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Dream	of	the	pioneers	
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Information		
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Dream	of	the	pioneers	

1.  	Understanding	intelligence	
–  Reasoning:	symbolic	AI	

–  Inspired	by	the	brain	

2.  	Focused	on	human	performances		

–  Playing	chess	

–  Reasoning	like	humans:	planning,	solving	problems,	analogy	thinking,	...	

–  Understanding	texts	and	discourses	

–  Able	to	express	itself	using	natural	language	

Computation		

Information		
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Outline	

1.  	A	brief	history	of	AI	

2.  	AI	now:	the	triumph	of	deep	neural	networks	

3.  	AI	in	the	near	future	

4.  There	are	limits	

5.  The	case	of	XAI	

6.  Conclusion	

	



The	assumption	

Intelligence	is		

general	reasoning	processes	

8	

(~1956	–	~1969)	
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Reasoning	/	problem	solving	

•  Search	in	a	graph		
10	

5.1 The Logic Theorist and Heuristic Search

Figure 5.2: The eight-puzzle.

with. I will represent the starting position by the following structure, which is
a list of three sublists:

((2, 8, 3), (1, 6, 4), (7, B, 5)).

The first sublist, namely, (2, 8, 3), names the occupants of the first row of the
puzzle array, and so on. B stands for the empty cell in the middle of the third
row.

In the same fashion, the goal configuration is represented by the following
structure:

((1, 2, 3), (8, B, 4), (7, 6, 5)).

Next, we have to show how a computer can transform structures of the
kind we have set up in a way that corresponds to the allowed moves of the
puzzle. Note that when a tile is moved, it swaps places with the blank cell;
that is, the blank cell moves too. The blank cell can either move within its row
or can change rows.

Corresponding to these moves of the blank cell, when a tile moves within
its row, B swaps places with the number either to its left in its list (if there is
one) or to its right (if there is one). A computer can easily make either of
these transformations. When the blank cell moves up or down, B swaps places
with the number in the corresponding position in the list to the left (if there is
one) or in the list to the right (if there is one). These transformations can also
be made quite easily by a computer program.

Using the Newell and Simon approach, we start with the symbol structure
representing the starting configuration of the eight-puzzle and apply allowed
transformations until a goal is reached. There are three transformations of the
starting symbol structure. These produce the following structures:

((2, 8, 3), (1, 6, 4), (B, 7, 5)),

((2, 8, 3), (1, 6, 4), (7, 5, B)),

and
((2, 8, 3), (1, B, 4), (7, 6, 5)).
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5 Early Heuristic Programs

None of these represents the goal configuration, so we continue to apply
transformations to each of these and so on until a structure representing the
goal is reached. We (and the computer) can keep track of the transformations
made by arranging them in a treelike structure such as shown in Fig. 5.3.
(The arrowheads on both ends of the lines representing the transformations
indicate that each transformation is reversible.)

Figure 5.3: A search tree.

This version of the eight-puzzle is relatively simple, so not many
transformations have to be tried before the goal is reached. Typically though
(especially in larger versions of the puzzle), the computer would be swamped
by all of the possible transformations – so much so that it would never
generate a goal expression. To constrain what was later called “the
combinatorial explosion” of transformations, Newell and Simon suggested
using “heuristics” to generate only those transformations guessed as likely to
be on the path to a solution.

In one of their papers about LT, they wrote “A process that may solve a
problem, but o↵ers no guarantees of doing so, is called a heuristic for that
problem.” Rather than blindly striking out in all directions in a search for a
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The	first	mobile	robot:	Shakey	(SRI)	

			Vision		

+	planning	

+	interface	through	

pseudo	natural	

language	

12.1 Shakey, the SRI Robot

Figure 12.3: Shakey as it existed in November 1968 (with some of its components
labeled). (Photograph courtesy of SRI International.)

around a single obstacle lying between its initial position and a goal position,
Shakey should first head toward a point near an occluding boundary of the
obstacle and then head straight for the unobstructed final goal point.
However, the situation becomes more complicated if the environment is
littered with several obstacles, and we sought a general solution to this more
di�cult problem.

Shakey kept information about the location of obstacles and about its
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Machine	Vision	

•  Stanford	AI	Lab	
8 1960s’ Infrastructure

support from ARPA, the Lab took delivery of a DEC PDP-6 computer and,
later, a PDP-10 computer. In addition to its work in AI (which I’ll describe in
subsequent chapters), SAIL was involved in many other computer-related
projects including the development of a precursor to computer “windows” and
the early installation of terminals in everyone’s o�ces.5

Figure 8.1: Site of the Stanford AI Lab from 1966 until 1980. (Photograph
courtesy of Lester Earnest.)

Since their early days, the groups at CMU, MIT, and Stanford have been
among the leaders of research in AI. Often graduates of one of these
institutions became faculty members of one of the other ones.

Around 1965 another world-class AI center emerged at the University of
Edinburgh in Scotland. Its founder was Donald Michie (1923–2007; Fig. 8.2),
who had worked with Alan Turing and I. J. (Jack) Good at Bletchley Park
during the Second World War. Discussions there with Turing and Good about
intelligent machines captivated Michie. As he reported in an October 2002
interview, “I resolved to make machine intelligence my life as soon as such an
enterprise became feasible.”6 Because computer facilities in the mid- to late
1940s were primitive and scarce, Michie became a geneticist and molecular
biologist.

Pursuing his interest in machine intelligence, from the sidelines as it were,
in 1960 he put together a “contraption of matchboxes and glass beads” that
could learn to play tic-tac-toe (noughts and crosses). He named his “machine”
MENACE, an acronym for Matchbox Educable Noughts and Crosses Engine.7
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9.3 Computer Vision of Three-Dimensional Solid Objects

Figure 9.12: A scene analyzed by SEE. (Illustration used with permission of
Adolpho Guzman.)

leaving MIT in 1967 to become a professor of Information and Computer
Science at the University of California at Santa Cruz, he completed a theory
for assigning labels to the lines in drawings of trihedral solids – objects in
which exactly three planar surfaces join at each vertex of the object. The
labels depended on the ways in which planes could come together at a vertex.
(I got to know Hu↵man well at that time because he consulted frequently at
the Stanford Research Institute.)

Hu↵man pointed out that there are only four ways in which three plane
surfaces can come together at a vertex.25 These are shown in Fig. 9.13. In
addition to these four kinds of vertices, a scene might contain what Hu↵man
called “T-nodes” – line intersection types caused by one object in a scene
occluding another. These all give rise to a number of di↵erent kinds of labels
for the lines in the scene; these labels specify whether the lines correspond to
convex, concave, or occluding edges.

Hu↵man noted that the labels of the lines in a drawing might be locally
consistent (around some vertices) but still be globally inconsistent (around all
of the vertices). Consider, for example, Roger Penrose’s famous line drawing of
an “impossible object” shown in Fig. 9.14.26 (It is impossible because no
three-dimensional object, viewed in “general position,” could produce this
image.) No “real scene” can have a line with two di↵erent labels.

Copyright c�2010 Nils J. Nilsson
http://ai.stanford.edu/⇠nilsson/

All rights reserved. Please do not reproduce or cite this version. September 13, 2009.
Print version published by Cambridge University Press.

http://www.cambridge.org/us/0521122937

183

9.3 Computer Vision of Three-Dimensional Solid Objects

Max Clowes (circa 1944–1981) of Sussex University in Britain developed
similar ideas independently,27 and the labeling scheme is now generally known
as Hu↵man–Clowes labeling.

Next comes David Waltz (1943– ). In his 1972 MIT Ph.D. thesis, he
extended the Hu↵man–Clowes line-labeling scheme to allow for line drawings
of scenes with shadows and possible “cracks” between two adjoining objects.28
Waltz’s important contribution was to propose and implement an e�cient
computational method for satisfying the constraint that all of the lines must
be assigned one and only one label. (For example, an edge can’t be concave
at one end and convex at the other.) In Fig. 9.15, I show an example of a line
drawing that Waltz’s program could correctly segment into its constituents.

Figure 9.15: A scene with shadows analyzed by Waltz’s program. (Illustration
used with permission of David Waltz.)

Summarizing some of the work on processing line drawings at MIT,
Patrick Winston says that “Guzman was the experimentalist, Hu↵man the
theoretician, and Waltz the encyclopedist (because Waltz had to catalog
thousands of junctions, in order to deal with cracks and shadows).”29

Meanwhile, similar work for finding, identifying, and describing objects in
three-dimensional scenes was being done at Stanford. By 1972 Electrical
Engineering Ph.D. student Gilbert Falk could segment scenes of line drawings
into separate objects using techniques that were extensions of those of
Guzman.30 And by 1973, Computer Science Ph.D. student Gunnar Grape
performed segmentation of scenes containing parallelepipeds and wedges using
models of those objects.31

Other work on analysis of scenes containing polyhedra was done by
Yoshiaki Shirai while he was visiting MIT’s AI Lab32 and by Alan Mackworth
at the Laboratory of Experimental Psychology of the University of Sussex.33
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Interface	en	langage	pseudo	naturel	

13 Progress in Natural Language Processing

Figure 13.2: SHRDLU’s world. (Illustration used with permission of Terry Wino-
grad.)

OK.

The system answers "OK" when it carries out a command.

(I won’t bother to show what the block configuration looks like as the dialog
proceeds, assuming you can use your own mental “model” to keep track of
things. The gripper is now holding the red block.)

2. grasp the pyramid.

There are three pyramids in the scene, so the program
does nothing.

I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

3. find a block which is taller than the one you are
holding and put it into the box.
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13.2 Understanding

Figure 13.1: Terry Winograd. (Photograph courtesy of Terry Winograd.)

SHRDLU was able to carry on a dialog about what Winograd called a
“micro-world,” a world consisting of toy blocks and a “gripper” for moving
them about. Unlike the the world of real blocks used in previous MIT and
Stanford hand–eye research, Winograd’s blocks world was simulated on a DEC
PDP-10 computer and viewed on a DEC 340 black-and-white graphics display
such as that shown in Fig. 13.2. SHRDLU could be given commands, typed in
ordinary English, to manipulate the blocks using its gripper. It could also be
asked questions about the state of its world. It could “understand” those
commands and questions, carry out requested manipulations, and ask the user
clarifying questions in English about questions or commands it did not
understand.

Before describing something about SHRDLU’s design, let us look at an
example of part of a dialog.8 In the following, the user’s input is numbered
and shown in lowercase letters, and SHRDLU’s response is in all caps,
Winograd’s commentary follows in the same typeface, and mine is in
parentheses in normal type:

1. pick up a big red block.

In order to pick up the red block, it had to clear it
off by finding a space for the green one and moving the
green one away.
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13.2 Understanding

(The user has now apparently changed his mind about pyramid grasping.)

The system has to figure out what is meant by "one" and
"it," as well as using deduction to decide which block
it is holding.

BY "IT," I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER
THAN THE ONE I AM HOLDING.

Printed out to keep us informed.

The hand has to set down the red block to pick up the
taller blue one.

OK.

4. what does the box contain?

THE BLUE PYRAMID AND THE BLUE BLOCK.

5. what is the pyramid supported by?

Earlier the system responded to "the pyramid" by saying
"I don’t understand which pyramid you mean." now, it
knows that we must mean the one which was just
mentioned.

THE BOX

This dialog illustrating SHRDLU’s capabilities goes on for forty-two more user
inputs and system responses.9

To engage in dialogs like this, SHRDLU needed “knowledge.” It needed to
know about the syntax of that part of English it used, and it needed to know
what various words and word combinations mean in the context of their use.
It also needed to know about its blocks world – how blocks can be
manipulated and what it means for an object to be inside of the “box.” It
needed to keep track of the dialog so that it could decide to which object
mentioned previously a word such as “it” referred.

All of this needed knowledge was represented in LISP programs, or
“procedures,” as Winograd called them. Knowledge about syntax was
represented as a collection of procedures based on the principles of “systemic
grammar.”10 Knowledge about the meanings of words in context was
represented in procedures that could refer to a dictionary of word meanings, to
other parts of the sentence in which the word was used, and to the discourse.
Knowledge about the blocks world was represented in two ways: There was a
model that gave the locations of all of the objects and there were procedures
that could infer the predicted e↵ects (in the model) of manipulations by the
gripper on the various objects. The object-moving procedures had information
both about the preconditions and about the e↵ects of these manipulations.
These procedures were encoded in a version of Hewitt’s PLANNER language,
which, as mentioned previously, bore some resemblance to STRIPS operators.
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1	9	6	8	

•  Analogy	making	

6 Semantic Representations

We shall be considering the solution by machine of so-called
“geometric-analogy” intelligence-test questions. Each member of
this class of problems consists of a set of labeled line drawings. The
task to be performed can be described by the question: “Figure A
is to Figure B as Figure C is to which of the following figures?” For
example [in Fig. 6.1] it seems safe to say that most people would
agree with the program we are about to describe, in choosing
[number 4] as the desired answer.

Figure 6.1: An analogy problem.

He further noted that “problems of this type are widely regarded as
requiring a high degree of intelligence for their solution and in fact are used as
a touchstone of intelligence in some general intelligence tests used for college
admission and other purposes.” So, again, AI research concentrated on
mechanizing tasks requiring human intelligence.

Evans’s program first transformed the diagrams presented to it so that
they revealed how they were composed out of parts. He called these
“articular” representations. Of the possibly several decompositions possible,
the one chosen by the program depended on its “context.” (This choice is one
example of a heuristic used by the program.) For example, the diagram

could either be decomposed into

132
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Pb:	Find	the	best	matching	
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2001:	A	Space	Odyssey	

•  1968	…	
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1968		->					2001:	A	Space	Odyssey	

•  Vision	

•  Communication		
–  Lips	reading	
–  Conversation	

•  Planning	complex	tasks	

•  Reasoning	

–  Plays	(and	wins)	chess	games	

•  Self-recoding	
–  Kills	the	astronauts	

•  Emotion	
–  Displays	fear	
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The	perceptron	

•  Frank	Rosenblatt	(1958	–	1962)	

Ψ(x) =
n∑

i=1

wi φi(x)
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The	perceptron:	a	linear	discriminant	

w
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But	...	there	are	limits	

Experts	are	expert	in	their	own	domain,		

but	not	on	all	domains	



Second	assumption	

Knowledge	is	power	

21	

(~1970		–		~1985)	
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–  A project of the NASA:

–  Is there life on Mars?

–  Mass spectrography

The developped formula �
of the molecules

Mass

Intensity

Expert	Systems:	DENDRAL	

How	does	an	expert	performs	this?		
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•  Examples of a piece of knowlege 
–  Rule: 

If the spectrum of the molecule has two peaks x1 et x2 such that:
1.  x1 - x2  =  M + 28
2.  x1 - 28 is a high peak
3.  x2 - 28 is a high peak
4.  At least one of the peaks x1 et x2 is high
Then the molecule contains a cetone group

C C 

R1 

R2 

O C 

R1   (x1) 

R2 

O C 

R1 

R2  (x2) 

breaks �
down in:

or in :

Expert	Systems:	DENDRAL	
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My	therapeutic	recommendation	will	be	first	choice:	to	cover	<1	2	3	5	
6>,	prescribe	Gentamicin,	dose	119	mg	98	h	IV,	for	10	days;Pour	
couvrir	le	point	4,	prescrire	de	la	Clindamycine,	dose	595	mg	96	h	IV,	
pendant	14	jours.		

Do	you	want	to	eliminate	certain	medications?	

Yes,	Clindamycine.	

To	cover	<2	3	4	5	6>	give	Chloramphenicol,	dose	1	g	96	h	IV,	for	14	
days;	

						**	Monitor	the	patient's	white	blood	cell	count.	

To	cover	point	1,	give	gentamicin,	dose	119	mg	98	h	IV,	for	10	days.	

					**	Modify	the	dose	in	case	of	rhenal	weakness.	

MYCIN:	

MYCIN:	

Doctor:	

Expert	Systems:	MYCIN	
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Explanations	in	Expert	Systems	

•  Mycin:					Is	meningitis	a	hospital	acquired	illness?	

•  Doctor:				Why?		

•  Mycin:					This	will	aid	in	determining	the	organism	that	might	be	causing	the	infection	

																									It	has	already	be	established	that	

–  [2.1]	the	infection	that	requires	therapy	is	meningitis	

–  [2.2]	organisms	were	not	seen	on	the	stain	of	this	pending	csf	culture	

–  [2.3]	the	type	of	infection	is	bacterial	

–  [2.4]	neurosurgery	is	not	one	of	the	relevant	items	of	patient	100	

–  [2.5]	the	age	of	patient	100	is	greater	than	25	

therefore	if	[2.6]	the	infection	was	acquired	while	the	patient	was	in	hospital	then	
there	is	evidence	that	the	organisms	that	might	be	causing	the	infection	are		

–  E	coli(0.75)	staphylococcus-coag-pos(0.3)		

–  pseudomonas-aeruginosa(0.3)	

–  klebsiella-pneumoniae(0.5)	
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Explanations	in	Expert	Systems	

•  Doctor:				Why	didn’t	you	consider	the	possibility	that	the	organism	be	a	

streptocoque?		

•  Mycin:						

Rule	33	should	have	been	used	to	identify	the	organism	as	streptococcus,		

but	the	second	clause	"the	morphology	is	shell-like"	was	already	known	to	be	

wrong	and	rule	33	was	never	tried.	
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 "Richard hadn't heard from his college roomate Paul for years.  

Richard had borrowed money from Paul which was never paid back.  

But now he had no idea where to find his old friend. When a letter finally 

arrived from San Francisco, Richard was anxious to find out how Paul was."  

BORIS [Dyer,82]	
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~1970	...	~1985	

•  “Knowledge	is	power”	

Everything	is	OK	

–   Explicit Reasoning 

–   Explications 

–   Dialogue 

	

BUT	...	
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The	truth…	

•  Necessitates	Knowledge	Engineering	

–  A	painful	and	lengthy	process	

–  Quite	artisanal	

–  Difficult	to	maintain	Expert	Systems	



Third	assumption			(~1985	-	...)	

Intelligence	involves	a	lot	of	knowledge	

that	can	be	obtained	through		...																																											.	

30	



Third	assumption			(~1985	-	...)	

Intelligence	involves	a	lot	of	knowledge	

that	can	be	obtained	through	general	learning	processes	

31	

Why	not	learn	everything	from	data?		



32	/	93	

Supervised Induction 

Descriptors	 Labels	

Example	
Values	of	the	
descriptors	

Concept		
or		

hypothesis	
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Supervised learning 
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Learning	with	Multi-Layer	Perceptrons	

Performs	magic!	

–  Automatically	self-adapt	from	the	data	

–  And	resistant	to	noisy	data	
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The	database	
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1
2
3
4
5
6
7
8
9
0

Matrice 16 x 16 12 détecteurs
de traits (8 x 8)

12 détecteurs
de traits (4 x 4)

30 cellules

10 cellules
de sortie

Convolutionnal	Neural	Networks:	the	ancestor	

Recognizing		
zip	code	
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2.  	AI	now:	the	triumph	of	deep	neural	networks	
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4.  There	are	limits	
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6.  Conclusion	
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“Deep	Neural	Networks”	

•  Artificial	Neural	Networks	with	
–  A	large	number	of	layers		 			(possibly	>	100)	

–  A	very	large	number	of	parameters		(	107	–	109	parameters)		
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GoogleNet	

•  Illustration	

1x1 semblent triviaux car ils ne permettent pas de réduire la dimension de l’entrée, mais son critère
non-linéaire lui permet de complexifier la nature des attributs détectés et donc de voir des motifs plus
complexes. Network in Network introduit aussi l’utilisation de réseau complètement constitué par des
couches convolutives, en remplaçant les couches de classification par des filtres 1x1 (Figure 10).

FIGURE 10. Module Network in Network [33]

GoogleNet [58] une des architectures les plus utilisées (avec AlexNet) de part ses performances.
Développé par Google et gagnant du l’ILSVRC 2014, le modèle se différencie des autres par sa com-
plexité (22 couches contre 8 pour AlexNet) et l’utilisation de module inception (Figure 11). Le module
d’inception (Figure 12) est une configuration permettant d’appliquer plusieurs filtres de tailles différentes
en parallèle. La parallélisation et l’application de multiples filtres permettent d’apprendre plusieurs lo-
giques d’extraction d’attributs, allant sur des détails précis pour les filtres 1x1 jusqu’à des formes plus
larges pour les filtres 5x5.

FIGURE 11. Architecture du réseau GoogleNet [58]

9



Face	recognition	

...	

40	
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The	ImageNet	competition	

•  Over	15M	labeled	high	resolution	images	

•  Roughly	22K	categories	

•  Collected	from	the	Web	and	labeled	by	Amazon	Mechanical	Turk	

ImageNet

•  Over 15M labeled high resolution images 
•  Roughly 22K categories
•  Collected from web and labeled by Amazon Mechanical 

Turk


h-p://image4net.org/+
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Goal	

•  Image	classification	
Goal 

Classifica(on+
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Results:	8	ILSVRC-2010	test	images	

•  Results		

Eight ILSVRC-2010 test images
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Semantic	Image	Segmentation	

•  Autonomous	vehicles	
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And	YOU?		

•  Machine	translation	

•  Change	of	paradigm		

•  A	set	of	new	tools		
–  Data	analysis			(e.g.	neural	networks)	

–  Simulation								(e.g.	Multi-Agent	systems)	

–  New	goals									(e.g.	recommendation)	
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1.   Old	paradigm 		
–  Construct	a	hypothesis	(e.g.	such	and	such	treatment	should	have	such	and	such	

an	effect)	

–  Build	an	experimental	design	to	test	the	validity	of	the	hypothesis	

–  The	experimental	design	and	the	data	collected	serve	only	to	test	the	given	
hypothesis		
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1.   Old	paradigm 		
–  Construct	a	hypothesis	(e.g.	such	and	such	treatment	should	have	such	and	such	

an	effect)	

–  Build	an	experimental	design	to	test	the	validity	of	the	hypothesis	

–  The	experimental	design	and	the	data	collected	serve	only	to	test	the	given	
hypothesis		

2.   New	paradigm	

–  Be	“open”	minded:	we	are	ready	to	look	for	(unexpected)	patterns	in	the	
mass	of	available	data	

–  Infinite	re-use	of	data	is	possible	(even	though	they	were	not	collected	for	this	
specific	purpose)	

		This	is	«	data	mining	»	
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(Almost)	all	field	are	concerned		

•  Environment	
–  Follow	the	dynamics	of	urban	areas,	of	coastal	erosion,	of	the	Artic	ocean,	...	From	

satellite	images	

–  The	climate	change	
•  The	Harvard	forest	(Long	Term	Ecological	Project).	1600ha,	of	which	20	are	equipped	with	

electric	heaters.		

–  Understand	the	interplay	between	species	in	an	ecosystem	

–  What	are	the	genes	that	participate	in	the	resistance	to	hydraulic	stress	

•  Nutrition	
–  What	are	the	determinant	of	our	preferences	for	animal	proteins	

•  Sociology	
–  How	rumors	are	born	and	spread	
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Outline	
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Where	one	speaks	of	“data	flood”	

•  Our	data	is	captured	in	abundance	whenever	we	go	on	Internet	
–  Which	sites	are	visited	

–  Which	time,	for	how	long,	the	clicks,	what	has	been	bought,	...	

•  Smartphones	

–  Location	even	when	you	did	not	agree	
–  A	lot	of	apps	full	of	curiosity		

•  Connected	Bracelets	

•  Means	of	payment		(bank)	

•  Sensors	in	vehicles		(insurance)	

•  Linky	meters	
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«	data	flood	»	in	the	field	

•  Agriculture	

–  Sensors	in	the	field	

–  Sensors	in	the	soil		

–  Sensors	on	animals,	in	the	farm	

–  Drones	

–  Data	on	the	local	markets	(e.g.	in	India)	

–  Data	on	the	stock	markets	

–  Metereological	data	

–  Data	on	the	social	networks:	producers	and	consumers		

–  Cold	chains	and	distribution	



52	/	93	

The	world	is	yours	

AI	+	Internet	of	Things	

•  It	cares	for	you		...	or	so	it	seems	
–  Sensors,	cameras,	smartphones,	car,		...	EVERYWHERE	and	ALL	THE	TIME	

•  Scenario	
–  You	enter	your	local	supermarket.	You	are	recognized	by	the	camera	or	thanks	to	

your	smartphone.	An	automatic	concierge	greets	you:		

–  “Hi,	Mr.	Smith,	I	understand	that	you’re	wife’s	birthday	is	coming	up.	We	know	
she	loves	Napa	wines.	We’ve	just	got	a	shipment	of	some	fantastic	Napa	wines,	...”	

–  “We	can	also	recommend	you	some	travel	place	for	your	next	vacation	...”	

Completely	fluid	and	targeted	to	you	
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The	world	is	yours	

...	



54	/	93	

Other	AI	goodies	

•  Personal	assistant	
–  Help	you	plan	your	next	holiday	vacation	

–  Help	you	optimize	your	revenue	declaration	

–  Help	you	choose	the	best	meal		

•  Personal	assistant	for	scientists	
–  A	super	Mathematica	

–  Alpha	fold:	discovering	the	3D	conformation	of	proteins	

•  Specialized	devices	
–  “be	my	eyes”	for	the	blind	and	vision	impaired	people	
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Description Your prediction True class

				1	large	red	square	   -

•  Examples	are	described	by:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

1	large	green	square	

2	small	red	squares	

2	large	red	circles	

1	large	green	circle	

1	small	red	circle	

+	

+	

+	

-	

+	

One	example	can	says	a	lot	

How	many	possible	functions	altogether	from	X	to	Y	?	

How	many	functions	do	remain	after	6	training	examples?	

22			=		216		=		65,536	
4	

210		=		1024	
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Learning	is	induction	

...	
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Learning	is	induction	

•  There	are	ambiguities	



59	/	93	

Learning	is	induction	

•  ...	therefore	fallible	
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Learning	is	induction	

•  There	are	uncertainties	

Crater		or		hill?	
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Inductive	learning:	what	it	does	

...	

Data Algorithm

The result

Knowledge

How it does it

Knowledge



62	/	93	

Inductive	learning:	what	it	does	

...	

Data Algorithm

The result

Knowledge

How it does it

Knowledge
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Induction	is	a	risky	business	

1.  You	have	to	invest	a	lot	

2.  And	be	very	careful	about	the	yield	

Do	not	give	up	your	critical	sense	at	every	step!	

Machine	Learning	DOES	NOT	produce	absolute	truths	
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Machine	translation	

•  Very	impressive	and	useful		(see	DeepL)	

•  But	

Le	drone	volait	à	
une	altitude	de	30m	
au-dessus	du	sol	

The	drone	was	flying	at	
an	altitude	of	30	m	$	
above	the	ground	
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Machine	translation	

•  Very	impressive	and	useful		(see	DeepL)	

•  But	

Le	drone	volait	à	
une	altitude	de	30m	
au-dessus	du	sol	

The	drone	was	flying	at	
an	altitude	of	30	m	$	
above	the	ground	

???		
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Machine	translation	

•  Still	far	from	perfect,	but	…	

66	

Machine translation

From	Hofstädter	(2018)	
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Explanations	and	deep	neural	networks	

Optical	illusions:	how	to	explain	them?	

[Selvaraju	et	al.	(2017)	«	Grad-CAM:	Visual	explanations	from	deep	networks	via	gradient-based	localization	»]	

!!??	

ambiguities inherent in ImageNet classification. We can also
see that seemingly unreasonable predictions have reasonable

explanations, an observation also made in HOGgles [48].
6.2. Effect of adversarial noise on VGG-16

Goodfellow et al. [17] demonstrated the vulnerability of
current deep networks to adversarial examples, which are
slight imperceptible perturbations of input images which
fool the network into misclassifying them with high confi-
dence. We generate adversarial images for the ImageNet
trained VGG-16 model such that it assigns a high probability
(>0.9999) to a category that is absent in the image and a
very low probability to categories that are present. We then
compute Grad-CAM visualizations for the categories that are
present. We can see from Fig. 5 that inspite of the network
being completely certain about the absence of these cate-
gories (tiger cat and boxer), Grad-CAM visualizations can
correctly localize the categories. This shows the robustness
of Grad-CAM to adversarial noise.

Boxer: 0.40 Tiger Cat: 0.18

(a) Original image
Airliner: 0.9999

(b) Adversarial image
Boxer: 1.1e-20

(c) Grad-CAM “Dog”

Tiger Cat: 6.5e-17

(d) Grad-CAM “Cat”

Figure 5: (a-b) Original image and the generated adversarial image for category “air-
liner”. (c-d) Grad-CAM visualizations for the original categories “tiger cat” and
“boxer (dog)” along with their confidence. Inspite of the network being completely
fooled into thinking that the image belongs to “airliner” category with high confi-
dence (>0.9999), Grad-CAM can localize the original categories accurately.

6.3. Identifying bias in dataset
In this section we demonstrate another use of Grad-CAM:

identifying and thus reducing bias in training datasets. Mod-
els trained on biased datasets may not generalize to real-
world scenarios, or worse, may perpetuate biases and stereo-
types (w.r.t. gender, race, age, etc.) [6, 37]. We finetune an
ImageNet trained VGG-16 model for the task of classify-
ing “doctor” vs. “nurse”. We built our training dataset using
the top 250 relevant images (for each class) from a popular
image search engine. The trained model achieves good ac-
curacy on validation images from the search engine. But at
test time the model did not generalize as well (82%).

Grad-CAM visualizations of the model predictions re-
vealed that the model had learned to look at the person’s face
/ hairstyle to distinguish nurses from doctors, thus learning
a gender stereotype. Indeed, the model was misclassifying
several female doctors to be a nurse and male nurses to be
a doctor. Clearly, this is problematic. Turns out the im-
age search results were gender-biased (78% of images for
doctors were men, and 93% images for nurses were women).

Through this intuition gained from our visualization, we
reduced the bias from the training set by adding in male
nurses and female doctors to the training set, while main-
taining the same number of images per class as before. The

re-trained model now generalizes better to a more balanced
test set (90%). Additional analysis along with Grad-CAM
visualizations from both models can be found in the supple-
mentary. This experiment demonstrates that Grad-CAM can
help detect and remove biases in datasets, which is impor-
tant not just for generalization, but also for fair and ethical
outcomes as more algorithmic decisions are made in society.

7. Counterfactual Explanations
We propose a new explanation modality - Counterfactual

explanations. Using a slight modification to Grad-CAM we
obtain these counterfactual explanations, which highlight the
support for the regions that would make the network change
its decision. Removing concepts occurring in those regions
would make the model more confident about the given target
decision.

Specifically, we negate the gradient of yc (score for class
c) with respect to feature maps A of a convolutional layer.
Thus the importance weights ↵c

k
, now become,

↵c

k
=

global average poolingz }| {
1

Z

X

i

X

j

� @yc

@Ak

ij

| {z }
Negative gradients

(5)

As in (2), we weighted sum the forward activation maps, A
with weights ↵c

k
, and follow it by a ReLU to obtain counter-

factual explanations as shown in Fig. 6.

(a) Original Image (b) Cat Counterfactual exp (c) Dog Counterfactual exp
Figure 6: Negative Explanations with Grad-CAM

8. Image Captioning and VQA
Finally, we apply our Grad-CAM technique to the im-

age captioning [7, 23, 47] and Visual Question Answering
(VQA) [3, 15, 36, 41] tasks. We find that Grad-CAM leads to
interpretable visual explanations for these tasks as compared
to baseline visualizations which do not change noticeably
across different predictions. Note that existing visualization
techniques are either not class-discriminative (Guided Back-
propagation, Deconvolution), or simply cannot be used for
these tasks or architectures, or both (CAM or c-MWP).
8.1. Image Captioning

In this section, we visualize spatial support for an image
captioning model using Grad-CAM. We build on top of the
publicly available ‘neuraltalk2’4 implementation [25] that
uses a finetuned VGG-16 CNN for images and an LSTM-
based language model. Note that this model does not have

4https://github.com/karpathy/neuraltalk2
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Annotation	d’images	

•  Example	
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Exemple	en	médecine	

22	March	2019	

Exemple en médecine

Et sans doute des enjeux financiers 
qui motiveraient ce type d’attaques

Exemple en médecine

Et sans doute des enjeux financiers 
qui motiveraient ce type d’attaques



70	/	93	

Car	in	a	swimming	pool	

•  …	or	not	...	?		
Concepts$≠$Statistics
Computer#vision#is#not#a#statistical#problem

Car#examples#in#ImageNet
Is#this#less#of#a#car

because#the#context#is#wrong?

[Léon	Bottou	(ICML-2015,	invited	talk)	«	Two	big	challenges	in	Machine	Learning	»]	
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Neural	networks	are	“black	boxes”	

•  A	very	large	number	of	numbers		(107	–	109	parameters)		
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The	case	AlphaGo	

•  Plays	like	an	“alien”	

•  An	amazing	game		

•  Revolutionizes	the	way	we	play	

•  Effervescence	in	go	schools	
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Autonomous	vehicle	

•  The	National	Highway	Traffic	Safety	Administration	(NHTSA)	
is	currently	investigating	23	accidents	related	to	Tesla's	
Autopilot	system	

•  Questions	
–  Who	is	responsible?	

•  The	driver?	
•  Tesla	(the	programmer)?	
•  The	other	person?	

–  What	is	the	reason	for	the	accident?	

•  So	as	to	correct	the	autopilot	system	(and	systems	around)	
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Problem	

•  So	far	efficient	predictors	are	often	black	boxes	

•  This	is	an	issue	for	a	number	of	applications	(e.g.	in	medicine)	

–  We	want	to	be	able	to	be	confident	in	the	system	

–  It	can	justify	its	decisions	

–  It	can	justify	its	reasoning		 The	ability	of	providing	
explanations	is	required	in	Europe	
since	May	2018	(GDRP,	Recital	71)	

XAI:	Explainable	Artificial	Intelligence	
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Lots	of	types	of	“explanations”	

...	

? 
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Counterfactuals	

•  If	James	Dean	had	taken	the	train	the	day	of	his	car	accident,		
he	would	not	have	died	
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Local	simplification	

•  LIME	

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z  {}
for i 2 {1, 2, 3, ..., N} do

z0i  sample around(x0)
Z  Z [ hz0i, f(zi),⇡x(zi)i

end for

w  K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.
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Sensitivity	analysis	

•  The	pixels	that	best	“explain”	

–  The	recognition	of	a	electric	guitar	

–  The	recognition	of	an	acoustic	guitar	

–  The	recognition	of	a	dog	

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top

3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not su�cient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.
Even though explanations of multiple instances can be

insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n⇥ d0 explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ⇠(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many di↵erent instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d0 = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

pPn
i=1 Wij . For images, I must measure something

that is comparable across the super-pixels in di↵erent images,

Figure 5: Toy example W. Rows represent in-

stances (documents) and columns represent features

(words). Feature f2 (dotted blue) has the highest im-

portance. Rows 2 and 5 (in red) would be selected

by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi 2 X do

Wi  explain(xi, x
0
i) . Using Algorithm 1

end for

for j 2 {1 . . . d0} do

Ij  
pPn

i=1 |Wij | . Compute feature importances
end for

V  {}
while |V | < B do . Greedy optimization of Eq (4)

V  V [ argmaxi c(V [ {i},W, I)
end while

return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .
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•  		Still	very	rudimentary	
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What	kind	of	knowledge	can	we	extract?	

•  When	interpretability	is	NOT	needed?	

–  When	low	risk	associated	with	the	decision	

•  E.g.	recommendation	for	a	movie	

–  When	good	guarantees	on	performance	exist	

•  E.g.	character	recognition	
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•  E.g.		chirurgical	operation	
•  E.g.		shutting	down	a	nuclear	plant	
•  E.g.		autonomous	vehicle	
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What	kind	of	knowledge	can	we	extract?	

•  When	interpretability	IS	needed?	

1.  With	high	risk	decisions	

•  E.g.		chirurgical	operation	
•  E.g.		shutting	down	a	nuclear	plant	
•  E.g.		autonomous	vehicle	

2.  Satisfying	curiosity		(what	science	is	about)	

•  E.g.		explain	surprising	results	
•  E.g.		when	no	easy	explanation	exists	
•  E.g.		when	the	decision	function	must	be	included	in	a	larger	inference	system	
(a	domain	theory)	
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What	kind	of	knowledge	can	we	extract?	

•  When	interpretability	IS	needed?	

3.   Debugging	

•  E.g.	why	is	that	decision	wrong	(counterfactual)	
•  E.g.	if	a	bicycle	is	recognized	because	it	has	two	wheels,	what	if	one	is	hidden	
behind	side	bags?	

•  E.g.	why	the	system	seems	gender	biased?	
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What	kind	of	knowledge	can	we	extract?	

•  When	interpretability	IS	needed?	

3.   Debugging	

•  E.g.	why	is	that	decision	wrong	(counterfactual)	
•  E.g.	if	a	bicycle	is	recognized	because	it	has	two	wheels,	what	if	one	is	hidden	
behind	side	bags?	

•  E.g.	why	the	system	seems	gender	biased?	

4.  Interpretability	demands	higher	standard	predictive	systems	

•  An	interpretable	system	can	be	manipulated	
–  E.g.	if	someone	knows	that	a	loan	is	granted	if	you	have	more	than	2	credit	cards	

•  In	order	not	to	be	manipulated,		
the	predictive	system	must	use	causal	factors	
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•  Why	is	Machine	Learning	currently	lacking?	

–  The	exclusive	focus	on	predictive	performance	leads		
to	an	incomplete	learning	problem	formulation	
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–  The	exclusive	focus	on	predictive	performance	leads		
to	an	incomplete	learning	problem	formulation	

–  We	want	also		

•  Interpretability	of	the	results	
•  Interpretability	of	the	process	
•  Gaining	a	better	understanding	of	the	world		
when	including	the	learned	decision	function	in	an	existing	theory	
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•  Why	is	Machine	Learning	currently	lacking?	

–  The	exclusive	focus	on	predictive	performance	leads		
to	an	incomplete	learning	problem	formulation	

–  We	want	also		

•  Interpretability	of	the	results	
•  Interpretability	of	the	process	
•  Gaining	a	better	understanding	of	the	world		
when	including	the	learned	decision	function	in	an	existing	theory	

Somehow,	we	have	to	change		
the	inductive	criterion	used	in	Machine	Learning	
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Outline	

1.  	A	brief	history	of	AI	

2.  	AI	now:	the	triumph	of	deep	neural	networks	

3.  	AI	in	the	near	future	

4.  There	are	limits	

5.  The	case	of	XAI	

6.  Conclusion	
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•  There	are	reasons	to	be	stunned		

–  Enormous	progress	the	last	few	years	

–  In	combination	with	IoT,	a	new	era	is	coming	

•  But	also	to	be	cautious	

–  These	systems	do	not	understand	

–  They	do	not	explain	

–  They	are	essentially	black	boxes	

–  And	not	well	understood	yet	

A	lot	remains		
to	be	done		

Some	of	us	still	dream	
the	old	dream	
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Towards	a	General	Artificial	Intelligence?	

•  AI	far	surpasses	humans	at	narrow	tasks	that	can	be	optimized	based	
on	data	

•  BUT,	it	cannot	engage	in	cross-domain	thinking	on	creative	tasks	or	
ones	requiring	complex	strategies	

•  For	future	research:	
–  Multidomain	learning		

–  Real	understanding	
–  Common	sense	reasoning	

–  Learning	from	very	few	examples	

–  Understanding	humor	

–  Self-awareness?		


