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Induction is about using information

from some source data

to expected queries

2 /91



1. Which link between the source and the target are we ready to assume?

2.  What kind of guarantees can we look for?
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Supervised induction

) h(*)

e Same distribution for training and testing

e Assumption: Empirical Risk Minimization is the way

— a good hypothesis for the training data should be good as well for the testing data

log [H| + log%

Vh e H,Vo <1: pPm™ RRéel(h) < REmp(h) + > 1-—9
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Supervised induction: guarantees

* For this to hold, you need prior assumptions: biases

— Representation bias

* Well explored

— Search bias

* We know very little
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Semi-supervised induction

+

-

SVM
Labeled data only
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Semi-supervised induction
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SVM
Labeled data only Transductive SVM
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Semi-supervised induction

SVM
Labeled data only

Necessity of a prior assumption

[

Transductive SVM

— The decision function does not cut through high density regions of X

* Pyisrelated to Py
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How to derive guarantees for semi-supervised learning?

* Theorem (realizable case and # finite)

If the prior assumption on the unlabeled examples is verified

If we see m; labeled examples and m,, unlabeled examples, where

| A

1 21 | 1 21
my > glln]”H\ + 11’15] and m, > . In|Hp x(e)| + lng

|

then, with probability > 1 — 0, any h € H with érr(h) =0

and érryn(h) =0 has err(h) < e
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Lesson about the guarantees we can seek

* Type of guarantees

— If the signal presents the properties that we assume true

— Then the learning method is appropriate to PAC learn (probably
approximately) the signal

if there is enough data points (i.i.d.)

“Lamppost” theorems
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0.0.D. scenarios

Learning Using Privileged Information (LUPI)

Domain Adaptation (covariate shift)

Concept drift

Transfer learning
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Learning Using Privileged Information

Inspired by learning at school

V. Vapnik and A. Vashist (2009) “A new learning paradigm: Learning using privileged information”.

Neural Networks, vol. 22, no. 5, pp. 544-557, 2009
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Learning Using Privileged Information

Inspired by learning at school

. Thegoalistolearnafunction h:x e X —y € {—1, —|—1}

e Suppose that at learning time there is more available information

1 ]

than at test time /

S* = {(xi,x],¥i) h1<i<m

 Can we then improve the generalization performance

wrt. the one obtained with S only?

V. Vapnik and A. Vashist (2009) “A new learning paradigm: Learning using privileged information”.
Neural Networks, vol. 22, no. 5, pp. 544-557, 2009
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Learning Using Privileged Information

Illustration in computer vision

T : image T : image T : image

™ : attributes x*  text
black: yes Sambal crab, cah
white: yes kangkung and deep
brown: no fried gourami fish in
patches: yes the Sundanese tra-
water: no ditional restaurant.
slow: yes

V. Sharmanska, N. Quadrianto, and Ch. Lamper (2014) “Learning to transfer privileged information”.

ArXiv preprint arXiv:1410.0389, 2014
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0.0.D. scenarios

Domain adaptation
— Xs=X;and Y. =Y,

— but different distributions P,

* E.g. Recognition of the same objects but in a different environment

low quality daylight
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0.0.D. scenarios

Concept shift
— Xs=X;and Y=Y,

— but different distributions Py,

e E.g. Spam detection for # users

conference announcements are interesting to me

and a nuisance for my children

18 /91



0.0.D. scenarios

* Transfer learning
— X # X;and/or Y #Y;

 E.g. learning to play chess after having learned to play checkers
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Recall the Two questions
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1. Which link between the source and the target?

2. What kind of guarantees can we look for?
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Which link between training and testing”?

LUPI

* “At the core of our work lies the insight that privileged information
allows us to distinguish between easy and hard examples

in the training set.

* Assuming that examples
— that are easy or hard with respect to the privileged information >

— will also be easy or hard with respect to the original data,

we enable information transfer from the privileged

to the original data modality.
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One solution: SVM+

* The classical optimization problem

1 -
m1n§<w,w> +C;&

S.t. y2[<w,xl>+b]21—§}, Z:L,m

min 3 [(w, ) + 7w, 07)] + C Y [, 27) + 7]
* ischangedinto i=1
s.t. y;[(w, ;) + 0] > 1 —[(w*, x]) + b, i=1,...,m,

[(w*,z7) +b%] >0, i=1,...,m,

C and y are hyperparameters

 |ntuition:

— ldentify the difficult examples (outliers)

— Thus coming back to the realizable case

and obtain convergence rates of 1/n instead of 1/sqrt(n) 23 /91



Bounds between the real risk and the empirical risk

By removing the “problematic” examples, you go

* From the non realisable case (7 finite)

log |H| + log %
2m

Vhe H,Vo<1: P™

Rpeel(h) < Rpmp(h) + \/

]>1—5

* To the realisable one (F finite)

Vh € H,V(S <1: P™ RRéel(h) < REmp(h) -+

m

logHH—log(ls] .15
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Which link between training and testing”?

Transfer Learning
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Which link between training and testing”?

Transfer Learning

— Reuse the latent space learnt on the source data

Training images I Source task | Source task labels
Convolutional layers Fully-connected layers N African elephant
1: Feature . Wall clock
learning C1-C2-C3-C4-C5 > Fce P FC7 FC8 ar
4096 or :
6144-dim | Green snake
) vector —
-~
Y Yorkshire terrier
2 : Feature Transfer -
transfer parameters .
[ -
X e Background
3: Clas§|fler C1-C2-C3-C4-C5 b rce b rc7 > FCa > FCb —> - Hﬂ
learning 4096 or G
6144-dim Person
9216-dim 4096 or vector

vector  6144-dim

Y .
vector £ TV/monitor

New adaptation

layers trained
Target task | on target task Target task labels

Training images Sliding patches I

From Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using

convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724).

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of example difficulty. Advances in Neural Information
Processing Systems, 34.
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Which link between training and testing?

Transfer Learning

— Reuse the latent space learnt on the source data

— Re-use the first layers of a NN trained on task A

— And fine-tune on task B

-3 Increases the performance wrt. to training on task B alone
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Transfer Learning

e Guarantees function of

28 /91



Transfer Learning

e Guarantees function of

— The quality of the source hypothesis on the source task

* The better h, the better h;
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Transfer Learning

e Guarantees function of

— The quality of the source hypothesis on the source task

* The better h, the better h;

— A “distance” between the source task and the target one

* The smaller the distance, the better the transfer
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Transfer Learning

Really?

e Guarantees function of

— The quality of the source hypothesis on the source task

* The better h, the better h;

— A “distance” between the source task and the target one

* The smaller the distance, the better the transfer

— The size of the target training data

* The larger the target training data set, the useless the transfer
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Parallel Transport

and Covariant Derivative
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Euclidian geometry

 Addition of vectors U+V

e Substraction of vectors and derivative i_v — lin% V(s +e) = V(s)
S E— e

V(s+¢e)—V(s)
V(s)
/“8‘*%; —_— -
S+ e
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Non Euclidian geometry

e Substraction of vectors and derivative

* hypothesis t

hypothesis s
------------------------ .
—-m 7 % _»

Referential_t

Referential _s

We can no longer directly compare vectors (or tensors)

Necessity of the covariant derivative
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Parallel transport

Transport a vector (or a tensor) parallel to itself along a curve

Covariant derivative =0 Kronecker symbol
(ak Vz)covarlant — ak Vz 1 F;kvj

VZ(xk:)parallel transported __ V’L(xk) + F;kV]ACIfk

Path
dependent!
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Transfer and path dependence

? hypothesis t

hypothesis s

——-—
P
-
-
-
-

Referential_s AN 4 //
/

Y
N\

r Path
o dependence
i,

Referential_ts

?
Transfer = Parallel transport of hypothesis from source to target

37 /91



Transfer and path dependence

abec e ~ aababec

abe aababec L l
L - abd ijjkkk/ 9

abd

N

?
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Parallel transport in ML works

Transfer = parallel transport of the source hypothesis

Tracking

Computer vision

Curriculum learning
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Tracking

Instead of learning a complex function over the whole of X
* If you know that the task is slowly evolving with time

* Learn a simple local function

\Y
hy
; ; ; S .
% : L eAe 5 i a
*e% oo 5 | . N E S :
H ¢® Y ! . 1
e’e - » Ve - . o .
° 0.. ., —y | 5 | ° .
; i : e . @ o
o . o . o
e ® e, ;,—' : g
o’ e ; : :
> E<—>:<—>s<—>:<—>:<—x;
i

R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.
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Tracking in stationary environments

Tracking to play Go

 5x5Go

— More than 5 x 10'° unique positions

e Usual approach: learn a general evaluation function V(s) valid Vs

Associated weights (learnt)

Features describing the situation 41 /91



Tracking in stationary environments

* Tracking approach: learn an evaluation function V(s)

-
e
T

local to the current s

- V(s)
T w

In general, playing (a)
(center) is better than BUT

playing (b)

o More weight

In this situation, playing (b)
is better than playing (a)

More weight 3:
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Tracking as local changes of representation

___---—--r-- ------_,.

Features

Space of go positions Embedding
Space of representations

Weighted features

43 /91



Computer vision

oW wow oW o

Bauer, M., Klassen, E., Preston, S. C., & Su, Z. (2018). A diffeomorphism-invariant metric on the space of vector-valued one-
forms. arXiv preprint arXiv:1812.10867.
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Parallel transport in computer vision

==

-

;A;‘\ =7
o>

L XSES
[T R

x Figure 1: A compactly supported kernel (a) is transported
on a manifold from the FAUST data set [2] through trans-
lation (b), translation + dilation (c¢) and translation + rota-

Standard CNN PTCNet tion (d).

Parallel Transported
Convolution layer
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Curriculum building

46 /91



 We expect that transfer is easy when source and target tasks are “close”

 And it may be difficult to transfer across tasks that are “far away”

But how to measure “closeness”

and “far away” for learning tasks?

Define a geometry over the space of tasks
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Geometry of the space of tasks

e Desiderata

1. Should incorporate the hypothesis space,

and not only the “distance” between the inputs (as is usually done)

* Forinstance, it is often observed that transferring larger models is easier.

The geometry should reflect this.

2. The distance between tasks is not symmetrical

Gao, Y., & Chaudhari, P. (2021, July). An information-geometric distance on the space of tasks.
In International Conference on Machine Learning (pp. 3553-3563). PMLR.
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Put(ylz) ___ Learned
P (y|z) hypothesis

Pws (y|£B)

Modify conjointly the training data distribution and the learned hypothesis

Compute iteratively the intermediate training sets such that
* ateachstept the new task is close to

* what can be learned by the current learner

(characterized by its current hypothesis)
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Experimental results

Using an 8-layer convolutional NN (RelLU, dropout, batch-normalization) with
a final fully connected layer

Distance is asymmetrical

— CIFAR-10 to animals < animals to CIFAR-10

— CIFAR-100 to any other is much easier

than the reverse

/as CIFARIO  CIFARAQ B

0
Estimated task distances

vehicles

CIFAR100 CIFAR10 animals vehicles

}

50/91



Experimental results

Using an 8-layer convolutional NN  And a wide residual network
(WRN-16-4): larger capacity

I

flowers vehicles 2 vehicles 1 carnivores herbivores

flowers vehicles 2 vehicles 1 carnivores herbivores

herbivores carnivores vehicles 1 vehicles2 flowers herbivores carnivores vehicles1 vehicles2 flowers

|

Distance is much reduced

using a larger capacity model
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Conclusions

* Interesting work

— New definition of distance between tasks

* Asymmetrical

* Depends on the capacity of the learning system

— New way to build a curriculum

52 /91



Conclusions

* Interesting work

— New definition of distance between tasks

* Asymmetrical

* Depends on the capacity of the learning system

— New way to build a curriculum

* Limits
— Still a crude way to build intermediate tasks
— Same input-output source and target domains!!!

— Same hypothesis space in both source and target domains!!!
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Conclusions

* Interesting work

— New definition of distance between tasks

* Asymmetrical

* Depends on the capacity of the learning system

— New way to build a curriculum

* Limits Not general

— Still a crude way to build intermediate tasks transfer learning

— Same input-output source and target domains!!!

— Same hypothesis space in both source and target domains!!!
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What if the space of tasks is not continuous?
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A LUPI type of algorithm for transfer learning

TransBoost
A method for transfer learning between different tasks

and what it tells

Cornuéjols, A., Murena, P. A., & Olivier, R. (2020). Transfer learning by learning projections from target to source. In 18th
International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020, Proceedings 18 (pp.
119-131). Springer International Publishing.
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A LUPI type of algorithm for transfer learning

a=+10
Coup a jouer Bore

N

O Noeud Max

Taking decision when the current

information is incomplete
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Algorithms for games

Coup a jouer e

N

O Noeud Max

O Noeud Min

Taking decision when the current

information is incomplete

*  Which move to play?
The evaluation function is insufficiently informed at the root (current situation)

1. Query experts that have more information about
potential outcomes

2. Combination of the estimates through MinMax

“Experts” may live in input spaces that are different
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Algorithms for games and transfer learning

/

E XT U Noeud Max

/ O Noeud Min

E X f: 10 14 15 13 14 5 2 4 1 3 22 20 21
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Can we do the “same” for transfer learning?
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Boosting

\

How to compute D, from ‘D, ; and thus h,?

How to compute the ., ?
62 /91



TransBoost

>
O

Source Domain
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TransBoost

* Principle:

— Learn “weak projections”: Ty . X+ — Xs

¢ Using the target training data: ST = {(Xvasz)}lﬁ??Sm

— With boosting

* Projection Ty suchthat: €p = P,~p, [hS(ﬂ-n(Xi)) #yz] < 0.5

* Re-weight the training time series and loop until termination

— Result Hr(xT) = Sigﬂ{z o hs (Wn(XT))}

n=1
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TransBoost

Algorithm 1: Transfer learning by boosting

Input: hs : Xs — Vs the source hypothesis
St = {(XZT, ?J@Thgigmi the target training set

Initialization of the distribution on the training set: D1(i) = 1/m fori=1,...,m ;

forn=1,...,N do

Find a projection 7; : X7 — Xs st. hs(m;(+)) performs better than random on D, (S7) ;

Let ¢,, be the error rate of hs(m;(-)) on D, (S7) : en, = Piup, [hs(mn(xi)) # yi] (with e, < 0.5) ;
Computes a; = %logz(l;ei) :

Update, fori=1...,m:

Dy e if hg (WH(XZT)) =y]
Dn—i—l(Z) = Zn X {6an if hS (Wn(xf)) ;é sz
Dy (i) exp(—cun y ) hs(ma(x{7)))

where Z,, is a normalization factor chosen so that D,y be a distribution on S ;
end

Output: the final target hypothesis Hy : X'+ — Y7

Hr(x7) = sign{zNj an hs (wn(xﬂ)} (2)

n=1
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Controlled data

— The slope to distinguish between classes
— The shapes of time series within each class: variety

— The noise level

x; = t X slope X class + Xpaq sin(w; Xt + ;) +  n(t)

4

Vv N
information gain sub shape within class noise factor

Ay {w=221 ©=0,m=001,y=+1}

Aot {w= 280~ 0.m =001y = +1)

Ci{w=3%.¢=5 . m=0,y==1} Bg:{w=105'—(3)n.¢=0.m=—0.01,y=—1}
Bl:{w:%,g:().m:—o.m.y:—l}
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The set of projections

Randomly generated within constraints

Hinge functions (4 parameters)

Abscisse of the hinge \
A 0

[ \
*  Angles before and after

0,

. Observed window

!

Size of the window
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Results

On the source

Learning from domain
target data only TransBoost Naive transfert

slope, noise, t1 h (train) hT (test) H (train) H (test) hs (test) H'- (tést)
0.001, 0.001, 20 0.46 +£0.02 | 0.504+0.08 | 0.08 &=0.03 | 0.08 = 0.02 0.05 0.49 £+ 0.01
0.005, 0.001, 20 046 +£0.02 | 049 +0.01 | 0.01 =0.01 | 0.01 £ 0.01 0.01 0.45 + 0.01
0.005, 0.002, 20 046 +£0.02 | 0.494+£0.03 | 0.03 £0.02 | 0.04 £ 0.02 0.02 0.43 £+ 0.01
0.005, 0.02, 20 0444+002 | 048 4+0.03 | 0.09 +0.01 | 0.10 £ 0.01 0.01 0.47 + 0.01
High noise [| 0.001,0.2,20 0.46 +0.02 | 0.50 £0.01 | 046 +0.02 | 0.51+£0.02 | 0.11 | 0.494+0.01
level 0.01, 0.2, 20 042 4+0.03 | 047 +0.03 | 0.34 £0.02 | 0.35+0.02 0.02 0.35 + 0.01
0.001, 0.001, 50 0.46 +£0.02 | 0.5040.01 | 0.08 +0.03 | 0.08 = 0.02 0.06 0.41 £+ 0.01
0.005, 0.001, 50 0254+0.07 | 0.284+0.09 | 0.01 £0.01 | 0.01 £ 0.01 0.01 0.28 + 0.01
0.005, 0.002, 50 0.27 £0.07 | 0.30+£0.08 | 0.02 &£ 0.01 | 0.02 £ 0.01 0.02 0.28 £+ 0.01
0.005, 0.02, 50 026 +£0.07 | 0.30+=0.08 | 0.04 & 0.01 | 0.04 £ 0.01 0.01 0.31 £ 0.01
0.001, 0.2, 50 044 +£0.02 | 0.504+0.01 | 0.38 +=0.03 | 0.44 £ 0.02 0.15 0.43 £ 0.01
Easy 'S-forgg —3 0.01,0.2, 50 0.10 £0.03 | 0.12+0.04 | 0.10+£0.02 | 0.11+£0.02 | 003 | 0.15+0.02
0.001, 0.001, 100 | 0.43 +0.03 | 0.47 £0.03 | 0.07 ==0.02 | 0.07 £ 0.02 0.02 0.23 £ 0.01
0.005, 0.001, 100 | 0.06 £0.03 | 0.07 =£0.03 | 0.01 £0.01 | 0.01 £ 0.01 0.01 0.07 £ 0.02
0.005, 0.002, 100 | 0.08 =0.03 | 0.10 £=0.04 | 0.02 £ 0.01 | 0.02 £ 0.01 0.02 0.07 £ 0.01
0.005, 0.02, 100 0.08+0.03 | 0.09 +£0.03 | 0.024+0.01 | 0.03 £ 0.01 0.01 0.07 £ 0.01
0.001, 0.2, 100 0.04+003 | 046 :0.02 | 0.28 =0.02 | 0.31 £ 0.01 0.16 0.31 + 0.01
' ! 0.01, 0.2, 100 0.03£0.01 | 0.05x0.02 | 0.04 £0.01 | 0.05=£0.01 0.02 0.05 £ 0.01

Table 1: Comparison of learning directly in the target domain (columns A7 (train) and h7 (test)), using

TransBoost (columns H7 (train) and H7 (test)), learning in the source domain (column hs (test)) and, finally,
completing the time series with a SVR regression and using hs (naive transfer). Test errors are highlighted in
the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without
transfer and learning with naive transfer.
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Transfer learning using Transboost

20 -

ol Il
05
001 HH

=1.0 1
=15 -

=2.0 1

(without transfer)

X—I—VZ'

A7;°X—|-V7;

E

.

!lf

i

i ‘
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Transfer learning using Transboost

e |llustrations

o 1 04

00 02 04 06 08 10 00 02 04 06 08 10

06 08 10
06 08 10

(] 0’ 04
0o 0 0‘

(a) Is it a zero or a one? (b) Is it a zero or a one?

FIGURE 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

e - e - o _ Q.
S - s - 8- S-
s - z- : -
S - s S - S -
- e g- g-
S - 8~ 8 - S -
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
(a) Is it a zero or a one? (b) Is it an eight or a seven?
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Transfer learning using Transboost

e |llustrations

Task A |

Xa # XB

FIGURE 1: Trained model on the data source : is it a picture of a dog or a cat?

@»

Task B |

FIGURE 2: Model source transferred on the data target : is it a clip-art of a dog or a cat?
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Standard Transfer with NNs

Learn

Then freeze the
first layers

— -
-_—a -
-_—am mm =

Transferring the
features

Learn NN on task A Learn the last layers
on task B

Same input space X, = Xz

From Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using

convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1717-1724).
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TransBoost with NNs

- Then freeze all
layers except the
first (and second)

Learn NN on task A
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TransBoost with NNs

- =7  Transferring the

decision function Learn
projection -{
= Then freeze all 4s]

layers except the
first (and second)

Learn NN on task A
Learn the first

layer(s) to project
from task B to task A
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TransBoost with NNs

fmmmmmEmEmm————— r QOO f@w)
_==" " Transferring the 0}\1‘1‘1?01«0
- == ==
decision function Learn
projection {
- Then freeze all T
layers except the
first (and second)
Learn
projection
4e)
Learn NN on task A
Learn the first
layer(s) to project
from task B to task A Learn
projection {
Ty
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TransBoost with NNs

- =7  Transferring the

decision function Learn
projection -{
= Then freeze all 4s]

layers except the
first (and second)

Learn
projection
T,
Learn NN on task A .
|
1
Learn the first
layer(s) to project
from task B to task A Learn
projection {
Ty

Different input spaces

Xa # Xp




Transboost as local changes of representation

2

1
« >

Projectors

Embedding

Space of projectors 7T;

Space of learning tasks
Target training sets

Weighted projectors
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Transboost as local changes of representation

Path dependence

©
§‘~~"
A |y
Sa
I‘1 : 7
TN L § /'
S
|_ e @ W = = == -e- '------'$V
U
T
>
Projectors

Embedding

Space of projectors 7T;

Space of learning tasks

Target training sets
Weighted projectors
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Does the quality of h plays a role?
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What if ...

Source hypothesis a priori without relation to the target task

Learning from target data only

TransBoost with

“irrelevant” source hypothesis

slope, noise, t h (train) hT (test) H (train) H (test)
0.001, 0.001,70 | 0.44 £0.02 | 048 £0.02 | 0.06 =0.02 | 0.06 & 0.02
0.005, 0.005,70 | 0.11 £0.04 | 0.13£0.05 | 0.02+£0.01 | 0.02 = 0.02
0.005, 0.005,70 | 0.10£0.04 | 0.11 =£0.05 | 0.01 =0.01 | 0.01 £ 0.01
0.005,0.05,70 | 0.11 £0.04 | 0.12+=0.05 | 0.04 =0.02 | 0.03 == 0.01
Hard 0.001, 0.001, 70 |10.42 £0.03 | 048 £0.02 | 0.33 £0.02 | 0.37 = 0.02
0.01, 0.1, 70 0.06 £0.03 | 0.08 £0.03 | 0.08 £0.02 | 0.08 £ 0.02
hs randomly chosen on the source task }Az(hg) ~ 0.5

Very good
results!!
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quality of h NO!!

What is the role of h??
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Analysis

* The quality of the source hypothesis on the source data?

— Plays no role

* The proximity of the source and target distributions P, and P,?

— Plays no role
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But... I?

=> No condition on the source!??

Still some transfer learning problems

appear to us more easy than others???
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Interpretation

Transfer acts as a bias and hg is a strong part of this bias

— If the source hypothesis is well chosen: the bias is well informed

* Which does not mean that h must be good on the source task

— Otherwise: Learning is badly directed

or there is over-fitting if the capacity of hs o m is too large
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Lessons

— The learning problem now becomes the problem

of choosing a good set of (weak) projections

— Theoretical guarantees exist
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Analysis

The generalization properties of TransBoost

can be imported from the ones for boosting

N
Hr = {signlz an hs own] la, € Rym, € II,n € [l,N]}

n=1

dvc(H7) < 2(dhgom + 1)(N 4+ 1)1log, ((N + 1) e)

R(h) < R(h) + o(\/ dnsort 1ﬂ<m7/dhson>+ln<1/a>)

mr
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1.

2.

3.

4.

Outline

Supervised induction: the classical setting

What about Out Of Distribution learning (OOD)?

Parallel transport, covariant derivative and transfer learning

— What they are

— ...in Machine Learning

A way to deal with different spaces of tasks

Conclusions
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Conclusions (1)

Transfer learning —=» mostly heuristical approaches so far

1. Parallel transport is a natural way for looking at transfer learning

— The covariant derivative is then a measure of difference

* How to compute it?

— Pioneering works in computer vision

 What about when the source and target domains are different?

— TransBoost: a proposal

2. Transfer learning is path dependent in general

— The study of these path dependencies is important ...

e Curriculum learning

* Longlife learning

— ...and a wide open research question

(G40 by s e 5




Conclusions (2)

* The theoretical guarantees for transfer learning:

* Do not necessarily depend on the performance of the source hypothesis h,

But depend on the bias that h, determines

* |Involve the capacity of the space of transformations

(and the path followed between source and target)

\

Still to be explored
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