Covariant Learning and Parallel Transport

Antoine Cornuéjols

AgroParisTech – INRAe MIA Paris-Saclay

EKINOCS research group

Induction is about using information

from some source data

to expected queries

- 1. Which link between the **source** and the **target** are we ready to assume?
- 2. What kind of guarantees can we look for?

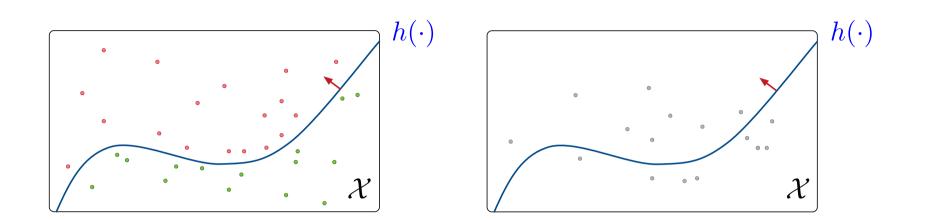
Outline

1. Supervised induction: the classical setting

- 2. What about Out Of Distribution learning (OOD)?
- 3. Parallel transport, covariant derivative and transfer learning
 - What they are
 - ... in Machine Learning
- 4. A way to deal with different spaces of tasks

5. Conclusions

Supervised induction



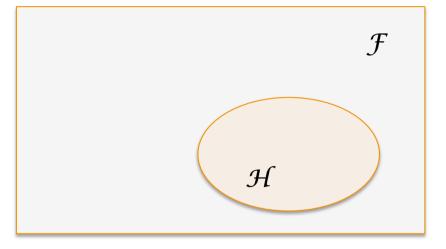
- Same distribution for training and testing
- Assumption: Empirical Risk Minimization is the way
 - a good hypothesis for the training data should be good as well for the testing data

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R_{\text{R\acute{e}el}}(h) \leq R_{\text{Emp}}(h) + \frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{m} \right] > 1 - \delta$$

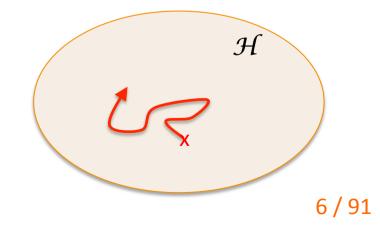
Supervised induction: guarantees

• For this to hold, you need **prior assumptions**: biases

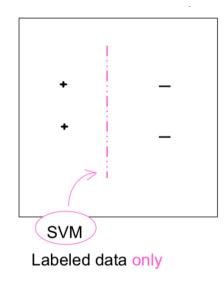
- **Representation** bias
 - Well explored



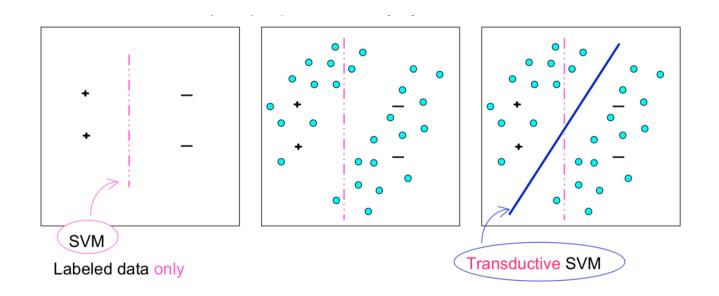
- Search bias
 - We know very little



Semi-supervised induction

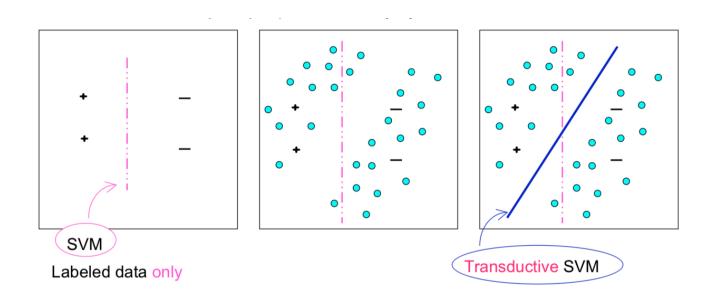


Semi-supervised induction



...

Semi-supervised induction



- Necessity of a **prior assumption**
 - The decision function **does not cut** through **high density regions** of X
 - P_X is related to $P_{Y|X}$

How to derive guarantees for semi-supervised learning?

• Theorem (realizable case and \mathcal{H} finite)

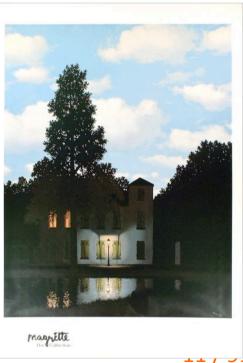
If the prior assumption on the unlabeled examples is verified

If we see
$$m_l$$
 labeled examples and m_u unlabeled examples, where
 $m_l \geq \frac{1}{\varepsilon} \left[\ln |\mathcal{H}| + \ln \frac{2}{\delta} \right]$ and $m_u \geq \frac{1}{\varepsilon} \left[\ln |\mathcal{H}_{\mathcal{D},\mathcal{X}}(\varepsilon)| + \ln \frac{2}{\delta} \right]$
then, with probability $\geq 1 - \delta$, any $h \in \mathcal{H}$ with $\widehat{err}(h) = 0$
and $\widehat{err}_{unl}(h) = 0$ has $err(h) \leq \varepsilon$

Lesson about the guarantees we can seek

- Type of guarantees
 - If the signal presents the properties that we assume true
 - Then the learning method is appropriate to PAC learn (probably approximately) the signal if there is enough data points (i.i.d.)

"Lamppost" theorems



Outline

1. Supervised induction: the classical setting

2. What about Out Of Distribution learning (OOD)?

- 3. Parallel transport, covariant derivative and transfer learning
 - What they are
 - ... in Machine Learning
- 4. A way to deal with different spaces of tasks
- 5. Conclusions

- 1. Learning Using Privileged Information (LUPI)
- 2. Domain Adaptation (covariate shift)
- 3. Concept drift
- 4. Transfer learning

Learning Using Privileged Information

Inspired by learning at school

V. Vapnik and A. Vashist (2009) "A new learning paradigm: Learning using privileged information". *Neural Networks*, vol. 22, no. 5, pp. 544–557, 2009

Learning Using Privileged Information

Inspired by learning at school

- The goal is to learn a function $h: \mathbf{x} \in \mathcal{X} o y \in \{-1, +1\}$
- Suppose that at learning time there is more available information than at test time

$$\mathcal{S}^* = \{(\mathbf{x}_i, \mathbf{x}_i^*, \mathbf{y}_i)\}_{1 \leq i \leq m}$$

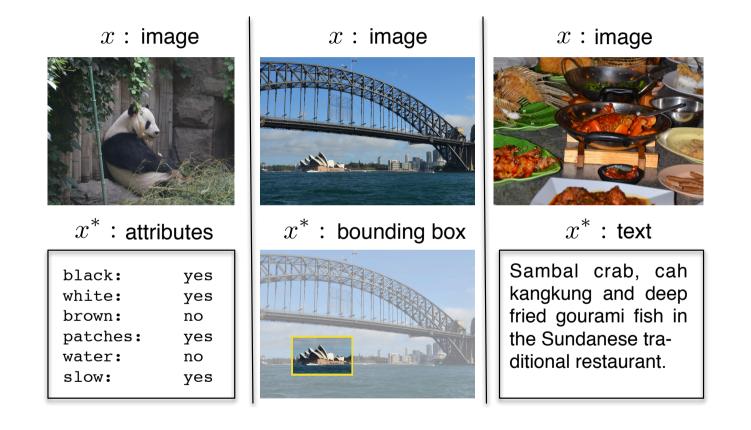
• Can we then improve the generalization performance

wrt. the one obtained with *S* only?

V. Vapnik and A. Vashist (2009) "A new learning paradigm: Learning using privileged information". *Neural Networks*, vol. 22, no. 5, pp. 544–557, 2009

Learning Using Privileged Information

Illustration in computer vision



V. Sharmanska, N. Quadrianto, and Ch. Lamper (2014) "Learning to transfer privileged information". *ArXiv preprint arXiv:1410.0389*, 2014

O.O.D. scenarios

- Domain adaptation
 - $X_s = X_T$ and $Y_s = Y_T$
 - but different distributions P_x
 - E.g. Recognition of the same objects but in a different environment

O.O.D. scenarios

- Concept shift
 - $X_s = X_T$ and $Y_s = Y_T$
 - but different distributions P_{Y|X}
 - E.g. Spam detection for ≠ users

conference announcements are interesting to me and a nuisance for my children

O.O.D. scenarios

- Transfer learning
 - $X_s \neq X_T$ and/or $Y_s \neq Y_T$
 - E.g. learning to play chess after having learned to play checkers

Recall the Two questions

1. Which link between the source and the target?

2. What kind of guarantees can we look for?

LUPI

- "At the core of our work lies the insight that privileged information allows us to distinguish between easy and hard examples in the training set.
- **Assuming** that examples
 - that are easy or hard with respect to the **privileged** information
 - will also be easy or hard with respect to the original data,

we enable information transfer from the privileged to the original data modality.

One solution: SVM+

• The classical optimization problem

$$\min \frac{1}{2} \langle \omega, \omega \rangle + C \sum_{i=1}^{m} \xi_i$$

s.t. $y_i[\langle \omega, x_i \rangle + b] \ge 1 - \xi_i, \qquad i = 1, \dots, m.$

• is changed into

$$\min \frac{1}{2} \left[\langle \omega, \omega \rangle + \gamma \langle \omega^*, \omega^* \rangle \right] + C \sum_{i=1}^m \left[\langle \omega^*, x^* \rangle + b^* \right]$$

s.t. $y_i [\langle \omega, x_i \rangle + b] \ge 1 - \left[\langle \omega^*, x_i^* \rangle + b^* \right], \quad i = 1, \dots, m,$
 $\left[\langle \omega^*, x_i^* \rangle + b^* \right] \ge 0, \quad i = 1, \dots, m,$

C and γ are hyperparameters

- Intuition:
 - Identify the **difficult examples** (outliers)
 - Thus coming back to the realizable case
 and obtain convergence rates of 1/n instead of 1/sqrt(n)

Bounds between the **real** risk and the **empirical** risk

By removing the "problematic" examples, you go

• From the **non realisable** case (\mathcal{H} finite)

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R_{\text{R\acute{e}el}}(h)}{R_{\text{Emp}}(h)} \leq R_{\text{Emp}}(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2m}} \right] > 1 - \delta$$

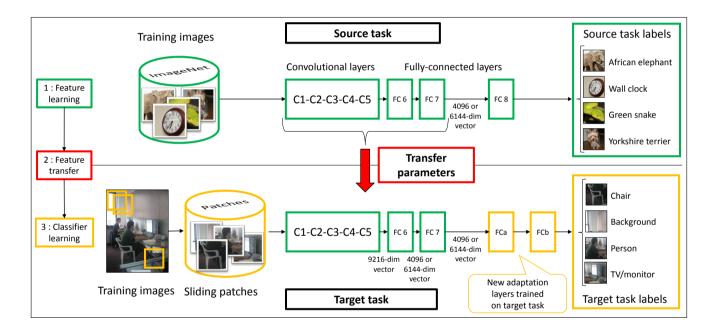
• To the **realisable** one (\mathcal{H} finite)

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R_{\text{R\acute{e}el}}(h) \leq R_{\text{Emp}}(h) + \frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{m} \right] > 1 - \delta$$
24/91

Transfer Learning

Transfer Learning

- Reuse the latent space learnt on the source data



From Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 1717-1724).

Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of example difficulty. Advances in Neural Information *Processing Systems*, 34.

Transfer Learning

- Reuse the latent space learnt on the source data

- Re-use the first layers of a NN trained on task A
 And fine-tune on task B

Increases the performance wrt. to training on task B alone

• Guarantees function of

- Guarantees function of
 - The **quality** of the **source hypothesis** on the source task
 - The **better** $h_{\rm S}$, the **better** $h_{\rm T}$

- Guarantees function of
 - The **quality** of the **source hypothesis** on the source task
 - The **better** $h_{\rm S}$, the **better** $h_{\rm T}$
 - A "distance" between the source task and the target one
 - The **smaller** the distance, the **better** the transfer

• Guarantees function of



- The **quality** of the **source hypothesis** on the source task
 - The **better** $h_{\rm S}$, the **better** $h_{\rm T}$
- A "distance" between the source task and the target one
 - The **smaller** the distance, the **better** the transfer
- The size of the **target training data**
 - The larger the target training data set, the useless the transfer

Outline

- 1. Supervised induction: the classical setting
- 2. What about Out Of Distribution learning (OOD)?
- 3. Parallel transport, covariant derivative and transfer learning
 - What they are
 - ... and in Machine Learning
- 4. A way to deal with different spaces of tasks
- 5. Conclusions

Parallel Transport

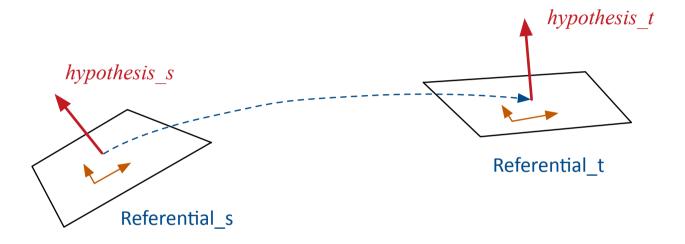
and Covariant Derivative

Euclidian geometry

Addition of vectors $\mathbf{U} + V$ • IJ $\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}s} = \lim_{\varepsilon \to 0} \frac{\mathbf{V}(s+\varepsilon) - \mathbf{V}(s)}{\varepsilon}$ Substraction of vectors and derivative • $r(s+\varepsilon) - \mathbf{V}(s)$ $\mathbf{V}(s)$ $\mathbf{V}(s)$ $(s+\varepsilon)$ $s + \varepsilon$ \bar{s} Ss +s +

Non Euclidian geometry

• Substraction of vectors and **derivative**

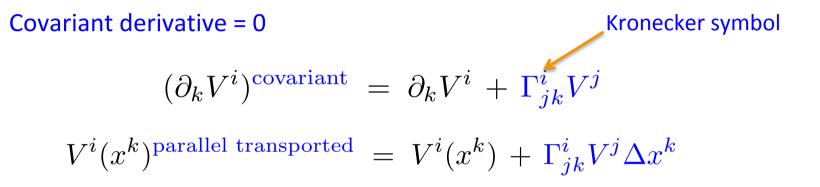


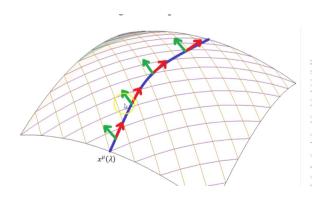
We can **no** longer **directly compare** vectors (or tensors)

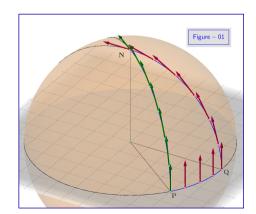
Necessity of the covariant derivative

Parallel transport

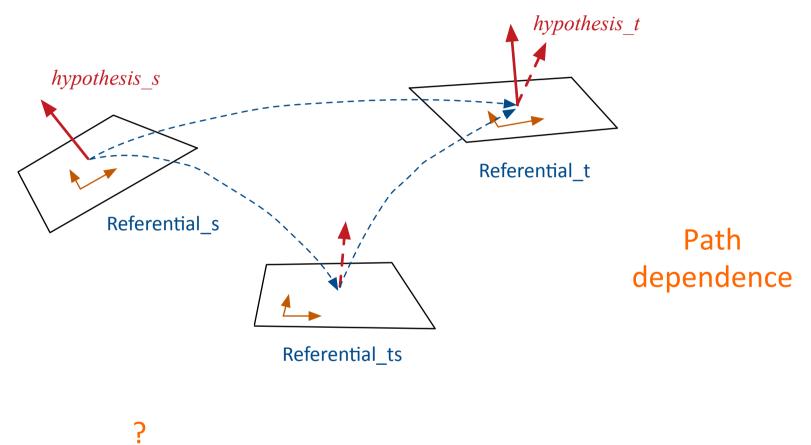
• Transport a vector (or a tensor) parallel to itself along a curve





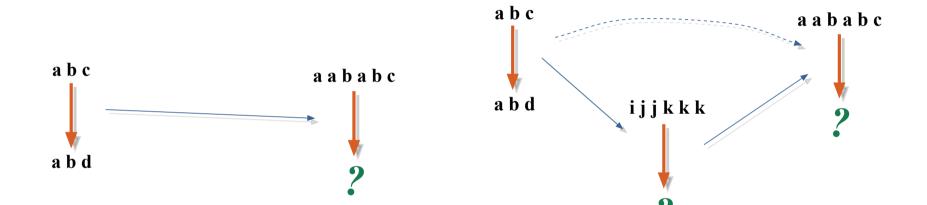


Transfer and path dependence



Transfer = Parallel transport of hypothesis from source to target

Transfer and **path dependence**



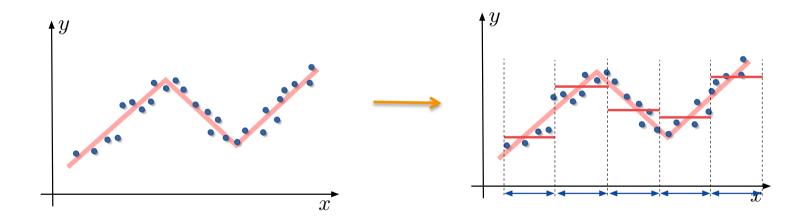
Parallel transport in **ML works**

Transfer = parallel transport of the source hypothesis

- 1. Tracking
- 2. Computer vision
- 3. Curriculum learning

Instead of learning a complex function over the whole of \boldsymbol{X}

- If you know that the task is slowly evolving with time
- Learn a simple **local** function

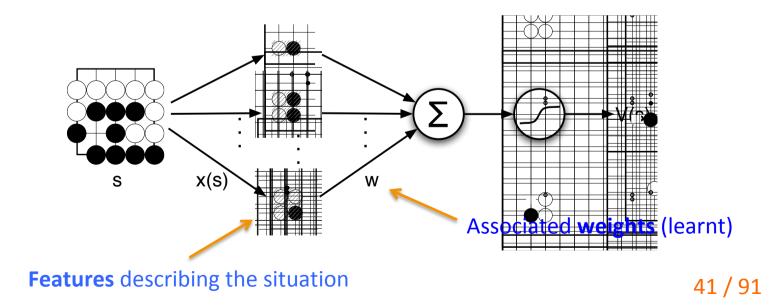


R. Sutton and A. Koop and D. Silver (2007) "On the role of tracking in stationary environments" (ICML-07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

Tracking in stationary environments

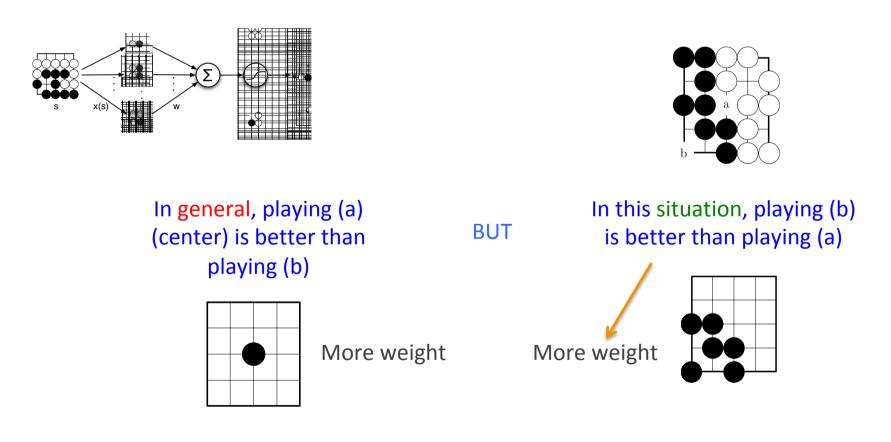
Tracking to play Go

- 5 x 5 Go
 - More than 5×10^{10} unique positions
- Usual approach: learn a general evaluation function V(s) valid $\forall s$

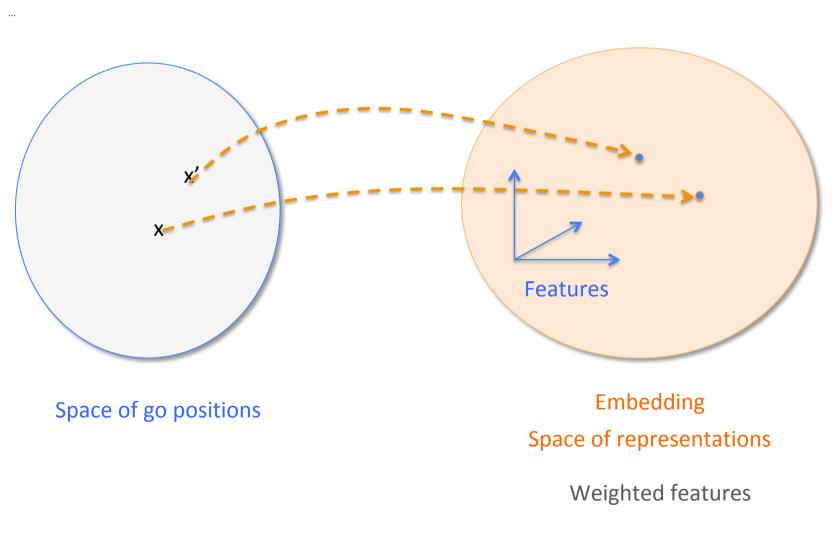


Tracking in stationary environments

Tracking approach: learn an evaluation function V(s)
 local to the current s

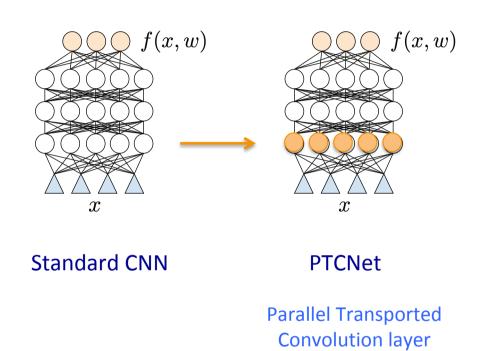


Tracking as local changes of representation



Computer vision

Parallel transport in computer vision



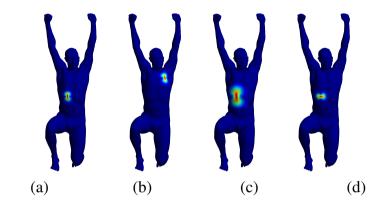


Figure 1: A compactly supported kernel (a) is transported on a manifold from the FAUST data set [2] through translation (b), translation + dilation (c) and translation + rotation (d).

Schonsheck, S. C., Dong, B., & Lai, R. (2018). **Parallel transport convolution: A new tool for convolutional neural networks on manifolds**. arXiv preprint arXiv:1805.07857.

Curriculum building

- We expect that transfer is easy when source and target tasks are "close"
- And it may be difficult to transfer across tasks that are "far away"

But how to measure "closeness"

and "far away" for learning tasks?

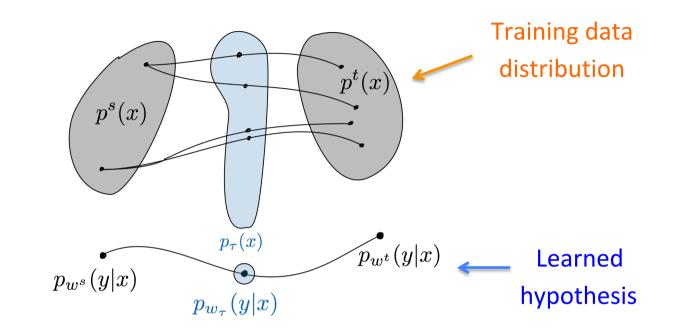
Define a geometry over the space of tasks

Geometry of the space of tasks

- Desiderata
 - Should incorporate the hypothesis space, and not only the "distance" between the inputs (as is usually done)
 - For instance, it is often observed that *transferring larger models is easier*.
 The geometry should reflect this.
 - 2. The distance between tasks is **not symmetrical**

Gao, Y., & Chaudhari, P. (2021, July). An information-geometric distance on the space of tasks. In *International Conference on Machine Learning* (pp. 3553-3563). PMLR.

Idea



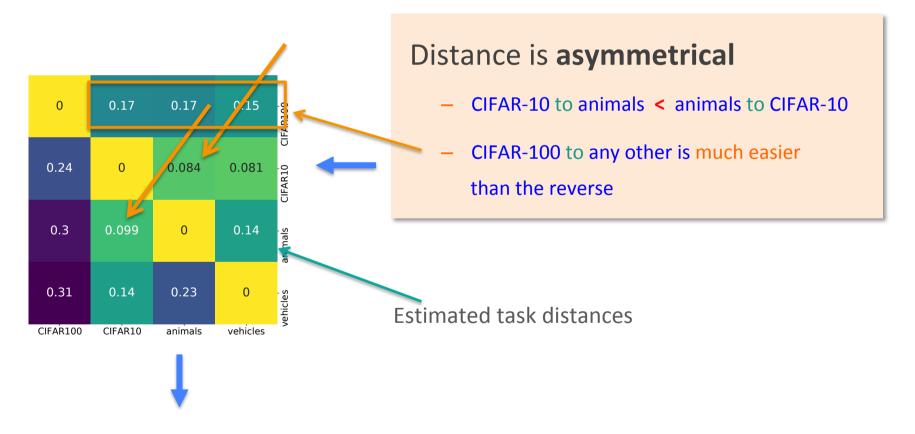
Modify **conjointly** the training data distribution and the **learned hypothesis**

Compute iteratively the intermediate training sets such that

- at each step τ the new task is close to
- what can be learned by the current learner (characterized by its current hypothesis)

Experimental results

• Using an **8-layer convolutional NN** (ReLU, dropout, batch-normalization) with a final fully connected layer

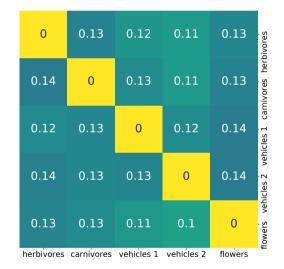


Experimental results

• Using an 8-layer convolutional NN

0	24	26	16	57	oiv ores
53	0	39	20	67	carnivores herbivores
29	40	0	17	56	vehicles İ carr
49	21	27	0	74	vehicles 2 veh
45	25	25	23	0	flowers veh
herbivores	carnivores	vehicles 1	vehicles 2	flowers	<u> </u>

• And a **wide residual network** (WRN-16-4): larger capacity



Distance is much reduced using a larger capacity model

Conclusions

- Interesting work
 - New definition of **distance** between tasks
 - Asymmetrical
 - Depends on the **capacity** of the learning system
 - New way to build a curriculum

Conclusions

- Interesting work
 - New definition of **distance** between tasks
 - Asymmetrical
 - Depends on the **capacity** of the learning system
 - New way to build a curriculum
- Limits
 - Still a **crude** way to build intermediate tasks
 - Same input-output source and target domains!!!
 - Same hypothesis space in both source and target domains!!!

Conclusions

- Interesting work
 - New definition of **distance** between tasks
 - Asymmetrical
 - Depends on the **capacity** of the learning system
 - New way to build a curriculum
- Limits
 - Still a **crude** way to build intermediate tasks
 - Same input-output source and target domains!!!
 - Same hypothesis space in both source and target domains!!!

Not **general** transfer learning

What if the space of tasks is **not continuous**?

Outline

- **1.** Supervised induction: the classical setting
- 2. What about Out Of Distribution learning (OOD)?
- 3. Parallel transport, covariant derivative and transfer learning
 - What they are
 - ... in Machine Learning
- 4. A way to deal with different spaces of tasks

5. Conclusions

A LUPI type of algorithm for transfer learning

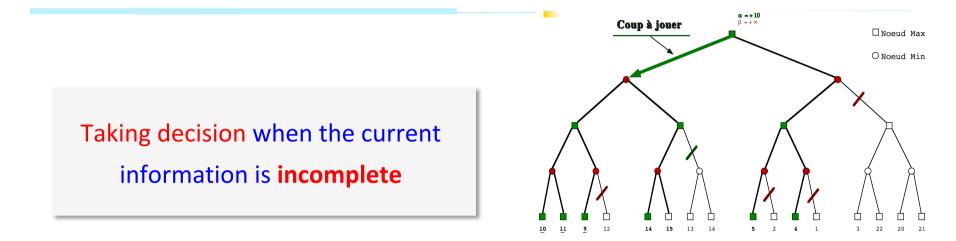
TransBoost

A **method** for transfer learning between different tasks

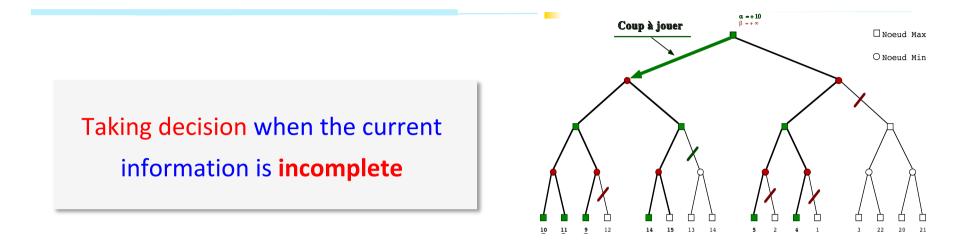
and what it tells

Cornuéjols, A., Murena, P. A., & Olivier, R. (2020). **Transfer learning by learning projections from target to source**. In 18th *International Symposium on Intelligent Data Analysis*, IDA 2020, Konstanz, Germany, April 27–29, 2020, Proceedings 18 (pp. 119-131). Springer International Publishing.

A LUPI type of algorithm for transfer learning



Algorithms for games



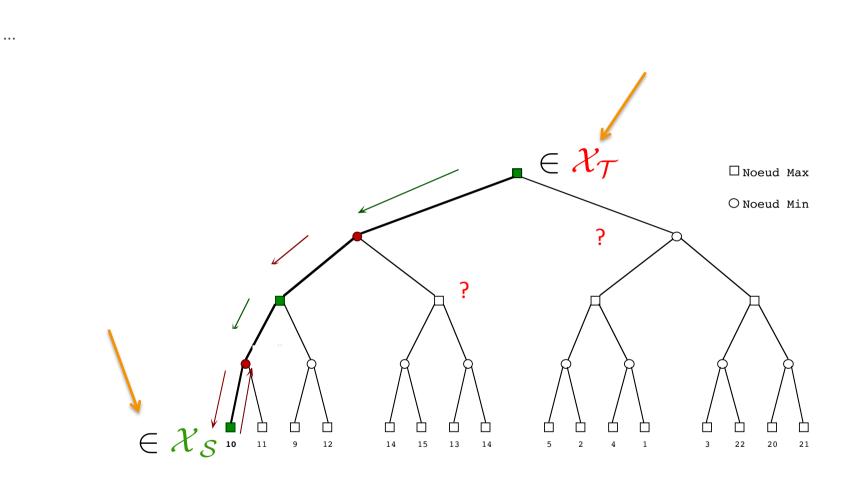
• Which move to play?

The evaluation function is **insufficiently informed** at the root (current situation)

- Query experts that have more information about potential outcomes
- 2. Combination of the estimates through MinMax

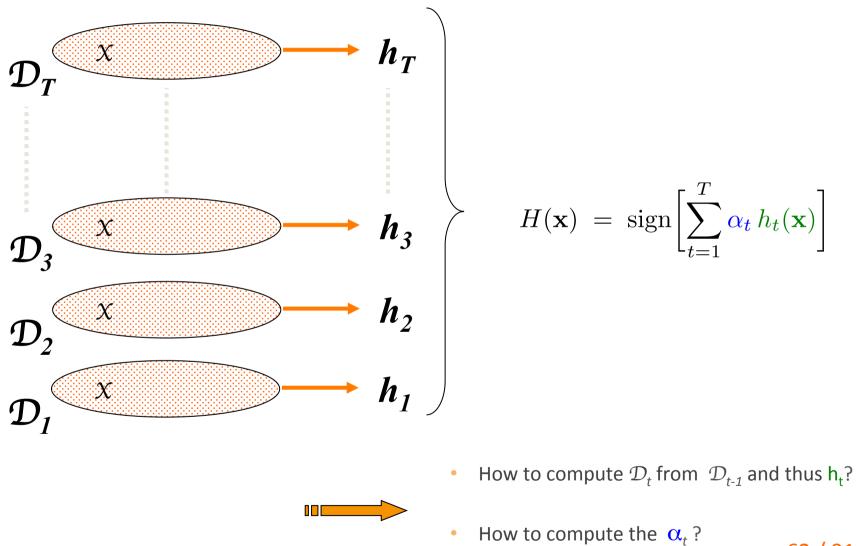
"Experts" may live in *input spaces* that are *different*

Algorithms for games and transfer learning



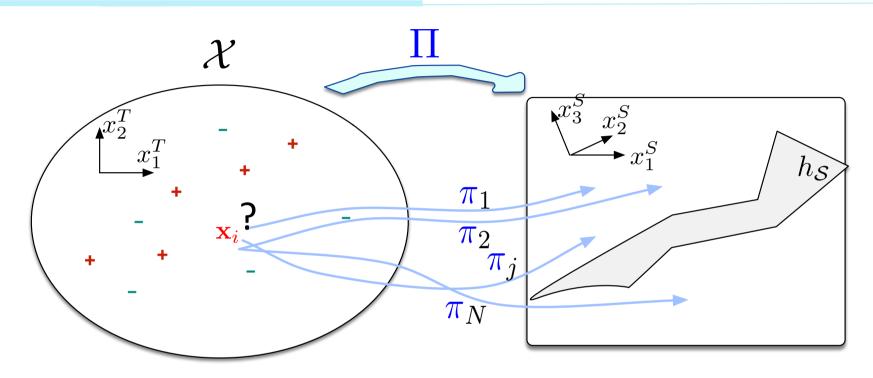
Can we do the "same" for transfer learning?

Boosting



62/91

TransBoost



Target Domain

Source Domain

$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$

TransBoost

- Principle:
 - Learn "weak projections": $\pi_i: \mathcal{X}_{\mathcal{T}} \rightarrow \mathcal{X}_{\mathcal{S}}$
 - Using the target training data: $S_{\mathcal{T}} = \{(\mathbf{x}_i^{\mathcal{T}}, y_i^{\mathcal{T}})\}_{1 \leq i \leq m}$
 - With boosting
 - Projection π_n such that : $\varepsilon_n \doteq \mathbf{P}_{i \sim D_n}[h_{\mathcal{S}}(\pi_n(\mathbf{x}_i)) \neq y_i] < 0.5$
 - **Re-weight** the training time series and loop until termination

Result

$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$

TransBoost

Algorithm 1: Transfer learning by boosting

Input: $h_{\mathcal{S}} : \mathcal{X}_{\mathcal{S}} \to \mathcal{Y}_{\mathcal{S}}$ the source hypothesis $\mathcal{S}_{\mathcal{T}} = \{(\mathbf{x}_i^{\mathcal{T}}, y_i^{\mathcal{T}}\}_{1 \leq i \leq m}: \text{ the target training set } \}$

Initialization of the distribution on the training set: $D_1(i) = 1/m$ for i = 1, ..., m;

for n = 1, ..., N do Find a projection $\pi_i : \mathcal{X}_{\mathcal{T}} \to \mathcal{X}_{\mathcal{S}}$ st. $h_{\mathcal{S}}(\pi_i(\cdot))$ performs better than random on $D_n(\mathcal{S}_{\mathcal{T}})$; Let ε_n be the error rate of $h_{\mathcal{S}}(\pi_i(\cdot))$ on $D_n(\mathcal{S}_{\mathcal{T}}) : \varepsilon_n \doteq \mathbf{P}_{i\sim D_n}[h_{\mathcal{S}}(\pi_n(\mathbf{x}_i)) \neq y_i]$ (with $\varepsilon_n < 0.5$); Computes $\alpha_i = \frac{1}{2}\log_2(\frac{1-\varepsilon_i}{\varepsilon_i})$; Update, for i = 1..., m: $D_{n+1}(i) = \frac{D_n(i)}{Z_n} \times \begin{cases} e^{-\alpha_n} & \text{if } h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{\mathcal{T}})) = y_i^{\mathcal{T}} \\ e^{\alpha_n} & \text{if } h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{\mathcal{T}})) \neq y_i^{\mathcal{T}} \end{cases}$ $= \frac{D_n(i) \exp(-\alpha_n y_i^{(\mathcal{T})} h_{\mathcal{S}}(\pi_n(\mathbf{x}_i^{(\mathcal{T})})))}{Z_n}$

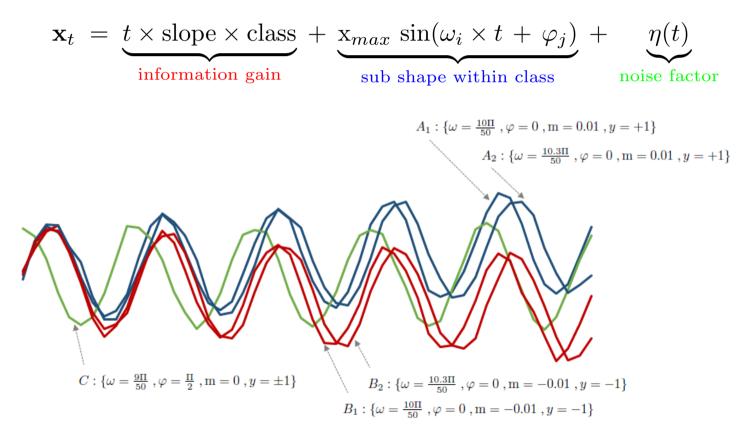
where Z_n is a normalization factor chosen so that D_{n+1} be a distribution on $S_{\mathcal{T}}$; end

Output: the final target hypothesis $H_{\mathcal{T}} : \mathcal{X}_{\mathcal{T}} \to \mathcal{Y}_{\mathcal{T}}$:

$$H_{\mathcal{T}}(\mathbf{x}^{\mathcal{T}}) = \operatorname{sign}\left\{\sum_{n=1}^{N} \alpha_n h_{\mathcal{S}}(\pi_n(\mathbf{x}^{\mathcal{T}}))\right\}$$
(2)

Controlled data

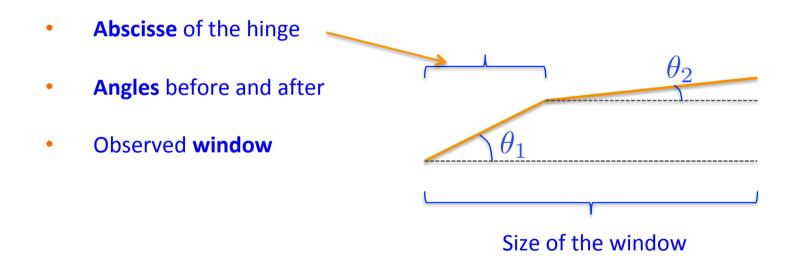
- The slope to distinguish between classes
- The **shapes** of time series within each class: variety
- The noise level



The set of projections

Randomly generated within constraints

Hinge functions (4 parameters)

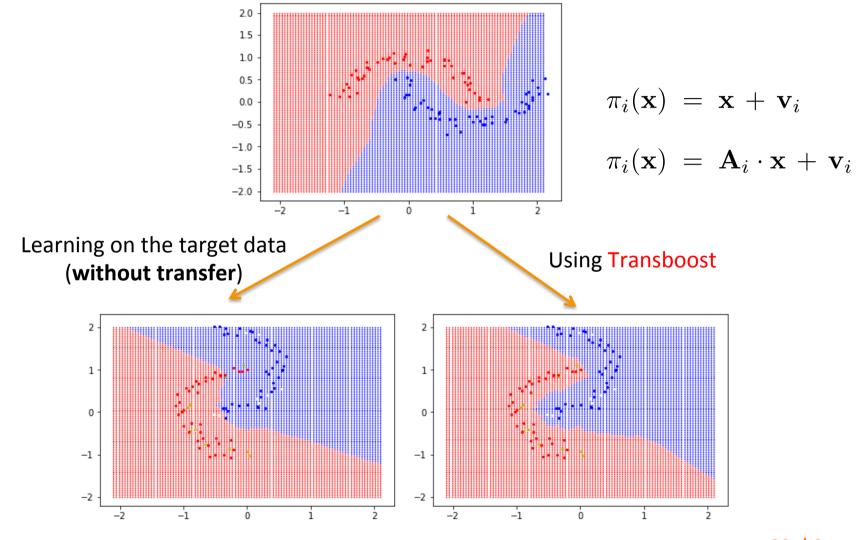


Results												
				n the source								
		Learnin	g from 🛛 🛏		_	domain						
		target data only		TransBoost		- I	Naïve transfert					
		I				. ↓						
	slope, noise, $t_{\mathcal{T}}$	$h_{\mathcal{T}}$ (train)	$h_{\mathcal{T}}$ (test)	$H_{\mathcal{T}}$ (train)	$H_{\mathcal{T}}$ (test)	$h_{\mathcal{S}}$ (test)	$H'_{\mathcal{T}}$ (test)					
High noise	0.001, 0.001, 20	0.46 ± 0.02	0.50 ± 0.08	0.08 ± 0.03	$\textbf{0.08} \pm 0.02$	0.05	0.49 ± 0.01					
	0.005, 0.001, 20	0.46 ± 0.02	0.49 ± 0.01	0.01 ± 0.01	$\textbf{0.01} \pm 0.01$	0.01	0.45 ± 0.01					
	0.005, 0.002, 20	0.46 ± 0.02	0.49 ± 0.03	0.03 ± 0.02	$\textbf{0.04} \pm 0.02$	0.02	0.43 ± 0.01					
	0.005, 0.02, 20	0.44 ± 0.02	0.48 ± 0.03	0.09 ± 0.01	0.10 ± 0.01	0.01	0.47 ± 0.01					
	0.001, 0.2, 20	0.46 ± 0.02	0.50 ± 0.01	0.46 ± 0.02	0.51 ± 0.02	0.11	0.49 ± 0.01					
	0.01, 0.2, 20	0.42 ± 0.03	0.47 ± 0.03	0.34 ± 0.02	0.35 ± 0.02	0.02	0.35 ± 0.01					
Easy slope	0.001, 0.001, 50	0.46 ± 0.02	0.50 ± 0.01	0.08 ± 0.03	$\textbf{0.08} \pm 0.02$	0.06	0.41 ± 0.01					
	0.005, 0.001, 50	0.25 ± 0.07	0.28 ± 0.09	0.01 ± 0.01	$\textbf{0.01} \pm 0.01$	0.01	0.28 ± 0.01					
	0.005, 0.002, 50	0.27 ± 0.07	0.30 ± 0.08	0.02 ± 0.01	$\textbf{0.02} \pm 0.01$	0.02	0.28 ± 0.01					
	0.005, 0.02, 50	0.26 ± 0.07	0.30 ± 0.08	0.04 ± 0.01	$\textbf{0.04} \pm 0.01$	0.01	0.31 ± 0.01					
	0.001, 0.2, 50	0.44 ± 0.02	0.50 ± 0.01	0.38 ± 0.03	0.44 ± 0.02	0.15	0.43 ± 0.01					
	0.01, 0.2, 50	0.10 ± 0.03	0.12 ± 0.04	0.10 ± 0.02	0.11 ± 0.02	0.03	0.15 ± 0.02					
	0.001, 0.001, 100	0.43 ± 0.03	0.47 ± 0.03	0.07 ± 0.02	0.07 ± 0.02	0.02	0.23 ± 0.01					
	0.005, 0.001, 100	0.06 ± 0.03	0.07 ± 0.03	0.01 ± 0.01	$\textbf{0.01} \pm 0.01$	0.01	0.07 ± 0.02					
	0.005, 0.002, 100	0.08 ± 0.03	0.10 ± 0.04	0.02 ± 0.01	$\textbf{0.02} \pm 0.01$	0.02	0.07 ± 0.01					
	0.005, 0.02, 100	0.08 ± 0.03	0.09 ± 0.03	0.02 ± 0.01	$\textbf{0.03} \pm 0.01$	0.01	0.07 ± 0.01					
	0.001, 0.2, 100	0.04 ± 0.03	0.46 ± 0.02	0.28 ± 0.02	0.31 ± 0.01	0.16	0.31 ± 0.01					
1	0.01, 0.2, 100	0.03 ± 0.01	0.05 ± 0.02	0.04 ± 0.01	0.05 ± 0.01	0.02	0.05 ± 0.01					

Deculte

Table 1: Comparison of learning directly in the target domain (columns $h_{\mathcal{T}}$ (train) and $h_{\mathcal{T}}$ (test)), using TransBoost (columns $H_{\mathcal{T}}$ (train) and $H_{\mathcal{T}}$ (test)), learning in the source domain (column $h_{\mathcal{S}}$ (test)) and, finally, completing the time series with a SVR regression and using $h_{\mathcal{S}}$ (naïve transfer). Test errors are highlighted in the orange columns. Bold numbers indicates where TransBoost significantly dominates both learning without transfer and learning with naïve transfer.

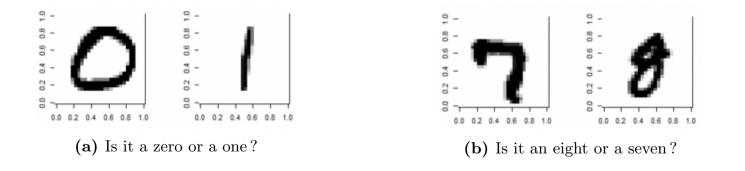
Transfer learning using Transboost



Transfer learning using Transboost

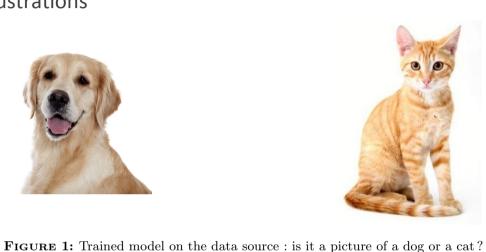
• Illustrations

FIGURE 15: Transfer learning of the source model 0/1 mnist so that it can distinguish 0/1 sklearn digits



Transfer learning using Transboost

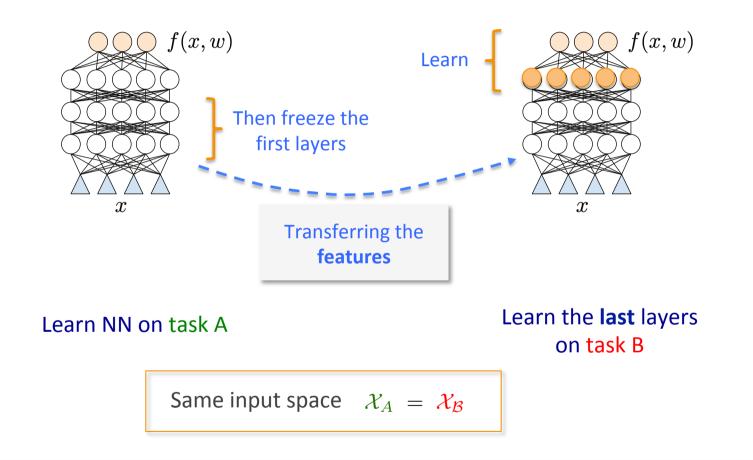
Illustrations •



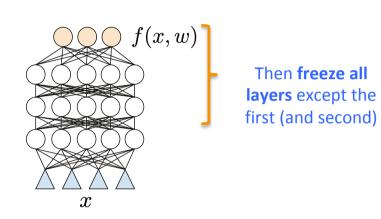
 $\mathcal{X}_A \neq \mathcal{X}_B$

FIGURE 2: Model source transferred on the data target : is it a clip-art of a dog or a cat?

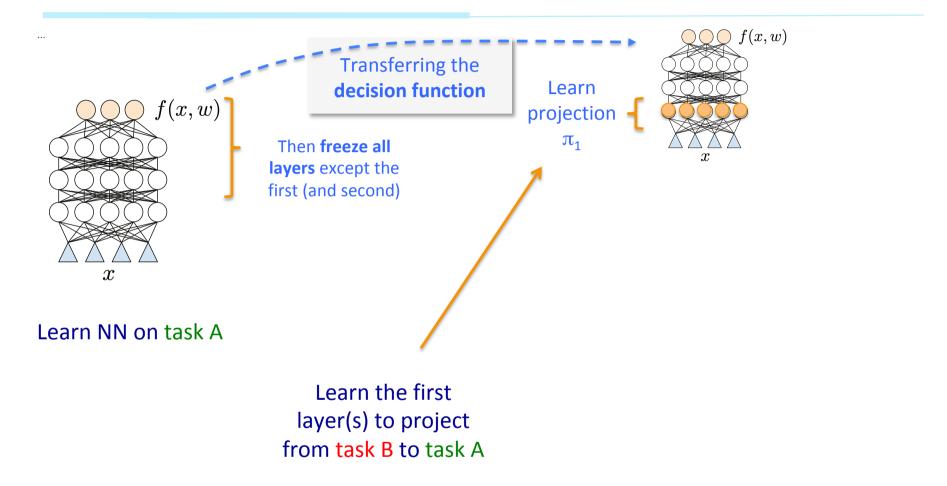
Standard Transfer with NNs

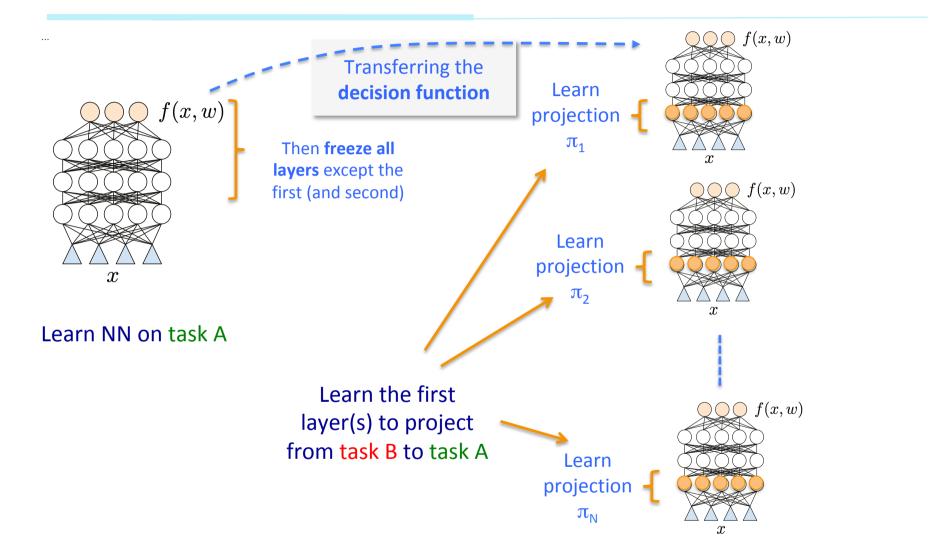


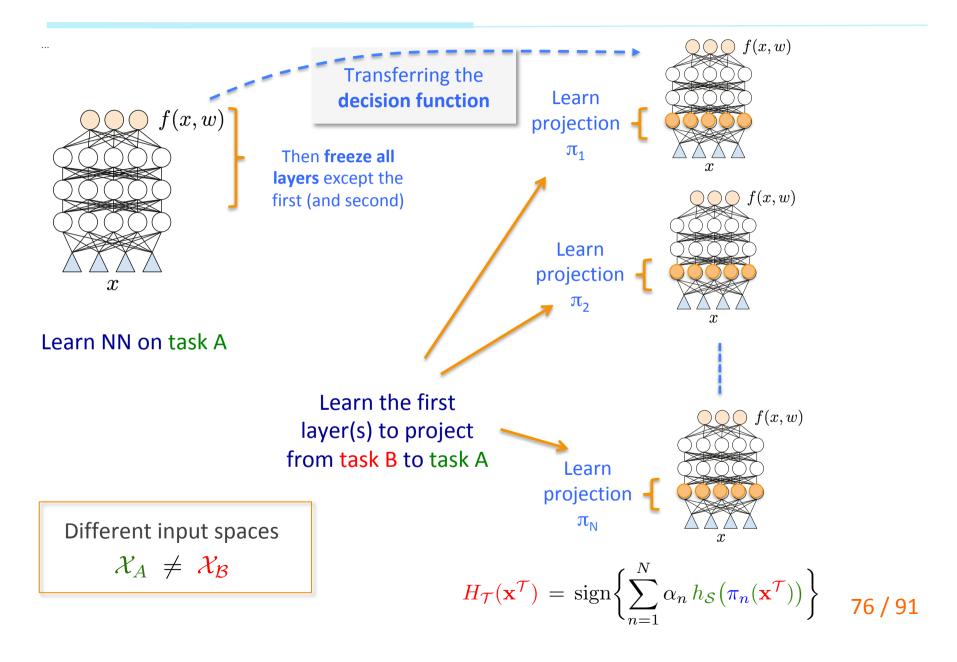
From Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 1717-1724).



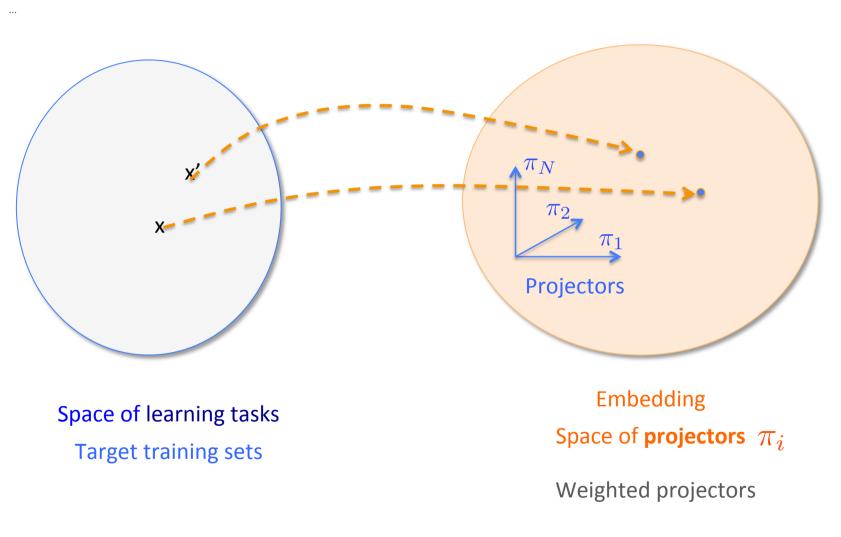
Learn NN on task A



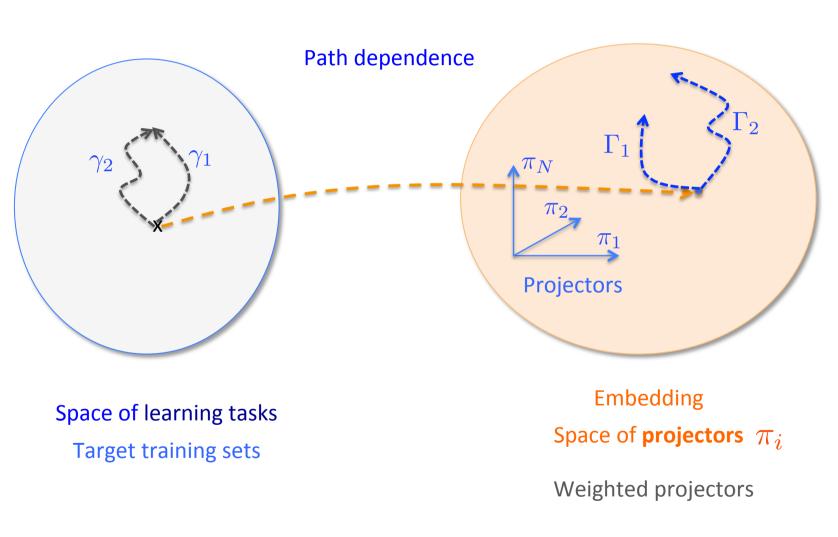




Transboost as local changes of representation



Transboost as local changes of representation



Does the quality of *h*_s plays a **role**?

What if ...

Source hypothesis a priori without relation to the target task

		Learning from target data only		TransBoost with "irrelevant" source hypothesis	
	slope, noise, $t_{\mathcal{T}}$	$h_{\mathcal{T}}$ (train)	$h_{\mathcal{T}}$ (test)	$H_{\mathcal{T}}$ (train)	$H_{\mathcal{T}}$ (test)
	0.001, 0.001, 70	0.44 ± 0.02	0.48 ± 0.02	0.06 ± 0.02	0.06 ± 0.02
	0.005, 0.005, 70	0.11 ± 0.04	0.13 ± 0.05	0.02 ± 0.01	0.02 ± 0.02
	0.005, 0.005, 70	0.10 ± 0.04	0.11 ± 0.05	0.01 ± 0.01	0.01 ± 0.01
	0.005, 0.05, 70	0.11 ± 0.04	0.12 ± 0.05	0.04 ± 0.02	0.03 ± 0.01
Hard	0.001, 0.001, 70	0.42 ± 0.03	0.48 ± 0.02	0.33 ± 0.02	0.37 ± 0.02
	0.01, 0.1, 70	0.06 ± 0.03	0.08 ± 0.03	0.08 ± 0.02	0.08 ± 0.02

Very good results!!

 $h_{\rm S}$ randomly chosen on the source task $\widehat{R}(h_{\mathcal{S}}) \approx 0.5$

Does the quality of *h*_S plays a **role**? **NO!!**

What is the **role** of h_s??

- The quality of the source hypothesis on the source data?
 - Plays no role
- The **proximity of the source and target** distributions P_X and P_Y ?
 - Plays no role

=> No condition on the source!??

Still some transfer learning problems appear to us **more easy than others**???

Transfer acts as a bias and h_s is a strong part of this bias

- If the source hypothesis is well chosen: the bias is well informed
 - Which **does not mean** that h_s must be good on the source task
- Otherwise: Learning is badly directed

or there is **over-fitting** if the capacity of $h_{\mathcal{S}} \circ \pi$ is too large

- The learning problem now becomes the problem of choosing a good set of (weak) projections
- Theoretical guarantees exist

Analysis

• The **generalization properties** of TransBoost

can be imported from the ones for **boosting**

$$\mathcal{H}_{\mathcal{T}} = \left\{ \operatorname{sign} \left[\sum_{n=1}^{N} \alpha_n \, h_{\mathcal{S}} \circ \pi_n \right] | \alpha_n \in \mathbb{R}, \pi_n \in \Pi, n \in [1, N] \right\}$$
$$d_{\operatorname{VC}}(\mathcal{H}_{\mathcal{T}}) \leq 2(d_{h_{\mathcal{S}} \circ \Pi} + 1)(N+1) \log_2((N+1)e)$$

$$R(h) \leq \widehat{R}(h) + \mathcal{O}\left(\sqrt{\frac{d_{h_{\mathcal{S}} \circ \Pi} \ln(m_{\mathcal{T}}/d_{h_{\mathcal{S}} \circ \Pi}) + \ln(1/\delta)}{m_{\mathcal{T}}}}\right)$$

Outline

- 1. Supervised induction: the classical setting
- 2. What about Out Of Distribution learning (OOD)?
- 3. Parallel transport, covariant derivative and transfer learning
 - What they are
 - ... in Machine Learning
- 4. A way to deal with different spaces of tasks

5. Conclusions

Conclusions (1)

Transfer learning \rightarrow mostly heuristical approaches so far

- 1. Parallel transport is a natural way for looking at transfer learning
 - The **covariant derivative** is then a measure of difference
 - **How** to compute it?
 - Pioneering works in computer vision
 - What about when the **source** and **target** domains are **different**?

- TransBoost: a proposal
- 2. Transfer learning is **path dependent** in general
 - The study of these path dependencies is **important** ...
 - Curriculum learning
 - Longlife learning
 - ... and a wide open research question

Conclusions (2)

- The **theoretical guarantees** for transfer learning:
 - Do not necessarily depend on the performance of the source hypothesis h_s But depend on the bias that h_s determines
 - Involve the capacity of the space of transformations

(and **the path** followed between source and target) Still to be explored

Bibliography

- Baldock, R., Maennel, H., & Neyshabur, B. (2021). Deep learning through the lens of example difficulty. Advances in Neural Information Processing Systems, 34.
- Bauer, M., Klassen, E., Preston, S. C., & Su, Z. (2018). A diffeomorphism-invariant metric on the space of vector-valued one-forms. arXiv preprint arXiv: 1812.10867.
- Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. *Machine learning*, 79(1-2), 151-175.
- Cornuéjols A., Murena P-A. & Olivier R. *"Transfer Learning by Learning Projections from Target to Source"*.
 Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany.
- Kuzborskij, I., & Orabona, F. (2013, February). Stability and hypothesis transfer learning. In International Conference on Machine Learning (pp. 942-950).
- Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. arXiv preprint arXiv:0902.3430.
- Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). *Advances in Domain Adaptation Theory*. Elsevier.
- Schonsheck, S. C., Dong, B., & Lai, R. (2018). Parallel transport convolution: A new tool for convolutional neural networks on manifolds. arXiv preprint arXiv:1805.07857.
- V. Vapnik and A. Vashist (2009) "A new learning paradigm: Learning using privileged information". *Neural Networks*, vol. 22, no. 5, pp. 544–557, 2009
- H. Venkateswara, S. Chakraborty, and S. Panchanathan, "Deep-learning systems for domain adaptation in computer vision: Learning transferable feature representations," *IEEE Signal Processing Magazine*, vol. 34, no. 6, pp. 117–129, 2017.
- Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. In Advances in neural information processing systems (pp. 3320-3328).
- Zhang, C., Zhang, L., & Ye, J. (2012). Generalization bounds for domain adaptation. In *Advances in neural information processing systems* (pp. 3320-3328).

Bibliography

- Ben-David, S., Lu, T., Luu, T., & Pál, D. (2010). Impossibility theorems for domain adaptation. In *International Conference on Artificial Intelligence and Statistics* (pp. 129-136).
- Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. *Machine learning*, *79*(1-2), 151-175.
- Cornuéjols A., Murena P-A. & Olivier R. *"Transfer Learning by Learning Projections from Target to Source"*.
 Symposium on Intelligent Data Analysis (IDA-2020), April 27-29 2020, Bodenseeforum, Lake Constance, Germany.
- Kuzborskij, I., & Orabona, F. (2013, February). Stability and hypothesis transfer learning. In *International Conference on Machine Learning* (pp. 942-950).
- Mansour, Y., Mohri, M., & Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and algorithms. *arXiv preprint arXiv:* 0902.3430.
- Redko, I., Morvant, E., Habrard, A., Sebban, M., & Bennani, Y. (2019). *Advances in Domain Adaptation Theory*. Elsevier.
- H. Venkateswara, S. Chakraborty, and S. Panchanathan, "Deep-learning systems for domain adaptation in computer vision: Learning transferable feature representations," *IEEE Signal Processing Magazine*, vol. 34, no. 6, pp. 117–129, 2017.
- Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks?. In Advances in neural information processing systems (pp. 3320-3328).
- Zhang, C., Zhang, L., & Ye, J. (2012). Generalization bounds for domain adaptation. In *Advances in neural information processing systems* (pp. 3320-3328).