Apprentissage par transfert : État de l'art et présentation d'une nouvelle méthode par boosting de traductions entre cible et source

Antoine Cornuéjols

AgroParisTech – INRA MIA 518

EKINOCS research group

Outline

1. Classical inductive learning

- 2. Transfer learning
- **3.** TransBoost: an original approach
- **4.** Conclusion

Classical inductive learning

One example that tells a lot ...

• Examples described using:

Number (1 or 2); *size* (small or large); *shape* (circle or square); *color* (red or green)

• They belong either to class '+' or to class '-'

Description	Your prediction	True class
1 large red square		-
1 large green square		+
2 small red squares		+
2 large red circles		-
1 large green circle		+
1 small red circle		+

One example that tells a lot ...

• Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

Description	Your prediction	True class
1 large red square		-
1 large green square		+
2 small red squares		+
2 large red circles		-
1 large green circle		+
1 small red circle		+

How many possible functions altogether from X to Y? $2^{2^4} = 2^{16} = 65,536$

How many functions do remain after 6 training examples?

 $2^{10} = 1024$

5/97

One example that tells a lot ...

• Examples described using:

Number (1 or 2); *size* (small or large); *shape* (circle or square); *color* (red or green)

	Description	Your prediction	True class	
ſ	1 large red square		-	
	1 large green square		+	
	2 small red squares		+	
	2 large red circles		-	
	1 large green circle		+	
	1 small red circle		+	
	1 small green square		-	
15	1 small red square		+	
	2 large green squares		+	remaining
	2 small green squares		+	functions?
	2 small red circles		+	
	1 small green circle		-	
	2 large green circles		-	
	2 small green circles		+	
	1 large red circle		-	
	2 large red squares	?		? →

6/97

How to **chose** an hypothesis?

The statistical theory of learning

Real risk: expected loss

$$R(h) = \mathbb{E}[\ell(h(x), y)] = \int_{x \in \mathcal{X}, y \in \mathcal{Y}} \ell(h(x), y) \mathbf{P}_{\mathcal{X}\mathcal{Y}} d(x, y)$$

The statistical theory of learning

Real risk: expected loss

$$R(h) = \mathbb{E}[\ell(h(x), y)] = \int_{x \in \mathcal{X}, y \in \mathcal{Y}} \ell(h(x), y) \mathbf{P}_{\mathcal{X}\mathcal{Y}} d(x, y)$$

But $\mathbf{P}_{\mathcal{X}\mathcal{Y}}$ is unknown, then use: $\mathcal{S}_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$

The statistical theory of learning

Real risk: expected loss

$$R(h) = \mathbb{E}[\ell(h(x), y)] = \int_{x \in \mathcal{X}, y \in \mathcal{Y}} \ell(h(x), y) \mathbf{P}_{\mathcal{X}\mathcal{Y}} d(x, y)$$

But $\mathbf{P}_{\mathcal{X}\mathcal{Y}}$ is unknown, then use: $\mathcal{S}_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$

Empirical risk Minimization

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[R_m(h) \right] + \operatorname{Reg}_{h \in \mathcal{H}} \left[= \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{1}{m} \sum_{i=1}^m \ell(\boldsymbol{h}(\boldsymbol{x}_i), y_i) \right] + \lambda \operatorname{Capacity}(\mathcal{H}) \right]$$

Statistical study for $|\mathcal{H}|$ hypotheses

It leads to:

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R(h)}{k} \leq \widehat{R}(h) + \frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{m} \right] > 1 - \delta$$

The Empirical Risk Minimization principle

is sound **only if** there exists a limit (a bias) on the expressivity of ${\cal H}$

Tracking

[Richard Sutton, Anna Koop & David Silver (2007). On the role of tracking in stationary environments. ICML-2007]

Even in stationary environments, it can be advantageous to act as if the environment was changing!!!

Tracking: an intriguing idea

In a lot of natural settings:

- Data comes sequentially
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.

This enables:

- Powerful learning
- with limited resources (time + memory)

SKS:07 R. Sutton and A. Koop and D. Silver (2007) *"On the role of tracking in stationary environments"* (ICML-07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

Tracking: an intriguing idea

Assumptions:

- Data streams
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.
- Limited resources: Restricted hypothesis space *H*

"Local" learning

and local prediction :

$$L_t = \ell(h_t(\boldsymbol{x}_t), y_t)$$

= $\ell(h_t(\boldsymbol{x}_t), f(x_t, \theta_t))$

15¹/97

Tracking in stationary environments

Tracking to play Go

- 5 x 5 Go
 - More than 5 x 10¹⁰ unique positions
- Usual approach: learn a general evaluation function V(s)

Tracking to play go

Comparison:

- learn a general evaluation function V(s)
 - On **250,000 complete episodes** of self-play
- Learn successive evaluation functions $V_t(s)$ attuned to the current state
 - On **10,000 episodes** of self-play starting from the current position

Features	Tracking beats converging		
	Black	White	Total
1×1	82%	43%	62.5%
2×2	90%	71%	80.5%
3×3	93%	80%	86.5%

Table 1. Percentage of 5×5 Go games won by the tracking agent playing against the converging agent when playing as Black (first to move) and as White.

Tracking to play go

Comparison:

- learn a general evaluation function V(s)
 - On **250,000 complete episodes** of self-play
- Learn successive evaluation functions $V_t(s)$ attuned to the current state
 - On **10,000 episodes** of self-play starting from the current position

Features	Total	CPU (minutes)	
	features	Tracking	Converging
1×1	75	3.5	10.1
2×2	1371	5.7	13.8
3×3	178518	9.1	22.2

Table 2. Memory and CPU requirements for tracking and converging agents. The total number of binary features indicates the memory consumption. The CPU time is the average training time required to play a complete game: 250,000 episodes of training for the converging agent; 10,000 episodes of training per move for the tracking agent.

On-line learning

- What to keep?
- What to forget?
- How to adapt?

The plasticity vs. stability dilemma

- Very little theory
 - Except against any sequence: maximalist

[Cesa-Bianchi, N. & Lugosi G. "Prediction, learning and games". Cambridge University Press, 2006]

Outline

1. Classical inductive learning

2. Transfer learning

3. TransBoost: an original approach

4. Conclusion

Transfer learning

• A generalized one step on-line learning

22 / 97

Examples: transfer learning in vision

[Xu, Saenko, Tsang "Domain Transfer" tutorial – CVPR'12]

2²³ / 97

Domain adaptation for sentiment analysis

Electronics	Video games
(1) <u>Compact;</u> easy to operate; very good picture quality; looks <u>sharp</u> !	(2) A very <u>good</u> game! It is action packed and full of excitement. I am very much <u>hooked</u> on this game.
(3) I purchased this unit from Circuit City and I was very <u>excited</u> about the quality of the picture. It is really <u>nice</u> and <u>sharp</u> .	(4) Very <u>realistic</u> shooting action and good plots. We played this and were <u>hooked</u> .
(5) It is also quite <u>blurry</u> in very dark settings. I will <u>never_buy</u> HP again.	(6) It is so boring. I am extremely unhappy and will probably <u>never_buy</u> UbiSoft again.

- Source specific: *compact, sharp, blurry*.
- Target specific: *hooked, realistic, boring*.
- Domain independent: good, excited, nice, never_buy, unhappy.

[Pan, TL-IJCAI'13 tutorial]

Domain adaptation

Objective

- Improve a target prediction function in the target domain using knowledge from the source domain
- 1. The **training** and **test set** can be from the **same domain**, but with different probability distributions ("Domain adaptation")
 - Co-variate shift
 - Concept drift
- 2. Or they can be from **different domains**
 - Transfer learning

Notations

- **1. Source** domain *S*
 - Source training data S_s
 - Source data distribution D_s
 - Source **hypothesis** h_s
- 2. Target domain T
 - Target **training data** S_T ($|S_T| \ll |S_S|$)
 - Target data distribution D_T
 - Target hypothesis h_T

Formalisation

•	Target domain:	$\mathcal{X}_\mathcal{T} imes \mathcal{Y}_\mathcal{T}$
	 Training set 	$S_{\mathcal{T}} = \{ (\mathbf{x}_i^{\mathcal{T}}, y_i^{\mathcal{T}}) \}_{1 \le i \le m}$
	 Distribution 	$P_{\mathcal{X}\mathcal{Y}}^{T}$
•	Source domain:	$\mathcal{X}_{\mathcal{S}} imes \mathcal{Y}_{\mathcal{S}}$
•	Source domain: - Training set	$\mathcal{X}_{\mathcal{S}} imes \mathcal{Y}_{\mathcal{S}}$ $S_{\mathcal{S}} = \{(\mathbf{x}_i^{\mathcal{S}}, y_i^{\mathcal{S}})\}_{1 \le i \le m}$

- We look for: $h_{\mathcal{T}}: \mathcal{X}_{\mathcal{T}} \to \mathcal{Y}_{\mathcal{T}}$
- Algorithm $A^{\text{htl}} : (\mathcal{X}_{\mathcal{T}} \times \mathcal{Y}_{\mathcal{T}})^m \times \mathcal{H}_{\mathcal{S}} \to \mathcal{H}_{\mathcal{T}} \subseteq \mathcal{Y}_{\mathcal{X}}$ Hypothesis TL

27 / 97

Types of transfer learning (1)

- Inductive transfer learning
 - Labeled target training data
- Hypothesis transfer learning
 - Inductive transfer learning
 - The source hypothesis is known, not the source training data
- Unsupervised domain adaptation
 - Only unlabeled target data

Illustration

"half moon" problem

Supervised

Inductive Transfer Learning

Illustration

"half moon" problem

Unsupervised

Domain Adaptation

Examples of

Transfer learning

Domain Adaptation

Covariate shift

$X_{S} = X_{T}$	$X_{S} \neq X_{T}$
$\overset{\&}{Y}_{S} = Y_{T}$	$Y_{S} = Y_{T}$
$X_{S} = X_{T}$ $X_{S} \neq Y_{T}$	$X_{s} \neq X_{T}$ $\overset{\&}{Y_{s}} \neq Y_{T}$

• Input distribution changes

$$P_{train}(\mathbf{x}) \neq P_{test}(\mathbf{x})$$

• Functional relation remains unchanged

$$P_{train}(y|\mathbf{x}) = P_{test}(y|\mathbf{x})$$

Principle

- Law of large numbers
 - Sample averages converge to the population mean

$$\frac{1}{n} \sum_{i=1}^{n} A(x_i) \xrightarrow{x_i \stackrel{i.i.d.}{\sim} \mathbf{p}_{train}(x)}{n \to \infty} \int A(x) \, \mathbf{p}_{train}(x) \, dx$$

$$\frac{1}{n} \sum_{i=1}^{n} \frac{\mathbf{p}_{test}(x)}{\mathbf{p}_{train}(x)} A(x_i) \xrightarrow[n \to \infty]{x_i \stackrel{i.i.d.}{\sim} \mathbf{p}_{train}(x)}}{\int \frac{\mathbf{p}_{test}(x)}{\mathbf{p}_{train}(x)} A(x) \mathbf{p}_{train}(x) dx}$$

 $\frac{\mathbf{p}_{test}(x)}{\mathbf{p}_{train}(x)}$

$$\xrightarrow{x_i \overset{i.i.d.}{\sim} \mathbf{p}_{train}(x)}_{n \to \infty} \int A(x) \, \mathbf{p}_{test}(x) \, dx$$

?

- But how to estimate

Importance weighting

•

Estimation density is too crude in high dimension space (and with few ____ known testing instances)

Idea of Sugiyama: • - Learn a parametric model of $w(\mathbf{x}) = \frac{\mathbf{p}_{test}(x)}{\mathbf{p}_{test}(x)}$ $\hat{w}(\mathbf{x}) = \sum_{j=1}^{J} \theta_j \phi_j(\mathbf{x})$ and $\hat{\mathbf{p}}_{test}(\mathbf{x}) = \hat{w}(\mathbf{x}) \mathbf{p}_{train}(\mathbf{x})$

Covariate shift in regression

"Importance weighted" inductive criterion

Principle : weighting the classical ERM

$$R_{Cov}(h) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\mathbf{P}_{\mathcal{X}'}(\mathbf{x}_i)}{\mathbf{P}_{\mathcal{X}}(\mathbf{x}_i)} \right)^{\lambda} \left(h(\mathbf{x}_i - y_i)^2 \right)$$

SKM07 M. Sugiyama and M. Kraudelat and K.-R. Müller (2007) "Covariate Shift Adaptation by Importance Weighted Cross Validation" Journal of Machine Learning Research, vol.8: 985-1005

36 / 97
Hypothesis Transfer Learning

Transfer learning for **deep neural networks**

[Yosinski J, Clune J, Bengio Y, and Lipson H. *How transferable are features in deep neural networks?* In Advances in Neural Information Processing Systems 27 (NIPS '14), NIPS Foundation, 2014.]

38 / 97

Transfer learning for deep neural networks

Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects, typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and train them on the labelled data of the target task.

Learning Neural Networks using "distillation"

- We would like to deploy a classifier (NN) on a computationally limited device (e.g. *a smartphone*)
 - A deep NN cannot be used
- 2. The **learning task is difficult** and requires a large data set and a sophisticated learning method (e.g. a deep NN)

Question: can we use the learned deep NN as a **teacher** to help the **student** (i.e. the limited device) learn a simpler classifier?

Motivation

Example: A sophisticated learning technique - GoogLeNet

Distillation: principle

- 1. Use the sophisticated learning method (teacher) to learn to predict the target classes with a membership measure
- 2. Ask the student to *learn to predict the membership measure* computed by the teacher instead of the hard classes (on the training set)

Distillation: principle

1. The teacher uses a softmax function for the values of its output

$$q_i = \frac{e^{(z_i/T)}}{\sum_{j \in \text{classes}} e^{(z_j/T)}}$$

T is the temperature (the highest *T*, the less different are the outputs)

2. The student *learns to predict the membership measure* first with *T* high, and then, progressively, with *T* decreasing to 1.

When the soft targets have high entropy, they **provide much more information per training case** than hard targets and **much less variance in the gradient** between training cases, so the small model can often be trained on much less data than the original cumbersome model while using a much higher learning rate.

- What is a "successful" transfer learning situation?
 - How to measure "success"?
 - How can we **measure** the **performance** of transfer learning?
 - Is "failure" possible? Illustrations?

Remark:

- if the target data set is sufficiently large,
- transfer learning should not bring any advantage

- What are the conditions for a successful transfer learning?
- Why the proximity between the source and the target should play a role?
 - How to **measure** this proximity?
 - Between the **input distributions** P_S and P_T?
 - Between the **underlying** true source and target **functions** f_s and f_T ?
- What should intervene in the guarantees?
 - "distance" between source and target?
 - Size of the target training data?
 - Performance of the source hypothesis?

• What to transfer?

• When to transfer? Useful or not?

• How to transfer?

Existing theories

- Unsupervised Domain Adaptation
 - $f_s = f_T$ but $D_s \neq D_T$
 - 1. **Divergence-based** generalization bounds
 - Generalization bounds taking into account the geometry of the data distributions
 - Wasserstein distance (optimal transport)
 - Maximum mean discrepancy distance

Unsupervised Domain Adaptation

• A pioneering theory [Ben-David et al., 2010]

Théorème classique [Ben-David et al., 2010, Mansour et al., 2009a] Soit \mathcal{H} un espace d'hypothèses. Si D_S et D_T sont deux distributions sur X, alors : $\forall h \in \mathcal{H}, \quad \stackrel{\text{erreur cible}}{R_{P_T}(h)} \leq \underbrace{R_{P_S}(h)}_{\text{erreur source}} + \underbrace{\frac{1}{2}d_{\mathcal{H}}(D_S, D_T) + \nu}_{\text{divergences}}$

 $R_{P_S}(h)$: erreur classique sur le domaine source Minimisable via une méthode de classification supervisée sans adaptation

 $\frac{1}{2}d_{\mathcal{H}}(D_S, D_T)$: la \mathcal{H} -divergence entre D_S et D_T

$$\frac{1}{2}d_{\mathcal{H}}(D_{S}, D_{T}) = \sup_{(h, h') \in \mathcal{H}^{2}} \left| R_{D_{T}}(h, h') - R_{D_{S}}(h, h') \right|$$
$$= \sup_{(h, h') \in \mathcal{H}^{2}} \left| \mathbf{E}_{\mathbf{x}^{t} \sim D_{T}} \mathbf{I} \left[h(\mathbf{x}^{t}) \neq h'(\mathbf{x}^{t}) \right] - \mathbf{E}_{\mathbf{x}^{s} \sim D_{S}} \mathbf{I} \left[h(\mathbf{x}^{s}) \neq h'(\mathbf{x}^{s}) \right] \right|$$

u : divergence entre les étiquetages

 $\nu = \inf_{h' \in \mathcal{H}} \left(R_{P_{\mathcal{S}}}(h') + R_{P_{\mathcal{T}}}(h') \right),$ erreur jointe optimale [Ben-David et al., 2010]

ou $\nu = R_{P_T}(h_T^*) + R_{P_T}(h_T^*, h_S^*),$ $h_{\mathcal{X}}^*$ est la meilleure hypothèse sur le domaine \mathcal{X} [Mansour et al., 2009a] Idea: build a projection space in which the two distributions are close, while keeping a high performance level on the source domain

Idea

- Change the feature representation X to better represent shared characteristics between the two domains
 - some features are domain-specic,
 - others are generalizable
 - or there exist mappings from the original space
 - => Make source and target domain explicitly similar
 - => Learn a **new feature space** by embedding or projection

Illustration: Find latent spaces – Structural Correspondence Learning [Blitzer et al., 2007]

Identify shared features

Domains	Negative	Positive
Books	<pre>plot <num>_pages predictable reading_this page_<num></num></num></pre>	reader grisham engaging must_read fascinating
Kitchen	the_plastic poorly_designed leaking awkward_to defective	excellent_product espresso are_perfect years_now a_breeze
Pivot features	weak don't_waste awful	and_easy loved_it a_wonderful a_must highly_recommended

- Sentiment analysis Bag of words (bigrams)
- Choose *K* pivot features (frequent words in both domains, highly correlated with labels)
- Learn K classifiers to predict pivot features from remaining features
- For each feature add *K* new features
- Represents source and target data with these features

Illustration: Find latent spaces – Structural Correspondence Learning [Blitzer et al., 2007]

- Apply PCA source+target new features to get a low rank latent representation
- Learn a classifier in the new projection space defined by PCA

Existing theories

• Hypothesis Transfer Learning

h_s is known but not S_s

- Known generalization bounds only for linear classifiers
- And when $X_s = X_T$

[Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). *Advances in Domain Adaptation Theory*. Elsevier.]

Theory for HTL

$$h(\mathbf{x}) := \langle \hat{\boldsymbol{w}}, \mathbf{x} \rangle$$
$$\hat{\boldsymbol{w}} = \underset{\mathbf{w} \in \mathcal{H}}{\operatorname{argmin}} \left\{ \frac{1}{m} \sum_{i=1}^{m} (\langle \hat{\boldsymbol{w}}, \mathbf{x}_i \rangle - y_i)^2 + \lambda \| \mathbf{w} - \sum_{j=1}^{n} \beta_j \mathbf{w}_{\text{src}}^j \|_2^2 \right\}$$

THEOREM 7.3 ([KUZ 17]).– Let $h_{\hat{w},\beta}$ a hypothesis output by a regularized ERM algorithm from a m-sized training set T i.i.d. from the target domain \mathcal{T} , n source hypotheses $\{h_{src}^i : \|h_{src}^i\|_{\infty} \leq 1\}_{i=1}^n$, any source weights β obeying $\Omega(\beta) \leq \rho$ and $\lambda \in \mathbb{R}_+$. Assume that the loss is bounded by $M: \ell(h_{\hat{w},\beta}(\mathbf{x}), y) \leq M$ for any (\mathbf{x}, y) and any training set. Then, denote $\kappa = \frac{H}{\sigma}$ and assuming that $\lambda \leq \kappa$ with probability at least $1 - e^{-\eta}$, $\forall \eta \geq 0$:

$$R_{\mathcal{T}}(h_{\hat{\boldsymbol{w}},\boldsymbol{\beta}}) \leq R_{\hat{\mathcal{T}}}(h_{\hat{\boldsymbol{w}},\boldsymbol{\beta}}) + \mathcal{O}\left(\frac{R_{\mathcal{T}}^{src}\kappa}{\sqrt{m\lambda}} + \sqrt{\frac{R_{\mathcal{T}}^{src}\rho\kappa^{2}}{m\lambda}} + \frac{M\eta}{m\log\left(1 + \sqrt{\frac{M\eta}{u^{src}}}\right)}\right)$$
$$\leq R_{\hat{\mathcal{T}}}(h_{\hat{\boldsymbol{w}},\boldsymbol{\beta}}) + \mathcal{O}\left(\frac{\kappa}{\sqrt{m}}\left(\frac{R_{\mathcal{T}}^{src}}{\lambda} + \sqrt{\frac{R_{\mathcal{T}}^{src}\rho}{\lambda}}\right) + \frac{\kappa}{m}\left(\frac{\sqrt{R_{\mathcal{T}}^{src}}M\eta}{\lambda} + \sqrt{\frac{\rho}{\lambda}}\right)\right),$$
where $u^{src} = R^{src}\left(m + \frac{\kappa\sqrt{m}}{\lambda}\right) + \kappa\sqrt{\frac{R_{\mathcal{T}}^{src}m\rho}{\lambda}}$ and $R^{src} = R_{\mathcal{T}}(h^{\beta})$ is the risk of

where $u^{src} = R_{\mathcal{T}}^{src} \left(m + \frac{\kappa \sqrt{m}}{\lambda} \right) + \kappa \sqrt{\frac{R_{\mathcal{T}}^{src} m \rho}{\lambda}}$ and $R_{\mathcal{T}}^{src} = R_{\mathcal{T}}(h_{src}^{\beta})$ is the risk of the source hypothesis combination.

55 / 97

Theory for HTL

The risk of the source hypothesis combination on the target domain

provides an important indicator on the

relatedness between the source and the target domain

[Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). *Advances in Domain Adaptation Theory*. Elsevier.] p. 113

56 / 97

Outline

- **1**. Classical inductive learning
- 2. Transfer learning
- **3.** TransBoost: an original approach

4. Conclusion

TransBoost

An original approach to transfer learning

Classification of time series

- Monitoring of *consumer actions on a web site*:
- Monitoring of a *patient state*:
- Early prediction of daily *electrical consumption*:

will buy or not critical or not high or low

Standard classification of time series

• What is the class of the new time series x_7 ?

60 / 97

Early classification of time series

• What is the class of the new **incomplete** time series x_t ?

61/97

Early classification of time series

• What is the class of the new incomplete time series x_t ?

Algorithms for games

Algorithms for games

Taking decision when the current information is incomplete

• Which move to play?

The evaluation function is **insufficiently informed** at the root (current situation)

- Query experts that have more information about potential outcomes
- 2. Combination of the estimates through MinMax

"Experts" may live in *input spaces* that are *different*

• Learn a classifier over the training set of **complete times series**

$$S_{\mathcal{S}} = \{ (\mathbf{x}_i^{\mathcal{S}}, y_i^{\mathcal{S}}) \}_{1 \le i \le m} \to h_{\mathcal{S}}$$

 Try to make use of this classifier to predict the class of incomplete series

$$h_{\mathcal{T}}$$
 = Function using $h_{\mathcal{S}}$

Algorithms for games and transfer learning

Which move?

- Better evaluation function in X_s
- Backup it (by transfer) for $X_{T'}$
- Combine the results using MaxMin

TransBoost

Target Domain

Source Domain

$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$

67 / 97

Schéma général : apprentissage

• Quel est le meilleur séparateur linéaire ?

• Taux d'erreur = 5/20 = 0.25

Et si je pouvais combiner avec un autre séparateur linéaire ? Ou même plusieurs autres !

Par exemple en utilisant un vote pondéré :

$$H(\mathbf{x}) = \operatorname{sign}\left\{\sum_{i=1}^{l} \alpha_{i} h_{i}(\mathbf{x})\right\}$$

71/97

 $H(x) = sign\{ 0.549 h_1(x) + 0.347 h_2(x) + 0.310 h_3(x) + 0.406 h_4(x) + 0.503 h_5(x) \}$
Exemple simple

$$\begin{split} \mathsf{H}(\mathsf{x}) = sign\{ \ 0.549 \ \mathsf{h}_1(\mathsf{x}) + 0.347 \ \mathsf{h}_2(\mathsf{x}) + 0.310 \ \mathsf{h}_3(\mathsf{x}) + 0.406 \ \mathsf{h}_4(\mathsf{x}) \\ &+ 0.503 \ \mathsf{h}_5(\mathsf{x}) \, \} \end{split}$$

Comment arriver à ce genre de combinaison ?

Algorithme du boosting

Le principe général

TransBoost

- Principle:
 - Learn "weak projections": $\pi_i : \mathcal{X}_S \rightarrow \mathcal{X}_T$

• From:
$$S_{\mathcal{S}} = \{(\mathbf{x}_i^{\mathcal{S}}, y_i^{\mathcal{S}})\}_{1 \leq i \leq m}$$

- Using boosting

- Projection π_n such that : $\varepsilon_n \doteq \mathbf{P}_{i \sim D_n}[h_{\mathcal{S}}(\pi_n(\mathbf{x}_i)) \neq y_i] < 0.5$
- Re-weight the training time series and loop until termination

Result

$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$

TransBoost

Algorithm 1: Transfer learning by boosting

Input: $h_{\mathcal{S}} : \mathcal{X}_{\mathcal{S}} \to \mathcal{Y}_{\mathcal{S}}$ the source hypothesis $\mathcal{S}_{\mathcal{T}} = \{(\mathbf{x}_i^{\mathcal{T}}, y_i^{\mathcal{T}}\}_{1 \leq i \leq m}: \text{ the target training set } \}$

Initialization of the distribution on the training set: $D_1(i) = 1/m$ for i = 1, ..., m;

for n = 1, ..., N do Find a projection $\pi_i : \mathcal{X}_{\mathcal{T}} \to \mathcal{X}_{\mathcal{S}}$ st. $h_{\mathcal{S}}(\pi_i(\cdot))$ performs better than random on $D_n(\mathcal{S}_{\mathcal{T}})$; Let ε_n be the error rate of $h_{\mathcal{S}}(\pi_i(\cdot))$ on $D_n(\mathcal{S}_{\mathcal{T}}) : \varepsilon_n \doteq \mathbf{P}_{i\sim D_n}[h_{\mathcal{S}}(\pi_n(\mathbf{x}_i)) \neq y_i]$ (with $\varepsilon_n < 0.5$); Computes $\alpha_i = \frac{1}{2}\log_2(\frac{1-\varepsilon_i}{\varepsilon_i})$; Update, for i = 1..., m: $D_{n+1}(i) = \frac{D_n(i)}{Z_n} \times \begin{cases} e^{-\alpha_n} & \text{if } h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{\mathcal{T}})) = y_i^{\mathcal{T}} \\ e^{\alpha_n} & \text{if } h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{\mathcal{T}})) \neq y_i^{\mathcal{T}} \end{cases}$ $= \frac{D_n(i) \exp(-\alpha_n y_i^{(\mathcal{T})} h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{(\mathcal{T})})))}{Z_n}$

where Z_n is a normalization factor chosen so that D_{n+1} be a distribution on $\mathcal{S}_{\mathcal{T}}$; end

Output: the final target hypothesis $H_{\mathcal{T}} : \mathcal{X}_{\mathcal{T}} \to \mathcal{Y}_{\mathcal{T}}$:

$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$
(2)

Controlled data

• Control of

- The time-dependent information provided to distinguish between classes
- The shapes of **time series** within each class
- The noise level

L'espace des projections

• Ensemble de projections

Fonctions coude (5 paramètres)

- Abscisse du coude
- **Angles** avant et après
- **Fenêtre** prise en compte

nesuits								
				On the source				
		 Learning from target data only 		TransBoost		domain	Naïve tr	ansfert
		,						
	slope, noise, $t_{\mathcal{T}}$	$h_{\mathcal{T}}$ (train)	$h_{\mathcal{T}}$ (test)	$H_{\mathcal{T}}$ (train)	$H_{\mathcal{T}}$ (test)	$h_{\mathcal{S}}$ (test)	$H'_{\mathcal{T}}$ (test)	
	0.001, 0.001, 20	0.46 ± 0.02	0.50 ± 0.08	0.08 ± 0.03	$\textbf{0.08} \pm 0.02$	0.05	0.49 ± 0.01	
	0.005, 0.001, 20	0.46 ± 0.02	0.49 ± 0.01	0.01 ± 0.01	$\textbf{0.01} \pm 0.01$	0.01	0.45 ± 0.01	
	0.005, 0.002, 20	0.46 ± 0.02	0.49 ± 0.03	0.03 ± 0.02	$\textbf{0.04} \pm 0.02$	0.02	0.43 ± 0.01	
	0.005, 0.02, 20	0.44 ± 0.02	0.48 ± 0.03	0.09 ± 0.01	$\textbf{0.10}\pm0.01$	0.01	0.47 ± 0.01	
	0.001, 0.2, 20	0.46 ± 0.02	0.50 ± 0.01	0.46 ± 0.02	0.51 ± 0.02	0.11	0.49 ± 0.01	
	0.01, 0.2, 20	0.42 ± 0.03	0.47 ± 0.03	0.34 ± 0.02	0.35 ± 0.02	0.02	0.35 ± 0.01	
	0.001, 0.001, 50	0.46 ± 0.02	0.50 ± 0.01	0.08 ± 0.03	0.08 ± 0.02	0.06	0.41 ± 0.01	
	0.005, 0.001, 50	0.25 ± 0.07	0.28 ± 0.09	0.01 ± 0.01	$\textbf{0.01} \pm 0.01$	0.01	0.28 ± 0.01	
	0.005, 0.002, 50	0.27 ± 0.07	0.30 ± 0.08	0.02 ± 0.01	$\textbf{0.02} \pm 0.01$	0.02	0.28 ± 0.01	
	0.005, 0.02, 50	0.26 ± 0.07	0.30 ± 0.08	0.04 ± 0.01	0.04 ± 0.01	0.01	0.31 ± 0.01	
	0.001, 0.2, 50	0.44 ± 0.02	0.50 ± 0.01	0.38 ± 0.03	0.44 ± 0.02	0.15	0.43 ± 0.01	
	0.01, 0.2, 50	0.10 ± 0.03	0.12 ± 0.04	0.10 ± 0.02	0.11 ± 0.02	0.03	0.15 ± 0.02	
	0.001, 0.001, 100	0.43 ± 0.03	0.47 ± 0.03	0.07 ± 0.02	0.07 ± 0.02	0.02	0.23 ± 0.01	
	0.005, 0.001, 100	0.06 ± 0.03	0.07 ± 0.03	0.01 ± 0.01	$\textbf{0.01} \pm 0.01$	0.01	0.07 ± 0.02	
	0.005, 0.002, 100	0.08 ± 0.03	0.10 ± 0.04	0.02 ± 0.01	$\textbf{0.02} \pm 0.01$	0.02	0.07 ± 0.01	
	0.005, 0.02, 100	0.08 ± 0.03	0.09 ± 0.03	0.02 ± 0.01	$\textbf{0.03} \pm 0.01$	0.01	0.07 ± 0.01	
	0.001, 0.2, 100	0.04 ± 0.03	0.46 ± 0.02	0.28 ± 0.02	0.31 ± 0.01	0.16	0.31 ± 0.01	
	0.01, 0.2, 100	0.03 ± 0.01	0.05 ± 0.02	0.04 ± 0.01	0.05 ± 0.01	0.02	0.05 ± 0.01	

Doculto

Table 1: Comparison of learning directly in the target domain (columns $h_{\mathcal{T}}$ (train) and $h_{\mathcal{T}}$ (test)), using TransBoost (columns $H_{\mathcal{T}}$ (train) and $H_{\mathcal{T}}$ (test)), learning in the source domain (column $h_{\mathcal{S}}$ (test)) and, finally, completing the time series with a SVR regression and using $h_{\mathcal{S}}$ (naïve transfer). Test errors are highlighted in the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without transfer and learning with naïve transfer.

Results

Figure 3: Comparison of error rates. *y*-axis: test error of the SVM classifier (without transfer). *x*-axis : test error of the TransBoost classifier with 10 boosting steps. The results of 75 experiments (each one repeated 100 times) are summed up in this graph.

Figure 4: Comparison of error rates. *y*-axis: test error of the "naïve" transfer method. *x*-axis : test error of the TransBoost classifier with 10 boosting steps. The results of 75 experiments (each one repeated 100 times) are summed up in this graph.

Transfer learning

Transfer learning

• Illustrations

FIGURE 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

Transfer learning

•	lustrations
---	-------------

$X_{S} = X_{T}$	$X_{S} \neq X_{T}$
$\overset{\&}{Y}_{S} = Y_{T}$	$K_{S} = Y_{T}$
$X_{S} = X_{T}$ $K_{S} \neq Y_{T}$	X _S ≠ X _T & Y _S ≠ Y _T

FIGURE 2: Model source transferred on the data target : is it a clip-art of a dog or a cat?

Conclusion

- Ensemble method for transfer learning
 - Learn weak translator from target to source!!
 - The learning problem now becomes the problem of choosing a good set of (weak) projections
 - Theoretical guarantees exist

Theoretical guarantees

$$\forall \, \widehat{h}_{\mathcal{S}} \in \mathcal{H}_{\mathcal{S}} : \quad \min_{\pi \in \Pi} R_{\mathcal{T}}(\widehat{h}_{\mathcal{S}} \circ \pi) \leq \omega \big(R_{\mathcal{S}}(h_{\mathcal{S}}) \big) \quad (2)$$

where $\omega : \mathbb{R} \to \mathbb{R}$ is a non-decreasing function.

Theorem 1. Let $\omega : \mathbb{R} \to \mathbb{R}$ be a non-decreasing function. Suppose that P_S , P_T , h_S , $h_T = \hat{h}_S \circ \pi(\pi \in \Pi)$, \hat{h}_S and Π have the property given by Equation (2). Let $\hat{\pi} := \operatorname{ArgMin}_{\pi \in \Pi} \widehat{R}_T(\hat{h}_S \circ \pi)$, be the best apparent projection.

Then, with probability at least $1 - \delta$ ($\delta \in (0, 1)$) over pairs of training sets for tasks S and T:

$$R_{\mathcal{T}}(\hat{h}_{\mathcal{T}}) \leq \omega \left(\widehat{R}_{\mathcal{S}}(\hat{h}_{\mathcal{S}}) \right) + 2 \sqrt{\frac{2d_{\mathcal{H}_{\mathcal{S}}}\log(2em_{\mathcal{S}}/d_{\mathcal{H}_{\mathcal{S}}}) + 2\log(8/\delta)}{m_{\mathcal{S}}}} + 4 \sqrt{\frac{2d_{h_{\mathcal{S}}\circ\Pi}\log(2em_{\mathcal{T}}/d_{h_{\mathcal{S}}\circ\Pi}) + 2\log(8/\delta)}{m_{\mathcal{T}}}}$$
(3)

[Cornuéjols A., Murena P-A. & Olivier R. *"Transfer Learning by Learning Projections from Target to Source"*. Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany.]

Theoretical analysis

Not good!

Even though this is the one that allowed us to get publish

Additional results

• Source hypothesis a priori without relation to the target task!!??

	Learning from ta	irget data only	TransBoost with any source hypothesis		
	~)	[<u></u>	
slope, noise, $t_{\mathcal{T}}$	$h_{\mathcal{T}}$ (train)	$h_{\mathcal{T}}$ (test)	$H_{\mathcal{T}}$ (train)	$H_{\mathcal{T}}$ (test)	
0.001, 0.001, 70	0.44 ± 0.02	0.48 ± 0.02	0.06 ± 0.02	$\textbf{0.06} \pm 0.02$	
0.005, 0.005, 70	0.11 ± 0.04	0.13 ± 0.05	0.02 ± 0.01	$\textbf{0.02} \pm 0.02$	
0.005, 0.005, 70	0.10 ± 0.04	0.11 ± 0.05	0.01 ± 0.01	$\textbf{0.01} \pm 0.01$	
0.005, 0.05, 70	0.11 ± 0.04	0.12 ± 0.05	0.04 ± 0.02	$\textbf{0.03} \pm 0.01$	
0.001, 0.001, 70	0.42 ± 0.03	0.48 ± 0.02	0.33 ± 0.02	$\textbf{0.37} \pm 0.02$	
0.01, 0.1, 70	0.06 ± 0.03	0.08 ± 0.03	0.08 ± 0.02	0.08 ± 0.02	

Table 2: Learning without transfer and with transfer using an apriori irrelevant source hypothesis.

- The **quality of the source hypothesis** on the source data?
 - Plays no role
- The **proximity of the source and target** distributions P_X and P_Y ?
 - Plays no role

Theoretical guarantees

[Cornuéjols A., Murena P-A. & Olivier R. *"Transfer Learning by Learning Projections from Target to Source"*. Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany.] => No condition on the source!??

However some transfer learning problems appear to us more easy than others???

Interprétation

• Transfer acts as a bias

• We look for **hypotheses of the form**:

$$h_{\mathcal{S}} \circ \pi$$
 with $\pi : \mathcal{X}_{\mathcal{T}} \to \mathcal{X}_{\mathcal{S}}$

- If the source hypothesis is well chosen: the bias is well informed
- Otherwise: Learning is badly directed

or there is **over-fitting** if the capacity of $h_{\mathcal{S}} \circ \pi$ is too large

• The **generalization properties** of TransBoost can be imported form the ones for **boosting**

$$\mathcal{H}_{\mathcal{T}} = \left\{ \operatorname{sign} \left[\sum_{n=1}^{N} \alpha_n \, h_{\mathcal{S}} \circ \pi_n \right] | \alpha_n \in \mathbb{R}, \pi_n \in \Pi, n \in [1, N] \right\}$$
$$d_{\operatorname{VC}}(\mathcal{H}_{\mathcal{T}}) \leq 2(d_{h_{\mathcal{S}} \circ \Pi} + 1)(N+1) \log_2((N+1)e)$$
$$R(h) \leq \widehat{R}(h) + \mathcal{O}\left(\sqrt{\frac{d_{h_{\mathcal{S}} \circ \Pi} \ln(m_{\mathcal{T}}/d_{h_{\mathcal{S}} \circ \Pi}) + \ln(1/\delta)}{m_{\mathcal{T}}}} \right)$$

"Authors also present some theory, but at the moment, again, it is essentially a trivial extension of boosting theory. **TL bounds should incorporate the quality of the source hypothesis**, e.g. the risk of the source on \mathcal{D}_T."

Outline

- **1**. Classical inductive learning
- 2. Transfer learning
- **3.** TransBoost: an original approach

4. Conclusion

Conclusions

TRANSBOOST

- An **original** algorithm
 - Simple
 - A single parameter
 - Inherits the good properties of boosting
 - Control of the learning error
 - Control of the **test error**
 - The learning problem now becomes the one of choosing a good projection space

Conclusions

- 1. Transfer learning
 - Will gain importance
 - Long-life learning
 - Curriculum learning
- 2. No good encompassing theoretical framework
 - Still very heuristic
 - Limited theories
 - Interesting: new theoretical questions
- 3. An original perspective: TransBoost
 - A **new notion of capacity**: related to projections from target to source
 - The performance of the source hypothesis **does not enter the theory!**

Bibliography

- Ben-David, S., Lu, T., Luu, T., & Pál, D. (2010). Impossibility theorems for domain adaptation. In *International Conference on Artificial Intelligence and Statistics* (pp. 129-136).
- Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. *Machine learning*, *79*(1-2), 151-175.
- Cornuéjols A., Murena P-A. & Olivier R. *"Transfer Learning by Learning Projections from Target to Source"*.
 Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany.
- Kuzborskij, I., & Orabona, F. (2013, February). Stability and hypothesis transfer learning. In *International Conference on Machine Learning* (pp. 942-950).
- Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. *arXiv preprint arXiv:* 0902.3430.
- Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). *Advances in Domain Adaptation Theory*. Elsevier.
- H. Venkateswara, S. Chakraborty, and S. Panchanathan, "Deep-learning systems for domain adaptation in computer vision: Learning transferable feature representations," *IEEE Signal Processing Magazine*, vol. 34, no. 6, pp. 117–129, 2017.
- Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. In Advances in neural information processing systems (pp. 3320-3328).
- Zhang, C., Zhang, L., & Ye, J. (2012). Generalization bounds for domain adaptation. In *Advances in neural information processing systems* (pp. 3320-3328).