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Classical	inductive	learning	
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Description Your prediction True class

				1	large	red	square	   -

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

•  They	belong	either	to	class	‘+’	or	to	class	‘-’	

1	large	green	square	

2	small	red	squares	

2	large	red	circles	

1	large	green	circle	

1	small	red	circle	

+	

+	

+	

-	

+	

One	example	that	tells	a	lot	…		
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Description Your prediction True class

				1	large	red	square	   -

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

1	large	green	square	

2	small	red	squares	

2	large	red	circles	

1	large	green	circle	

1	small	red	circle	

+	

+	

+	

-	

+	

One	example	that	tells	a	lot	…		

How	many	possible	functions	altogether	from	X	to	Y	?	

How	many	functions	do	remain	after	6	training	examples?	

22			=		216		=		65,536	4	

210		=		1024	
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•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

One	example	that	tells	a	lot	…		

Description	 Your	prediction	 True	class	
1	large	red	square	 	 -	
1	large	green	square	 	 +	
2	small	red	squares	 	 +	
2	large	red	circles	 	 -	
1	large	green	circle	 	 +	
1	small	red	circle	 	 +	
1	small	green	square	 	 -	
1	small	red	square	 	 +	
2	large	green	squares	 	 +	
2	small	green	squares	 	 +	
2	small	red	circles	 	 +	
1	small	green	circle	 	 -	
2	large	green	circles	 	 -	
2	small	green	circles	 	 +	
1	large	red	circle	 	 -	
2	large	red	squares	 ?	 	

	

How	many	
remaining	
functions?	

15	

?	
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How	to	chose	an	hypothesis?	
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The	statistical	theory	of	learning	

Intro Static view Dynamic view Changes Conclusions Standard setting Renewed interest

The standard setting
Optimizing the expected risk

Real risk: expected loss

R(h) = E[⇥(h(x), y)] =

Z

x�X ,y�Y
⇥(h(x), y) PXY d(x, y)

But PXY is unknown, then use: Sm = {(x1, y1), . . . , (xm, ym)} ⇥ (X � Y)m

Empirical risk Minimization

ĥ = ArgMin
h�H

ˆ
Rm(h)

˜
+ Reg

˜
= ArgMin

h�H

»
1
m

mX

i=1

⇥(h(xi), yi)

–
+ � Capacity(H)

˜

1 All examples are equal: no forgetting
2 Commutative criterion: no information from the sequence

10 / 67
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Statistical	study	for	|H|	hypotheses	

It	leads	to:	

The	Empirical	Risk	Minimization	principle	

is	sound	only	if	there	exists	a	limit	(a	bias)	on	the	expressivity	of	H		

8h 2 H, 8�  1 : Pm

"
R(h)  bR(h) +

log |H|+ log 1
�

m

#
> 1� �
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Tracking	
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Tracking:	an	intriguing	idea	

[Richard	Sutton,	Anna	Koop	&	David	Silver	(2007).		
On	the	role	of	tracking	in	stationary	environments.	ICML-2007]	

Even	in	stationary	environments,	it	can	be	advantageous	to	act	

as	if	the	environment	was	changing!!!	
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Tracking:	an	intriguing	idea	

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Motivation

In a lot of natural settings:

Data comes sequentially

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

This enables:

Powerful learning

with limited resources
(time + memory)

x1

x2

X

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

69 / 81
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Tracking:	an	intriguing	idea	

15	

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Definition

Assumptions:

Data streams

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

Limited resources: Restricted
hypothesis space H x

y

“Local” learning

and local prediction :

Lt = `(ht(xt), yt)

= `(ht(xt), f (xt, ✓t))
x

y

fenêtre

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

70 / 81

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
A new inductive problem

Notion of temporal consistency

f (·, ✓t) continuous
and with bounded variation / ✓t

New inductive criterion

Lh0,Ti(r) =
TX

t=0

`(ht(xt), yt)

+ �
X

||ht � ht�1||2

+ Capacity(R)

x

y

fenêtre

x

y

fenêtre

Do not optimize the choice of ONE h any longer!!

but optimize the learning rule (r 2 R) instead: (ht�1, xt)
r
�! ht !!

73 / 81
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Tracking	in	stationary	environments	

	Tracking	to	play	Go	

•  	5	x	5	Go	
–  More	than	5	x	1010	unique	positions	

•  	Usual	approach:	learn	a	general	evaluation	function	V(s)	

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2
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Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F ) of local shape features in F , and
the total number of active featuresm(F ) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F )
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F )
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).
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Tracking	to	play	go	

On the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 1. Percentage of 5⇥5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ✏-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to ↵t = 0.1/||x(st)||
for both agents.

The first experiment used only the 1⇥1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 ⇥ 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 ⇥ 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 ⇥ 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

Comparison:		

–  learn	a	general	evaluation	function	V(s)	
•  On	250,000	complete	episodes	of	self-play	

–  Learn	successive	evaluation	functions	Vt(s)	attuned	to	the	current	state	

•  On	10,000	episodes	of	self-play	starting	from	the	current	position	
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Tracking	to	play	go	

Comparison:		

–  learn	a	general	evaluation	function	V(s)	
•  On	250,000	complete	episodes	of	self-play	

–  Learn	successive	evaluation	functions	Vt(s)	attuned	to	the	current	state	

•  On	10,000	episodes	of	self-play	starting	from	the	current	position	On the Role of Tracking in Stationary Environments
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game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.
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On-line	learning	

•  What	to	keep?	

•  What	to	forget?	

•  How	to	adapt?	

•  Very	little	theory	
–  Except	against	any	sequence:	maximalist		

The		plasticity	vs.	stability		dilemma		

[Cesa-Bianchi,	N.	&	Lugosi	G.	“Prediction,	learning	and	games”.	Cambridge	University	Press,	2006]	
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Outline	

1.  	Classical	inductive	learning	

2.  	Transfer	learning	

3.  	TransBoost:	an	original	approach	

4.  	Conclusion	
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Transfer	learning	
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•  A		generalized		one	step		on-line	learning	

	XS	=	XT	
&	

YS	=	YT	

	XS	≠	XT	
&	

YS	=	YT	

		
XS	=	XT	

&	
YS	≠	YT	

	
	

	XS	≠	XT	
&	

YS	≠	YT	
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Examples:	transfer	learning	in	vision	

[Xu,	Saenko,	Tsang		“Domain	Transfer”	tutorial	–	CVPR’12]	

23	

Hard to predict what will change in the new domain

[Xu,Saenko,Tsang, Domain Transfer Tutorial - CVPR’12]

(LaHC) Domain Adaptation - EPAT’14 18 / 95
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Domain	adaptation	for	sentiment	analysis	

[Pan,	TL-IJCAI’13	tutorial]	

24	

Domain Adaptation for sentiment analysis - ex
[Pan-IJCAI’13 tutorial]

Electronics Video games

(1) Compact; easy to operate; very
good picture quality; looks sharp!

(2) A very good game! It is action
packed and full of excitement. I am
very much hooked on this game.

(3) I purchased this unit from Circuit
City and I was very excited about the
quality of the picture. It is really nice
and sharp.

(4) Very realistic shooting action and
good plots. We played this and were
hooked.

(5) It is also quite blurry in very dark
settings. I will never buy HP again.

(6) It is so boring. I am extremely
unhappy and will probably never buy
UbiSoft again.

Source specific: compact, sharp, blurry.

Target specific: hooked, realistic, boring.

Domain independent: good, excited, nice, never buy, unhappy.

(LaHC) Domain Adaptation - EPAT’14 21 / 95
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Domain	adaptation	

Objective	

–  Improve	a	target	prediction	function	in	the	target	domain	using	
knowledge	from	the	source	domain		

1.  The	training	and	test	set	can	be	from	the	same	domain,	but	with	different	
probability	distributions	(“Domain	adaptation”)	

–  Co-variate	shift	

–  Concept	drift	

2.  Or	they	can	be	from	different	domains		

–  Transfer	learning	

25	



26	/	97	

Notations	

1.   Source	domain	S		

–  Source	training	data	SS	
–  Source	data	distribution	DS	

–  Source	hypothesis		hS	

2.   Target	domain	T		

–  Target	training	data	ST				(|ST|	<<	|SS|)	

–  Target	data	distribution		DT	

–  Target	hypothesis		hT	
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Formalisation	

•  Target	domain:			

–  Training	set	

–  Distribution		

•  Source	domain:	

–  Training	set	

–  Source	hypothesis	

•  We	look	for:	

•  Algorithm		
Hypothesis	TL	

hS

PT
XY

XS ⇥ YS

XT ⇥ YT

ST = {(xT
i , y

T
i )}1im

SS = {(xS
i , y

S
i )}1im

hT : XT ! YT

Ahtl : (XT ⇥ YT )
m

⇥ HS ! HT ✓ YX
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Types	of	transfer	learning	(1)	

•  Inductive	transfer	learning	
–  Labeled	target	training	data	

•  Hypothesis	transfer	learning	
–  Inductive	transfer	learning	

–  The	source	hypothesis	is	known,	not	the	source	training	data	

•  Unsupervised	domain	adaptation	

–  Only	unlabeled	target	data	
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Illustration	

	“half	moon”	problem	

Supervised	+	

_	 Inductive	Transfer	Learning	
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Illustration	

	“half	moon”	problem	

Unsupervised	
+	

_	 Domain	Adaptation	
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Examples	of	

Transfer	learning	
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Domain	Adaptation	
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•  A		generalized		one	step		on-line	learning	

	XS	=	XT	
&	

YS	=	YT	

	XS	≠	XT	
&	

YS	=	YT	

		
XS	=	XT	

&	
YS	≠	YT	

	
	

	XS	≠	XT	
&	

YS	≠	YT	
	

Covariate	shift	

•  Input	distribution	changes	

•  Functional	relation	remains	
unchanged	

225Examples of Covariate ShiftExamples of Covariate Shift
(Weak) extrapolation: 

Predict output values outside training region

Training samples

Test samples
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Principle	

•  Law	of	large	numbers	

–  Sample	averages	converge	to	the	population	mean	

–  But	how	to	estimate	 	 	 	?	



35	/	97	

Importance	weighting	

•  A	naïve	estimation	of 	 	 	does	not	work	

–  Estimation	density	is	too	crude	in	high	dimension	space	(and	with	few	
known	testing	instances)	

•  Idea	of	Sugiyama:	

–  Learn	a	parametric	model	of		

and	
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Covariate	shift	in	regression	
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Hypothesis	Transfer	Learning	
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Transfer	learning	for	deep	neural	networks	 09/01/2019 16(58applied-deep-learning-1103-convolutional-neural-networks-74-638.jpg 638 × 479 pixels

Page 1 sur 1https://image.slidesharecdn.com/adl1103-161027023044/95/applied-deep-learning-1103-convolutional-neural-networks-74-638.jpg?cb=1479405398

[Yosinski	J,	Clune	J,	Bengio	Y,	and	Lipson	H.	How	transferable	are	features	in	deep	neural	networks?	
In	Advances	in	Neural	Information	Processing	Systems	27	(NIPS	’14),	NIPS	Foundation,	2014.	]	

•  …	
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	XS	=	XT	
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&	
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	XS	≠	XT	
&	
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Transfer	learning	for	deep	neural	networks	

•  Illustration	

09/01/2019 17(01mid-level-cnn-transfer-fig-2.jpeg 600 × 338 pixels

Page 1 sur 1https://adriancolyer.files.wordpress.com/2017/02/mid-level-cnn-transfer-fig-2.jpeg?w=600
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Learning	Neural	Networks	

using	“distillation”	



41	/	97	

Motivation	

1.  We	would	like	to	deploy	a	classifier	(NN)	on	a	computationally	
limited	device	(e.g.	a	smartphone)	

–  A	deep	NN	cannot	be	used		

2.  The	learning	task	is	difficult	and	requires	a	large	data	set	and	a	
sophisticated	learning	method	(e.g.	a	deep	NN)	

	

Question:	can	we	use	the	learned	deep	NN	as	a	teacher	to	help	the		

												student	(i.e.	the	limited	device)	learn	a	simpler	classifier?		
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Motivation	

Example:	A	sophisticated	learning	technique	-	GoogLeNet	

Quite	a	costly	machine	to	train		
AND	to	use	for	prediction	
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Distillation:	principle	

1.  Use	the	sophisticated	learning	method	(teacher)	to	learn	to	
predict	the	target	classes	with	a	membership	measure	

2.  Ask	the	student	to	learn	to	predict	the	membership	measure	
computed	by	the	teacher	instead	of	the	hard	classes	(on	the	
training	set)	
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Distillation:	principle	

1.  The	teacher	uses	a	softmax	function	for	the	values	of	its	output	

	

T	is	the	temperature	(the	highest	T,	the	less	different	are	the	outputs)	

2.  The	student	learns	to	predict	the	membership	measure	first	with	T	high,	and	
then,	progressively,	with	T	decreasing	to	1.	

qi =
e(zi/T )

P
j2classes e

(zj/T )

When	 the	 soft	 targets	 have	 high	 entropy,	 they	 provide	 much	 more	 information	 per	
training	case	than	hard	targets	and	much	less	variance	in	the	gradient	between	training	
cases,	 so	 the	 small	 model	 can	 often	 be	 trained	 on	 much	 less	 data	 than	 the	 original	
cumbersome	model	while	using	a	much	higher	learning	rate.	
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Questions	
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Questions	

•  What	is	a	“successful”	transfer	learning	situation?	

–  How	to	measure	“success”?	

–  How	can	we	measure	the	performance	of	transfer	learning?	

–  Is	“failure”	possible?	Illustrations?	

Remark:		
				if	the	target	data	set	is	sufficiently	large,		
				transfer	learning	should	not	bring	any	advantage	
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Questions	

•  What	are	the	conditions	for	a	successful	transfer	learning?		

•  Why	the	proximity	between	the	source	and	the	target	should	
play	a	role?	

–  How	to	measure	this	proximity?	

•  Between	the	input	distributions	PS	and	PT?	
•  Between	the	underlying	true	source	and	target	functions	fS	and	fT?	

•  What	should	intervene	in	the	guarantees?	

–  “distance”	between	source	and	target?	

–  Size	of	the	target	training	data?	

–  Performance	of	the	source	hypothesis?	
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Questions	

•  What	to	transfer?	

•  When	to	transfer?		Useful	or	not?	

•  How	to	transfer?	
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Existing	theories	

•  Unsupervised	Domain	Adaptation	

fS	=	fT			but			DS	≠	DT			

1.  	Divergence-based	generalization	bounds	

2.  Generalization	bounds	taking	into	account		
the	geometry	of	the	data	distributions		

•  Wasserstein	distance	(optimal	transport)	

•  Maximum	mean	discrepancy	distance	
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Unsupervised	Domain	Adaptation	

•  A	pioneering	theory	[Ben-David	et	al.,	2010]	La théorie classique de l’adaptation de domaine
Les résultats de S. Ben-David et al. et Mansour et al.

Théorème classique [Ben-David et al., 2010, Mansour et al., 2009a]

Soit H un espace d’hypothèses. Si DS et DT sont deux distributions sur X , alors :

⇤h ⇥ H,

erreur cible� ⌅⇤ ⇥
RPT (h) � RPS (h)⇤ ⇥� ⌅

erreur source

+ 1
2dH(DS ,DT ) + �

RPS (h) : erreur classique sur le domaine source

Minimisable via une méthode de classification supervisée sans adaptation

Emilie Morvant (LIF-Qarma) Apprentissage de vote de majorité 18 septembre 2013 11 / 40
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RPT (h) � RPS (h)⇤ ⇥� ⌅

erreur source

+ 1
2dH(DS ,DT ) + �
⇤ ⇥� ⌅

divergences

1
2dH(DS ,DT ) : la H-divergence entre DS et DT

1
2dH(DS ,DT ) = sup

(h,h�)⇤H2

⇤⇤⇤RDT (h, h
⇥)� RDS (h, h

⇥)
⇤⇤⇤

= sup
(h,h�)⇤H2

⇤⇤⇤ E
xt�DT

I
�
h(xt) ⇥= h⇥(xt)

⇥
� E

xs�DS

I
�
h(xs) ⇥= h⇥(xs)

⇥⇤⇤⇤
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Théorème classique [Ben-David et al., 2010, Mansour et al., 2009a]

Soit H un espace d’hypothèses. Si DS et DT sont deux distributions sur X , alors :

⇤h ⇥ H,
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divergences

� : divergence entre les étiquetages

� = infh�⇤H
�
RPS (h

⇥) + RPT (h
⇥)
⇥
,

erreur jointe optimale [Ben-David et al., 2010]

ou � = RPT (h
�
T ) + RPT (h

�
T , h

�
S),

h�
X est la meilleure hypothèse sur le domaine X [Mansour et al., 2009a]

Emilie Morvant (LIF-Qarma) Apprentissage de vote de majorité 18 septembre 2013 11 / 40

Idea:	build	a	projection	
space	in	which	the	two	
distributions	are	close,	
while	keeping	a	high	
performance	level	on	the	
source	domain	
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Idea	

•  Change	the	feature	representation	X	to	better	
represent	shared	characteristics	between	the	two	
domains	

–  	some	features	are	domain-specic,	

–  	others	are	generalizable	

–  	or	there	exist	mappings	from	the	original	space	

	=>	Make	source	and	target	domain	explicitly	similar	

	=>	Learn	a	new	feature	space	by	embedding	or		
					projection	

Idea

Change the feature representation X to better represent shared
characteristics between the two domains

some features are domain-specific,
others are generalizable
or there exist mappings from the original space

� Make source and target domain explicitely similar

� Learn a new feature space by embedding or projection

��������	�
����	��
���	�������������������������

�	������
���

(LaHC) Domain Adaptation - EPAT’14 53 / 95
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Illustration:	Find	latent	spaces	–	Structural	Correspondence	Learning		
[Blitzer	et	al.,	2007]	Find latent spaces - Structural Correspondence Learning

[Blitzer et al.,’07]

Identify shared features

Sentiment analysis - Bag of words (bigrams)

Choose K pivot features (frequent words in both domains, highly
correlated with labels)

Learn K classifiers to predict pivot features from remaining features

For each feature add K new features

Represents source and target data with these features

(LaHC) Domain Adaptation - EPAT’14 57 / 95
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Illustration:	Find	latent	spaces	–	Structural	Correspondence	Learning		
[Blitzer	et	al.,	2007]	Find latent spaces - Structural Correspondence Learning

[Blitzer et al.,’07]

Apply PCA source+target new features to get a low rank latent
representation

Learn a classifier in the new projection space defined by PCA

(LaHC) Domain Adaptation - EPAT’14 58 / 95
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Existing	theories	

•  Hypothesis	Transfer	Learning	
hS	is	known	but	not	SS		

–  Known	generalization	bounds	only	for	linear	classifiers	

–  And	when	XS	=	XT			

[	Redko,	I.,	Morvant,	E.,	Habrard,	A.,	Sebban,	M.,	&	Bennani,	Y.	(2019).	Advances	in	Domain	

Adaptation	Theory.	Elsevier.	]	
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Theory	for	HTL	

•  …	

112 Advances in Domain Adaptation Theory

In the formulation above, the loss function is only minimized with respect to w
and not specifically with respect to β. However, it is assumed that Ω(β) ≤ ρ making
β constrained by a strongly convex function, which allows one to cover regularized
algorithms that consider an additional regularization with respect to β. As in the
previous analysis, the key quantity RT (h

β
src) measuring the relevance of the source

hypothesis on the target domain will play a crucial role in the analysis of the
generalization properties of hŵ,β. To illustrate the types of algorithms covered by
this analysis, we can consider the least squares based regularization. More formally,
given a target training sample T = {(xi, yi)}mi=1, source hypothesis {wi

src} ⊂ H, the
parameters β ∈ Rn and λ ∈ R+, the least squares algorithm with biased
regularization outputs the target hypothesis

h(x) := ⟨ŵ,x⟩,

where

ŵ = argmin
w∈H

⎧
⎨

⎩
1

m

m∑

i=1

(⟨ŵ,xi⟩ − yi)
2+ λ∥w −

n∑

j=1

βjw
j
src∥22

⎫
⎬

⎭ . [7.2]

The problem defined by equation [7.2] can be interpreted as the minimization of
the empirical error on the target sample, while keeping the solution close to the (best)
linear combination of source hypotheses. It can actually be proved that this
formulation is a special case of the classic regularized ERM [KUZ 17, KUZ 18].
While the formulation presented in equation [7.2] is limited to linear combination of
source hypotheses living in the same space of the target predictor, it can be
generalized allowing one to treat the source hypotheses as “black boxes” predictors
[KUZ 17, KUZ 18].

The results presented below correspond to generalization bounds for regularized
ERM-based algorithms.

THEOREM 7.3 ([KUZ 17]).– Let hŵ,β a hypothesis output by a regularized ERM
algorithm from a m-sized training set T i.i.d. from the target domain T , n source
hypotheses {hi

src : ∥hi
src∥∞ ≤ 1}ni=1, any source weights β obeying Ω(β) ≤ ρ and

λ ∈ R+. Assume that the loss is bounded by M : ℓ(hŵ,β(x), y) ≤ M for any (x, y)
and any training set. Then, denote κ = H

σ and assuming that λ ≤ κ with probability
at least 1 − e−η , ∀η ≥ 0:

RT (hŵ,β) ≤ RT̂ (hŵ,β) +O

⎛

⎜⎜⎝
Rsrc

T κ√
mλ

+

√
Rsrc

T ρκ2

mλ
+

Mη

m log

(
1 +

√
Mη
usrc

)

⎞

⎟⎟⎠
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THEOREM 7.3 ([KUZ 17]).– Let hŵ,β a hypothesis output by a regularized ERM
algorithm from a m-sized training set T i.i.d. from the target domain T , n source
hypotheses {hi

src : ∥hi
src∥∞ ≤ 1}ni=1, any source weights β obeying Ω(β) ≤ ρ and

λ ∈ R+. Assume that the loss is bounded by M : ℓ(hŵ,β(x), y) ≤ M for any (x, y)
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The results presented below correspond to generalization bounds for regularized
ERM-based algorithms.

THEOREM 7.3 ([KUZ 17]).– Let hŵ,β a hypothesis output by a regularized ERM
algorithm from a m-sized training set T i.i.d. from the target domain T , n source
hypotheses {hi

src : ∥hi
src∥∞ ≤ 1}ni=1, any source weights β obeying Ω(β) ≤ ρ and

λ ∈ R+. Assume that the loss is bounded by M : ℓ(hŵ,β(x), y) ≤ M for any (x, y)
and any training set. Then, denote κ = H

σ and assuming that λ ≤ κ with probability
at least 1 − e−η , ∀η ≥ 0:

RT (hŵ,β) ≤ RT̂ (hŵ,β) +O

⎛

⎜⎜⎝
Rsrc

T κ√
mλ

+

√
Rsrc

T ρκ2

mλ
+

Mη

m log

(
1 +

√
Mη
usrc

)

⎞

⎟⎟⎠
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≤ RT̂ (hŵ,β) +O
(

κ√
m

(
Rsrc

T
λ

+

√
Rsrc

T ρ

λ

)
+

κ

m

(√
Rsrc

T Mη

λ
+

√
ρ

λ

))
,

where usrc = Rsrc
T

(
m+ κ

√
m

λ

)
+ κ

√
Rsrc

T mρ
λ and Rsrc

T = RT (hβ
src) is the risk of the

source hypothesis combination.

The risk of the source hypothesis combination on the target domain (Rsrc)
provides an important information that can be interpreted in two aspects: obviously
the performance of the source hypothesis combination on the target domain, but also
an indicator of the relatedness between the source and target domains:

– when the source information is bad for the target domain, i.e. Rsrc
T is high, then

hβ
src is useless for the transfer task. This can be interpreted as learning with no useful

auxiliary information. Assuming that Rsrc
T ≤ M , from theorem 7.3, we can get that

RT (hŵ,β)−RT̂ (hŵ,β) ≤ O(1/(
√
mλ). We recover classic rate suggesting that the

approach is robust to negative transfer;

– when the source domain is informative for the target domain, one can have
guarantees for small learning samples. In particular, let m = O(1/Rsrc

T ), then we
can obtain a convergence rate of O(

√
ρ/m

√
λ). This implies that a fast convergence

rate behavior can be obtained with “small m” that depends on the performance of the
combined source hypotheses. Asymptotically, the theorem also shows that a rate of
O(Rsrc

T /(
√
mλ) +

√
Rsrc

T ρ/mλ) can be obtained where the term Rsrc
T is related to the

constant factor of the rate. Hence, a small Rsrc
T allows one to have a faster convergence

making use of the information coming the source hypotheses combination;

– when the source domain is actually perfect for the target domain, i.e. Rsrc
T =

0, the source hypothesis is able to perfectly predict labels of instances of the target
domain. In this case, theorem 7.3 implies that R(hŵ,β) = RT̂ (hŵ,β) with probability
one. For most commonly used smooth loss functions, this setting is realistic only if
source and target domains are the same and the task considered is noise free. Anyway,
it is possible for some specific loss, such as the squared hinge loss, and with a target
domain that can perfectly classified by the source.

7.3.4. Comparison with standard theory of domain adaptation

The seminal results from [BEN 10a] and [MAN 09a] have provided the first
theoretical frameworks for domain adaptation using a domain divergence between
distributions. Following the results presented in Chapter 3 on divergence-based
generalization bounds derived in the literature, these bounds have in general the
following form:

RT (h) ≤ RS(h) + d(SX, TX) + λ,
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Theory	for	HTL	

The	risk	of	the	source	hypothesis	combination	on	the	target	domain		

provides	an	important	indicator	on	the		

relatedness	between	the	source	and	the	target	domain	

[	Redko,	I.,	Morvant,	E.,	Habrard,	A.,	Sebban,	M.,	&	Bennani,	Y.	(2019).	Advances	in	Domain	

Adaptation	Theory.	Elsevier.	]	p.	113	
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Outline	

1.  	Classical	inductive	learning	

2.  	Transfer	learning	

3.  	TransBoost:	an	original	approach	

4.  	Conclusion	
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TransBoost	

An	original	approach	to	transfer	learning	
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Classification	of	time	series	

•  Monitoring	of	consumer	actions	on	a	web	site:	 	will	buy			or			not	

•  Monitoring	of	a	patient	state:	 	 	 	critical					or			not	

•  Early	prediction	of	daily	electrical	consumption:	 	high									or			low	

x(t)

T

Training	set	
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Standard	classification	of	time	series	

•  What	is	the	class	of	the	new	time	series	xT?	

x(t)

!

T
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Early	classification	of	time	series	

•  What	is	the	class	of	the	new	incomplete	time	series	xt?	

x(t)

T

!

t
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Early	classification	of	time	series	

•  What	is	the	class	of	the	new	incomplete	time	series	xt?	

x(t)

T

!

t
XT

XS
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Algorithms	for	games	

25/46 Cours IA  (A. Cornuéjols) 

L�algorithme alpha-beta : Illustration (9) 

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α  = + 10
β  = + ∞

6 7

Coup à jouerCoup à jouer

Taking	decision	when	the	current	
information	is	incomplete	

Aheuristic
No Specific Domain Knowledge

• Available actions for a given state (legal moves)

• Whether a given state is terminal (game over)

No Heuristics

• Intelligent moves with no strategic or tactical knowledge(!)

• Ideal for General Game Players (GGPs)

• Robust to delayed rewards, e.g. Go

Cameron Browne, 2010

Asymmetric
Kalah (b.f. ~6) Mancala variant
5,000 UCT iterations

Cameron Browne, 2010

Williams (2010)

MCTS	
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Algorithms	for	games	

•  Which	move	to	play?	

The	evaluation	function	is	insufficiently	informed	at	the	root	(current	situation)	

1.   	Query	experts	that	have	more	information	about		
potential	outcomes	

2.   	Combination	of	the	estimates	through	MinMax	

“Experts”	may	live	in	input	spaces	that	are	different	

25/46 Cours IA  (A. Cornuéjols) 

L�algorithme alpha-beta : Illustration (9) 

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α  = + 10
β  = + ∞

6 7

Coup à jouerCoup à jouer

Aheuristic
No Specific Domain Knowledge

• Available actions for a given state (legal moves)

• Whether a given state is terminal (game over)

No Heuristics

• Intelligent moves with no strategic or tactical knowledge(!)

• Ideal for General Game Players (GGPs)

• Robust to delayed rewards, e.g. Go

Cameron Browne, 2010

Asymmetric
Kalah (b.f. ~6) Mancala variant
5,000 UCT iterations

Cameron Browne, 2010

Williams (2010)

MCTS	

Taking	decision	when	the	current	
information	is	incomplete	
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Principle	

•  Learn	a	classifier	over	the	training	set	of	complete	times	series	

•  Try	to	make	use	of	this	classifier	to	predict	the	class	of	
incomplete	series	

SS = {(xS
i , y

S
i )}1im ! hS

hT = Function using hS
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Algorithms	for	games	and	transfer	learning	

			Which	move?	
–  Better	evaluation	function	in	XS
–  Backup	it	(by	transfer)	for	XT
–  Combine	the	results	using	MaxMin	

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

α  = − ∞

β  = + ∞

1

α  = − ∞
β  = + ∞

α  = − ∞
β  = + ∞

α  = − ∞
β  = + ∞

α  = − ∞
β  = + 10

?	 ?	

2 XS

2 XT
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TransBoost	

HT (x
T ) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T )
��

+

+

+

+
+

-

-

-

-

-

xi

X

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
⇡1
⇡2

⇡N

⇡j

⇧

hS
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Schéma général : apprentissage 

Apprentissage : h1

Apprentissage : h2

Apprentissage : h3

Apprentissage : hN

H = combine(h1, h2, ..., hN)

Échantillon 
d'apprentissage
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Exemple simple 

•  Quel est le meilleur séparateur linéaire ? 
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Exemple simple 

•  Taux d’erreur = 5/20 = 0.25 
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Exemple simple 

 Et si je pouvais combiner avec un autre séparateur 
linéaire ?  Ou même plusieurs autres ! 

Par exemple en utilisant un vote pondéré : 

H(x) = sign

{ l
∑

i=1

αi hi(x)

}
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Exemple simple 

H(x) = sign{ 0.549 h1(x) + 0.347 h2(x) +  

       0.310 h3(x) + 0.406 h4(x) + 0.503 h5(x) } 
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Exemple simple 

H(x) =sign{ 0.549 h1(x) + 0.347 h2(x) + 0.310 h3(x) + 0.406 h4(x)  

            + 0.503 h5(x) } 

n  Comment arriver à ce genre de combinaison ? 

Algorithme du boosting 
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Le principe général 

X h0 D0 

X h1 D1 

X h2 D2 

X hT DT 

Hfinale(x) =  sgn   αt  . ht(x)
t= 0

T

∑⎡ 
⎣ ⎢ 

⎤ 

⎦ ⎥ 

•  Comment	passer	de	Dt	à	Dt+1	?	

•  Comment	calculer	la	pondération	αt	?	
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TransBoost	

•  Principle:	
–  Learn	“weak	projections”:		

•  From:	

	

–  Using	boosting	

•  Projection								such	that	:		

•  Re-weight	the	training	time	series	and	loop	until	termination	

–  Result	

⇡i : XS ! XT

SS = {(xS
i , y

S
i )}1im

"n
.
= Pi⇠Dn [hS(⇡n(xi)) 6= yi] < 0.5⇡n

HT (x
T ) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T )
��
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TransBoost	

+

+

+

+
+

-

-

-

-

-

-
-

-

-
-
--

-

+

+ +

+

+
+

+

+

+
xi

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
�1
�2

�N

�j(xi)
�j

�

hS

XSXT

Figure 1: The principle of prediction using TransBoost. A given target exemple x
T

i is projected in the source
domain using a set of identified weak projections fij and the prediction for x

T

i is computed as: HT (xT

i ) =

sign
;qN

j=1 hS

!
fij(xT

i )
"<

.

Algorithm 1: Transfer learning by boosting
Input: hS : XS æ YS the source hypothesis

ST = {(xT

i , y
T

i }1ÆiÆm: the target training set

Initialization of the distribution on the training set: D1(i) = 1/m for i = 1, . . . , m ;

for n = 1, . . . , N do

Find a projection fii : XT æ XS st. hS(fii(·)) performs better than random on Dn(ST ) ;
Let Án be the error rate of hS(fii(·)) on Dn(ST ) : Án

.= Pi≥Dn [hS(fin(xi)) ”= yi] (with Án < 0.5) ;
Computes –i = 1

2 log2
! 1≠Ái

Ái

"
;

Update, for i = 1 . . . , m:

Dn+1(i) = Dn(i)
Zn

◊
I

e
≠–n if hS

!
fin(xT

i )
"

= y
T

i

e
–n if hS

!
fin(xT

i )
"

”= y
T

i

=
Dn(i) exp

!
≠–n y

(T )
i hS(fin(x(T )

i ))
"

Zn

where Zn is a normalization factor chosen so that Dn+1 be a distribution on ST ;
end

Output: the final target hypothesis HT : XT æ YT :

HT (xT ) = sign
; Nÿ

n=1
–n hS

!
fin(xT )

"<
(2)

5
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Controlled	data	

•  Control	of	

–  The	time-dependent	information	provided	to	distinguish	between	classes	

–  The	shapes	of	time	series	within	each	class	

–  The	noise	level	
xt = t⇥ slope⇥ class| {z }

information gain

+ xmax sin(!i ⇥ t + 'j)| {z }
sub shape within class

+ ⌘(t)|{z}
noise factor
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L’espace	des	projections	

•  Ensemble	de	projections	

Fonctions	coude				(5	paramètres)	

•  Abscisse	du	coude	

•  Angles	avant	et	après	

•  Fenêtre	prise	en	compte	
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Results	

The source domain comprises the complete time series (tS = 200), while the target domain contains
time series truncated to their first tT time steps (in our experiments, tT 2 {20, 50, 100}). On
each domain, a classifier (Gaussian SVM as implemented in Scikit Learn) was trained using the
corresponding training time series.

In these experiments, the set of projections ⇧ was chosen as a set of “hinge functions”, defined by
three parameters, the slope of the first linear part, the time where the hinge takes place, and the slope
of the second linear part. The set is explored randomly by the algorithm and a projection is retained
if its error rate on the current weighted data is better than 0.45.

Table 1 provides representative examples of the results obtained (see the supplementary material for
more comprehensive results). Each cell of the table shows the average performance (and the standard
deviations) computed from 100 experiments repeated under the same conditions. It is apparent that
TransBoost yields very significantly superior results in conditions where there is signal in the target
data set, but the learning task is not so easy as to not require transfer learning.

slope, noise, tT hT (train) hT (test) HT (train) HT (test) hS (test) H
0
T (test)

0.001, 0.001, 20 0.46 ± 0.02 0.50 ± 0.08 0.08 ± 0.03 0.08 ± 0.02 0.05 0.49 ± 0.01
0.005, 0.001, 20 0.46 ± 0.02 0.49 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 0.45 ± 0.01
0.005, 0.002, 20 0.46 ± 0.02 0.49 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.02 0.43 ± 0.01
0.005, 0.02, 20 0.44 ± 0.02 0.48 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.01 0.47 ± 0.01
0.001, 0.2, 20 0.46 ± 0.02 0.50 ± 0.01 0.46 ± 0.02 0.51 ± 0.02 0.11 0.49 ± 0.01
0.01, 0.2, 20 0.42 ± 0.03 0.47 ± 0.03 0.34 ± 0.02 0.35 ± 0.02 0.02 0.35 ± 0.01
0.001, 0.001, 50 0.46 ± 0.02 0.50 ± 0.01 0.08 ± 0.03 0.08 ± 0.02 0.06 0.41 ± 0.01
0.005, 0.001, 50 0.25 ± 0.07 0.28 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.01 0.28 ± 0.01
0.005, 0.002, 50 0.27 ± 0.07 0.30 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.02 0.28 ± 0.01
0.005, 0.02, 50 0.26 ± 0.07 0.30 ± 0.08 0.04 ± 0.01 0.04 ± 0.01 0.01 0.31 ± 0.01
0.001, 0.2, 50 0.44 ± 0.02 0.50 ± 0.01 0.38 ± 0.03 0.44 ± 0.02 0.15 0.43 ± 0.01
0.01, 0.2, 50 0.10 ± 0.03 0.12 ± 0.04 0.10 ± 0.02 0.11 ± 0.02 0.03 0.15 ± 0.02
0.001, 0.001, 100 0.43 ± 0.03 0.47 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.02 0.23 ± 0.01
0.005, 0.001, 100 0.06 ± 0.03 0.07 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.01 0.07 ± 0.02
0.005, 0.002, 100 0.08 ± 0.03 0.10 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.02 0.07 ± 0.01
0.005, 0.02, 100 0.08 ± 0.03 0.09 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.01 0.07 ± 0.01
0.001, 0.2, 100 0.04 ± 0.03 0.46 ± 0.02 0.28 ± 0.02 0.31 ± 0.01 0.16 0.31 ± 0.01
0.01, 0.2, 100 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.02 0.05 ± 0.01

Table 1: Comparison of learning directly in the target domain (columns hT (train) and hT (test)), using
TransBoost (columns HT (train) and HT (test)), learning in the source domain (column hS (test)) and, finally,
completing the time series with a SVR regression and using hS (naïve transfer). Test errors are highlighted in
the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without
transfer and learning with naïve transfer.

Figures 3 and 4 sum up all results. In both tables, the x-axis reports the error rate obtained using
TransBoost, while the y-axis reports the error rate of the competing algorithm: either the hypothesis
hT learnt on the target training data alone (Figure 3), or the hypothesis H

0

T
learned on the target data

completed using a SVR regression (Figure 4). The remarquable efficiency of TransBoost in a large
spectrum of situations is readily apparent. Transboost is less dominant when either the data is so
noisy that no method can learn from the data (right part of the graphs near the diagonal), or when the
task is so easy (large slope and/or low noise) that nothing can be gained from transfer learning (left
part).

When the source problem is a priori unrelated to the target learning problem

In this set of experiments, the source hypothesis hS : RtS ! {�1, +1} is chosen independently
from the target data set. TransBoost tries to find a set of projections from RtT to RtS so that a

combined hypothesis HT (xT ) = sign
⇢PN

n=1 ↵n hS

�
⇡n(xT )

��
can be computed for use in the

target domain DT .

7

Learning	from	
target	data	only	 TransBoost	

On	the	source	
domain	

Naïve	transfert	
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Results	

Figure 3: Comparison of error rates. y-axis:
test error of the SVM classifier (without trans-
fer). x-axis : test error of the TransBoost clas-
sifier with 10 boosting steps. The results of
75 experiments (each one repeated 100 times)
are summed up in this graph.

Figure 4: Comparison of error rates. y-axis:
test error of the “naïve” transfer method. x-
axis : test error of the TransBoost classifier
with 10 boosting steps. The results of 75
experiments (each one repeated 100 times)
are summed up in this graph.

In these experiments the target domain is R70 while the source domain is R40. The source hypothesis
is chosen randomly in a set of functions completely independently from the target classification
problem, which, here, is the same as in the first set of experiments. The set of projections is the same
as in the first set of experiments.

Table 2 shows a representative set of results. Again, even in this a priori difficult transfer problem,
TransBoost brings remarkable gains wrt. learning without transfer, except when the learning task is
easy using directly the target data. (Note that there is no error rate given for the source hypothesis
since it was not learnt using a data set. Indeed, even if it had been so, this error rate would not have
any meaning as regards to the target learning task).

slope, noise, tT hT (train) hT (test) HT (train) HT (test)
0.001, 0.001, 70 0.44 ± 0.02 0.48 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
0.005, 0.005, 70 0.11 ± 0.04 0.13 ± 0.05 0.02 ± 0.01 0.02 ± 0.02
0.005, 0.005, 70 0.10 ± 0.04 0.11 ± 0.05 0.01 ± 0.01 0.01 ± 0.01
0.005, 0.05, 70 0.11 ± 0.04 0.12 ± 0.05 0.04 ± 0.02 0.03 ± 0.01
0.001, 0.001, 70 0.42 ± 0.03 0.48 ± 0.02 0.33 ± 0.02 0.37 ± 0.02
0.01, 0.1, 70 0.06 ± 0.03 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.02

Table 2: Learning without transfer and with transfer using an apriori irrelevant source hypothesis.

7 Conclusions

In this paper, we have introduced a new perspective on transfer learning and a new method. The notion
of difference or distance between the source and target domains is seen differently. Whereas previous
works on domain adaptation and transfer learning emphasized finding a common representation of the
source and target training sets, thus limiting the possible differences between source and target, our
view is that what matters is to be able to translate questions in the target domain into questions that
can be answered by the available source hypothesis. In fact, as long as we can find “weak translators”,
we can use any source hypothesis at all, without any regard to its internal function or its purpose. In
this perspective, the core of transfer learning is to be able to identify an adequate set of projections or
translations ⇡: one with the weak transfer property and with limited capacity.

This is similar to the choice of a good regularization term. Here, the source hypothesis forces the
target hypothesis space to be of the form hS � ⇡ with ⇡ : XT ! XS . If the source hypothesis
(regularizer) is ill-chosen, then the learning task is made difficult or even impossible. In fact, negative

8
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Transfer	learning		Project Report - Telecom Paris 5

(a) kNN source model trained on
the data source : it fits to the data
source

(b) kNN source model trained on
the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target

Figure 5

(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.
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the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target

Figure 5

(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.

Using	Transboost	Learning	on	the	target	data	
(without	transfer)	

⇡i(x) = Ai · x + vi

⇡i(x) = x + vi
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Transfer	learning	

•  Illustrations	

Project Report - Telecom Paris 9

3 Application to MNIST and sklearn digits

3.1 Summary
MNIST and sklearn digits datasets are two commonly used hand-written digits datasets with two different

resolutions. MNIST is made of 28 by 28 hand-written digits images while digits from scikit-learn library is only
8 by 8.

Once we have studied TransBoost method on half-moons two-dimensional datasets, we tackle larger dimen-
sions, respectively d = 784 for MNIST and d = 64 for sklearn digits. We first transfer on MNIST only from 0
and 1 classification to 7 and 8. Then we transfer from 0 and 1 in MNIST to 0 and 1 in sklearn digits, and finally
the other way, from 0 and 1 in sklearn digits to 0 and 1 in MNIST.

The main targets remain scoring TransBoost method and comparing it to relearning from target training
set, in particular via linear SVC classifier.

3.2 Method
We first introduce a canonical projection matrix P between the two spaces we would transfer. It is supposed

to be an simple and relatively good transformation, without any form of boosting.
Then comes TransBoost, so the ⇧ projection function at each step is chosen to have the lowest error between

1000 random samples, given by :
⇧(x) = (P +A) ⇤ x+ y (12)

where P is the canonical projection matrix of size (dsource, dtarget), A a Gaussian matrix and y a Gaussian
vector (with standard normal distribution).

The projection between the two spaces is thereby a random variation of the canonical projection. Never-
theless, choosing the projection within relatively high-dimensional randomly generated matrices is of course an
unoptimized method which lead to longer calculation time.

3.2.1 From 0/1 in MNIST to 7/8 in MNIST

(a) Is it a zero or a one ? (b) Is it an eight or a seven ?

Figure 13: Transfer learning of the source model 0/1 so that it can distinguish 8/7

In this case, P is chosen to be the identity matrix. The intuitive idea is that representations of 7 are quite
close to 1’s, as 0’s are to 8’s. Transfer methods are thought all the more relevant to use as the distance between
source and target datasets are small. Therefore we expected a very low error by classifying sevens and eights
with the original classifier hsource trained on ones and zeros.

Figure 14: Canonical projection from MNIST (clipped to 24 by 24) to sklearn digits (8 by 8)

Project Report - Telecom Paris 10

3.2.2 Between 0/1 in MNIST and 0/1 sklearn digits

(a) Is it a zero or a one ? (b) Is it a zero or a one ?

Figure 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

In these cases, P are chosen to be whether an image compression matrix or a scaling up matrix, depending
on the direction of transfer. In order to increase performance and calculation speed, we clipped MNIST images
from 28 by 28 to 24 by 24 pixels. Not only we simplify compression as 24 is multiple of 8, and reduce the MNIST
dimension from d = 784 to d = 576, but also we equate the two datasets as sklearn digits are cut-short images.

3.3 Results
3.3.1 Scoring the canonical projection

For transferring from 0/1 in MNIST to 7/8 in MNIST, the average error was surprisingly evaluated at 70%
which contradict initial intuition. A posteriori, pairing zeros with sevens ans ones with eights leads to positive
results.

For projection between MNIST and sklearn digits, the use of the original model hsource composed with
canonical projection matrix, i.e. no TransBoost yet, leads to good accuracy results :

- less than 15% for transferring from MNIST to sklearn digits : 16

Figure 16: Accuracy comparison between both methods on a data test of variable proportion p

(a) Blue : TransBoost method

(b) Orange : Relearning SVC method

- less than 10% for transferring from sklearn Digit to MNIST : 18

3.3.2 Comparing TransBoost method with relearning from target training set

With TransBoost, minimal error on target test set is barely reached within at most 15 steps. Again, the
better the weak classifier hsource �⇧i is chosen, fewer are steps needed to achieve maximal accuracy.

Again, we compared this method to relearning via linear SVC, depending on the ratio of target test dataset
among total target data.

The result are quite similar within the 3 transfers tested.

3.4 Conclusion
Though TransBoost method allow reasonable low error levels, it seems to be less efficient than relearning

from a linear SVC, whatever the ratio of target test set is.
Moreover, TransBoost method takes certainly longer time to process as the projection are chosen randomly

between huge sample at each steps, but there is no doubt picking off weak classifier could largely be optimized.
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Transfer	learning	

•  Illustrations	
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1 Overview

Nowadays, several classification methods exist to split different classes of data. In order to do this, one could
mention classic binary classifiers such as the K- nearest neighbours (kNN) or the Linear SVC algorithms.

Assuming that you have a data that contains pictures of dogs and cats, using one of the basic binary class
methods is an obvious option to learn on this dataset, which we are about to call the dataset source in this
report. What about now if you have another dataset, so-called dataset target, composed of clip-arts of dogs
and cats ? Will you start over and train another independent model on this new dataset or will you use the one
you already have on the former data and adapt it ? Basically, our team has tried to answer this question by
comparing the accuracy of both approaches on different datasets.

Figure 1: Trained model on the data source : is it a picture of a dog or a cat ?

Figure 2: Model source transferred on the data target : is it a clip-art of a dog or a cat ?

In this study, we will let you know how we managed to do this classification transfer, by using a boosting
algorithm on the source model : Adaptive Boosting (AdaBoost). This being said, we will try to see how to
optimize the transferred model’s accuracy analytically. After that, we will see its performances on the classic
Half-moons dataset, which has been rotated. Then, we will use this process to compare the accuracy of a new
independent model trained on the data target in the one hand, and, on the other hand, the accuracy of the
method that we implemented using at the same time transfer and adaptive boosting methods. At least, we will
describe how this process had been employed on the convolutional neural artificial networks model trained on
the data source to make it able to classify the data target with a high level of accuracy from a very few data
training thanks to deep learning.

2 Adaptive Boosting or AdaBoost

2.1 Principle of AdaBoost
Obviously, all data cannot be fully well classified by a linear hypothesis (or classifier). This is the case of the

half-moons dataset for instance. That is why it is called a non linear dataset 3. It is composed of n vectors (x1,
y1), (x2,y2), ..., (xn, yn), where yj is the label associated to the feature xj .

AdaBoost is based on this idea that, after using a simple linear classifier on the data, some points will be
neglected and affected to the wrong class. Well, at the next iteration, these points will be overweighted as the
most important points of the dataset to well classify. Then, a second linear hypothesis is used to split again
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•  A		generalized		one	step		on-line	learning	

	XS	=	XT	
&	

YS	=	YT	

	XS	≠	XT	
&	

YS	=	YT	

		
XS	=	XT	

&	
YS	≠	YT	

	
	

	XS	≠	XT	
&	

YS	≠	YT	
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Conclusion	

•  	Ensemble	method	for	transfer	learning	

–  Learn	weak	translator	from	target	to	source!!	

–  The	learning	problem	now	becomes	the	problem		

of	choosing	a	good	set	of	(weak)	projections	

–  Theoretical	guarantees	exist	
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where ! : IR ! IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS ,

PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧ have the property given by Equation

(2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.

Then, with probability at least 1 � � (� 2 (0, 1)) over pairs of training sets

for tasks S and T :

RT (bhT )  !
� bRS(bhS)

�
+ 2

s
2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

s
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

(3)

Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probability at least 1 � �:

RT (hS � b⇡)  bRT (hS � b⇡) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 bRT (hS � ⇡⇤) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 RT (hS � ⇡⇤) + 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 !
�
RS(bhS)

�
+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 !
� bRS(bhS)

�
+ 2

r
2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy

|(R(h)� bR(h)|  2
q

2 d log(2em/d)+2 log(4/�)
m . For hS �⇧, this yields the first and

third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth
inequality with probability at least 1 � �/2. Applying the union bound archives
the desired results. The second inequality follows from the definition of b⇡, and
the fourth inequality is where we inject our assumption about the transferability
(or proximity) between the source and the target problem. ⇤

We can thus control the generalization error on the transfer domain by con-
trolling dhS�⇧ , mS and ! which measures the link between the domain and the
target domain. The number of target training data mT is typically supposed to
be small in transfer learning and thus cannot be employed to control the error.

Theoretical	guarantees	

[	Cornuéjols	A.,	Murena	P-A.	&	Olivier	R.	“Transfer	Learning	by	Learning	Projections	from	Target	to	Source”.		

Symposium	on	Intelligent	Data	Analysis	(IDA-2020),	April	27-29	2020,	Bodenseeforum,	Lake	Constance,	Germany.	]	
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Transfer Learning by Learning Projections from Target to Source

For the latter term, we adapt the theoretical study of Mc-
Namara and Balcan (?) on the transfer of representation
in deep neural networks. We suppose that PS , PT , hS ,
hT = bhS � ⇡ (⇡ 2 ⇧), bhS and ⇧ have the property:

8 bhS 2 HS : Min
⇡2⇧

RT (bhS � ⇡)  !
�
RS(hS)

�
(2)

where ! : IR ! IR is a non-decreasing function.

Equation (2) means that the best target hypothesis expressed
using the learned source hypothesis has a true risk bounded
by a non-decreasing function of the true risk on the source
domain of the learned source hypothesis.
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Theoretical	analysis	

Not	good!	

Even	though	this	is	the	one	that	allowed	us	to	get	publish	
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Additional	results	

•  Source	hypothesis	a	priori	without	relation	to	the	target	task!!??	

Figure 3: Comparison of error rates. y-axis:
test error of the SVM classifier (without trans-
fer). x-axis : test error of the TransBoost clas-
sifier with 10 boosting steps. The results of
75 experiments (each one repeated 100 times)
are summed up in this graph.

Figure 4: Comparison of error rates. y-axis:
test error of the “naïve” transfer method. x-
axis : test error of the TransBoost classifier
with 10 boosting steps. The results of 75
experiments (each one repeated 100 times)
are summed up in this graph.

In these experiments the target domain is R70 while the source domain is R40. The source hypothesis
is chosen randomly in a set of functions completely independently from the target classification
problem, which, here, is the same as in the first set of experiments. The set of projections is the same
as in the first set of experiments.

Table 2 shows a representative set of results. Again, even in this a priori difficult transfer problem,
TransBoost brings remarkable gains wrt. learning without transfer, except when the learning task is
easy using directly the target data. (Note that there is no error rate given for the source hypothesis
since it was not learnt using a data set. Indeed, even if it had been so, this error rate would not have
any meaning as regards to the target learning task).

slope, noise, tT hT (train) hT (test) HT (train) HT (test)
0.001, 0.001, 70 0.44 ± 0.02 0.48 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
0.005, 0.005, 70 0.11 ± 0.04 0.13 ± 0.05 0.02 ± 0.01 0.02 ± 0.02
0.005, 0.005, 70 0.10 ± 0.04 0.11 ± 0.05 0.01 ± 0.01 0.01 ± 0.01
0.005, 0.05, 70 0.11 ± 0.04 0.12 ± 0.05 0.04 ± 0.02 0.03 ± 0.01
0.001, 0.001, 70 0.42 ± 0.03 0.48 ± 0.02 0.33 ± 0.02 0.37 ± 0.02
0.01, 0.1, 70 0.06 ± 0.03 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.02

Table 2: Learning without transfer and with transfer using an apriori irrelevant source hypothesis.

7 Conclusions

In this paper, we have introduced a new perspective on transfer learning and a new method. The notion
of difference or distance between the source and target domains is seen differently. Whereas previous
works on domain adaptation and transfer learning emphasized finding a common representation of the
source and target training sets, thus limiting the possible differences between source and target, our
view is that what matters is to be able to translate questions in the target domain into questions that
can be answered by the available source hypothesis. In fact, as long as we can find “weak translators”,
we can use any source hypothesis at all, without any regard to its internal function or its purpose. In
this perspective, the core of transfer learning is to be able to identify an adequate set of projections or
translations ⇡: one with the weak transfer property and with limited capacity.

This is similar to the choice of a good regularization term. Here, the source hypothesis forces the
target hypothesis space to be of the form hS � ⇡ with ⇡ : XT ! XS . If the source hypothesis
(regularizer) is ill-chosen, then the learning task is made difficult or even impossible. In fact, negative

8

Learning	from	target	data	only	
TransBoost	with		

any	source	hypothesis	
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Analysis	

•  The	quality	of	the	source	hypothesis	on	the	source	data?	

–  Plays	no	role	

•  The	proximity	of	the	source	and	target	distributions	PX	and	PY?	

–  Plays	no	role	
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where ! : IR ! IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS ,

PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧ have the property given by Equation

(2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.

Then, with probability at least 1 � � (� 2 (0, 1)) over pairs of training sets

for tasks S and T :

RT (bhT )  !
� bRS(bhS)

�
+ 2

s
2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

s
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

(3)
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�
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2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

s
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

(4)

Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probability at least 1 � �:

RT (hS � b⇡)  bRT (hS � b⇡) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT
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2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 RT (hS � ⇡⇤) + 4
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mS
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mT

This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy

|(R(h)� bR(h)|  2
q

2 d log(2em/d)+2 log(4/�)
m . For hS �⇧, this yields the first and

third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth

Theoretical	guarantees	

[	Cornuéjols	A.,	Murena	P-A.	&	Olivier	R.	“Transfer	Learning	by	Learning	Projections	from	Target	to	Source”.		

Symposium	on	Intelligent	Data	Analysis	(IDA-2020),	April	27-29	2020,	Bodenseeforum,	Lake	Constance,	Germany.	]	
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Transfer Learning by Learning Projections from Target to Source

For the latter term, we adapt the theoretical study of Mc-
Namara and Balcan (?) on the transfer of representation
in deep neural networks. We suppose that PS , PT , hS ,
hT = bhS � ⇡ (⇡ 2 ⇧), bhS and ⇧ have the property:

8 bhS 2 HS : Min
⇡2⇧

RT (bhS � ⇡)  !
�
RS(hS)

�
(2)

where ! : IR ! IR is a non-decreasing function.

Equation (2) means that the best target hypothesis expressed
using the learned source hypothesis has a true risk bounded
by a non-decreasing function of the true risk on the source
domain of the learned source hypothesis.

Ridiculous	

Irrelevant	
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But…	!?	

However	some	transfer	learning	problems		

appear	to	us	more	easy	than	others???	

=>		No	condition	on	the	source!??	
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Interprétation	

•  Transfer	acts	as	a	bias	

•  We	look	for	hypotheses	of	the	form:	

–  If	the	source	hypothesis	is	well	chosen:	the	bias	is	well	informed	

–  Otherwise:	Learning	is	badly	directed	

																									or	there	is	over-fitting	if	the	capacity	of																is	too	large	

hS � ⇡ ⇡ : XT ! XSwith	

hS � ⇡
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Analysis	

•  The	generalization	properties	of	TransBoost	can	be	imported	
form	the	ones	for	boosting	

Transfer Learning by Learning Projections from Target to Source 5

where ! : IR ! IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS ,

PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧ have the property given by Equation

(2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.

Then, with probability at least 1 � � (� 2 (0, 1)) over pairs of training sets

for tasks S and T :
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Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probability at least 1 � �:
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This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy

|(R(h)� bR(h)|  2
q

2 d log(2em/d)+2 log(4/�)
m . For hS �⇧, this yields the first and

third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth
inequality with probability at least 1 � �/2. Applying the union bound archives

“Authors	also	present	some	theory,	but	at	the	moment,	again,	it	is	essentially	a	trivial	
extension	of	boosting	theory.	TL	bounds	should	incorporate	the	quality	of	the	source	
hypothesis,	e.g.	the	risk	of	the	source	on	\mathcal{D}_T.”	
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where ! : IR ! IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.
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This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy
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m . For hS �⇧, this yields the first and

third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth
inequality with probability at least 1 � �/2. Applying the union bound archives
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Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS ,

PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧ have the property given by Equation

(2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.

Then, with probability at least 1 � � (� 2 (0, 1)) over pairs of training sets

for tasks S and T :

RT (bhT )  !
� bRS(bhS)

�
+ 2

s
2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

s
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

(3)

HT =

⇢
sign

 NX

n=1

↵n hS � ⇡n

�
|↵n 2 IR, ⇡n 2 ⇧, n 2 [1, N ]

�

dVC(HT )  2(dhS�⇧ + 1)(N + 1) log2

�
(N + 1) e

�

R(h)  bR(h) + O
✓s

dhS�⇧ ln(mT /dhS�⇧) + ln(1/�)

mT

◆

Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probability at least 1 � �:

RT (hS � b⇡)  bRT (hS � b⇡) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 bRT (hS � ⇡⇤) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 RT (hS � ⇡⇤) + 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 !
�
RS(bhS)

�
+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

 !
� bRS(bhS)

�
+ 2

r
2 dHS log(2emS/dHS ) + 2 log(8/�)

mS

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧ ) + 2 log(8/�)

mT

This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy
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Outline	

1.  	Classical	inductive	learning	

2.  	Transfer	learning	

3.  	TransBoost:	an	original	approach	

4.  	Conclusion	
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TRANSBOOST	

•  	An	original	algorithm	

–  Simple	

–  A	single	parameter	

–  Inherits	the	good	properties	of	boosting	

•  Control	of	the	learning	error	

•  Control	of	the	test	error	

–  The	learning	problem	now	becomes	the	one	of		

choosing	a	good	projection	space	
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Conclusions	

1.  	Transfer	learning	

–  Will	gain	importance	

•  Long-life	learning	
•  Curriculum	learning	

2.  	No	good	encompassing	theoretical	framework	

–  Still	very	heuristic	

–  Limited	theories	

–  Interesting:	new	theoretical	questions		

3.  	An	original	perspective:	TransBoost	

–  A	new	notion	of	capacity:	related	to	projections	from	target	to	source	

–  The	performance	of	the	source	hypothesis	does	not	enter	the	theory!	
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