified and if the overall collaboration
scheme is not proved to lead to a decrease of this energy function.

The communication between the algorithms can also involve
other characteristics than the memberships of the objects. For in-
stance, the algorithms could also exchange the coordinates of their
prototypes together with the weights of these prototypes given by
the proportion of the objects they represent.

Coming back to the data set of Fig. 4 , algorithm A could in-
form algorithm B that it has two prototypes with coordinates µa =
[µ(1)

a , µ(2)
a] ⊤ and µa ′ = [µ(1)

a ′ , µ(2)
a ′] ⊤ and weights 5/8 and 3/8. Al-

gorithm B in turn would communicate µb = [µ(1)
b , µ(2)

b] ⊤ , µb ′ =
[µ(1)

b ′ , µ(2)
b ′] ⊤ , and µb ′′ = [µ(1)

b ′′ , µ(2)
b ′′] ⊤ with respective weights 3/8,

2/8 and 3/8.
In this case, this would push algorithm A toward the absorption

of the data point x 5 in the cluster C a , ending the conflict with the
solution of algorithm B.

Again, this gives only an outline of what is involved when ex-
changing information about the models themselves, and not the
data points. For instance, if an algorithm takes into account the

86 A. Cornuéjols et al. / Information Fusion 39 (2018) 81–95
The sequel of the paper is dedicated to collaborative clustering.

Section 2 gives the flavor of some issues raised in collaborative
learning through simple examples. In Section 3 , the questions of
why and when collaborative clustering should be expected to work
are examined. Then, Section 4 is devoted to the questions of how
to organize and control a collaborative process. Section 5 presents
previous works related to collaborative learning that have bearings
on the issue of collaborative clustering and reports some applica-
tions.
2. Simple illustrations of collaborative clustering

There are two kinds of information that clustering algorithms
use and update during their computations: information about the
membership of each data point (e.g. x 23 ∈ C 2 where C 2 is the label
given by one algorithm to a cluster), and information about inter-
nal parameters , like the current number of clusters envisioned, the
coordinates of prototypes, and so on. Exchanges of information can
take place at these two levels.
2.1. Examples of collaboration

In order to illustrate the issues raised by collaborative cluster-
ing, it is useful to contemplate simple examples. We will consider
different scenarios in turn:
1. The algorithms have access to the same dataset : same objects

and same attributes.
2. The algorithms have access to the same dataset , but they only

see partial views (a.k.a. vertical clustering scenario).
3. The algorithms have access to different objects supposedly

drawn from the same distribution (virtual dataset) measured
with the same set of attributes (horizontal clustering).

4. The algorithms have access to different objects supposedly
drawn from the same distribution (virtual dataset) measured
with different sets of attributes .
To simplify the discussion, we will suppose that all the algo-

rithms are of the k -means variety, but possibly with different val-
ues of k and/or different definitions of distances (e.g. ℓ 1 distance,
or ℓ 2 , or ...). They may also start from different initial states. Thus,
they can obtain different results even on the very same data set.
These algorithms can communicate:
• the number of clusters k they are contemplating
• the proportion of objects affected to each cluster
• the identifiers of the objects in each cluster
• the coordinates of the prototypes µi that define each cluster C i .

However, they do not change their own settings: k and the dis-
tance used.

Now, for each scenario above, we will examine what communi-
cation could be set up among the algorithms in order to carry out
a collaborative clustering.

Scenario 1: same data
This scenario is similar to the one of ensemble clustering where

a consensus solution that escapes the limits of each biased solu-
tion is hoped for. The difference with ensemble clustering may lie
in the protocol of exchanges between the learning algorithms. In
ensemble clustering, each algorithm computes its own local solu-
tion, and then a master algorithm computes a consensus solution.
In collaborative clustering, there is no master algorithm and the
communications between algorithms can alter the local computa-
tions for a solution. Furthermore, one can be happy with different
outputs from the local algorithms since alternative clusterings for
the same data may well be what is looked for. Collaborative clus-
tering is thus a means used to help local algorithms to escape local
minima and discover better solutions.

Fig. 3. (Left) the data set shared by the clustering algorithms, here in R 2 . (Right)
The clustering found by algorithm A: C a and C ′ a , and by algorithm B: C b , C ′ b and C ′′

b .
When the algorithms can share the identifiers of the objects, it

is an easy matter to compare cluster memberships. For instance, in
Fig. 3 , we have 8 data points and two clustering algorithms A and
B. The cluster memberships can be compared via the matrix:

Algorithm x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8
A C a C a C a C a C a C ′ a C ′ a C ′ a
B C b C b C b C ′

b C ′
b C ′′

b C ′′
b C ′′

b
In this case, it is apparent that the cluster C b found by algorithm

B is compatible with cluster C a found by algorithm A since C b ⊆ C a .
Similarly, C ′

b ⊆ C ′ a . However, there is a conflict regarding the clus-
ter C ′′

b since it has an intersection with both C a and C ′ a . Aware of
this conflict, each algorithm could take steps to eliminate it. For
instance, algorithm A could start its next loop by putting the of-
fending point x 8 in cluster C a before updating the prototype µa ,
therefore biasing its own solution toward a solution compatible
with the current one of algorithm B. Simultaneously, algorithm B
could put x 8 in cluster C ′

b . Of course, if this is done simultaneously
by both algorithms, the conflict will persist.

It is apparent that this naïve collaborative approach needs much
work out before it can be implemented and extended to more
than 2 algorithms. First, the communication bandwidth tends to
increase as O(P 2) where P is the number of participating algo-
rithms. Second, the computation of the “offending” data points is
more complicated than the simple example above shows. Finally,
it is not obvious to define collaboration so that the whole process
tends to discover stable local solutions. Indeed, a change in the so-
lution of algorithm A i can trigger changes in solutions by other al-
gorithms which themselves can modify the solution of A i . These
kinds of loops are not easy to control if an energy function of the
whole system cannot be identified and if the overall collaboration
scheme is not proved to lead to a decrease of this energy function.

The communication between the algorithms can also involve
other characteristics than the memberships of the objects. For in-
stance, the algorithms could also exchange the coordinates of their
prototypes together with the weights of these prototypes given by
the proportion of the objects they represent.

Coming back to the data set of Fig. 4 , algorithm A could in-
form algorithm B that it has two prototypes with coordinates µa =
[µ(1)

a , µ(2)
a] ⊤ and µa ′ = [µ(1)

a ′ , µ(2)
a ′] ⊤ and weights 5/8 and 3/8. Al-

gorithm B in turn would communicate µb = [µ(1)
b , µ(2)

b] ⊤ , µb ′ =
[µ(1)

b ′ , µ(2)
b ′] ⊤ , and µb ′′ = [µ(1)

b ′′ , µ(2)
b ′′] ⊤ with respective weights 3/8,

2/8 and 3/8.
In this case, this would push algorithm A toward the absorption

of the data point x 5 in the cluster C a , ending the conflict with the
solution of algorithm B.

Again, this gives only an outline of what is involved when ex-
changing information about the models themselves, and not the
data points. For instance, if an algorithm takes into account the

86 A. Cornuéjols et al. / Information Fusion 39 (2018) 81–95
The sequel of the paper is dedicated to collaborative clustering.

Section 2 gives the flavor of some issues raised in collaborative
learning through simple examples. In Section 3 , the questions of
why and when collaborative clustering should be expected to work
are examined. Then, Section 4 is devoted to the questions of how
to organize and control a collaborative process. Section 5 presents
previous works related to collaborative learning that have bearings
on the issue of collaborative clustering and reports some applica-
tions.
2. Simple illustrations of collaborative clustering

There are two kinds of information that clustering algorithms
use and update during their computations: information about the
membership of each data point (e.g. x 23 ∈ C 2 where C 2 is the label
given by one algorithm to a cluster), and information about inter-
nal parameters , like the current number of clusters envisioned, the
coordinates of prototypes, and so on. Exchanges of information can
take place at these two levels.
2.1. Examples of collaboration

In order to illustrate the issues raised by collaborative cluster-
ing, it is useful to contemplate simple examples. We will consider
different scenarios in turn:
1. The algorithms have access to the same dataset : same objects

and same attributes.
2. The algorithms have access to the same dataset , but they only

see partial views (a.k.a. vertical clustering scenario).
3. The algorithms have access to different objects supposedly

drawn from the same distribution (virtual dataset) measured
with the same set of attributes (horizontal clustering).

4. The algorithms have access to different objects supposedly
drawn from the same distribution (virtual dataset) measured
with different sets of attributes .
To simplify the discussion, we will suppose that all the algo-

rithms are of the k -means variety, but possibly with different val-
ues of k and/or different definitions of distances (e.g. ℓ 1 distance,
or ℓ 2 , or ...). They may also start from different initial states. Thus,
they can obtain different results even on the very same data set.
These algorithms can communicate:
• the number of clusters k they are contemplating
• the proportion of objects affected to each cluster
• the identifiers of the objects in each cluster
• the coordinates of the prototypes µi that define each cluster C i .

However, they do not change their own settings: k and the dis-
tance used.

Now, for each scenario above, we will examine what communi-
cation could be set up among the algorithms in order to carry out
a collaborative clustering.

Scenario 1: same data
This scenario is similar to the one of ensemble clustering where

a consensus solution that escapes the limits of each biased solu-
tion is hoped for. The difference with ensemble clustering may lie
in the protocol of exchanges between the learning algorithms. In
ensemble clustering, each algorithm computes its own local solu-
tion, and then a master algorithm computes a consensus solution.
In collaborative clustering, there is no master algorithm and the
communications between algorithms can alter the local computa-
tions for a solution. Furthermore, one can be happy with different
outputs from the local algorithms since alternative clusterings for
the same data may well be what is looked for. Collaborative clus-
tering is thus a means used to help local algorithms to escape local
minima and discover better solutions.

Fig. 3. (Left) the data set shared by the clustering algorithms, here in R 2 . (Right)
The clustering found by algorithm A: C a and C ′ a , and by algorithm B: C b , C ′ b and C ′′

b .
When the algorithms can share the identifiers of the objects, it

is an easy matter to compare cluster memberships. For instance, in
Fig. 3 , we have 8 data points and two clustering algorithms A and
B. The cluster memberships can be compared via the matrix:

Algorithm x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8
A C a C a C a C a C a C ′ a C ′ a C ′ a
B C b C b C b C ′

b C ′
b C ′′

b C ′′
b C ′′

b
In this case, it is apparent that the cluster C b found by algorithm

B is compatible with cluster C a found by algorithm A since C b ⊆ C a .
Similarly, C ′

b ⊆ C ′ a . However, there is a conflict regarding the clus-
ter C ′′

b since it has an intersection with both C a and C ′ a . Aware of
this conflict, each algorithm could take steps to eliminate it. For
instance, algorithm A could start its next loop by putting the of-
fending point x 8 in cluster C a before updating the prototype µa ,
therefore biasing its own solution toward a solution compatible
with the current one of algorithm B. Simultaneously, algorithm B
could put x 8 in cluster C ′

b . Of course, if this is done simultaneously
by both algorithms, the conflict will persist.

It is apparent that this naïve collaborative approach needs much
work out before it can be implemented and extended to more
than 2 algorithms. First, the communication bandwidth tends to
increase as O(P 2) where P is the number of participating algo-
rithms. Second, the computation of the “offending” data points is
more complicated than the simple example above shows. Finally,
it is not obvious to define collaboration so that the whole process
tends to discover stable local solutions. Indeed, a change in the so-
lution of algorithm A i can trigger changes in solutions by other al-
gorithms which themselves can modify the solution of A i . These
kinds of loops are not easy to control if an energy function of the
whole system cannot be identified and if the overall collaboration
scheme is not proved to lead to a decrease of this energy function.

The communication between the algorithms can also involve
other characteristics than the memberships of the objects. For in-
stance, the algorithms could also exchange the coordinates of their
prototypes together with the weights of these prototypes given by
the proportion of the objects they represent.

Coming back to the data set of Fig. 4 , algorithm A could in-
form algorithm B that it has two prototypes with coordinates µa =
[µ(1)

a , µ(2)
a] ⊤ and µa ′ = [µ(1)

a ′ , µ(2)
a ′] ⊤ and weights 5/8 and 3/8. Al-

gorithm B in turn would communicate µb = [µ(1)
b , µ(2)

b] ⊤ , µb ′ =
[µ(1)

b ′ , µ(2)
b ′] ⊤ , and µb ′′ = [µ(1)

b ′′ , µ(2)
b ′′] ⊤ with respective weights 3/8,

2/8 and 3/8.
In this case, this would push algorithm A toward the absorption

of the data point x 5 in the cluster C a , ending the conflict with the
solution of algorithm B.

Again, this gives only an outline of what is involved when ex-
changing information about the models themselves, and not the
data points. For instance, if an algorithm takes into account the

78	/	104	

Mêmes	données	/	même	espace	

•  Recherche	de	correspondance	entre	les	clusters	

86 A. Cornuéjols et al. / Information Fusion 39 (2018) 81–95
The sequel of the paper is dedicated to collaborative clustering.

Section 2 gives the flavor of some issues raised in collaborative
learning through simple examples. In Section 3 , the questions of
why and when collaborative clustering should be expected to work
are examined. Then, Section 4 is devoted to the questions of how
to organize and control a collaborative process. Section 5 presents
previous works related to collaborative learning that have bearings
on the issue of collaborative clustering and reports some applica-
tions.
2. Simple illustrations of collaborative clustering

There are two kinds of information that clustering algorithms
use and update during their computations: information about the
membership of each data point (e.g. x 23 ∈ C 2 where C 2 is the label
given by one algorithm to a cluster), and information about inter-
nal parameters , like the current number of clusters envisioned, the
coordinates of prototypes, and so on. Exchanges of information can
take place at these two levels.
2.1. Examples of collaboration

In order to illustrate the issues raised by collaborative cluster-
ing, it is useful to contemplate simple examples. We will consider
different scenarios in turn:
1. The algorithms have access to the same dataset : same objects

and same attributes.
2. The algorithms have access to the same dataset , but they only

see partial views (a.k.a. vertical clustering scenario).
3. The algorithms have access to different objects supposedly

drawn from the same distribution (virtual dataset) measured
with the same set of attributes (horizontal clustering).

4. The algorithms have access to different objects supposedly
drawn from the same distribution (virtual dataset) measured
with different sets of attributes .
To simplify the discussion, we will suppose that all the algo-

rithms are of the k -means variety, but possibly with different val-
ues of k and/or different definitions of distances (e.g. ℓ 1 distance,
or ℓ 2 , or ...). They may also start from different initial states. Thus,
they can obtain different results even on the very same data set.
These algorithms can communicate:
• the number of clusters k they are contemplating
• the proportion of objects affected to each cluster
• the identifiers of the objects in each cluster
• the coordinates of the prototypes µi that define each cluster C i .

However, they do not change their own settings: k and the dis-
tance used.

Now, for each scenario above, we will examine what communi-
cation could be set up among the algorithms in order to carry out
a collaborative clustering.

Scenario 1: same data
This scenario is similar to the one of ensemble clustering where

a consensus solution that escapes the limits of each biased solu-
tion is hoped for. The difference with ensemble clustering may lie
in the protocol of exchanges between the learning algorithms. In
ensemble clustering, each algorithm computes its own local solu-
tion, and then a master algorithm computes a consensus solution.
In collaborative clustering, there is no master algorithm and the
communications between algorithms can alter the local computa-
tions for a solution. Furthermore, one can be happy with different
outputs from the local algorithms since alternative clusterings for
the same data may well be what is looked for. Collaborative clus-
tering is thus a means used to help local algorithms to escape local
minima and discover better solutions.

Fig. 3. (Left) the data set shared by the clustering algorithms, here in R 2 . (Right)
The clustering found by algorithm A: C a and C ′ a , and by algorithm B: C b , C ′ b and C ′′

b .
When the algorithms can share the identifiers of the objects, it

is an easy matter to compare cluster memberships. For instance, in
Fig. 3 , we have 8 data points and two clustering algorithms A and
B. The cluster memberships can be compared via the matrix:

Algorithm x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8
A C a C a C a C a C a C ′ a C ′ a C ′ a
B C b C b C b C ′

b C ′
b C ′′

b C ′′
b C ′′

b
In this case, it is apparent that the cluster C b found by algorithm

B is compatible with cluster C a found by algorithm A since C b ⊆ C a .
Similarly, C ′

b ⊆ C ′ a . However, there is a conflict regarding the clus-
ter C ′′

b since it has an intersection with both C a and C ′ a . Aware of
this conflict, each algorithm could take steps to eliminate it. For
instance, algorithm A could start its next loop by putting the of-
fending point x 8 in cluster C a before updating the prototype µa ,
therefore biasing its own solution toward a solution compatible
with the current one of algorithm B. Simultaneously, algorithm B
could put x 8 in cluster C ′

b . Of course, if this is done simultaneously
by both algorithms, the conflict will persist.

It is apparent that this naïve collaborative approach needs much
work out before it can be implemented and extended to more
than 2 algorithms. First, the communication bandwidth tends to
increase as O(P 2) where P is the number of participating algo-
rithms. Second, the computation of the “offending” data points is
more complicated than the simple example above shows. Finally,
it is not obvious to define collaboration so that the whole process
tends to discover stable local solutions. Indeed, a change in the so-
lution of algorithm A i can trigger changes in solutions by other al-
gorithms which themselves can modify the solution of A i . These
kinds of loops are not easy to control if an energy function of the
whole system cannot be identified and if the overall collaboration
scheme is not proved to lead to a decrease of this energy function.

The communication between the algorithms can also involve
other characteristics than the memberships of the objects. For in-
stance, the algorithms could also exchange the coordinates of their
prototypes together with the weights of these prototypes given by
the proportion of the objects they represent.

Coming back to the data set of Fig. 4 , algorithm A could in-
form algorithm B that it has two prototypes with coordinates µa =
[µ(1)

a , µ(2)
a] ⊤ and µa ′ = [µ(1)

a ′ , µ(2)
a ′] ⊤ and weights 5/8 and 3/8. Al-

gorithm B in turn would communicate µb = [µ(1)
b , µ(2)

b] ⊤ , µb ′ =
[µ(1)

b ′ , µ(2)
b ′] ⊤ , and µb ′′ = [µ(1)

b ′′ , µ(2)
b ′′] ⊤ with respective weights 3/8,

2/8 and 3/8.
In this case, this would push algorithm A toward the absorption

of the data point x 5 in the cluster C a , ending the conflict with the
solution of algorithm B.

Again, this gives only an outline of what is involved when ex-
changing information about the models themselves, and not the
data points. For instance, if an algorithm takes into account the

88 A. Cornuéjols et al. / Information Fusion 39 (2018) 81–95

Fig. 5. (Left) The data set and the clusterings by algorithms A and B. (Right) The corresponding consensus matrix. The shaded parts denotes the objects for which there is
an agreement between the clusterings.

Fig. 6. Visualization of the two subsets of the Waveform data set using posterior mean projection, with labels obtained using F-VBGTM before collaboration. We can see
good clustering results on the first subset (left). The results of clustering on the second subset of noisy variables are bad (right).

Fig. 7. Effect of the collaborative clustering. When A bad sends results to algorithm A good , the uncovered underlying structure is severely impaired (left figure). By contrast,
clustering is much improved when A good sends information prior to the data processing of A bad (right figure).
than if there had been no exchange of information between the
local processes.

The potential benefits of collaboration can be due to three
causes:
1. The fact that more data is better . One can hope therefore that

other algorithms bring more information about the data gener-
ating process than is locally available.

2. The fact that perturbations can help an algorithm to escape local
optima .

3. The fact that it might be profitable to modify the bias of a given
algorithm by feeding it with external information coming from
algorithms that may have different biases.
Note that identifying these three possible reasons for benefit-

ing from collaborative clustering does not translate trivially into an
overall control procedure that would lead to better performance.

First, determining if one of these three situations is valid in
one’s current context is not obvious. Second, even if it is estab-
lished that one, or more, of these three ingredients is/are present
in some collaborative clustering scheme, none of these three po-
tential causes is guaranteed to bring improvements. Indeed, a local
algorithm that is working on its own data set can only benefit from
information coming from another algorithm if the data set of the
latter shares enough regularities with its own data set. Likewise,
perturbations can help the exploration process of an algorithm, but
it can also hamper it if they draw it to poor regions of the search
space. Finally, and similarly, there is no a priori reason to believe
that external information that in effect modifies the optimization
criterion of the local algorithm, modifies it in the right direction.

Therefore, extreme attention must be taken in order to en-
sure that the collaborative process can improve the performance of
each local algorithm, and the controlling strategy must be carefully

Matrice	de	consensus	ou	d’association	

79	/	104	

Données	différentes	

•  Communication	sur	les	solutions	trouvées	

–  Centroïdes	

–  Gaussiennes	

–  Nombre	de	clusters	

80	/	104	

Grands	scénarios	et	approches	

•  Recherche	d’une	solution	consensus	
–  Solution	«	barycentrique	»	

•  Définition	d’un	critère	à	optimiser	

–  Définition	d’une	mesure	de	similarité	

•  Procédure		
–  Calcul	direct	
–  Itérative	(type	k-Means)	avec	espace	de	description	approprié	

–  Partition	d’une	matrice	de	similarité	

•  Et	clustering	hiérarchique	

–  Par	vote	

81	/	104	

Grands	scénarios	et	approches	

•  Calcul	de	solutions	locales	avec	échanges	entre	les	«	experts	»	

–  Éventuellement	sélection	/	pondération	des	collaborateurs	

–  Combinaison	locale	des	avis	

•  Passage	par	une	solution	barycentrique	

•  Critère	d’optimisation	local		
Définition	d’une	

mesure	de	similarité	

82	/	104	

Recherche	de	consensus	

83	/	104	

Recherche	de	consensus	

•  Principe	

important to apply an appropriate generation process, because the ¯nal result will be
conditioned by the initial clusterings obtained in this step.

There are clustering ensemble methods like the voting-k -means29 that demand a
well-determined generation process, in this case, all the partitions should be obtained
by applying the k-Means algorithm with di®erent initializations for the number of
clusters parameter. This method uses a big k value (the number of clusters), in order
to obtain complex structure in the consensus partition, from the combination of
small hyper-spherical structures in the single partitions.

However, in a general way, in the generation step there are no constraints about
how the partitions must be obtained. Therefore, in the generation process di®erent
clustering algorithms or the same algorithm with di®erent parameters initialization
can be applied. Even di®erent objects representations, di®erent subsets of objects or
projections of the objects on di®erent subspaces could be used (see Fig. 2).

In the generation step the weak clustering algorithms77 are also used. These al-
gorithms make up a set of clusterings using very simple and fast procedures. Despite
the simplicity of this kind of algorithms, Topchy et al.78 showed that weak clustering
algorithms are capable of producing high quality consensus clusterings in conjunc-
tion with a proper consensus function.

…

Dataset

Clustering 1

Clustering 2

Clustering m

Generation step

Consensus
Function Consensus

Clustering

Consensus step

Fig. 1. Diagram of the general process of cluster ensemble.

Generation
Mechanisms

Different
clustering
algorithms

Different
parameters

initialization

Different
subsets of

objects

Different
subsets of
features

Different
objects

representations

Different
modeling of
the problem

Projection
to

subspaces

Project to 1
dimension

Random
cuts

Fig. 2. Diagram of the principal clustering ensemble generation mechanisms.

340 S. Vega-Pons & J. Ruiz-Shulcloper

84	/	104	

Recherche	de	consensus	

•  Génération	de	solutions	

important to apply an appropriate generation process, because the ¯nal result will be
conditioned by the initial clusterings obtained in this step.

There are clustering ensemble methods like the voting-k -means29 that demand a
well-determined generation process, in this case, all the partitions should be obtained
by applying the k-Means algorithm with di®erent initializations for the number of
clusters parameter. This method uses a big k value (the number of clusters), in order
to obtain complex structure in the consensus partition, from the combination of
small hyper-spherical structures in the single partitions.

However, in a general way, in the generation step there are no constraints about
how the partitions must be obtained. Therefore, in the generation process di®erent
clustering algorithms or the same algorithm with di®erent parameters initialization
can be applied. Even di®erent objects representations, di®erent subsets of objects or
projections of the objects on di®erent subspaces could be used (see Fig. 2).

In the generation step the weak clustering algorithms77 are also used. These al-
gorithms make up a set of clusterings using very simple and fast procedures. Despite
the simplicity of this kind of algorithms, Topchy et al.78 showed that weak clustering
algorithms are capable of producing high quality consensus clusterings in conjunc-
tion with a proper consensus function.

…

Dataset

Clustering 1

Clustering 2

Clustering m

Generation step

Consensus
Function Consensus

Clustering

Consensus step

Fig. 1. Diagram of the general process of cluster ensemble.

Generation
Mechanisms

Different
clustering
algorithms

Different
parameters

initialization

Different
subsets of

objects

Different
subsets of
features

Different
objects

representations

Different
modeling of
the problem

Projection
to

subspaces

Project to 1
dimension

Random
cuts

Fig. 2. Diagram of the principal clustering ensemble generation mechanisms.

340 S. Vega-Pons & J. Ruiz-Shulcloper

[Vega-Pons,	S.,	&	Ruiz-Shulcloper,	J.	(2011).	A	survey	of	clustering	ensemble	algorithms.		
	International	Journal	of	Pattern	Recognition	and	Artificial	Intelligence,	25(03),	337-372.]	
	

85	/	104	

Combinaison	des	solutions	

•  On	définit	:	

						tel	que		

	

	

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

C
? = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

C
?
i (Si) = ArgMax

C(Si)(i=1,...,J)

⇢ JX

j=1

f
�
C(Sj)

�

| {z }
local criterion

+
JX

j=1,j 6=i

⌧i,j �
�
C(Si), Cj

�

| {z }
collaborative criterion

�

8i :
JX

i=1,i 6=j

(⌧i,j)
p = 1, p 2 N?

C
? = Argmin

C,C(Si)(i=1,...,J)

⇢
K
�
C(Sj)

�
+

JX

j=1

K
�
Sj |C(Sj)

�

| {z }
local criterion

+

⇢
K(C) + K

�
C(Sj)|C

�

| {z }
collaborative criterion

�

Soit S = {x1, . . . ,xN} l’ensemble des N objets à catégoriser

Soit C = {C
(1)

, . . . , C
(J)

} un ensemble de J résultats de clustering de S

� : C ! C
?

C
? = ArgMax

C

⇢ JX

j=1

sim
�
C, C

(j)
��

32

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

C
? = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

C
?
i (Si) = ArgMax

C(Si)(i=1,...,J)

⇢ JX

j=1

f
�
C(Sj)

�

| {z }
local criterion

+
JX

j=1,j 6=i

⌧i,j �
�
C(Si), Cj

�

| {z }
collaborative criterion

�

8i :
JX

i=1,i 6=j

(⌧i,j)
p = 1, p 2 N?

C
? = Argmin

C,C(Si)(i=1,...,J)

⇢
K
�
C(Sj)

�
+

JX

j=1

K
�
Sj |C(Sj)

�

| {z }
local criterion

+

⇢
K(C) + K

�
C(Sj)|C

�

| {z }
collaborative criterion

�

Soit S = {x1, . . . ,xN} l’ensemble des N objets à catégoriser

Soit C = {C
(1)

, . . . , C
(J)

} un ensemble de J résultats de clustering de S

� : C ! C
?

C
? = ArgMax

C

⇢ JX

j=1

sim
�
C, C

(j)
��

32

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

C
? = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

C
?
i (Si) = ArgMax

C(Si)(i=1,...,J)

⇢ JX

j=1

f
�
C(Sj)

�

| {z }
local criterion

+
JX

j=1,j 6=i

⌧i,j �
�
C(Si), Cj

�

| {z }
collaborative criterion

�

8i :
JX

i=1,i 6=j

(⌧i,j)
p = 1, p 2 N?

C
? = Argmin

C,C(Si)(i=1,...,J)

⇢
K
�
C(Sj)

�
+

JX

j=1

K
�
Sj |C(Sj)

�

| {z }
local criterion

+

⇢
K(C) + K

�
C(Sj)|C

�

| {z }
collaborative criterion

�

Soit S = {x1, . . . ,xN} l’ensemble des N objets à catégoriser

Soit C = {C
(1)

, . . . , C
(J)

} un ensemble de J résultats de clustering de S

� : C ! C
?

C
? = ArgMax

C

⇢ JX

j=1

sim
�
C, C

(j)
��

32
Sorte	de	moyenne	ou	de	barycentre	des	clusterings		

Il	faut	définir	la	notion	de	«	similarité	»	

86	/	104	

Mesures	de	similarité	

•  Information	mutuelle		

–  Quantifie	l	‘information	statistique	entre	deux	distributions	

S = {x1, , . . .xN}

Une partition de S : U = {U1, U2, . . . , UK} et une autre partition V = {V1, V2, . . . , VK0}.

La probabilité qu’un objet tiré aléatoirement dans S tombe dans le cluster

Ui est : P (i) = |Ui|
N .

De même : P 0(j) = |Vj |/N

MI(U, V) =
KX

i=1

K0X

j=1

P (i, j) log
P (i, j)

P (i)P 0(j)

P (i, j) =
|Ui \ Vj |

N

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

wether it is consensus clustering where the goal is to reach a common cluster-

ing for the same data set, vertical clustering where the description space is the

same, but not the examples, and one still looks for a common shared character-

ization, or collaborative clustering where only local clusterings are looked for,

but still assuming that information from other local clustering can help each

local computation.

The following gives a flavor of the solutions proposed for each of these three

settings.

Consensus clustering.. In consensus clustering, the goal is to find one clustering

for one data set based on several input clusterings. The idea, in general, is to

33

S = {x1, , . . .xN}

Une partition de S : U = {U1, U2, . . . , UK} et une autre partition V = {V1, V2, . . . , VK0}.

La probabilité qu’un objet tiré aléatoirement dans S tombe dans le cluster Ui

est : P (i) = |Ui|
N .

De même : P 0(j) = |Vj |/N

MI(U, V) =
KX

i=1

K0X

j=1

P (i, j) log
P (i, j)

P (i)P 0(j)

P (i, j) =
|Ui \ Vj |

N

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

wether it is consensus clustering where the goal is to reach a common cluster-

ing for the same data set, vertical clustering where the description space is the

same, but not the examples, and one still looks for a common shared character-

ization, or collaborative clustering where only local clusterings are looked for,

but still assuming that information from other local clustering can help each

local computation.

The following gives a flavor of the solutions proposed for each of these three

settings.

Consensus clustering.. In consensus clustering, the goal is to find one clustering

for one data set based on several input clusterings. The idea, in general, is to

33

S = {x1, , . . .xN}

Une partition de S : U = {U1, U2, . . . , UK} et une autre partition V = {V1, V2, . . . , VK0}.

La probabilité qu’un objet tiré aléatoirement dans S tombe dans le cluster Ui

est : P (i) = |Ui|
N .

De même : P 0(j) = |Vj |/N

MI(U, V) =
KX

i=1

K0X

j=1

P (i, j) log
P (i, j)

P (i)P 0(j)

P (i, j) =
|Ui \ Vj |

N

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

wether it is consensus clustering where the goal is to reach a common cluster-

ing for the same data set, vertical clustering where the description space is the

same, but not the examples, and one still looks for a common shared character-

ization, or collaborative clustering where only local clusterings are looked for,

but still assuming that information from other local clustering can help each

local computation.

The following gives a flavor of the solutions proposed for each of these three

settings.

Consensus clustering.. In consensus clustering, the goal is to find one clustering

for one data set based on several input clusterings. The idea, in general, is to

33

87	/	104	

Méthodes		

•  Quand	la	mesure	de	similarité	est	symétrique	et	J	>	2,		
le	problème	est	NP-difficile	(variantes	encore	à	l’étude)	

[M.	Krivanek	and	J.	Moravek,	Hard	problems	in	hierarchical-tree	clustering,		
	Acta	Inform.	3	(1998)	311323.]		

	 	Recours	à	des		méthodes	heuristiques	

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

C
? = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

C
?
i (Si) = ArgMax

C(Si)(i=1,...,J)

⇢ JX

j=1

f
�
C(Sj)

�

| {z }
local criterion

+
JX

j=1,j 6=i

⌧i,j �
�
C(Si), Cj

�

| {z }
collaborative criterion

�

8i :
JX

i=1,i 6=j

(⌧i,j)
p = 1, p 2 N?

C
? = Argmin

C,C(Si)(i=1,...,J)

⇢
K
�
C(Sj)

�
+

JX

j=1

K
�
Sj |C(Sj)

�

| {z }
local criterion

+

⇢
K(C) + K

�
C(Sj)|C

�

| {z }
collaborative criterion

�

Soit S = {x1, . . . ,xN} l’ensemble des N objets à catégoriser

Soit C = {C
(1)

, . . . , C
(J)

} un ensemble de J résultats de clustering de S

� : C ! C
?

C
? = ArgMax

C

⇢ JX

j=1

sim
�
C, C

(j)
��

32

88	/	104	

Méthodes	de	recherche	de	solution	consensus	

•  Optimisation	heuristique	

–  Recuit	simulé		;		Algorithmes	Génétiques	

–  …

•  Autres	approches	sans	optimisation	directe	

–  Basée	sur	la	matrice	d’association	
•  Plus	un	exemple	appartient	aux	mêmes	clusters		

dans	les	solutions	locales,	plus	il	a	de	chance		
d’appartenir	à	ce	cluster	dans	la	solution	consensus	

•  Et	méthode	de	clustering	hiérarchique	

–  Basées	sur	la	définition	d’un	nouvel	espace	de	définition	induit	par	les	clusterings	solutions	
•  Passage	dans	un	espace	de	dimension	N	(nombre	d’objets)	

•  Et	algorithme	de	type	k-Means	dans	cet	espace	

88 A. Cornuéjols et al. / Information Fusion 39 (2018) 81–95

Fig. 5. (Left) The data set and the clusterings by algorithms A and B. (Right) The corresponding consensus matrix. The shaded parts denotes the objects for which there is
an agreement between the clusterings.

Fig. 6. Visualization of the two subsets of the Waveform data set using posterior mean projection, with labels obtained using F-VBGTM before collaboration. We can see
good clustering results on the first subset (left). The results of clustering on the second subset of noisy variables are bad (right).

Fig. 7. Effect of the collaborative clustering. When A bad sends results to algorithm A good , the uncovered underlying structure is severely impaired (left figure). By contrast,
clustering is much improved when A good sends information prior to the data processing of A bad (right figure).
than if there had been no exchange of information between the
local processes.

The potential benefits of collaboration can be due to three
causes:
1. The fact that more data is better . One can hope therefore that

other algorithms bring more information about the data gener-
ating process than is locally available.

2. The fact that perturbations can help an algorithm to escape local
optima .

3. The fact that it might be profitable to modify the bias of a given
algorithm by feeding it with external information coming from
algorithms that may have different biases.
Note that identifying these three possible reasons for benefit-

ing from collaborative clustering does not translate trivially into an
overall control procedure that would lead to better performance.

First, determining if one of these three situations is valid in
one’s current context is not obvious. Second, even if it is estab-
lished that one, or more, of these three ingredients is/are present
in some collaborative clustering scheme, none of these three po-
tential causes is guaranteed to bring improvements. Indeed, a local
algorithm that is working on its own data set can only benefit from
information coming from another algorithm if the data set of the
latter shares enough regularities with its own data set. Likewise,
perturbations can help the exploration process of an algorithm, but
it can also hamper it if they draw it to poor regions of the search
space. Finally, and similarly, there is no a priori reason to believe
that external information that in effect modifies the optimization
criterion of the local algorithm, modifies it in the right direction.

Therefore, extreme attention must be taken in order to en-
sure that the collaborative process can improve the performance of
each local algorithm, and the controlling strategy must be carefully

S = {x1, , . . .xN}

Une partition de S : U = {U1, U2, . . . , UK} et une autre partition V = {V1, V2, . . . , VK0}.

La probabilité qu’un objet tiré aléatoirement dans S tombe dans le cluster Ui

est : P (i) = |Ui|
N .

De même : P 0(j) = |Vj |/N

MI(U, V) =
KX

i=1

K0X

j=1

P (i, j) log
P (i, j)

P (i)P 0(j)

P (i, j) =
|Ui \ Vj |

N

Y = {y1, y2, . . . , yN}

yi = h⇡1(xi), . . . ,⇡J(xi)i

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

wether it is consensus clustering where the goal is to reach a common cluster-

ing for the same data set, vertical clustering where the description space is the

same, but not the examples, and one still looks for a common shared character-

ization, or collaborative clustering where only local clusterings are looked for,

but still assuming that information from other local clustering can help each

local computation.

33

S = {x1, , . . .xN}

Une partition de S : U = {U1, U2, . . . , UK} et une autre partition V = {V1, V2, . . . , VK0}.

La probabilité qu’un objet tiré aléatoirement dans S tombe dans le cluster Ui

est : P (i) = |Ui|
N .

De même : P 0(j) = |Vj |/N

MI(U, V) =
KX

i=1

K0X

j=1

P (i, j) log
P (i, j)

P (i)P 0(j)

P (i, j) =
|Ui \ Vj |

N

Y = {y1, y2, . . . , yN}

yi = h⇡1(xi), . . . ,⇡J(xi)i

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

wether it is consensus clustering where the goal is to reach a common cluster-

ing for the same data set, vertical clustering where the description space is the

same, but not the examples, and one still looks for a common shared character-

ization, or collaborative clustering where only local clusterings are looked for,

but still assuming that information from other local clustering can help each

local computation.

33

[Nguyen,	N.,	&	Caruana,	R.	(2007).	Consensus	clusterings.	
In	Seventh	IEEE	International	Conference	on	Data	Mining	
(ICDM	2007)	(pp.	607-612).	IEEE.]	
	

89	/	104	

Recherche	d’une	solution	consensus	

Par	combinaison	d’experts	faibles	

The	strongest	argument	in	favour	of	cluster	ensembles	is	as	follows.		

1.  It	is	known	that	the	current	off-the-shelf	clustering	methods	may	suggest	very	different	
structures	in	the	same	data.	This	is	the	result	of	the	different	clustering	criteria	being	
optimized.		

2.  There	is	no	layman	guide	to	choosing	a	clustering	method	for	a	given	data	set	and	so	an	
inexperienced	user	runs	the	risk	of	picking	an	inappropriate	clustering	method.	There	is	no	
ground	truth	against	which	the	result	can	be	matched,	therefore	there	is	no	critique	to	the	
user’s	choice.		

3.  Cluster	ensembles	provide	a	more	universal	solution	in	that	various	structures	and	shapes	of	
clusters	present	in	data	may	be	discovered	by	the	same	ensemble	method,	and	the	solution	is	
less	dependent	upon	the	chosen	ensemble	type.		

[Hadjitodorov	et	al.	(2006)	«	Moderate	diversity	for	better	cluster	ensembles	».		
Information	Fusion,	7	(2006),	pp.264-275]	

f

h1

h2

h3

!"#$%&'$()*
!"#$!$%&'

90	/	104	

Bilan	

1.   Pas	de	preuve		
sur	l’amélioration	du	clustering	consensus	/	aux	clusterings	
sources	

[Topchy,	A.,	Jain,	A.	K.,	&	Punch,	W.	(2003,	November).	Combining	multiple	weak			
	clusterings.	In	3rd	IEEE	Int.	Conf.	on	Data	Mining	(pp.	331-338).	IEEE.]	
	

91	/	104	

Bilan	

1.   Pas	de	preuve		
sur	l’amélioration	du	clustering	consensus	/	aux	clusterings	
sources	

2.   Avantage	(?)		

Éviter	un	choix	d’algorithme	(de	biais)	à	l’utilisateur		

[Topchy,	A.,	Jain,	A.	K.,	&	Punch,	W.	(2003,	November).	Combining	multiple	weak			
	clusterings.	In	3rd	IEEE	Int.	Conf.	on	Data	Mining	(pp.	331-338).	IEEE.]	
	

92	/	104	

Recherche	de	solutions	locales	

93	/	104	

Clustering	collaboratif	:	Calcul	de	solutions	locales	

L’agent	i	peut	sélectionner	ses	interlocuteurs			
																									et	les	pondérer				

2402 W. Pedrycz, P. Rai / Fuzzy Sets and Systems 159 (2008) 2399–2427

D[1]

D[2]

D[ii]

D[kk]

D[P]

Fig. 1. The essence of collaborative clustering in which we aim at striking a sound balance between local findings (produced at the level of locally
available data) and the findings coming from other data sites (sensors) building some global characterization of data. Shown are only communication
links between data site D[ii] and all other data sites.

is established on ad hoc basis. Each node (sensor) collects the data available in its neighborhood and realizes their
processing leading to the determination of the local characteristics of data (say, formulated as a collection of clusters
being observed at this particular local level of the given sensor). At the same time it is recognized that the local
processing could benefit from some collective activities established between the sensors. This need for a global and
collective style of processing is motivated by a limited amount of data available locally and a need to establish a global
view at the data collected by the overall network. Each sensor formulates a very limited and localized perception of
the environment that has to be augmented by local findings formed by other sensors.

There are essential differences between the proposed approach and the concept which has been encountered in the
literature under the umbrella of distributed clustering, cf. [3,14,15,26]. In distributed clustering it is assumed that the
clusters are the same across all data sites. In particular, an assumed mixture model entails that at each data site there are
exactly the same clusters being modeled by Gaussian distributions N(mi , !i) described by some mean vectors mi and
covariance matrices !i put together in the form of some linear combination, cf. [15]. More specifically, we encounter
the relationship of the form

c∑

i=1

"jiN(mi , !i), j = 1, 2, . . . , P ,

where the values of the mixing parameters "ji are potentially unique for each data site. In contrast, in this study no
specific assumptions are being made. The only assumption which is being made here concerns the same granularity of
the findings (viz. number of clusters at each data site). As a result, the structure at each data site makes an attempt to
reconcile differences however retains and quantifies those that are of particular relevance to the given data site. In the
sequel, they are expressed in the form of the fuzzy sets of prototypes or when it comes to membership degrees arise in
the format of type-2 fuzzy sets.

Similarly the concept of cluster ensemble, which is present in the literature, is based upon different concepts. Cluster
ensemble methods differ in two main ways, that is the way the generic clustering procedure is developed and a way in
which the results are combined [25]. Topchy et al. [25] proposed a consensus function based on informative-theoretic
principles and generalized mutual information, in particular. A different consensus function was developed in [4] which
is based on some voting/merging method providing a pairwise iterative scheme of combination. Strehl and Ghosh [24]
proposed three different ensemble clustering models based on a certain consensus method. All of them use various
hypergraph operations to construct the solution.

In this study, we follow a standard notation encountered in pattern recognition. The patterns (data) are treated as
vectors in X ⊂ Rn and the distance between two elements in this space ∥ ·∥ is realized as a weighted Euclidean distance.

Ci	

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

Ci(Si) = Argmin
C(Si)

⇢
f(C(Si)) + g

agreement

�
C(Si), {Cj (1jC, j 6=i)}

���

C
?
i (Si) = Argmin

C(Si)

⇢
f
�
C(Si)

�

| {z }
local criterion

+ g

agreement

�
C(Si), {Cj (1jJ, j 6=i)}

��

| {z }
collaborative criterion

�

C
?
i (Si) = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

32

94	/	104	

Clustering	collaboratif	

•  Mesure	de	l’accord	entre	solutions	

–  Complexité	de	Kolmogorov	[Murena	et	al.	(2018)]	

–  Basée	sur	l’entropie	[Sublime	et	al.	(2017)]	:	méthodes	probabilistes	

•  Approche	

–  En	deux	étapes	(répétées)	

1.  Calcul	des	solutions	locales	

2.  Calcul	des	solutions	prenant	en	compte	les	autres	solutions	

–  De	manière	itérative	:	synchrone	ou	asynchrone	

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

Ci(Si) = Argmin
C(Si)

⇢
f(C(Si)) + g

agreement

�
C(Si), {Cj (1jC, j 6=i)}

���

C
?
i (Si) = Argmin

C(Si)

⇢
f
�
C(Si)

�

| {z }
local criterion

+ g

agreement

�
C(Si), {Cj (1jJ, j 6=i)}

��

| {z }
collaborative criterion

�

C
?
i (Si) = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

32

95	/	104	

Clustering	collaboratif	:	similarité	

•  Critère	d’optimisation	

–  Passage	par	une	solution	barycentrique	

–  Fondée	sur	la	complexité	de	Kolmogorov	[Murena	et	al.	(2018)]	

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

C
? = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

C
?
i (Si) = ArgMax

C(Si)(i=1,...,J)

⇢ JX

j=1

f
�
C(Sj)

�

| {z }
local criterion

+
JX

j=1,j 6=i

⌧i,j �
�
C(Si), Cj

�

| {z }
collaborative criterion

�

8i :
JX

i=1,i 6=j

(⌧i,j)
p = 1, p 2 N?

C
? = Argmin

C,C(Si)(i=1,...,J)

⇢ JX

j=1

K
�
C(Sj)

�
+ K

�
Sj |C(Sj)

��

| {z }
local criterion

+

⇢
K(C) +

JX

j=1

K
�
C(Sj)|C

�

| {z }
collaborative criterion

�

Soit S = {x1, . . . ,xN} l’ensemble des N objets à catégoriser

Soit C = {C
(1)

, . . . , C
(J)

} un ensemble de J résultats de clustering de S

� : C ! C
?

C
? = ArgMax

C

⇢ JX

j=1

sim
�
C, C

(j)
��

32

96	/	104	

Clustering	collaboratif	:	sélectionner	ses	collaborateurs	

•  En	apprentissage	supervisé,	on	sait	comment	sélectionner	des	collaborateurs	
car	on	sait	évaluer	leur	qualité	

•  En	apprentissage	non	supervisé	…		

–  Notion de “bon clustering”

•  Solution stable

–  Contre de petites perturbations des données

–  Contre de petites perturbations de biais	

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

C
? = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

C
?
i (Si) = ArgMax

C(Si)(i=1,...,J)

⇢ JX

j=1

f(C(Sj)

| {z }
local criterion

+
JX

j=1,j 6=i

⌧i,j �
�
C(Si), Cj

�

| {z }
collaborative criterion

�

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

wether it is consensus clustering where the goal is to reach a common cluster-

ing for the same data set, vertical clustering where the description space is the

32

4.1.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering

of a data set using P clusterings. The idea is generally to produce a single

clustering that agrees as much as possible with the P clusterings. The notion

of agreement, or, conversely, of disagreement, must therefore be formalized in

order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local

algorithm Ai seeks to optimize in order to discover an underlying structure

(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

⇢
f(Si) + g

�
agreement(Ai, {Aj (1jP, j 6=i)})

��

C
? = ArgMax

C(Si)

⇢ JX

j=1,j 6=i

�
�
C(Si), Cj

��

C
?
i (Si) = ArgMax

C(Si)(i=1,...,J)

⇢ JX

j=1

f(C(Sj)

| {z }
local criterion

+
JX

j=1,j 6=i

⌧i,j �
�
C(Si), Cj

�

| {z }
collaborative criterion

�

8i :
JX

i=1,i 6=j

(⌧i,j)
p = 1, p 2 N?

where the term g
�
agreement(Ai, {Aj (1jP, j 6=i)})

�
provides a measure of

the agreement between what has been found by the local algorithm Ai and

all other collaborating algorithms. It is important to note that the agreement

function generally does not take into account the original descriptions of the

data points, but only the partitions to which they are allocated by the di↵er-

ent clustering algorithms. Therefore, agreement must be defined as a kind of

distance or similarity between assignments or between high level descriptions of

the clusterings.

Suppose several clustering algorithms wish to compare their results on a

common data set, how can this be done? This depends on the learning task,

32

97	/	104	

Sélectionner	et	pondérer	ses	collaborateurs	

•  Les	solutions	
–  Qui	favorisent	les	collaborateurs	qui	sont	d’accord		

–  Seraient	de	bonnes	solutions	(clusterings)	

•  Mais	

–  «	Chambres	d’écho	»	

–  Ne	tient	pas	compte	de	l’indépendance	des	algorithmes		

[Cornuéjols,	A.,	&	Martin,	C.	(2014).	Une	méthode	d’ensemble	en	apprentissage	non	supervisé	
quand	on	ne	connaît	rien	sur	la	performance	des	experts.	Revue	des	Nouvelles	Technologies	de	
l'Information	(RNTI),	2016,	vol.	RNTI-A-8,	pp.	33-50.]	

98	/	104	

Plan	

1.  	Contexte	et	motivations	

2.  	Méthodes	collaboratives	en	IA	

3.  	Méthodes	collaboratives	en	Apprentissage	Automatique	

4.  	Quid	du	clustering	?	

5.  	Bilan	

99	/	104	

•  Mêmes	algorithmes	sur	des	données	différentes	

–  Intéressant	si	les	données	partagent	quelque	chose	sur	leurs	distributions	

–  Mesure	de	similarité	entre	les	données		???	
•  Forcément	en	fonction	d’un	modèle	

•  Mêmes	données				=>			il	faut	des	algorithmes	différents	

–  Sélection		

–  Construction	(à	la	Boosting)	

•  Données	différentes	et	algorithmes	différents	

–  ???	

100	/	104	

Quel	lien	avec	les	méthodes	collaboratives	en	IA	et	en	AA	?	

•  Méthodes	d’ensemble	:	combinaison	de	solutions	faibles	
•  Sous-ensemble	de	données	

•  Initialisations	différentes	

•  Biais	différents	

–  Mais	pas	d’évaluation	«	objective	»	de	la	performance	

Idem		

Il	manque	une	théorie		

analogue	aux	théories	en	apprentissage	supervisé	

101	/	104	

Quel	lien	avec	les	méthodes	collaboratives	en	IA	et	en	AA	?	

•  Calcul	de	solutions	locales	

•  Sélection	des	«	collaborateurs	»	pertinents		

•  Apprendre	à	traduire	?		
(comme	Transboost)	

+

+

+

+
+

-

-

-

-

-

xi

X

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
⇡1
⇡2

⇡N

⇡j

⇧

hS

102	/	104	

Quel	lien	avec	les	méthodes	collaboratives	en	IA	et	en	AA	?	

•  Calcul	de	solutions	locales	

•  Sélection	des	«	collaborateurs	»	pertinents		

•  Apprendre	à	traduire	?		
(comme	Transboost)	

–  Nombreux	systèmes	heuristiques	

–  Mais	il	faut	encore	d’autres	idées	

–  Et	une	théorie	

103	/	104	

Le	clustering	collaboratif	est	un	problème	d’avenir	

104	/	104	

Références	

•  Cornuéjols,	A.,	Wemmert,	C.,	Gançarski,	P.,	&	Bennani,	Y.	(2018).	Collaborative	clustering:	Why,	when,	what	and	how.	Information	
Fusion,	39,	81-95.	

•  Depaire,	B.,	Falcón,	R.,	Vanhoof,	K.,	&	Wets,	G.	(2011).	PSO	driven	collaborative	clustering:	A	clustering	algorithm	for	ubiquitous	
environments.	Intelligent	Data	Analysis,	15(1),	49-68.	

•  Domeniconi,	C.,	&	Al-Razgan,	M.	(2009).	Weighted	cluster	ensembles:	Methods	and	analysis.	ACM	Transactions	on	Knowledge	
Discovery	from	Data	(TKDD),	2(4),	17.	

•  Murena,	P.	A.,	Sublime,	J.,	Matei,	B.,	&	Cornuéjols,	A.	(2018,	July).	An	Information	Theory	based	Approach	to	Multisource	
Clustering.	In	IJCAI	(pp.	2581-2587).	

•  Nguyen,	N.,	&	Caruana,	R.	(2007,	October).	Consensus	clusterings.	In	Seventh	IEEE	International	Conference	on	Data	Mining	(ICDM	
2007)	(pp.	607-612).	IEEE.	

•  Pedrycz,	W.	(2002).	Collaborative	fuzzy	clustering.	Pattern	Recognition	Letters,	23(14),	1675-1686.	

•  Qiao	Y.,	Li	S.,	Denœux	T.	(2019)	«	Collaborative	Evidential	Clustering	».	In:	Kearfott	R.,	Batyrshin	I.,	Reformat	M.,	Ceberio	M.,	
Kreinovich	V.	(eds)	Fuzzy	Techniques:	Theory	and	Applications.	IFSA/NAFIPS	2019	2019.	Advances	in	Intelligent	Systems	and	
Computing,	vol	1000.	Springer,	Cham	

•  Sublime,	J.,	Matei,	B.,	Cabanes,	G.,	Grozavu,	N.,	Bennani,	Y.,	&	Cornuéjols,	A.	(2017).	Entropy	based	probabilistic	collaborative	
clustering.	Pattern	Recognition,	72,	144-157.	

•  Topchy,	A.,	Jain,	A.	K.,	&	Punch,	W.	(2003,	November).	Combining	multiple	weak	clusterings.	In	Third	IEEE	International	Conference	
on	Data	Mining	(pp.	331-338).	IEEE.	

•  Vega-Pons,	S.,	&	Ruiz-Shulcloper,	J.	(2011).	A	survey	of	clustering	ensemble	algorithms.	International		
	Journal	of	Pattern	Recognition	and	Artificial	Intelligence,	25(03),	337-372.	

