
		

Antoine	Cornuéjols	

AgroParisTech	–	INRAe			MIA	Paris-Saclay	

EKINOCS	research	group	

Transfer	Learning		

																					Covariant	Learning	and	Parallel	Transport		
								

2	/	91	

Induction	is	about	using	information		

	 	 	from	some	source	data		

	 	 	 	 	to	expected	queries		

3	/	91	

1.  Which	link	between	the	source	and	the	target	are	we	ready	to	assume?	

2.  What	kind	of	guarantees	can	we	look	for?		

4	/	91	

Outline	

1.  	Supervised	induction:	the	classical	setting	

2.  	What	about	Out	Of	Distribution	learning	(OOD)?	

3.  	Parallel	transport,	covariant	derivative	and	transfer	learning	

–  What	they	are	

–  ...	in	Machine	Learning	

4.  	A	way	to	deal	with	different	spaces	of	tasks	

5.  	Conclusions	

5	/	91	

Supervised	induction	

•  Same	distribution	for	training	and	testing	

•  Assumption:	Empirical	Risk	Minimization	is	the	way	

–  a	good	hypothesis	for	the	training	data	should	be	good	as	well	for	the	testing	data	

XX

h(·) h(·)

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

log |H|+ log 1
�

m

�
> 1� �

6	/	91	

Supervised	induction:	guarantees	

•  For	this	to	hold,	you	need	prior	assumptions:	biases	

–  Representation	bias	
•  Well	explored	

–  Search	bias		
•  We	know	very	little	

F

H

H

x	

7	/	91	

Semi-supervised	induction	

...	

8	/	91	

Semi-supervised	induction	

...	

9	/	91	

Semi-supervised	induction	

•  Necessity	of	a	prior	assumption	

–  The	decision	function	does	not	cut	through	high	density	regions	of	X	
•  PX	is	related	to	PY|X	

10	/	91	

How	to	derive	guarantees	for	semi-supervised	learning?	

•  Theorem			(realizable	case	and	H	finite)	

If we see ml labeled examples and mu unlabeled examples, where

ml �
1

"

ln |H| + ln

2

�

�
and mu �

1

"

ln |HD,X (")| + ln

2

�

�

then, with probability � 1� �, any h 2 H with cerr(h) = 0

and cerrunl(h) = 0 has err(h) "

If	the	prior	assumption	on	the	unlabeled	examples	is	verified	

11	/	91	

Lesson	about	the	guarantees	we	can	seek	

•  Type	of	guarantees	

–  If								the	signal	presents	the	properties	that	we	assume	true	

–  Then		the	learning	method	is	appropriate	to	PAC	learn	(probably		
											approximately)	the	signal		

											if	there	is	enough	data	points	(i.i.d.)	

“Lamppost”	theorems	

12	/	91	

Outline	

1.  	Supervised	induction:	the	classical	setting	

2.  	What	about	Out	Of	Distribution	learning	(OOD)?	

3.  	Parallel	transport,	covariant	derivative	and	transfer	learning	

–  What	they	are	

–  ...	in	Machine	Learning	

4.  	A	way	to	deal	with	different	spaces	of	tasks	

5.  	Conclusions	

13	/	91	

O.O.D.	scenarios	

1.  	Learning	Using	Privileged	Information	(LUPI)	

2.  	Domain	Adaptation	(covariate	shift)	

3.  	Concept	drift	

4.  	Transfer	learning	

14	/	91	

Learning	Using	Privileged	Information		

Inspired	by	learning	at	school	

•  The	goal	is	to	learn	a	function		

•  Suppose	that	at	learning	time	there	is	more	available	information		

than	at	test	time	

	

•  Can	we	then	improve	the	generalization	performance		

wrt.	the	one	obtained	with	S	only?	

V.	Vapnik	and	A.	Vashist	(2009)	“A	new	learning	paradigm:	Learning	using	privileged	information”.		
Neural	Networks,	vol.	22,	no.	5,	pp.	544–557,	2009	
	

S⇤ = {(xi,x
⇤
i , yi)}1im

h : x 2 X ! y 2 {�1,+1}

15	/	91	

Learning	Using	Privileged	Information		

Inspired	by	learning	at	school	

•  The	goal	is	to	learn	a	function		

•  Suppose	that	at	learning	time	there	is	more	available	information		

than	at	test	time	

	

•  Can	we	then	improve	the	generalization	performance		

wrt.	the	one	obtained	with	S	only?	

V.	Vapnik	and	A.	Vashist	(2009)	“A	new	learning	paradigm:	Learning	using	privileged	information”.		
Neural	Networks,	vol.	22,	no.	5,	pp.	544–557,	2009	
	

S⇤ = {(xi,x
⇤
i , yi)}1im

h : x 2 X ! y 2 {�1,+1}

16	/	91	

Learning	Using	Privileged	Information		

Illustration	in	computer	vision	

V.	Sharmanska,	N.	Quadrianto,	and	Ch.	Lamper		(2014)	“Learning	to	transfer	privileged	information”.	
	ArXiv	preprint	arXiv:1410.0389,		2014	
	

imagex :

attributesx⇤ :

black: yes
white: yes
brown: no
patches: yes
water: no
slow: yes

bounding boxx⇤ :

Sambal crab, cah
kangkung and deep
fried gourami fish in
the Sundanese tra-
ditional restaurant.

imagex :

textx⇤ :

imagex :

Figure 1: Three di↵erent forms of privileged information that can help learning better object
recognition systems: attributes, object bounding boxes, and textual descriptions.

In the standard learning setting, we are given input–output training pairs about the task
we want to learn, for example, images and category labels for object classification. In the
LUPI setting, we have the input–output training pairs plus additional information for each
training pair that is only available during training. There is no direct limitation on the form
of privileged information, i.e. it could be yet another feature representation, or completely
di↵erent modality like text or hand annotation in addition to image data, that is specific for
each training instance.

LUPI in its original formulation does not tell us which kind of privileged information is
useful, i.e. will lead to better performance, and how to measure the quality of it. In this
work, which extends our original publication [2], we examine the three di↵erent types of
privileged information in the context of object classification task: attributes that describe
semantic properties of an object, bounding boxes that specify the exact localization of the
target object in an image, and image tags that describe the context of an image in textual
form. Figure 1 illustrates these three modalities.

Approach and contribution In order to do LUPI, we have to understand how to make
use of the data modality that is not available at test time. For example, training a classifier
on the privileged data is useless, since there is no way to evaluate the resulting classifier on
the test data. At the core of our work lies the insight that privileged information allows us
to distinguish between easy and hard examples in the training set. Assuming that examples
that are easy or hard with respect to the privileged information will also be easy or hard
with respect to the original data, we enable information transfer from the privileged to the
original data modality. More specifically, we first define and identify which samples are easy
and which are hard for the classification task, and incorporate the privileged information into
the sample weights that encodes its easiness or hardness.

2

17	/	91	

O.O.D.	scenarios	

•  Domain	adaptation	

–  XS	=	XT	and		YS	=	YT			

–  but	different	distributions	PX	
•  E.g.	Recognition	of	the	same	objects	but	in	a	different	environment	

Hard to predict what will change in the new domain

[Xu,Saenko,Tsang, Domain Transfer Tutorial - CVPR’12]

(LaHC) Domain Adaptation - EPAT’14 18 / 95

18	/	91	

O.O.D.	scenarios	

•  Concept	shift	

–  XS	=	XT	and		YS	=	YT			

–  but	different	distributions	PY|X		

•  E.g.	Spam	detection	for	≠	users	

conference	announcements	are	interesting	to	me		
and	a	nuisance	for	my	children	

19	/	91	

O.O.D.	scenarios	

•  Transfer	learning	

–  XS	≠	XT	and/or		YS	≠	YT			

•  E.g.			learning	to	play	chess	after	having	learned	to	play	checkers	

20	/	91	

Recall	the	Two	questions	

21	/	91	

1.  Which	link	between	the	source	and	the	target?	

2.  What	kind	of	guarantees	can	we	look	for?		

22	/	91	

Which	link	between	training	and	testing?	

LUPI	

•  “At	the	core	of	our	work	lies	the	insight	that	privileged	information	

allows	us	to	distinguish	between	easy	and	hard	examples		

in	the	training	set.		

•  Assuming	that	examples		

–  that	are	easy	or	hard	with	respect	to	the	privileged	information		

–  will	also	be	easy	or	hard	with	respect	to	the	original	data,		

we	enable	information	transfer	from	the	privileged		

to	the	original	data	modality.		

23	/	91	

One	solution:	SVM+	

•  The	classical	optimization	problem	

•  is	changed	into	

•  Intuition:	

–  Identify	the	difficult	examples	(outliers)	

–  Thus	coming	back	to	the	realizable	case		

and	obtain	convergence	rates	of	1/n	instead	of	1/sqrt(n)	

Understanding LUPI
(Learning using Privileged Information)

Ahmadreza Momeni, Kedar Tatwawadi
Stanford University,

Stanford, US
{amomenis,kedart}@stanford.edu

I. INTRODUCTION

The idea of using privileged information was first sug-
gested by V. Vapnik and A. Vashist in [1], in which they
tried to capture the essence of teacher-student based learning
which is very effective in case of human beings learning.
More specifically, when a human is learning a novel notion,
he exploits his teacher’s comments, explanations, and ex-
amples to facilitate the learning procedure. Vapnik proposed
the following framework : assume that we want to build a
decision rule for determining some labels y based on some
features X , but in the training stage in addition to X , we are
also provided with some additional information, denoted as
the ”privileged information” x⇤ which is not present in the
testing stage.

In such a scenario how can we utilize X⇤ to improve
the learning? In this project report, we try to understand
the framework of LUPI using a variety of experiments. We
also try to propose a new algorithm based on priviledged
information for Neural Networks based on the intuition
obtained from the experiments.

A. LUPI Framework

We first briefly describe the mathematical framework of
LUPI: In the classical binary classification problems we are
given m number of pairs (xi, yi), i = 1, . . . ,m where xi 2
X , yi 2 {�1,+1}, and each pair is independently generated
by some underlying distribution PXY , which is unknown.
The goal here is to find a function f : X ! {�1,+1} in the
function class F to assign the labels with the lowest error
possible averaged over the unknown distribution PXY .

In the LUPI framework, the model is slightly different,
as we are provided with triplets (xi, x⇤

i , yi), i = 1, . . . ,m
where xi 2 X , x⇤

i 2 X ⇤, yi 2 {�1,+1} with each triplet
is independently generated by some underlying distribution
PXX⇤Y , which is again unknown. However, the goal is the
same as before: we still aim to find a function f : X !
{�1,+1} in the function class F to assign the labels with
the lowest error possible.

The important question which Vapnik asks is: can the
generalization performance be improved using the privileged
information? Vapnik also showed this is true in the case of
SVM. We will next briefly describe the SVM and the SVM+
LUPI based framework proposed by Vapnik.

B. SVM and SVM+

We briefly describe the SVM and SVM+ methods that we
solve for classification, which in this case is finding some
! 2 X and b 2 R to build the following predictor:

f(x) = sgn [h!, xi+ b] .

1) SVM: The SVM learning method (non-separable
SVM) to find ! and b is equivalent to solving the following
optimization problem:

min
1

2
h!,!i+ C

mX

i=1

⇠i

s.t. yi[h!, xii+ b] � 1� ⇠i, i = 1, . . . ,m.

As a short remark, we should mention that C is a parameter
that needs tuning. In addition, if the slacks ⇠i are all equal
to zero then we call the set of given examples separable,
otherwise they are non-separable.

2) SVM+: In order to take into account the privileged
information X⇤ Vapnik modified the SVM formulation as
follows:

min
1

2
[h!,!i+ �h!⇤,!⇤i] + C

mX

i=1

[h!⇤, x⇤i+ b⇤]

s.t. yi[h!, xii+ b] � 1� [h!⇤, x⇤
i i+ b⇤], i = 1, . . . ,m,

[h!⇤, x⇤
i i+ b⇤] � 0, i = 1, . . . ,m,

where !⇤ 2 X ⇤ and b⇤ 2 R. In this problem C and � are
hyper parameters to be tuned.

Intuitively, we can think of [h!⇤, x⇤
i i+ b⇤]’s as some

estimators for the slacks ⇠i’s in the previous optimization
problem. However, the reduced freedom and better prediction
of the slacks using the privileged information improves the
learning. Another intuition here is that, in some sense the
margins [h!⇤, x⇤

i i+ b⇤] capture the difficulty of the training
examples in the privileged space. This difficulty information
is then used to relax/tighten the SVM constraints to improve
the learning.

We next describe some methodologies which capture this
intuition relating to difficulty of examples to construt LUPI
based frameworks.

Understanding LUPI
(Learning using Privileged Information)

Ahmadreza Momeni, Kedar Tatwawadi
Stanford University,

Stanford, US
{amomenis,kedart}@stanford.edu

I. INTRODUCTION

The idea of using privileged information was first sug-
gested by V. Vapnik and A. Vashist in [1], in which they
tried to capture the essence of teacher-student based learning
which is very effective in case of human beings learning.
More specifically, when a human is learning a novel notion,
he exploits his teacher’s comments, explanations, and ex-
amples to facilitate the learning procedure. Vapnik proposed
the following framework : assume that we want to build a
decision rule for determining some labels y based on some
features X , but in the training stage in addition to X , we are
also provided with some additional information, denoted as
the ”privileged information” x⇤ which is not present in the
testing stage.

In such a scenario how can we utilize X⇤ to improve
the learning? In this project report, we try to understand
the framework of LUPI using a variety of experiments. We
also try to propose a new algorithm based on priviledged
information for Neural Networks based on the intuition
obtained from the experiments.

A. LUPI Framework

We first briefly describe the mathematical framework of
LUPI: In the classical binary classification problems we are
given m number of pairs (xi, yi), i = 1, . . . ,m where xi 2
X , yi 2 {�1,+1}, and each pair is independently generated
by some underlying distribution PXY , which is unknown.
The goal here is to find a function f : X ! {�1,+1} in the
function class F to assign the labels with the lowest error
possible averaged over the unknown distribution PXY .

In the LUPI framework, the model is slightly different,
as we are provided with triplets (xi, x⇤

i , yi), i = 1, . . . ,m
where xi 2 X , x⇤

i 2 X ⇤, yi 2 {�1,+1} with each triplet
is independently generated by some underlying distribution
PXX⇤Y , which is again unknown. However, the goal is the
same as before: we still aim to find a function f : X !
{�1,+1} in the function class F to assign the labels with
the lowest error possible.

The important question which Vapnik asks is: can the
generalization performance be improved using the privileged
information? Vapnik also showed this is true in the case of
SVM. We will next briefly describe the SVM and the SVM+
LUPI based framework proposed by Vapnik.

B. SVM and SVM+

We briefly describe the SVM and SVM+ methods that we
solve for classification, which in this case is finding some
! 2 X and b 2 R to build the following predictor:

f(x) = sgn [h!, xi+ b] .

1) SVM: The SVM learning method (non-separable
SVM) to find ! and b is equivalent to solving the following
optimization problem:

min
1

2
h!,!i+ C

mX

i=1

⇠i

s.t. yi[h!, xii+ b] � 1� ⇠i, i = 1, . . . ,m.

As a short remark, we should mention that C is a parameter
that needs tuning. In addition, if the slacks ⇠i are all equal
to zero then we call the set of given examples separable,
otherwise they are non-separable.

2) SVM+: In order to take into account the privileged
information X⇤ Vapnik modified the SVM formulation as
follows:

min
1

2
[h!,!i+ �h!⇤,!⇤i] + C

mX

i=1

[h!⇤, x⇤i+ b⇤]

s.t. yi[h!, xii+ b] � 1� [h!⇤, x⇤
i i+ b⇤], i = 1, . . . ,m,

[h!⇤, x⇤
i i+ b⇤] � 0, i = 1, . . . ,m,

where !⇤ 2 X ⇤ and b⇤ 2 R. In this problem C and � are
hyper parameters to be tuned.

Intuitively, we can think of [h!⇤, x⇤
i i+ b⇤]’s as some

estimators for the slacks ⇠i’s in the previous optimization
problem. However, the reduced freedom and better prediction
of the slacks using the privileged information improves the
learning. Another intuition here is that, in some sense the
margins [h!⇤, x⇤

i i+ b⇤] capture the difficulty of the training
examples in the privileged space. This difficulty information
is then used to relax/tighten the SVM constraints to improve
the learning.

We next describe some methodologies which capture this
intuition relating to difficulty of examples to construt LUPI
based frameworks.

C	and	γ	are	hyperparameters	

24	/	91	

Bounds	between	the	real	risk	and	the	empirical	risk	

•  From	the	non	realisable	case	(H	finite)	

•  To	the	realisable	one	(H	finite)	

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

�
log |H|+ log 1

�

2 m

�
> 1� �

⌅h ⇤ H,⌅� ⇥ 1 : Pm

�
RRéel(h) ⇥ REmp(h) +

log |H|+ log 1
�

m

�
> 1� �

By	removing	the	“problematic”	examples,	you	go		

25	/	91	

Which	link	between	training	and	testing?	

Transfer	Learning	

26	/	91	

Which	link	between	training	and	testing?	

Transfer	Learning	

–  Reuse	the	latent	space	learnt	on	the	source	data	

Baldock,	R.,	Maennel,	H.,	&	Neyshabur,	B.	(2021).	Deep	learning	through	the	lens	of	example	difficulty.	Advances	in	Neural	Information	
Processing	Systems,	34.	

C1-C2-C3-C4-C5 FC 6 FC 7 FC 8

African elephant

Wall clock

Green snake

Yorkshire terrier

Source task

Training images Sliding patches

FCa FCb

Chair

Background

Person

TV/monitor

Convolutional layers Fully-connected layers

Source task labels

Target task labels

Transfer
parameters

1 : Feature
learning

2 : Feature
transfer

3 : Classifier
learning C1-C2-C3-C4-C5 FC 6 FC 7

4096 or
6144-dim

vector

4096 or
6144-dim

vector

Target task

Training images

9216-dim
vector

4096 or
6144-dim

vector New adaptation
layers trained
on target task

Figure 2: Transferring parameters of a CNN. First, the network is trained on the source task (ImageNet classification, top row) with
a large amount of available labelled images. Pre-trained parameters of the internal layers of the network (C1-FC7) are then transferred to
the target tasks (Pascal VOC object or action classification, bottom row). To compensate for the different image statistics (type of objects,
typical viewpoints, imaging conditions) of the source and target data we add an adaptation layer (fully connected layers FCa and FCb) and
train them on the labelled data of the target task.

(here object and action classification in Pascal VOC), as il-
lustrated in Figure 2. However, this is difficult as the la-
bels and the distribution of images (type of objects, typical
viewpoints, imaging conditions, etc.) in the source and tar-
get datasets can be very different, as illustrated in Figure 3.
To address these challenges we (i) design an architecture
that explicitly remaps the class labels between the source
and target tasks (Section 3.1), and (ii) develop training and
test procedures, inspired by sliding window detectors, that
explicitly deal with different distributions of object sizes,
locations and scene clutter in source and target tasks (Sec-
tions 3.2 and 3.3).

3.1. Network architecture

For the source task, we use the network architec-
ture of Krizhevsky et al. [24]. The network takes as
input a square 224 ⇥ 224 pixel RGB image and pro-
duces a distribution over the ImageNet object classes.
This network is composed of five successive convolu-
tional layers C1. . . C5 followed by three fully connected
layers FC6. . . FC8 (Figure 2, top). Please refer to [24]
for the description of the geometry of the five convolu-
tional layers and their setup regarding contrast normaliza-
tion and pooling. The three fully connected layers then
compute Y6=�(W6Y5 +B6), Y7=�(W7Y6 +B7),
and Y8= (W8Y7 +B8), where Yk denotes the out-
put of the k-th layer, Wk, Bk are the trainable param-
eters of the k-th layer, and �(X)[i]=max(0,X[i]) and
 (X)[i]=eX[i]/

P
j e

X[j] are the “ReLU” and “SoftMax”
non-linear activation functions.

For target tasks (Pascal VOC object and action classifica-
tion) we wish to design a network that will output scores for
target categories, or background if none of the categories
are present in the image. However, the object labels in the
source task can be very different from the labels in the tar-
get task (also called a “label bias” [49]). For example, the
source network is trained to recognize different breeds of
dogs such as huskydog or australianterrier, but the
target task contains only one label dog. The problem be-
comes even more evident for the target task of action classi-
fication. What object categories in ImageNet are related to
the target actions reading or running ?

In order to achieve the transfer, we remove the output
layer FC8 of the pre-trained network and add an adaptation
layer formed by two fully connected layers FCa and FCb
(see Figure 2, bottom) that use the output vector Y7 of the
layer FC7 as input. Note that Y7 is obtained as a complex
non-linear function of potentially all input pixels and may
capture mid-level object parts as well as their high-level
configurations [27, 53]. The FCa and FCb layers compute
Ya=�(WaY7 +Ba) and Yb= (WbYa +Bb), where
Wa, Ba, Wb, Bb are the trainable parameters. In all our
experiments, FC6 and FC7 have equal sizes (either 4096 or
6144, see Section 4), FCa has size 2048, and FCb has a size
equal to the number of target categories.

The parameters of layers C1. . .C5, FC6 and FC7 are first
trained on the source task, then transferred to the target task
and kept fixed. Only the adaptation layer is trained on the
target task training data as described next.

From	Oquab,	M.,	Bottou,	L.,	Laptev,	I.,	&	Sivic,	J.	(2014).	Learning	and	transferring	mid-level	image	representations	using	

convolutional	neural	networks.	In	Proceedings	of	the	IEEE	conference	on	computer	vision	and	pattern	recognition	(pp.	1717-1724).	

27	/	91	

Which	link	between	training	and	testing?	

Transfer	Learning	

–  Reuse	the	latent	space	learnt	on	the	source	data	

–  Re-use	the	first	layers	of	a	NN	trained	on	task	A	

–  And	fine-tune	on	task	B	

Increases	the	performance	wrt.	to	training	on	task	B	alone	

28	/	91	

Transfer	Learning	

•  Guarantees	function	of	

29	/	91	

Transfer	Learning	

•  Guarantees	function	of	

–  The	quality	of	the	source	hypothesis	on	the	source	task	

•  The	better	hS,	the	better	hT			

30	/	91	

Transfer	Learning	

•  Guarantees	function	of	

–  The	quality	of	the	source	hypothesis	on	the	source	task	

•  The	better	hS,	the	better	hT			

–  A	“distance”	between	the	source	task	and	the	target	one	

•  The	smaller	the	distance,	the	better	the	transfer	

31	/	91	

Transfer	Learning	

•  Guarantees	function	of	

–  The	quality	of	the	source	hypothesis	on	the	source	task	

•  The	better	hS,	the	better	hT			

–  A	“distance”	between	the	source	task	and	the	target	one	

•  The	smaller	the	distance,	the	better	the	transfer	

–  The	size	of	the	target	training	data	

•  The	larger	the	target	training	data	set,	the	useless	the	transfer	

Really?		

32	/	91	

Outline	

1.  	Supervised	induction:	the	classical	setting	

2.  	What	about	Out	Of	Distribution	learning	(OOD)?	

3.  	Parallel	transport,	covariant	derivative	and	transfer	learning	

–  What	they	are	

–  ...	and	in	Machine	Learning	

4.  	A	way	to	deal	with	different	spaces	of	tasks	

5.  	Conclusions	

33	/	91	

Parallel	Transport		

and	Covariant	Derivative	

34	/	91	

Euclidian	geometry	

•  Addition	of	vectors	

•  Substraction	of	vectors	and	derivative	

U

V

U+ V

V(s+ ")

V(s)

s s+ "
V(s+ ")

V(s)

s s+ "

V(s+ ")�V(s)

dV

ds
= lim

"!0

V(s+ ")�V(s)

"

35	/	91	

Non	Euclidian	geometry	

•  Substraction	of	vectors	and	derivative	

We	can	no	longer	directly	compare	vectors	(or	tensors)	

Referen&al_s

Referen&al_t

hypothesis_s

hypothesis_t

Necessity	of	the	covariant	derivative	
	

36	/	91	

Parallel	transport	

•  Transport	a	vector	(or	a	tensor)	parallel	to	itself	along	a	curve	

Covariant	derivative	=	0	

(@kV
i)covariant = @kV

i + �i
jkV

j

V i(xk)parallel transported = V i(xk) + �i
jkV

j�xk

Path	
dependent!	

Kronecker	symbol	

37	/	91	

Transfer	and	path	dependence	

Transfer			=			Parallel	transport	of	hypothesis	from	source	to	target	

Referen&al_s

Referen&al_t

hypothesis_s

hypothesis_t

Referen&al_ts

?	

Path	
dependence	

38	/	91	

Transfer	and	path	dependence	

...	

a b c

a b d

a a b a b c

?

a b c

a b d

a a b a b c

?
i j j k k k

?

39	/	91	

Parallel	transport	in	ML	works	

1.  Tracking	

2.  Computer	vision	

3.  Curriculum	learning	

Transfer		=		parallel	transport	of	the	source	hypothesis		

40	/	91	

Tracking	

Instead	of	learning	a	complex	function	over	the	whole	of	X		
•  If	you	know	that	the	task	is	slowly	evolving	with	time	

•  Learn	a	simple	local	function	

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Definition

Assumptions:

Data streams

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

Limited resources: Restricted
hypothesis space H x

y

“Local” learning

and local prediction :

Lt = `(ht(xt), yt)

= `(ht(xt), f (xt, ✓t))
x

y

fenêtre

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

70 / 81

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
A new inductive problem

Notion of temporal consistency

f (·, ✓t) continuous
and with bounded variation / ✓t

New inductive criterion

Lh0,Ti(r) =
TX

t=0

`(ht(xt), yt)

+ �
X

||ht � ht�1||2

+ Capacity(R)

x

y

fenêtre

x

y

fenêtre

Do not optimize the choice of ONE h any longer!!

but optimize the learning rule (r 2 R) instead: (ht�1, xt)
r
�! ht !!

73 / 81

Intro Approaches Modern view Changes Conclusions Definition Analysis A new pb Transfer Teachability

Tracking
Motivation

In a lot of natural settings:

Data comes sequentially

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

This enables:

Powerful learning

with limited resources
(time + memory)

x1

x2

X

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

69 / 81

41	/	91	

Tracking	in	stationary	environments	

	Tracking	to	play	Go	

•  	5	x	5	Go	
–  More	than	5	x	1010	unique	positions	

•  	Usual	approach:	learn	a	general	evaluation	function	V(s)	valid				s	

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

.
.

. .
.

.
s

.
.

.

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

8

Features	describing	the	situation	

Associated	weights	(learnt)	

42	/	91	

Tracking	in	stationary	environments	

•  Tracking	approach:	learn	an	evaluation	function	V(s)		
		 	 		local	to	the	current	s	

On the Role of Tracking in Stationary Environments

0.0039 0.0156 0.0625 0.25 1 4 16 64

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step−size α

Mean
loss per

time−step

Figure 3. Comparison of the mean log loss per time-step for
fixed step-sizes in the Black and White world. The dotted
line marks the loss of the converged solution. Standard
error bars are given.

coherence of the environment. If the probability of
looking up is increased, the lowest loss occurs with
larger values of ↵. When the probability of looking is
very small, temporal coherence is completely lost and
the best values for ↵ are those that allow approximate
convergence. In a later section we will see how ↵ can
be set by a meta-learning algorithm.

3. Tracking versus converging in Go

To compare tracking and converging algorithms in a
more complex domain, we used the game of 5⇥ 5 Go.
Even with a small board size, this domain poses a
considerable challenge. There are more than 5⇥ 1010

unique states, and the game contains su�cient strate-
gic depth to merit a regular column in professional Go
periodicals (Davies, 1994).

In a complex domain such as Go, it is usual to seek the
best approximation to the optimal policy that can be
achieved by a particular representation, for example a
linear combination of binary features (Silver, Sutton
& Müller, 2007), or a multi-layer perceptron (Schrau-
dolph, Dayan & Sejnowski, 1994; Enzenberger, 2003).
However, it may be possible to do better than any
fixed policy, given the same representation. At each
time step, the agent seeks the best policy for the dis-
tribution of states encountered when starting from the
current state. Thus, the agent devotes its learning re-
sources to the current situation, rather than spreading
them across the complete distribution of states.

To demonstrate this idea, we chose the representation
used by Silver et al. (2007). The value function V (s)

is approximated by a linear combination of binary fea-
tures x(s), squashed by a sigmoid function (see Equa-
tion 1 and Figure 4). The reward function is r = 1 for
winning, and r = 0 otherwise, so that the value func-
tion estimates the probability of winning the game.

V(s)

x(s) w

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

0.0724552 0.0624626 -0.062373 -0.0622525 -0.0613142 -0.0579365 0.05772

0.0561448 -0.0488831 -0.0488831 -0.0488831 -0.0488831 0.0407592 -0.0389021

0.0384986 -0.0383305 0.0369158 -0.0328997 0.0304654 -0.0303105 0.0302466

0.0283838 0.0283838 0.0274134 0.0274134 0.0261561 -0.0257755 -0.0255928

0.0240448 -0.0240236 -0.023458 -0.023458 -0.023458 -0.023458 -0.023458

-0.022507 -0.022507 0.0220651 0.0220651 -0.0207052 -0.0207052 -0.0205356

-0.0202356 0.0200196 0.0200196 0.0197588 0.0189705 0.0185678 -0.0183054

0.0172289 0.0172289 0.0171581 0.0171581 0.0166574 0.0166083 0.0163786

-0.0163256 0.0162125 0.0162125 -0.0158571 -0.0150487 0.0149172 0.0149172

2

.
.

. .
.

.

s

.
.

.

-0.013522 -0.035203
(a) (b) (c) (d)

Figure 1: (a) Capturing moves for black, (b) A position from a game of 5x5 Atari-Go, (c)
A 2x2 location invariant shape feature that matches once on the left and twice on the right
hand side of the game position, and a corresponding weight learned by the agent (d) A 2x2
location dependent feature that matches both the top-left and top-right corners of the same
position, and corresponding weight.

2 Local Shape

Professional Go players analyse positions using a large vocabulary of local shapes, such
as joseki (corner patterns) and tesuji (tactical patterns). These may occur at a variety of
different scales, and may be specific to a position on the board or equally applicable across
the whole board. To encapsulate all these forms of knowledge, we encoded local shape
knowledge using a multi-scale representation that includes both location dependent and
location invariant features.

In addition, current Computer Go programs rely heavily on the use of pattern databases to
represent local positional knowledge [?, ?] . Manyman-years are devoted to hand-encoding
professional expertise into the strongest programs, in the form of local shape knowledge
(see Figure ??). If these databases could be learned purely from experience, it is likely to
significantly boost the robustness and overall performance of the top programs.

Prior work on local shape extraction has focussed on supervised learning for local move
prediction [?, ?]. Despite some limited success, this approach has not led to strong play,
due perhaps to its focus on mimicking rather than evaluating and understanding the shapes
encountered. A second approach has been to train neural networks by temporal difference
learning, where the networks implicitly contain some representation of local shape [?, ?].
Although successful in many regards, the local shape knowledge is limited in scope by the
network architecture. Furthermore, the results cannot be directly understood or interpreted
in the manner of pattern databases.

Table 1: For each feature set F , the total number n(F) of local shape features in F , and
the total number of active featuresm(F) active in any given position.

F 1x1 2x1 2x2 3x2 3x3

n(F)
LI 3 9 81 729 19,683
LD 27 54 324 2,916 78,732

m(F)
LI 50 80 128 32 72
LD 50 40 32 32 32

Σ

Figure 4. Value function approximation for 5⇥ 5 Go

Each binary feature recognizes a particular pattern of
stones within some rectangle on the board. Binary fea-
tures are used for all possible configurations from 1⇥1
up to 3⇥3; some example features are shown in the left
sides of Figures 6 and 7. Weights are shared between
sets of symmetric shapes, to take account of any rota-
tional, reflectional and translational symmetries that
may exist (Silver el al., 2007). The weights for these
features can be interpreted as the expected contribu-
tion that each shape makes to winning the game, over
the on-policy distribution of states.

As in the Black and White world, we adjust weights so
as to minimize the cross entropy between the current
prediction and the subsequent prediction. Thus, we
use equations 2 and 3, where the target at time t is set
according to the TD(0) algorithm (Sutton, 1988):

zt = rt+1 + V (st+1). (4)

We considered two versions of the learning algorithm.
For the converging agent, we initialized all weights to
small random values and trained o✏ine for 250,000
complete episodes of self-play. For the tracking agent,
we also initialized the weights randomly. At every
time-step t, we trained the agent online for 10,000
episodes of self-play, starting from the current posi-
tion st.2 The result of 5 ⇥ 5 Go is usually deter-
mined within the first 25 moves, thus the tracking

2This tracking approach to computer Go is surprisingly
practical. Because we use a linear evaluation function and
binary features, learning is very fast. In this setting the
learning algorithm is fast enough to simulate and process
10,000 complete games in just a few seconds (see table 2).
In fact, a fully functional 9x9 Computer Go program cur-
rently competes online on the Computer Go Online Server,
using precisely this tracking algorithm. Not only does this
demonstrate that the tracking algorithm is practical, but
also that it can be used under strict time constraints (5
minutes per complete game on CGOS).

On the Role of Tracking in Stationary Environments

b

a

Figure 7. (Left) A 3 ⇥ 3 feature making two eyes in the
corner. (Right) Black to play, move a is now the winning
move. Using 3 ⇥ 3 features, the converging agent makes
two eyes at b, believing this to be a good shape in general.
However, the tracking agent realizes that move b is redun-
dant (black already has two eyes) and learns to play the
winning move at a.

now bad: Black already has two eyes and should play
in the center to maximize his territory. The converg-
ing agent is unable to understand the global context
and plays the wrong move in the corner. The track-
ing agent learns that the corner pattern is not as im-
portant as the central territory in this context, and
plays the correct move in the center. Thus, the track-
ing agent customizes its policy to the current situation
and outperforms the converging agent, even when the
representation is expressive and rich with features.

4. Step-size adaptation in the Black

and White world

As we saw in the Black and White world, the best
step-size parameter ↵ generally depends on the degree
of temporal coherence of the world, which may not
be known a priori. This is an area in which meta-
learning might play a role. We present an adaptation
of the incremental delta-bar-delta (IDBD) algorithm,
an online meta-learning algorithm that uses gradient
descent to learn step-size parameters (Sutton, 1992a,
1992b). Here we use a version of IDBD customized for
the log loss we use in this paper. Our derivation of
the IDBD algorithm for log loss directly parallels that
presented by Sutton (1992a) for squared error.

The IDBD algorithm allows for a di↵erent step-size ↵i

for each component wi of the parameter vector w. The
weight update rule is similar to that for the scalar case
shown in Section 2:

wi
t+1 = wi

t + ↵i
t+1�tx

i
t. (5)

The step-size ↵i
t is a function of a new parameter �i

t:

↵i
t = e�i

t . (6)

The parameter �i is updated according to the gradient
descent rule with meta-learning rate µ. The derivative

is with respect to �i, which can be thought of as the
derivative of the loss with respect to an infinitesimal
change in �i at all time steps. Let hi

t = @wi
t

@�i . Then:

�i
t+1 = �i

t � µ
@Lt

@�i

= �i
t � µ

@

@�i
[�zt log(yt)� (1� zt) log(1� yt)]

= �i
t + µzt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

� µ(1� zt)yt

nX

j=1

@wj
t x

j
t

@�i

⇡ �i
t + µzt(1� yt)xi

t
@wi

t

@�i
+ µ(zt � 1)ytx

i
t
@wi

t

@�i

= �i
t + µ�tx

i
th

i
t.

Note the derivative is exact in the scalar case.

We calculate the derivative of wi
t with an accumulating

trace:

hi
t+1 =

@wi
t+1

@�i

=
@wi

t

@�i
+

@↵i
t+1�t

@�i
xi

t

= hi
t +

@e�i
t+1

@�i
�tx

i
t + e�i

t+1xi
t
@(zt � yt)

@�i

= hi
t + e�i

t+1�tx
i
t � e�i

t+1xi
tyt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

⇡ hi
t + e�i

t+1�tx
i
t � e�i

t+1(xi
t)

2yt(1� yt)
@wi

t

@�i

= hi
t[1� ↵i

t+1(x
i
t)

2yt(1� yt)] + ↵i
t+1�tx

i
t

The full algorithm for semi-linear IDBD is given in
Figure 1.

Algorithm 1 Semi-linear IDBD
Initialize hi

0 to 0, wi
0 and �i

0 as desired.
for each time step t do

y 1

1+e
Pn

i=1 �wixi

� z � y
for each weight i do

�i �i + µ�xihi

↵i e�i

wi wi + ↵i�xi

hi hi[1� ↵i(xi)2y(1� y)] + ↵i�xi

end for
end for

On the Role of Tracking in Stationary Environments

b

a

Figure 7. (Left) A 3 ⇥ 3 feature making two eyes in the
corner. (Right) Black to play, move a is now the winning
move. Using 3 ⇥ 3 features, the converging agent makes
two eyes at b, believing this to be a good shape in general.
However, the tracking agent realizes that move b is redun-
dant (black already has two eyes) and learns to play the
winning move at a.

now bad: Black already has two eyes and should play
in the center to maximize his territory. The converg-
ing agent is unable to understand the global context
and plays the wrong move in the corner. The track-
ing agent learns that the corner pattern is not as im-
portant as the central territory in this context, and
plays the correct move in the center. Thus, the track-
ing agent customizes its policy to the current situation
and outperforms the converging agent, even when the
representation is expressive and rich with features.

4. Step-size adaptation in the Black

and White world

As we saw in the Black and White world, the best
step-size parameter ↵ generally depends on the degree
of temporal coherence of the world, which may not
be known a priori. This is an area in which meta-
learning might play a role. We present an adaptation
of the incremental delta-bar-delta (IDBD) algorithm,
an online meta-learning algorithm that uses gradient
descent to learn step-size parameters (Sutton, 1992a,
1992b). Here we use a version of IDBD customized for
the log loss we use in this paper. Our derivation of
the IDBD algorithm for log loss directly parallels that
presented by Sutton (1992a) for squared error.

The IDBD algorithm allows for a di↵erent step-size ↵i

for each component wi of the parameter vector w. The
weight update rule is similar to that for the scalar case
shown in Section 2:

wi
t+1 = wi

t + ↵i
t+1�tx

i
t. (5)

The step-size ↵i
t is a function of a new parameter �i

t:

↵i
t = e�i

t . (6)

The parameter �i is updated according to the gradient
descent rule with meta-learning rate µ. The derivative

is with respect to �i, which can be thought of as the
derivative of the loss with respect to an infinitesimal
change in �i at all time steps. Let hi

t = @wi
t

@�i . Then:

�i
t+1 = �i

t � µ
@Lt

@�i

= �i
t � µ

@

@�i
[�zt log(yt)� (1� zt) log(1� yt)]

= �i
t + µzt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

� µ(1� zt)yt

nX

j=1

@wj
t x

j
t

@�i

⇡ �i
t + µzt(1� yt)xi

t
@wi

t

@�i
+ µ(zt � 1)ytx

i
t
@wi

t

@�i

= �i
t + µ�tx

i
th

i
t.

Note the derivative is exact in the scalar case.

We calculate the derivative of wi
t with an accumulating

trace:

hi
t+1 =

@wi
t+1

@�i

=
@wi

t

@�i
+

@↵i
t+1�t

@�i
xi

t

= hi
t +

@e�i
t+1

@�i
�tx

i
t + e�i

t+1xi
t
@(zt � yt)

@�i

= hi
t + e�i

t+1�tx
i
t � e�i

t+1xi
tyt(1� yt)

nX

j=1

@wj
t x

j
t

@�i

⇡ hi
t + e�i

t+1�tx
i
t � e�i

t+1(xi
t)

2yt(1� yt)
@wi

t

@�i

= hi
t[1� ↵i

t+1(x
i
t)

2yt(1� yt)] + ↵i
t+1�tx

i
t

The full algorithm for semi-linear IDBD is given in
Figure 1.

Algorithm 1 Semi-linear IDBD
Initialize hi

0 to 0, wi
0 and �i

0 as desired.
for each time step t do

y 1

1+e
Pn

i=1 �wixi

� z � y
for each weight i do

�i �i + µ�xihi

↵i e�i

wi wi + ↵i�xi

hi hi[1� ↵i(xi)2y(1� y)] + ↵i�xi

end for
end for

On the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 1. Percentage of 5⇥5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ✏-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to ↵t = 0.1/||x(st)||
for both agents.

The first experiment used only the 1⇥1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 ⇥ 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 ⇥ 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 ⇥ 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

In	general,	playing	(a)	
(center)	is	better	than	

playing	(b)	

In	this	situation,	playing	(b)	
is	better	than	playing	(a)	

More	weight	

BUT	

More	weight	

43	/	91	

Tracking	as	local	changes	of	representation	

...	

Space	of	go	positions	

Features	

x	

x’	

Embedding		
Space	of	representations	

Weighted	features	

44	/	91	

Computer	vision	

...	

THE SPACE OF FULL-RANKED ONE-FORMS 3

Figure 1. A geodesic in the space of regular curves modulo
translations with respect to the Younes-metric (5.2), a special
case of our metric.

Figure 2. Examples of geodesics in the space of surfaces
modulo translations with respect to the generalized Ebin
metric (4.1). These examples have been calculated using the
numerical framework for the Riemannian metric studied in
this paper as developed in [36].

to the SRNF. In fact we obtain the isometric immersion:

Imm(M,Rn) �! ⌦1
+,ex(M,Rn) ⇢ ⌦1

+(M,Rn) ,

where ⌦1
+,ex(M,Rn) denotes the subset of exact one-forms (assuming that

the topology of M is su�ciently simple). The present article will focus
mainly on the geometry on the larger space of all full-ranked one-forms; we
plan to study the submanifold geometry of the space of exact one-forms in
future work. This strategy is similar to that of Ebin-Marsden [17], who
considered the L2-geometry of Di↵(M) where all the geometry may be done
point-wise, then considered the submanifold of volume-preserving di↵eo-
morphisms under the induced metric (where geodesics describe ideal fluid
motion).

In Figures 1, 2, and 5 one can see examples of geodesics in the space
of immersions, equipped with the pull-back of the generalized Ebin met-
ric studied in this article. These examples have been calculated using the
numerical framework for the Riemannian metric studied in this paper as
developed in [36]1, where the spherical parametrizations of the boundary
surfaces have been obtained using the code of Laga et al. [27].
Connections to the Ebin-metric on the space of all Riemannian metrics. An-
other motivation for the present article can be found in the connection of
the proposed metric to the Ebin metric on the space of all Riemannian met-
rics, which has been introduced by Ebin [16]; see also the article of DeWitt
[14]. Motivated by applications in Teichmüller theory, Kähler geometry and

1An open source implementation of the corresponding numerical framework can be
found at https://github.com/zhesu1/elasticMetrics.

Bauer,	M.,	Klassen,	E.,	Preston,	S.	C.,	&	Su,	Z.	(2018).	A	diffeomorphism-invariant	metric	on	the	space	of	vector-valued	one-
forms.	arXiv	preprint	arXiv:1812.10867.	

45	/	91	

Parallel	transport	in	computer	vision	

...	

(a) (b) (c) (d)

Figure 1: A compactly supported kernel (a) is transported
on a manifold from the FAUST data set [2] through trans-
lation (b), translation + dilation (c) and translation + rota-
tion (d).

point by solving the Eikonal equation |rMD(x)| = 1 us-
ing the fast marching method [30, 16]. Next we calcu-
late rMD and its orthonormal direction on each trian-
gle ⌧s. Together with the face normal direction ~ns, for
each triangle ⌧s, we construct a local orthonormal frame
Fs = {~b1s,~b2s,~ns} where ~b1s,~b2s, reflecting the intrinsic in-
formation, are tangent to ⌧s, and ~ns, reflecting the extrin-
sic information, is orthogonal to ⌧s. For an edge adjacent
with ⌧s and ⌧t, we write Rst as an orthonormal transi-
tion matrix such that RstFt = Fs. Then any vector in
Span{~b1s,~b2s} can be transported to Span{~b1t ,~b2t} using
the transition matrix Rst. This can be viewed as a dis-
cretization of connection and used to transport a vector on
the tangent space of one given point to all other points.
The compatibility condition of all Rst discussed in [34]
can guarantee that no ambiguity will be introduced in this
way.

After the transportation is conducted, the convolution
kernel can be transported to a new point by interpolat-
ing the transported vectors in the local tangent space at
the target point. Computationally, we define a sparse
matrix K where the ith column is the transportation of
the kernel to the ith vertex. Thus, we have the follow-
ing definition of discrete parallel transport convolution:
(f ⇤M k)(x) := KT

MF where F is column vector repre-
sentation the function f at each vertex and M is the mass
matrix. Note that once we have found the vector field of
the geodesic equation, the transportation of the kernel to
each new center and multiplication with F is independent
and can therefore be parallelized efficiently. Figure 1 il-
lustrates the effect of the proposed method of transporting
a kernel function on a manifold. This result shows that the
proposed method produce an analogy of the behavior of a
kernel function k(x � y) operating in the Euclidean do-
main. More importantly, we would like to emphasize that
number of freedoms in our PTC is essentially the same
as the classical convolution on Euclidean domain. This
makes our method has much less number of parameters

as those used in the patch based methods [25]. In addi-
tion, PTC can be computed very efficiently using sparse
matrices product once the interpolation matrices and mass
matrices have been precomputed. We provide detailed im-
plementation about sparse matrices multiplication of PTC
in the appendix.

3.3 Convolutional neural networks on man-

ifolds through PTC

Using the proposed PTC, we can define convolutional
neural networks on manifolds. We shall refer these net-
work as PTCNets. Similar as CNNs on Euclidean do-
mains, a PTCNet consists of an input and an output layer,
as well as multiple hidden layers including fully con-
nected layers, nonlinear layers, pooling layers and PTC
layers listed as follows.

• Fully connected layer: fout
i (x) =PN

j=1 wijf in
j (x), i = 1, · · · , L. This layer

connects every neuron in one layer to every neuron
in the previous layer. The coefficient matrix (wij)
parametrizes this layer and will be trained by a training
data set.

• ReLu layer: fout
i (x) = max{0, f in

i (x)}, i =
1, · · · , L. This is a fixed layer applying the nonlin-
ear Rectified Linear Units function max{0, x} to each
input.

• PTC layer: fout
i,↵ (x) =

R
k↵(x, y)f in

i (y) dy ⇡
K↵MF in

i , ↵ = 1, · · · ,m. This layer applies the
proposed PTC to the input, passes the result to the next
layer. Each k↵ is determined by the proposed PTC on
manifolds with an initial convolution kernel k↵(x0, ·),
which parametrize the parallel transport convolution
process and will be trained based on a training data set.
For certain applications with a moderate size of train-
ing set, more structured initial kernel might be needed.
In this case, we can control k↵ by a sequence of rota-
tion in the tangent space, which can reduce the number
of free parameters and save computation time. Detail
on memory efficient implementation of this layer can
be found in the appendix

Therefore, it is straightforward to adapt established net-
work architectures in Euclidean domain cases to mani-
folds case as the only change is to replace traditional con-
volution by PTC. In addition, back-propagation can be
achieved by taking derivation of K. The compact sup-
port of the convolution kernel is represented as a sparse
matrix which makes computation efficient.

Thus far we have only considered transportation along
the geodesic. In practice we can compute the parallel
transportation along any given vector field. For some ap-
plications it may be more natural to use another vector

5

Schonsheck,	S.	C.,	Dong,	B.,	&	Lai,	R.	(2018).	Parallel	transport	convolution:	A	new	tool	for	convolutional	neural	
networks	on	manifolds.	arXiv	preprint	arXiv:1805.07857.	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Standard	CNN	 PTCNet	

Parallel	Transported	
Convolution	layer	

46	/	91	

Curriculum	building	

47	/	91	

•  We	expect	that	transfer	is	easy	when	source	and	target	tasks	are	“close”	

•  And	it	may	be	difficult	to	transfer	across	tasks	that	are	“far	away”	

	

But	how	to	measure	“closeness”		

and	“far	away”	for	learning	tasks?	

Define	a	geometry	over	the	space	of	tasks	

48	/	91	

Geometry	of	the	space	of	tasks		

•  Desiderata	
1.  Should	incorporate	the	hypothesis	space,		

and	not	only	the	“distance”	between	the	inputs	(as	is	usually	done)	

•  For	instance,	it	is	often	observed	that	transferring	larger	models	is	easier.		

The	geometry	should	reflect	this.		

2.  The	distance	between	tasks	is	not	symmetrical	

Gao,	Y.,	&	Chaudhari,	P.	(2021,	July).	An	information-geometric	distance	on	the	space	of	tasks.	
In	International	Conference	on	Machine	Learning	(pp.	3553-3563).	PMLR.	
	

49	/	91	

Idea	

Modify	conjointly	the	training	data	distribution	and	the	learned	hypothesis	

	

An Information-Geometric Distance on the Space of Tasks

Yansong Gao 1 Pratik Chaudhari 2

Abstract
This paper prescribes a distance between learning
tasks modeled as joint distributions on data and
labels. Using tools in information geometry, the
distance is defined to be the length of the shortest
weight trajectory on a Riemannian manifold as
a classifier is fitted on an interpolated task. The
interpolated task evolves from the source to the
target task using an optimal transport formulation.
This distance, which we call the “coupled transfer
distance” can be compared across different clas-
sifier architectures. We develop an algorithm to
compute the distance which iteratively transports
the marginal on the data of the source task to that
of the target task while updating the weights of
the classifier to track this evolving data distribu-
tion. We develop theory to show that our distance
captures the intuitive idea that a good transfer tra-
jectory is the one that keeps the generalization
gap small during transfer, in particular at the end
on the target task. We perform thorough empiri-
cal validation and analysis across diverse image
classification datasets to show that the coupled
transfer distance correlates strongly with the diffi-
culty of fine-tuning.

1. Introduction
A part of the success of Deep Learning stems from the fact
that deep networks learn features that are discriminative
yet flexible. Models pre-trained on a particular task can be
easily adapted to perform well on other tasks. The transfer
learning literature forms an umbrella for such adaptation
techniques, and it works well, see for instance Mahajan
et al. (2018); Dhillon et al. (2020); Kolesnikov et al. (2019);
Joulin et al. (2016) for image classification or Devlin et al.
(2018) for language modeling, to name a few large-scale
studies. There are also situations when transfer learning
does not work well, e.g., a pre-trained model on ImageNet
is a poor representation to transfer to MRI data (Merkow

1Department of Applied Mathematics and Computational Science,
University of Pennsylvania 2Department of Electrical and Sys-
tems Engineering, University of Pennsylvania. Correspondence
to: Yansong Gao <gaoyans@sas.upenn.edu>, Pratik Chaudhari
<pratikac@seas.upenn.edu>.

Figure 1. Coupled transfer of the data and the conditional dis-
tribution. We solve an optimization problem that transports the
source data distribution ps(x) to the target distribution pt(x) as
⌧ ! 1 while simultaneously updating the model using samples
from the interpolated distribution p⌧ (x). This modifies the condi-
tional distribution pws(y|x) on the source task to the correspond-
ing distribution on the target task pwt(y|x). The “coupled transfer
distance” between source and target tasks is the length of the short-
est such weight trajectory under the Fisher Information Metric.

et al., 2017).

It stands to reason that if source and target tasks are “close”
to each other then we should expect transfer learning to
work well. It may be difficult to transfer across tasks that
are “far away”. We lack theoretical tools to characterize the
difficulty of adapting a model training on a source task to
the target task. While there are numerous candidates in the
literature (see Related Work in Sec. 6) for characterizing
the distance between tasks, a unified understanding of these
domain-specific methods is missing.

Desiderata. Our desiderata for a task distance are as follows.
First, it should be a distance between learning tasks, i.e.,
it should explicitly incorporate the hypothesis space of the
model that is being transferred and accurately reflect the
difficulty of transfer. For example, it is often observed in
practice that transferring larger models is easier, we would
like our task distance to capture this fact. Such a distance
is different than discrepancy measures on the input, or the
joint input-output space, which do not consider the model.

Second, we would like a theoretical framework to prescribe
this distance. Task distances in the literature often de-
pend upon quantities such as the number of epochs of fine-
tuning to reach a certain accuracy, where different hyper-
parameters may result in different conclusions. Also, as
the present paper explores at depth, there are mechanisms
for transfer other than fine-tuning that may transfer easily

ar
X

iv
:2

01
1.

00
61

3v
2

 [c
s.L

G
]

25
 F

eb
 2

02
1

Training	data		
distribution	

Learned	
hypothesis	

Compute	iteratively	the	intermediate	training	sets	such	that		
•  at	each	step	τ		the	new	task		is	close	to		
•  what	can	be	learned	by	the	current	learner		

(characterized	by	its	current	hypothesis)		

50	/	91	

Experimental	results	

•  Using	an	8-layer	convolutional	NN	(ReLU,	dropout,	batch-normalization)	with	
a	final	fully	connected	layer	

An Information-Geometric Distance on the Space of Tasks

an 8-layer convolutional neural network with ReLU non-
linearities, dropout, batch-normalization with a final fully-
connected layer along with a larger wide-residual-network
WRN-16-4 (Zagoruyko & Komodakis, 2016). Sec. A gives
details about pre-processing, architecture and training.

5.2. Baseline methods to estimate task distances

The difficulty of fine-tuning is the gold standard of dis-
tance between tasks. It is therefore very popular, e.g., Ko-
rnblith et al. (2019) use the number of epochs during transfer
as the distance. We compute the length of the weight tra-
jectory, i.e.,

R 1
0 |dw| and call this the fine-tuning distance.

The trajectory is truncated when validation accuracy on the
target task is 95% of its final validation accuracy. No trans-
port of the task is performed and the model directly takes
SGD updates on the target task after being pre-trained on
the source task.

The next baseline is Task2Vec (Achille et al., 2019a) which
embeds tasks using the diagonal of the FIM of a model
trained on them individually. Cosine distance between these
vectors is defined as the task distance.

We also compare with the uncoupled transfer distance
developed in Sec. 3.1. This distance computes length of
the weight trajectory on the Riemannian distance and also
interpolates the data but does not do them synchronously.

Discrepancy measures on the input space are a popular
way to measure task distance. We show task distance com-
puted as the Wasserstein W

2
2 metric on the the pixel-

space, the Wasserstein W
2
2 metric on the embedding

space and also method that we devised ourselves where
we transfer a variational autoencoder (VAE (Kingma &
Welling, 2014)) from the source to the target task and com-
pute the length of weight trajectory on the manifold. We
transfer the VAE in two ways, (i) by directly fitting the
model on the target task, and (ii) by interpolating the task
using a mixture distribution as described in Sec. 3.1.

5.3. Quantitative comparison of distance matrices

Metrics are not unique. We would however still like to com-
pare two task distances across various pairs of tasks. In
addition to showing these matrices and drawing qualitative
interpretations, we use the Mantel test (Mantel, 1967) to ac-
cept/reject the null hypothesis that variations in two distance
matrices are correlated. We will always compute correla-
tions with the fine-tuning distance matrix because it is
a practically relevant quantity and task distances are often
designed to predict this quantity. We report p-values and the
normalized test statistic r = 1/(n2

� n� 1)
Pn

i,j=1(aij �

ā)(bij � b̄)/(�a�b) where a, b 2 Rn⇥n are distance matri-
ces for n tasks, ā,�a denote mean and standard deviation of
entries respectively. Numerical values of r are usually small

for all data (Ape; Goslee et al., 2007) but the pair (r, p) are
a statistically sound way of comparing distance matrices;
large r with small p indicates better correlation.

5.4. Transferring between subsets of benchmark
datasets

CIFAR-10 and CIFAR-100. We consider four tasks (i) all
vehicles (airplane, automobile, ship, truck) in CIFAR-10,
(ii) the remainder, namely six animals in CIFAR-10, (iii)
the entire CIFAR-10 dataset and (iv) the entire CIFAR-100
dataset. We show results in Fig. 2 using 4⇥4 distance matri-
ces where numbers in each cell indicate the distance between
the source task (row) and the target task (column).

CIFA5100 CIFA510 animals vehiFles

CI
FA
51
00

CI
FA
51
0

an
im
al
s

ve
hi
Fl
es

0 0.17 0.17 0.15

0.24 0 0.084 0.081

0.3 0.099 0 0.14

0.31 0.14 0.23 0

(a) (b) (c)

Figure 2. Fig. 2a shows coupled transfer distance (r = 0.428 p =
0.13), Fig. 2b shows distances estimated using Task2Vec (r = 0.03,
p = 0.98), Fig. 2c shows fine-tuning distance (r = 0.61, p = 0.09
with itself). The numerical values of the distances in this figure are
not comparable with each other. Coupled transfer distances satisfy
certain sanity checks, e.g., transferring to a subset task is easier
than transferring from a subset task (CIFAR-10-vehicles/animals),
which Task2Vec does not.

Coupled transfer shows similar trends as fine-tuning, e.g.,
the tasks animals-CIFAR-10 or vehicles-CIFAR-10 are close
to each other while CIFAR-100 is far away from all tasks (it
is closer to CIFAR-10 than others). Task distance is asym-
metric in Fig. 2a, Fig. 2c. Distance from CIFAR-10-animals
is smaller than animals-CIFAR-10; this is expected because
animals is a subset of CIFAR-10. Task2Vec distance esti-
mates in Fig. 2b are qualitatively quite different from these
two; the distance matrix is symmetric. Also, while fine-
tuning from animals-vehicles is relatively easy, Task2Vec
estimates the distance between them to be the largest.

This experiment also shows that our approach can scale to
medium-scale datasets and can handle situations when the
source and target task have different number of classes.

Transferring between subsets of CIFAR-100. We con-
struct five tasks (herbivores, carnivores, vehicles-1, vehicles-
2 and flowers) that are subsets of the CIFAR-100 dataset.
Each of these tasks consists of 5 sub-classes. The distance
matrices for coupled transfer, Task2Vec and fine-tuning are
shown in Fig. 3a, Fig. 3b and Fig. 3c respectively. We also
show results using uncoupled transfer in Fig. 3d.

Coupled transfer estimates that all these subsets of CIFAR-
100 are roughly equally far away from each other with
herbivores-carnivores being the farthest apart while vehicles-

			Distance	is	asymmetrical	
–  CIFAR-10	to	animals		<		animals	to	CIFAR-10	

–  CIFAR-100	to	any	other	is	much	easier		

than	the	reverse	

Estimated	task	distances	

51	/	91	

Experimental	results	

•  Using	an	8-layer	convolutional	NN	

Distance	is	much	reduced		
using	a	larger	capacity	model	

An Information-Geometric Distance on the Space of Tasks

herbivores carnivores vehicles 1 vehicles 2 flowers

he
rb

iv
or

es
ca

rn
iv

or
es

ve
hi

cl
es

 1
ve

hi
cl

es
 2

flo
w

er
s

0 0.13 0.12 0.11 0.13

0.14 0 0.13 0.11 0.13

0.12 0.13 0 0.12 0.14

0.14 0.13 0.13 0 0.14

0.13 0.13 0.11 0.1 0

(a) (b)

Figure 5. Fig. 5a shows coupled transfer distance (r = 0.15, p
= 0.01) and Fig. 5b shows fine-tuning distance (r = 0.39, p =
0.01 with itself and r = 0.21, p = 0.20 with fine-tuning distance
in Fig. 3c). Numbers in Fig. 5a can be directly compared to those
in Fig. 3a. WRN-16-4 model has a shorter trajectory for all task
pairs compared to the CNN in Fig. 3a with fewer parameters.

fine-tuning for pairs of CIFAR-100 tasks. It shows that
broadly, the former improves generalization. This is consis-
tent with existing literature (Gao & Chaudhari, 2020) which
employs task interpolation for better transfer. Let us note
that improving fine-tuning is not our goal while develop-
ing the task distance. In fact, we want the task distance to
correlate with the difficulty of fine-tuning.

 Herbivores Carnivores Vehicle 1 Vehicle 2 Flowers

 Vehicle 1 0.693 1.091
 82.4 80.4

 0.530 0.928
 85.0 85.0

 N/A 0.247 0.423
 93.2 92.6

 0.843 1.110
 81.4 81.0

 Vehicle 2 0.616 1.088
 84.4 84.0

 0.504 0.968
 87.2 84.8

 0.451 0.500
 88.4 89.0

 N/A 0.778 1.000
 80.6 81.0

Figure 6. Comparison of validation loss (red for coupled transfer,
green for fine-tuning) and accuracy (%) (blue and yellow respec-
tively) between different subsets of CIFAR-100. Optimal transport
for the task distribution results in large improvements in the vali-
dation loss in all cases; The validation accuracy also improve by
0.4%–2.5% in all cases except the last two.

Comparison with other task discrepancy measures.
Fig. 7a shows task distances computed using the Rie-
mannian length of the weight trajectory for the VAE
(see Sec. 5.2) when task is interpolated using a mixture
distribution, Fig. 7b shows the same quantity when the VAE
is directly fitted to the target task after initialization on the
source. Fig. 7c and Fig. 7d show the Wasserstein distance on
the pixel-space and feature-space respectively. We find that
although the four distance matrices in Fig. 7 agree with each
other very well (r ⇡ 0.15, p < 0.08 for all pairs, except the
VAE with uncoupled transfer), they are very different from
the fine-tuning distance in Fig. 3c. This shows that task dis-
tances computed using discrepancy measures on the input
space are not reflective of the difficulty of fine-tuning, after
all images in these tasks are visually quite similar to each
each. Coupled transfer distance explicitly takes the hypoth-
esis space into account and correctly reflects the difficulty
of transfer, even if the input spaces are similar.

(a) (b) (c) (d)

Figure 7. Fig. 7a shows task distance computed using the Rieman-
nian length of the weight trajectory for the VAE using a mixture
distribution to interpolate the tasks (see Sec. 5.1, r = 0.1, p =
0.76), Fig. 7b shows the same quantity for directly fine-tuning the
VAE (r = 0.09, p = 0.88), Fig. 7c shows task distance using the
Wasserstein metric on the pixel-space (r = 0.02, p = 0.22), Fig. 7d
shows distances using Wasserstein metric on the embedding space
(r = 0.06, p = 0.40). The last three methods agree with each other
very well (see the narrative for p-values) but small Mantel test
statistic and high p-values as compared to Fig. 3c indicates that
these distances are not correlated with the difficulty of fine-tuning.

6. Related Work
Domain-specific methods. A rich understanding of task
distances has been developed in computer vision, e.g., Za-
mir et al. (2018) compute pairwise distances when differ-
ent tasks such as classification, segmentation etc. are per-
formed on the same input data. The goal of this work, and
others such as (Cui et al., 2018), is to be able to decide
which source data to pre-train to generalize well on a target
task. Task distances have also been widely discussed in
the multi-task learning (Caruana, 1997) and meta/continual-
learning (Liu et al., 2019; Pentina & Lampert, 2014; Hsu
et al., 2018). The natural language processing literature also
prevents several methods to compute similarity between
input data (Mikolov et al., 2013; Pennington et al., 2014).

Most of the above methods are based on evaluating the dif-
ficulty of fine-tuning, or computing the similarity in some
embedding space. It is difficult to ascertain whether the
distances obtained thereby are truly indicative of the diffi-
culty of transfer; fine-tuning hyper-parameters often need to
be carefully chosen (Li et al., 2020) and neither is the em-
bedding space unique. For instance, the uncoupled transfer
process that modifies the input data distribution will lead to
a different estimate of task distance.

Information-theoretic approaches. We build upon a line
of work that combines generative models and discrimina-
tory classifiers (see (Jaakkola & Haussler, 1999; Perronnin
et al., 2010) to name a few) to construct a notion of sim-
ilarity between input data. Modern variants of this idea
include Task2Vec (Achille et al., 2019a) which embeds the
task using the diagonal of the FIM and computes distance
between tasks using the cosine distance for this embedding.
The main hurdle in Task2Vec and similar approaches is to
design the architecture for computing FIM: a small model
will indicate that tasks are far away. Achille et al. (2019b;c)
use the KL divergence between the posterior weight dis-

•  And	a	wide	residual	network	
(WRN-16-4):	larger	capacity	An Information-Geometric Distance on the Space of Tasks

(a)

herbivores carnivores vehicles 1 vehicles 2 flowers

he
rb

iv
or

es
ca

rn
iv

or
es

ve
hi

cl
es

 1
ve

hi
cl

es
 2

flo
w

er
s

0 24 26 16 57

53 0 39 20 67

29 40 0 17 56

49 21 27 0 74

45 25 25 23 0

(b)

Figure 5. Fig. 5a shows coupled transfer distance (r = 0.15, p
= 0.01) and Fig. 5b shows fine-tuning distance (r = 0.39, p =
0.01 with itself and r = 0.21, p = 0.20 with fine-tuning distance
in Fig. 3c). Numbers in Fig. 5a can be directly compared to those
in Fig. 3a. WRN-16-4 model has a shorter trajectory for all task
pairs compared to the CNN in Fig. 3a with fewer parameters.

fine-tuning for pairs of CIFAR-100 tasks. It shows that
broadly, the former improves generalization. This is consis-
tent with existing literature (Gao & Chaudhari, 2020) which
employs task interpolation for better transfer. Let us note
that improving fine-tuning is not our goal while develop-
ing the task distance. In fact, we want the task distance to
correlate with the difficulty of fine-tuning.

 Herbivores Carnivores Vehicle 1 Vehicle 2 Flowers

 Vehicle 1 0.693 1.091
 82.4 80.4

 0.530 0.928
 85.0 85.0

 N/A 0.247 0.423
 93.2 92.6

 0.843 1.110
 81.4 81.0

 Vehicle 2 0.616 1.088
 84.4 84.0

 0.504 0.968
 87.2 84.8

 0.451 0.500
 88.4 89.0

 N/A 0.778 1.000
 80.6 81.0

Figure 6. Comparison of validation loss (red for coupled transfer,
green for fine-tuning) and accuracy (%) (blue and yellow respec-
tively) between different subsets of CIFAR-100. Optimal transport
for the task distribution results in large improvements in the vali-
dation loss in all cases; The validation accuracy also improve by
0.4%–2.5% in all cases except the last two.

Comparison with other task discrepancy measures.
Fig. 7a shows task distances computed using the Rie-
mannian length of the weight trajectory for the VAE
(see Sec. 5.2) when task is interpolated using a mixture
distribution, Fig. 7b shows the same quantity when the VAE
is directly fitted to the target task after initialization on the
source. Fig. 7c and Fig. 7d show the Wasserstein distance on
the pixel-space and feature-space respectively. We find that
although the four distance matrices in Fig. 7 agree with each
other very well (r ⇡ 0.15, p < 0.08 for all pairs, except the
VAE with uncoupled transfer), they are very different from
the fine-tuning distance in Fig. 3c. This shows that task dis-
tances computed using discrepancy measures on the input
space are not reflective of the difficulty of fine-tuning, after
all images in these tasks are visually quite similar to each
each. Coupled transfer distance explicitly takes the hypoth-
esis space into account and correctly reflects the difficulty
of transfer, even if the input spaces are similar.

(a) (b) (c) (d)

Figure 7. Fig. 7a shows task distance computed using the Rieman-
nian length of the weight trajectory for the VAE using a mixture
distribution to interpolate the tasks (see Sec. 5.1, r = 0.1, p =
0.76), Fig. 7b shows the same quantity for directly fine-tuning the
VAE (r = 0.09, p = 0.88), Fig. 7c shows task distance using the
Wasserstein metric on the pixel-space (r = 0.02, p = 0.22), Fig. 7d
shows distances using Wasserstein metric on the embedding space
(r = 0.06, p = 0.40). The last three methods agree with each other
very well (see the narrative for p-values) but small Mantel test
statistic and high p-values as compared to Fig. 3c indicates that
these distances are not correlated with the difficulty of fine-tuning.

6. Related Work
Domain-specific methods. A rich understanding of task
distances has been developed in computer vision, e.g., Za-
mir et al. (2018) compute pairwise distances when differ-
ent tasks such as classification, segmentation etc. are per-
formed on the same input data. The goal of this work, and
others such as (Cui et al., 2018), is to be able to decide
which source data to pre-train to generalize well on a target
task. Task distances have also been widely discussed in
the multi-task learning (Caruana, 1997) and meta/continual-
learning (Liu et al., 2019; Pentina & Lampert, 2014; Hsu
et al., 2018). The natural language processing literature also
prevents several methods to compute similarity between
input data (Mikolov et al., 2013; Pennington et al., 2014).

Most of the above methods are based on evaluating the dif-
ficulty of fine-tuning, or computing the similarity in some
embedding space. It is difficult to ascertain whether the
distances obtained thereby are truly indicative of the diffi-
culty of transfer; fine-tuning hyper-parameters often need to
be carefully chosen (Li et al., 2020) and neither is the em-
bedding space unique. For instance, the uncoupled transfer
process that modifies the input data distribution will lead to
a different estimate of task distance.

Information-theoretic approaches. We build upon a line
of work that combines generative models and discrimina-
tory classifiers (see (Jaakkola & Haussler, 1999; Perronnin
et al., 2010) to name a few) to construct a notion of sim-
ilarity between input data. Modern variants of this idea
include Task2Vec (Achille et al., 2019a) which embeds the
task using the diagonal of the FIM and computes distance
between tasks using the cosine distance for this embedding.
The main hurdle in Task2Vec and similar approaches is to
design the architecture for computing FIM: a small model
will indicate that tasks are far away. Achille et al. (2019b;c)
use the KL divergence between the posterior weight dis-

52	/	91	

Conclusions	

•  Interesting	work	
–  New	definition	of	distance	between	tasks		

•  Asymmetrical	
•  Depends	on	the	capacity	of	the	learning	system	

–  New	way	to	build	a	curriculum	

•  Limits	

–  Still	a	crude	way	to	build	intermediate	tasks	

–  Same	input-output	source	and	target	domains!!!			

–  Same	hypothesis	space	in	both	source	and	target	domains!!!	

53	/	91	

Conclusions	

•  Interesting	work	
–  New	definition	of	distance	between	tasks		

•  Asymmetrical	
•  Depends	on	the	capacity	of	the	learning	system	

–  New	way	to	build	a	curriculum	

•  Limits	

–  Still	a	crude	way	to	build	intermediate	tasks	

–  Same	input-output	source	and	target	domains!!!			

–  Same	hypothesis	space	in	both	source	and	target	domains!!!	

54	/	91	

Conclusions	

•  Interesting	work	
–  New	definition	of	distance	between	tasks		

•  Asymmetrical	
•  Depends	on	the	capacity	of	the	learning	system	

–  New	way	to	build	a	curriculum	

•  Limits	

–  Still	a	crude	way	to	build	intermediate	tasks	

–  Same	input-output	source	and	target	domains!!!			

–  Same	hypothesis	space	in	both	source	and	target	domains!!!	

Not	general		
transfer	learning	

55	/	91	

What	if	the	space	of	tasks	is	not	continuous?	

56	/	91	

Outline	

1.  	Supervised	induction:	the	classical	setting	

2.  	What	about	Out	Of	Distribution	learning	(OOD)?	

3.  	Parallel	transport,	covariant	derivative	and	transfer	learning	

–  What	they	are	

–  ...	in	Machine	Learning	

4.  	A	way	to	deal	with	different	spaces	of	tasks	

5.  	Conclusions	

57	/	91	

A	LUPI	type	of	algorithm	for	transfer	learning	

TransBoost	

A	method	for	transfer	learning	between	different	tasks		

and	what	it	tells	

Cornuéjols,	A.,	Murena,	P.	A.,	&	Olivier,	R.	(2020).	Transfer	learning	by	learning	projections	from	target	to	source.	In	18th	
International	Symposium	on	Intelligent	Data	Analysis,	IDA	2020,	Konstanz,	Germany,	April	27–29,	2020,	Proceedings	18	(pp.	
119-131).	Springer	International	Publishing.	

58	/	91	

A	LUPI	type	of	algorithm	for	transfer	learning	

25/46 Cours IA (A. Cornuéjols)

L�algorithme alpha-beta : Illustration (9)

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α = + 10
β = + ∞

6 7

Coup à jouerCoup à jouer

Taking	decision	when	the	current	
information	is	incomplete	

...	

59	/	91	

Algorithms	for	games	

•  Which	move	to	play?	

The	evaluation	function	is	insufficiently	informed	at	the	root	(current	situation)	

1.   	Query	experts	that	have	more	information	about		
potential	outcomes	

2.   	Combination	of	the	estimates	through	MinMax	

“Experts”	may	live	in	input	spaces	that	are	different	

25/46 Cours IA (A. Cornuéjols)

L�algorithme alpha-beta : Illustration (9)

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

1 2 3 4 5

α = + 10
β = + ∞

6 7

Coup à jouerCoup à jouer

Taking	decision	when	the	current	
information	is	incomplete	

60	/	91	

Algorithms	for	games	and	transfer	learning	

?	

10 11 9 12 14 15 13 14 5 2 4 1 3 22 20 21

Noeud Max

Noeud Min

α = − ∞

β = + ∞

1

α = − ∞
β = + ∞

α = − ∞
β = + ∞

α = − ∞
β = + ∞

α = − ∞
β = + 10

?	

2 XS

2 XT

...	

61	/	91	

Can	we	do	the	“same”	for	transfer	learning?	

62	/	91	

Boosting

X h1 D1

X h2 D2

X h3 D3

X hT DT

•  How	to	compute	Dt	from		Dt-1	and	thus	ht?	

•  How	to	compute	the		αt	?	

H(x) = sign

 TX

t=1

↵t ht(x)

�

63	/	91	

TransBoost	

HT (x
T) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T)
��

+

+

+

+
+

-

-

-

-

-

xi

X

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
⇡1
⇡2

⇡N

⇡j

⇧

hS

64	/	91	

TransBoost	

•  Principle:	
–  Learn	“weak	projections”:		

•  Using	the	target	training	data:	

	

–  With	boosting	

•  Projection								such	that	:		

•  Re-weight	the	training	time	series	and	loop	until	termination	

–  Result	

"n
.
= Pi⇠Dn [hS(⇡n(xi)) 6= yi] < 0.5⇡n

HT (x
T) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T)
��

⇡i : XT ! XS

ST = {(xT
i , y

T
i)}1im

65	/	91	

TransBoost	

...	

+

+

+

+
+

-

-

-

-

-

-
-

-

-
-
--

-

+

+ +

+

+
+

+

+

+
xi

Target	Domain Source	Domain

xT
1

xT
2

xS
2

xS
1

xS
3

?
�1
�2

�N

�j(xi)
�j

�

hS

XSXT

Figure 1: The principle of prediction using TransBoost. A given target exemple x
T

i is projected in the source
domain using a set of identified weak projections fij and the prediction for x

T

i is computed as: HT (xT

i) =

sign
;qN

j=1 hS

!
fij(xT

i)
"<

.

Algorithm 1: Transfer learning by boosting
Input: hS : XS æ YS the source hypothesis

ST = {(xT

i , y
T

i }1ÆiÆm: the target training set

Initialization of the distribution on the training set: D1(i) = 1/m for i = 1, . . . , m ;

for n = 1, . . . , N do

Find a projection fii : XT æ XS st. hS(fii(·)) performs better than random on Dn(ST) ;
Let Án be the error rate of hS(fii(·)) on Dn(ST) : Án

.= Pi≥Dn [hS(fin(xi)) ”= yi] (with Án < 0.5) ;
Computes –i = 1

2 log2
! 1≠Ái

Ái

"
;

Update, for i = 1 . . . , m:

Dn+1(i) = Dn(i)
Zn

◊
I

e
≠–n if hS

!
fin(xT

i)
"

= y
T

i

e
–n if hS

!
fin(xT

i)
"

”= y
T

i

=
Dn(i) exp

!
≠–n y

(T)
i hS(fin(x(T)

i))
"

Zn

where Zn is a normalization factor chosen so that Dn+1 be a distribution on ST ;
end

Output: the final target hypothesis HT : XT æ YT :

HT (xT) = sign
; Nÿ

n=1
–n hS

!
fin(xT)

"<
(2)

5

66	/	91	

Controlled	data	

–  The	slope	to	distinguish	between	classes	

–  The	shapes	of	time	series	within	each	class:	variety	

–  The	noise	level	

xt = t⇥ slope⇥ class| {z }
information gain

+ xmax sin(!i ⇥ t + 'j)| {z }
sub shape within class

+ ⌘(t)|{z}
noise factor

67	/	91	

The	set	of	projections	

	

Hinge	functions				(4	parameters)	

•  Abscisse	of	the	hinge	

•  Angles	before	and	after	

•  Observed	window	 ✓1

✓2

Size	of	the	window	

Randomly	generated	within	constraints	

68	/	91	

Results	

The source domain comprises the complete time series (tS = 200), while the target domain contains
time series truncated to their first tT time steps (in our experiments, tT 2 {20, 50, 100}). On
each domain, a classifier (Gaussian SVM as implemented in Scikit Learn) was trained using the
corresponding training time series.

In these experiments, the set of projections ⇧ was chosen as a set of “hinge functions”, defined by
three parameters, the slope of the first linear part, the time where the hinge takes place, and the slope
of the second linear part. The set is explored randomly by the algorithm and a projection is retained
if its error rate on the current weighted data is better than 0.45.

Table 1 provides representative examples of the results obtained (see the supplementary material for
more comprehensive results). Each cell of the table shows the average performance (and the standard
deviations) computed from 100 experiments repeated under the same conditions. It is apparent that
TransBoost yields very significantly superior results in conditions where there is signal in the target
data set, but the learning task is not so easy as to not require transfer learning.

slope, noise, tT hT (train) hT (test) HT (train) HT (test) hS (test) H
0
T (test)

0.001, 0.001, 20 0.46 ± 0.02 0.50 ± 0.08 0.08 ± 0.03 0.08 ± 0.02 0.05 0.49 ± 0.01
0.005, 0.001, 20 0.46 ± 0.02 0.49 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 0.45 ± 0.01
0.005, 0.002, 20 0.46 ± 0.02 0.49 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.02 0.43 ± 0.01
0.005, 0.02, 20 0.44 ± 0.02 0.48 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.01 0.47 ± 0.01
0.001, 0.2, 20 0.46 ± 0.02 0.50 ± 0.01 0.46 ± 0.02 0.51 ± 0.02 0.11 0.49 ± 0.01
0.01, 0.2, 20 0.42 ± 0.03 0.47 ± 0.03 0.34 ± 0.02 0.35 ± 0.02 0.02 0.35 ± 0.01
0.001, 0.001, 50 0.46 ± 0.02 0.50 ± 0.01 0.08 ± 0.03 0.08 ± 0.02 0.06 0.41 ± 0.01
0.005, 0.001, 50 0.25 ± 0.07 0.28 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.01 0.28 ± 0.01
0.005, 0.002, 50 0.27 ± 0.07 0.30 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.02 0.28 ± 0.01
0.005, 0.02, 50 0.26 ± 0.07 0.30 ± 0.08 0.04 ± 0.01 0.04 ± 0.01 0.01 0.31 ± 0.01
0.001, 0.2, 50 0.44 ± 0.02 0.50 ± 0.01 0.38 ± 0.03 0.44 ± 0.02 0.15 0.43 ± 0.01
0.01, 0.2, 50 0.10 ± 0.03 0.12 ± 0.04 0.10 ± 0.02 0.11 ± 0.02 0.03 0.15 ± 0.02
0.001, 0.001, 100 0.43 ± 0.03 0.47 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.02 0.23 ± 0.01
0.005, 0.001, 100 0.06 ± 0.03 0.07 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.01 0.07 ± 0.02
0.005, 0.002, 100 0.08 ± 0.03 0.10 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.02 0.07 ± 0.01
0.005, 0.02, 100 0.08 ± 0.03 0.09 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.01 0.07 ± 0.01
0.001, 0.2, 100 0.04 ± 0.03 0.46 ± 0.02 0.28 ± 0.02 0.31 ± 0.01 0.16 0.31 ± 0.01
0.01, 0.2, 100 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.02 0.05 ± 0.01

Table 1: Comparison of learning directly in the target domain (columns hT (train) and hT (test)), using
TransBoost (columns HT (train) and HT (test)), learning in the source domain (column hS (test)) and, finally,
completing the time series with a SVR regression and using hS (naïve transfer). Test errors are highlighted in
the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without
transfer and learning with naïve transfer.

Figures 3 and 4 sum up all results. In both tables, the x-axis reports the error rate obtained using
TransBoost, while the y-axis reports the error rate of the competing algorithm: either the hypothesis
hT learnt on the target training data alone (Figure 3), or the hypothesis H

0

T
learned on the target data

completed using a SVR regression (Figure 4). The remarquable efficiency of TransBoost in a large
spectrum of situations is readily apparent. Transboost is less dominant when either the data is so
noisy that no method can learn from the data (right part of the graphs near the diagonal), or when the
task is so easy (large slope and/or low noise) that nothing can be gained from transfer learning (left
part).

When the source problem is a priori unrelated to the target learning problem

In this set of experiments, the source hypothesis hS : RtS ! {�1, +1} is chosen independently
from the target data set. TransBoost tries to find a set of projections from RtT to RtS so that a

combined hypothesis HT (xT) = sign
⇢PN

n=1 ↵n hS

�
⇡n(xT)

��
can be computed for use in the

target domain DT .

7

Learning	from	
target	data	only	 TransBoost	

On	the	source	
domain	

Naïve	transfert	

High	noise	
level	

Large	
slope	Easy	

69	/	91	

Transfer	learning	using	Transboost		Project Report - Telecom Paris 5

(a) kNN source model trained on
the data source : it fits to the data
source

(b) kNN source model trained on
the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target

Figure 5

(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.

Project Report - Telecom Paris 5

(a) kNN source model trained on
the data source : it fits to the data
source

(b) kNN source model trained on
the data source : it does not fit to
the data target

(c) kNN source model trained on
the data source transBoosted to the
data target

Figure 5

(a) Another new kNN model retrained on the data
target

(b) kNN source model adapted via TransBoost on the
data target

Figure 6: Comparison of the predicted domains by both methods, with 80 percent of data test

Figure 7: Comparison of the error rate of both methods according to the test dataset proportion used

(a) Red : Transboosting

(b) Blue : SVC model retrained on the data target

(c) Green : kNN model retrained on the data target

At each iteration of the TransBoost, roaming a grid, with random translation values associated, to select
the best beak learner possible is certainly not the most efficient way to process. When we realized this, we tried
to find the best weak learner with an analytic approach.

We notice that TransBoost allows barely the same error levels as relearning via kNN or AdaBoost when
target training set is sufficiently large, in respect to the half-moons dataset. However, TransBoost outperforms
over methods in case of lack of target training data, which is a domain where both boosting and transfer methods
are supposedly equate for.

Using	Transboost	Learning	on	the	target	data	
(without	transfer)	

⇡i(x) = Ai · x + vi

⇡i(x) = x + vi

70	/	91	

Transfer	learning	using	Transboost		

•  Illustrations	

Project Report - Telecom Paris 9

3 Application to MNIST and sklearn digits

3.1 Summary
MNIST and sklearn digits datasets are two commonly used hand-written digits datasets with two different

resolutions. MNIST is made of 28 by 28 hand-written digits images while digits from scikit-learn library is only
8 by 8.

Once we have studied TransBoost method on half-moons two-dimensional datasets, we tackle larger dimen-
sions, respectively d = 784 for MNIST and d = 64 for sklearn digits. We first transfer on MNIST only from 0
and 1 classification to 7 and 8. Then we transfer from 0 and 1 in MNIST to 0 and 1 in sklearn digits, and finally
the other way, from 0 and 1 in sklearn digits to 0 and 1 in MNIST.

The main targets remain scoring TransBoost method and comparing it to relearning from target training
set, in particular via linear SVC classifier.

3.2 Method
We first introduce a canonical projection matrix P between the two spaces we would transfer. It is supposed

to be an simple and relatively good transformation, without any form of boosting.
Then comes TransBoost, so the ⇧ projection function at each step is chosen to have the lowest error between

1000 random samples, given by :
⇧(x) = (P +A) ⇤ x+ y (12)

where P is the canonical projection matrix of size (dsource, dtarget), A a Gaussian matrix and y a Gaussian
vector (with standard normal distribution).

The projection between the two spaces is thereby a random variation of the canonical projection. Never-
theless, choosing the projection within relatively high-dimensional randomly generated matrices is of course an
unoptimized method which lead to longer calculation time.

3.2.1 From 0/1 in MNIST to 7/8 in MNIST

(a) Is it a zero or a one ? (b) Is it an eight or a seven ?

Figure 13: Transfer learning of the source model 0/1 so that it can distinguish 8/7

In this case, P is chosen to be the identity matrix. The intuitive idea is that representations of 7 are quite
close to 1’s, as 0’s are to 8’s. Transfer methods are thought all the more relevant to use as the distance between
source and target datasets are small. Therefore we expected a very low error by classifying sevens and eights
with the original classifier hsource trained on ones and zeros.

Figure 14: Canonical projection from MNIST (clipped to 24 by 24) to sklearn digits (8 by 8)

Project Report - Telecom Paris 10

3.2.2 Between 0/1 in MNIST and 0/1 sklearn digits

(a) Is it a zero or a one ? (b) Is it a zero or a one ?

Figure 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits

In these cases, P are chosen to be whether an image compression matrix or a scaling up matrix, depending
on the direction of transfer. In order to increase performance and calculation speed, we clipped MNIST images
from 28 by 28 to 24 by 24 pixels. Not only we simplify compression as 24 is multiple of 8, and reduce the MNIST
dimension from d = 784 to d = 576, but also we equate the two datasets as sklearn digits are cut-short images.

3.3 Results
3.3.1 Scoring the canonical projection

For transferring from 0/1 in MNIST to 7/8 in MNIST, the average error was surprisingly evaluated at 70%
which contradict initial intuition. A posteriori, pairing zeros with sevens ans ones with eights leads to positive
results.

For projection between MNIST and sklearn digits, the use of the original model hsource composed with
canonical projection matrix, i.e. no TransBoost yet, leads to good accuracy results :

- less than 15% for transferring from MNIST to sklearn digits : 16

Figure 16: Accuracy comparison between both methods on a data test of variable proportion p

(a) Blue : TransBoost method

(b) Orange : Relearning SVC method

- less than 10% for transferring from sklearn Digit to MNIST : 18

3.3.2 Comparing TransBoost method with relearning from target training set

With TransBoost, minimal error on target test set is barely reached within at most 15 steps. Again, the
better the weak classifier hsource �⇧i is chosen, fewer are steps needed to achieve maximal accuracy.

Again, we compared this method to relearning via linear SVC, depending on the ratio of target test dataset
among total target data.

The result are quite similar within the 3 transfers tested.

3.4 Conclusion
Though TransBoost method allow reasonable low error levels, it seems to be less efficient than relearning

from a linear SVC, whatever the ratio of target test set is.
Moreover, TransBoost method takes certainly longer time to process as the projection are chosen randomly

between huge sample at each steps, but there is no doubt picking off weak classifier could largely be optimized.

71	/	91	

Transfer	learning	using	Transboost		

•  Illustrations	

Project Report - Telecom Paris 2

1 Overview

Nowadays, several classification methods exist to split different classes of data. In order to do this, one could
mention classic binary classifiers such as the K- nearest neighbours (kNN) or the Linear SVC algorithms.

Assuming that you have a data that contains pictures of dogs and cats, using one of the basic binary class
methods is an obvious option to learn on this dataset, which we are about to call the dataset source in this
report. What about now if you have another dataset, so-called dataset target, composed of clip-arts of dogs
and cats ? Will you start over and train another independent model on this new dataset or will you use the one
you already have on the former data and adapt it ? Basically, our team has tried to answer this question by
comparing the accuracy of both approaches on different datasets.

Figure 1: Trained model on the data source : is it a picture of a dog or a cat ?

Figure 2: Model source transferred on the data target : is it a clip-art of a dog or a cat ?

In this study, we will let you know how we managed to do this classification transfer, by using a boosting
algorithm on the source model : Adaptive Boosting (AdaBoost). This being said, we will try to see how to
optimize the transferred model’s accuracy analytically. After that, we will see its performances on the classic
Half-moons dataset, which has been rotated. Then, we will use this process to compare the accuracy of a new
independent model trained on the data target in the one hand, and, on the other hand, the accuracy of the
method that we implemented using at the same time transfer and adaptive boosting methods. At least, we will
describe how this process had been employed on the convolutional neural artificial networks model trained on
the data source to make it able to classify the data target with a high level of accuracy from a very few data
training thanks to deep learning.

2 Adaptive Boosting or AdaBoost

2.1 Principle of AdaBoost
Obviously, all data cannot be fully well classified by a linear hypothesis (or classifier). This is the case of the

half-moons dataset for instance. That is why it is called a non linear dataset 3. It is composed of n vectors (x1,
y1), (x2,y2), ..., (xn, yn), where yj is the label associated to the feature xj .

AdaBoost is based on this idea that, after using a simple linear classifier on the data, some points will be
neglected and affected to the wrong class. Well, at the next iteration, these points will be overweighted as the
most important points of the dataset to well classify. Then, a second linear hypothesis is used to split again

Task	A	

Task	B	

XA 6= XB

72	/	91	

Standard	Transfer	with	NNs	

...	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	NN	on	task	A	

Then	freeze	the	
first	layers	

Learn	the	last	layers	
on	task	B	

Learn	

Transferring	the	
features	

From	Oquab,	M.,	Bottou,	L.,	Laptev,	I.,	&	Sivic,	J.	(2014).	Learning	and	transferring	mid-level	image	representations	using	

convolutional	neural	networks.	In	Proceedings	of	the	IEEE	conference	on	computer	vision	and	pattern	recognition	(pp.	1717-1724).	

Same	input	space		 XA = XB

73	/	91	

TransBoost	with	NNs	

...	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	NN	on	task	A	

Then	freeze	all	
layers	except	the	
first	(and	second)	

74	/	91	

TransBoost	with	NNs	

...	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	NN	on	task	A	

Then	freeze	all	
layers	except	the	
first	(and	second)	

Learn	the	first	
layer(s)	to	project	

from	task	B	to	task	A	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	
projection	

π1	

Transferring	the	
decision	function	

75	/	91	

TransBoost	with	NNs	

...	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	NN	on	task	A	

Then	freeze	all	
layers	except	the	
first	(and	second)	

Learn	the	first	
layer(s)	to	project	

from	task	B	to	task	A	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	
projection	

π1	

Transferring	the	
decision	function	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	
projection	

π2	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	
projection	

πN	

76	/	91	

TransBoost	with	NNs	

...	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	NN	on	task	A	

Then	freeze	all	
layers	except	the	
first	(and	second)	

Learn	the	first	
layer(s)	to	project	

from	task	B	to	task	A	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	
projection	

π1	

Transferring	the	
decision	function	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	
projection	

π2	

of the current classifier.2 FT consists in alternating two dis-
tinct optimization phases, that are iterated multiple times. In
the first phase, the training data are transformed in order to
make them more easily manageable by the current network.
The training procedure must determine how data should be
simplified according to the way the current network behaves.
In the second phase, the network is updated as in CT, but ex-
ploiting the simplified data instead of the original ones. The
whole procedure is framed in the context of a developmental
plan in which the amount of the alteration is progressively
reduced as long as time passes, until it completely vanishes.
This is inspired by the basic principle of strongly simplify-
ing the data during the early stages of life of the classifier,
in order to favour its development, while the extent of trans-
formation is reduced when the classifier improves its skills.
Clearly, to deploy a trained classifier that does not rely on al-
tered data, the impact of the simplification must vanish dur-
ing the training process, exposing the classifier to the orig-
inal training data after a certain number of steps. Formally,
FT perturbs the training data by estimating the variation �i,

x̃i = xi + �i, (2)

for each example xi. Such estimation is repeated from
scratch for each training example, and at each training
epoch. The terms �i’s are obtained with the goal of mini-
mizing L in Eq. (1), replacing xi with x̃i of Eq. (2). Deter-
mining an accurate �i might require an iterative optimization
procedure, and a maximum number of iterations is defined
to control the strength of the perturbation, progressively re-
duced as long as training proceeds. 3

Neural Friendly Training. Despite the novel view intro-
duced by FT, the instance of (Marullo et al. 2021) is mostly
inspired by the basic tools used in the context of Adversarial
Training (Zhang et al. 2020), with a perturbation model that
requires a per-example independent optimization procedure.
Here we propose to instantiate FT in a different manner, by
considering that there might be some regularities in the way
data samples are simplified. This leads to the introduction of
a more structured transformation function that is shared by
all the examples. This intuition is also motivated by recent
studies in Adversarial Machine Learning that exploited per-
turbation models based on generative networks (Qiu et al.
2020; Xiao et al. 2018), although with the goal of fooling
a classifier. Formally, a training sample xi 2 Rd is trans-
formed into x̃i 2 Rd by means of the function s(xi, ✓),

x̃i = s(xi, ✓), (3)

being ✓ a set of learnable parameters, shared by all the exam-
ples. We consider the case in which s is implemented with
an additional neural network, also referred to as auxiliary

network, whose weights and biases are collected in ✓, and
we talk about Neural Friendly Training (NFT). For conve-
nience in the notation, we keep the definition of �i inherited

2This is significantly different from deciding whether or not to
keep a training example, to weigh its contribute in Eq. (1), or to re-
order the examples. Interestingly, FT is compatible with (and not
necessarily an alternative to) such existing strategies.

3Further details are available in (Marullo et al. 2021).

from Eq. (2), i.e., �i = x̃i�xi. The term main network refers
to the network that implements f , i.e., the classifier, and we
report in Fig. 2 a sketch of the proposed model.

Friendly Training Iterations

xxx (a) (b)

Figure 2: (a) Classic deep network. (b) Neural Friendly
Training (NFT): main deep network (top) and auxiliary net-
work (bottom). The auxiliary network learns how to simplify
the data x, while the main network learns the classification
task exploiting the simplified data x̃. As long as training pro-
ceeds, the effect of the auxiliary network is progressively
reduced, until it vanishes (and it is removed).

In order to setup a valid developmental plan, we introduce
an augmented criterion by re-defining the risk L of Eq. (1),

L(B, w, ✓) = 1

|B|

|B|X

i=1

`
�
f(s(xi, ✓)| {z }

x̃i

, w), yi
�
+

⌘
�� s(xi, ✓)� xi| {z }

�i

��2
!
, (4)

where (xi, yi) 2 B, and ⌘ > 0 is the weight of the squared
Euclidean norm of the perturbation �i. We indicate with
� � 1 the NFT iteration index, where each iteration con-
sists of the two aforementioned phases. In the first phase,
the auxiliary network is updated by minimizing Eq. (4) with
respect to ✓, keeping the main network fixed. In the second
phase, the auxiliary network has the sole role of transform-
ing the data, while the main network is updated by mini-
mizing Eq. (4) with respect to w. If all the training data
is used in this phase, then � boils down to the epoch in-
dex (that is the case we considered in the experiments). If
�max is the maximum number of NFT iterations, we en-
sure that after �max simp < �max steps the data are not
perturbed anymore. In order to progressively reduce the per-
turbation level, we increase the value of ⌘ in Eq. (4). For
a large ⌘, NFT will strongly penalize the norm of �i, be-
coming the dominant term in the optimization process of the
auxiliary network, enforcing the net to keep �i small. We
indicate with ⌘max the maximum possible value of ⌘, and
at each step � of the developmental process we compute ⌘
using the following law, being [a]+ the positive part of a,

Learn	
projection	

πN	

HT (x
T) = sign

⇢ NX

n=1

↵n hS
�
⇡n(x

T)
��

Different	input	spaces		
XA 6= XB

77	/	91	

Transboost	as	local	changes	of	representation	

...	

Space	of	learning	tasks	
Target	training	sets	

Projectors	

x	

x’	

Embedding		
Space	of	projectors	

Weighted	projectors	

⇡i

⇡1

⇡2

⇡N

78	/	91	

Transboost	as	local	changes	of	representation	

...	

Space	of	learning	tasks	
Target	training	sets	

Projectors	

x	

Embedding		
Space	of	projectors	

Weighted	projectors	

⇡i

⇡1

⇡2

⇡N

Path	dependence	

�1�2

�2
�1

79	/	91	

One	last	question	

Does	the	quality	of	hS	plays	a	role?	

80	/	91	

What	if	...	

Source	hypothesis	a	priori	without	relation	to	the	target	task	

Figure 3: Comparison of error rates. y-axis:
test error of the SVM classifier (without trans-
fer). x-axis : test error of the TransBoost clas-
sifier with 10 boosting steps. The results of
75 experiments (each one repeated 100 times)
are summed up in this graph.

Figure 4: Comparison of error rates. y-axis:
test error of the “naïve” transfer method. x-
axis : test error of the TransBoost classifier
with 10 boosting steps. The results of 75
experiments (each one repeated 100 times)
are summed up in this graph.

In these experiments the target domain is R70 while the source domain is R40. The source hypothesis
is chosen randomly in a set of functions completely independently from the target classification
problem, which, here, is the same as in the first set of experiments. The set of projections is the same
as in the first set of experiments.

Table 2 shows a representative set of results. Again, even in this a priori difficult transfer problem,
TransBoost brings remarkable gains wrt. learning without transfer, except when the learning task is
easy using directly the target data. (Note that there is no error rate given for the source hypothesis
since it was not learnt using a data set. Indeed, even if it had been so, this error rate would not have
any meaning as regards to the target learning task).

slope, noise, tT hT (train) hT (test) HT (train) HT (test)
0.001, 0.001, 70 0.44 ± 0.02 0.48 ± 0.02 0.06 ± 0.02 0.06 ± 0.02
0.005, 0.005, 70 0.11 ± 0.04 0.13 ± 0.05 0.02 ± 0.01 0.02 ± 0.02
0.005, 0.005, 70 0.10 ± 0.04 0.11 ± 0.05 0.01 ± 0.01 0.01 ± 0.01
0.005, 0.05, 70 0.11 ± 0.04 0.12 ± 0.05 0.04 ± 0.02 0.03 ± 0.01
0.001, 0.001, 70 0.42 ± 0.03 0.48 ± 0.02 0.33 ± 0.02 0.37 ± 0.02
0.01, 0.1, 70 0.06 ± 0.03 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.02

Table 2: Learning without transfer and with transfer using an apriori irrelevant source hypothesis.

7 Conclusions

In this paper, we have introduced a new perspective on transfer learning and a new method. The notion
of difference or distance between the source and target domains is seen differently. Whereas previous
works on domain adaptation and transfer learning emphasized finding a common representation of the
source and target training sets, thus limiting the possible differences between source and target, our
view is that what matters is to be able to translate questions in the target domain into questions that
can be answered by the available source hypothesis. In fact, as long as we can find “weak translators”,
we can use any source hypothesis at all, without any regard to its internal function or its purpose. In
this perspective, the core of transfer learning is to be able to identify an adequate set of projections or
translations ⇡: one with the weak transfer property and with limited capacity.

This is similar to the choice of a good regularization term. Here, the source hypothesis forces the
target hypothesis space to be of the form hS � ⇡ with ⇡ : XT ! XS . If the source hypothesis
(regularizer) is ill-chosen, then the learning task is made difficult or even impossible. In fact, negative

8

Learning	from	target	data	only	
TransBoost	with		

“irrelevant”	source	hypothesis	

hS	randomly	chosen	on	the	source	task		

Very	good	
results!!	

bR(hS) ⇡ 0.5

Hard	

81	/	91	

One	last	question	

Does	the	quality	of	hS	plays	a	role?	

What	is	the	role	of	hS??	

NO!!	

82	/	91	

Analysis	

•  The	quality	of	the	source	hypothesis	on	the	source	data?	

–  Plays	no	role	

•  The	proximity	of	the	source	and	target	distributions	PX	and	PY?	

–  Plays	no	role	

83	/	91	

But…	!?	

Still	some	transfer	learning	problems		

appear	to	us	more	easy	than	others???	

=>		No	condition	on	the	source!??	

84	/	91	

Interpretation	

Transfer	acts	as	a		bias			and		hS		is	a	strong	part	of	this	bias	

–  If	the	source	hypothesis	is	well	chosen:	the	bias	is	well	informed	

•  Which	does	not	mean	that	hS	must	be	good	on	the	source	task	

–  Otherwise:	Learning	is	badly	directed	

																									or	there	is	over-fitting	if	the	capacity	of																is	too	large	hS � ⇡

85	/	91	

Lessons	

		

–  The	learning	problem	now	becomes	the	problem		

of	choosing	a	good	set	of	(weak)	projections	

–  Theoretical	guarantees	exist	

86	/	91	

Analysis	

•  The	generalization	properties	of	TransBoost		

can	be	imported	from	the	ones	for	boosting	

Transfer Learning by Learning Projections from Target to Source 5

where ! : IR ! IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS ,

PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧ have the property given by Equation

(2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.

Then, with probability at least 1 � � (� 2 (0, 1)) over pairs of training sets

for tasks S and T :

RT (bhT) !
� bRS(bhS)

�
+ 2

s
2 dHS log(2emS/dHS) + 2 log(8/�)

mS

+ 4

s
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

(3)

HT =

⇢
sign

 NX

n=1

↵n hS � ⇡n

�
|↵n 2 IR, ⇡n 2 ⇧, n 2 [1, N]

�

dVC(HT) = dhS�⇧ 2(dHS + 1)(N + 1) log2

�
(N + 1)e

�

Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probability at least 1 � �:

RT (hS � b⇡) bRT (hS � b⇡) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 bRT (hS � ⇡⇤) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 RT (hS � ⇡⇤) + 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 !
�
RS(bhS)

�
+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 !
� bRS(bhS)

�
+ 2

r
2 dHS log(2emS/dHS) + 2 log(8/�)

mS

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy

|(R(h)� bR(h)| 2
q

2 d log(2em/d)+2 log(4/�)
m . For hS �⇧, this yields the first and

third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth
inequality with probability at least 1 � �/2. Applying the union bound archives

Transfer Learning by Learning Projections from Target to Source 5

where ! : IR ! IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS ,

PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧ have the property given by Equation

(2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.

Then, with probability at least 1 � � (� 2 (0, 1)) over pairs of training sets

for tasks S and T :

RT (bhT) !
� bRS(bhS)

�
+ 2

s
2 dHS log(2emS/dHS) + 2 log(8/�)

mS

+ 4

s
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

(3)

HT =

⇢
sign

 NX

n=1

↵n hS � ⇡n

�
|↵n 2 IR, ⇡n 2 ⇧, n 2 [1, N]

�

dVC(HT) 2(dhS�⇧ + 1)(N + 1) log2

�
(N + 1) e

�

Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probability at least 1 � �:

RT (hS � b⇡) bRT (hS � b⇡) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 bRT (hS � ⇡⇤) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 RT (hS � ⇡⇤) + 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 !
�
RS(bhS)

�
+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 !
� bRS(bhS)

�
+ 2

r
2 dHS log(2emS/dHS) + 2 log(8/�)

mS

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy

|(R(h)� bR(h)| 2
q

2 d log(2em/d)+2 log(4/�)
m . For hS �⇧, this yields the first and

third inequalities with probabilities at least 1� �/2. For HS , this yields the fifth
inequality with probability at least 1 � �/2. Applying the union bound archives

Transfer Learning by Learning Projections from Target to Source 5

where ! : IR ! IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.

Theorem 1. Let ! : IR ! IR be a non-decreasing function. Suppose that PS ,

PT , hS , hT = bhS � ⇡(⇡ 2 ⇧), bhS and ⇧ have the property given by Equation

(2). Let b⇡ := ArgMin⇡2⇧
bRT (bhS � ⇡), be the best apparent projection.

Then, with probability at least 1 � � (� 2 (0, 1)) over pairs of training sets

for tasks S and T :

RT (bhT) !
� bRS(bhS)

�
+ 2

s
2 dHS log(2emS/dHS) + 2 log(8/�)

mS

+ 4

s
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

(3)

HT =

⇢
sign

 NX

n=1

↵n hS � ⇡n

�
|↵n 2 IR, ⇡n 2 ⇧, n 2 [1, N]

�

dVC(HT) 2(dhS�⇧ + 1)(N + 1) log2

�
(N + 1) e

�

R(h) bR(h) + O
✓s

dhS�⇧ ln(mT /dhS�⇧) + ln(1/�)

mT

◆

Proof. Let ⇡
⇤ = ArgMin⇡2⇧ RT (hS � ⇡). With probability at least 1 � �:

RT (hS � b⇡) bRT (hS � b⇡) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 bRT (hS � ⇡⇤) + 2

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 RT (hS � ⇡⇤) + 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 !
�
RS(bhS)

�
+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

 !
� bRS(bhS)

�
+ 2

r
2 dHS log(2emS/dHS) + 2 log(8/�)

mS

+ 4

r
2 dhS�⇧ log(2emT /dhS�⇧) + 2 log(8/�)

mT

This follows from the fact that [10] (p.48) using m training points and a
hypothesis class of VC dimension d, with probability at least 1 � �, for all hy-
potheses h simultaneously, the true risk R(h) and empirical risk bR(h) satisfy

87	/	91	

Outline	

1.  	Supervised	induction:	the	classical	setting	

2.  	What	about	Out	Of	Distribution	learning	(OOD)?	

3.  	Parallel	transport,	covariant	derivative	and	transfer	learning	

–  What	they	are	

–  ...	in	Machine	Learning	

4.  	A	way	to	deal	with	different	spaces	of	tasks	

5.  	Conclusions	

88	/	91	

Conclusions	(1)	

Transfer	learning												mostly	heuristical	approaches	so	far	

1.  	Parallel	transport	is	a	natural	way	for	looking	at	transfer	learning	

–  The	covariant	derivative	is	then	a	measure	of	difference	

•  How	to	compute	it?	
–  Pioneering	works	in	computer	vision	

•  What	about	when	the	source	and	target	domains	are	different?	
–  TransBoost:	a	proposal	

2.  	Transfer	learning	is	path	dependent	in	general	

–  The	study	of	these	path	dependencies	is	important	...	

•  Curriculum	learning	
•  Longlife	learning	

–  ...	and	a	wide	open	research	question	

89	/	91	

Conclusions	(2)	

•  The	theoretical	guarantees	for	transfer	learning:	

•  Do	not	necessarily	depend	on	the	performance	of	the	source	hypothesis	hS		

					But	depend	on	the	bias	that	hS	determines	

•  Involve	the	capacity	of	the	space	of	transformations		

(and	the	path	followed	between	source	and	target)	

Still	to	be	explored	

90	/	91	

Bibliography	

•  Baldock,	R.,	Maennel,	H.,	&	Neyshabur,	B.	(2021).	Deep	learning	through	the	lens	of	example	difficulty.	Advances	in	Neural	Information	Processing	
Systems,	34.	

•  Bauer,	M.,	Klassen,	E.,	Preston,	S.	C.,	&	Su,	Z.	(2018).	A	diffeomorphism-invariant	metric	on	the	space	of	vector-valued	one-forms.	arXiv	preprint	arXiv:
1812.10867.	

•  Ben-David,	S.,	Blitzer,	J.,	Crammer,	K.,	Kulesza,	A.,	Pereira,	F.,	&	Vaughan,	J.	W.	(2010).	A	theory	of	learning	from	different	domains.	Machine	learning,	
79(1-2),	151-175.	

•  Cornuéjols	A.,	Murena	P-A.	&	Olivier	R.	“Transfer	Learning	by	Learning	Projections	from	Target	to	Source”.		
Symposium	on	Intelligent	Data	Analysis	(IDA-2020),	April	27-29	2020,	Bodenseeforum,	Lake	Constance,	Germany.	

•  Kuzborskij,	I.,	&	Orabona,	F.	(2013,	February).	Stability	and	hypothesis	transfer	learning.	In	International	Conference	on	Machine	Learning	(pp.	942-950).	

•  Mansour,	Y.,	Mohri,	M.,	&	Rostamizadeh,	A.	(2009).	Domain	adaptation:	Learning	bounds	and	algorithms.	arXiv	preprint	arXiv:0902.3430.	

•  Redko,	I.,	Morvant,	E.,	Habrard,	A.,	Sebban,	M.,	&	Bennani,	Y.	(2019).	Advances	in	Domain	Adaptation	Theory.	Elsevier.	

•  Schonsheck,	S.	C.,	Dong,	B.,	&	Lai,	R.	(2018).	Parallel	transport	convolution:	A	new	tool	for	convolutional	neural	networks	on	manifolds.	arXiv	preprint	
arXiv:1805.07857.	

•  V.	Vapnik	and	A.	Vashist	(2009)	“A	new	learning	paradigm:	Learning	using	privileged	information”.		
Neural	Networks,	vol.	22,	no.	5,	pp.	544–557,	2009	

•  H.	Venkateswara,	S.	Chakraborty,	and	S.	Panchanathan,	“Deep-learning	systems	for	domain	adaptation	in	computer	vision:	Learning	transferable	feature	
representations,”	IEEE	Signal	Processing	Magazine,	vol.	34,	no.	6,	pp.	117–129,	2017.		

•  Yosinski,	J.,	Clune,	J.,	Bengio,	Y.,	&	Lipson,	H.	(2014).	How	transferable	are	features	in	deep	neural	networks?.	In	Advances	in	neural	information	processing	
systems	(pp.	3320-3328).	

•  Zhang,	C.,	Zhang,	L.,	&	Ye,	J.	(2012).	Generalization	bounds	for	domain	adaptation.	In	Advances	in	neural	information	processing	systems	(pp.	3320-3328).	

91	/	91	

Bibliography	

•  Ben-David,	S.,	Lu,	T.,	Luu,	T.,	&	Pál,	D.	(2010).	Impossibility	theorems	for	domain	adaptation.	In	International	Conference	on	
Artificial	Intelligence	and	Statistics	(pp.	129-136).	

•  Ben-David,	S.,	Blitzer,	J.,	Crammer,	K.,	Kulesza,	A.,	Pereira,	F.,	&	Vaughan,	J.	W.	(2010).	A	theory	of	learning	from	different	
domains.	Machine	learning,	79(1-2),	151-175.	

•  Cornuéjols	A.,	Murena	P-A.	&	Olivier	R.	“Transfer	Learning	by	Learning	Projections	from	Target	to	Source”.		
Symposium	on	Intelligent	Data	Analysis	(IDA-2020),	April	27-29	2020,	Bodenseeforum,	Lake	Constance,	Germany.	

•  Kuzborskij,	I.,	&	Orabona,	F.	(2013,	February).	Stability	and	hypothesis	transfer	learning.	In	International	Conference	on	Machine	

Learning	(pp.	942-950).	

•  Mansour,	Y.,	Mohri,	M.,	&	Rostamizadeh,	A.	(2009).	Domain	adaptation:	Learning	bounds	and	algorithms.	arXiv	preprint	arXiv:
0902.3430.	

•  Redko,	I.,	Morvant,	E.,	Habrard,	A.,	Sebban,	M.,	&	Bennani,	Y.	(2019).	Advances	in	Domain	Adaptation	Theory.	Elsevier.	

•  H.	Venkateswara,	S.	Chakraborty,	and	S.	Panchanathan,	“Deep-learning	systems	for	domain	adaptation	in	computer	vision:	
Learning	transferable	feature	representations,”	IEEE	Signal	Processing	Magazine,	vol.	34,	no.	6,	pp.	117–129,	2017.		

•  Yosinski,	J.,	Clune,	J.,	Bengio,	Y.,	&	Lipson,	H.	(2014).	How	transferable	are	features	in	deep	neural	networks?.	In	Advances	in	
neural	information	processing	systems	(pp.	3320-3328).	

•  Zhang,	C.,	Zhang,	L.,	&	Ye,	J.	(2012).	Generalization	bounds	for	domain	adaptation.	In	Advances	in	neural	information	processing	
systems	(pp.	3320-3328).	

