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Outline	

1.  	Has	AI	been	bio-inspired?	

2.  	Interfacing	AI	with	Humans	
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The	central	place	of	neurons	in	AI!		??	

In	“Artificial	Neural	Networks”	

there	is	“Neural	Networks”	

Artificial	Intelligence	=	Machine	Learning	=	Deep	learning	(Neural	Networks)		

Artificial	Intelligence	

Machine	Learning	

Neural	Networks	



Biological	Neurons	

Axon

Terminal Branches 
of AxonDendrites

4	
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Neural	Networks?	

•  1943	=	the	crucial	year	for	AI	
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Neural	Networks?	

•  1943	=	the	crucial	year	for	AI	
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The	perceptron	
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The	perceptron:	a	linear	discriminant	

10	
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The	perceptron	learning	algorithm:	intuition	

w0 = w + ⌘ yi xi

w

x

xi

w0O
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Deep	Neural	Networks	

•  AlexNet								(a	rather	small	network	by	today’s	standard)	

62,378,344		parameters	(connections)		

A	“cat”	

(2012)	



13	/	85	

How	did	we	get	there?	
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The	history	of	AI	...	

...	In	three	stages	



The	assumption	

Intelligence	is		

general	reasoning	processes	

15	

(~1956	–	~1969)	

1	
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•  Theorem	proving	

•  General	Problem	Solver	

•  The	first	world	level	champion	in	the	game	checker		

•  Planning	

•  (Attempts	at)	automatic	translation	

•  ...	



Second	assumption	

Knowledge	is	power	

18	

(~1970		–		~1985)	

2	



19	/	85	

–  A	project	of	the	NASA:	

–  Is	there	life	on	Mars?	

–  Mass	spectrography	

The developped formula �
of the molecules

Mass

Intensity

Expert	Systems:	DENDRAL	

How	does	an	expert	performs	this?		
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•  Examples of a piece of knowlege 
–  Rule: 

If the spectrum of the molecule has two peaks x1 et x2 such that:
1.  x1 - x2  =  M + 28
2.  x1 - 28 is a high peak
3.  x2 - 28 is a high peak
4.  At least one of the peaks x1 et x2 is high
Then the molecule contains a cetone group

C C 

R1 

R2 

O C 

R1   (x1) 

R2 

O C 

R1 

R2  (x2) 

breaks �
down in:

or in :

Expert	Systems:	DENDRAL	



Third	assumption			(~1985	-	...)	

Intelligence	involves	a	lot	of	knowledge	

that	is	difficult	to	acquire	and	to	maintain	

21	

Why	not	learn	everything	from	data?		

3	

through	general	learning	processes	
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Supervised Induction 

Descriptors	 Labels	

Example	
Values	of	the	
descriptors	

Concept		
or		

hypothesis	
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Two	characteristics	

1.  We	want	to	acquire	knowledge	automatically	

2.  The	choice	of	the	descriptors	(features)	is	crucial	
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Learning	from	a	single	example	

1.  	A	single	example	

2.  	Search	for	a	proof	of	a	«	fork	»	

3.  	Generalization	

Explanation-Based	Learning	



25	/	85	

An	empirical	fact	

•  Powerful	symbolic	machine	learning	methods	

•  Are	brittle	when	the	data	is	imperfect	

–  Noisy	

–  Missing	values	

–  Uncertainties		
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Learning	with	Multi-Layer	Perceptrons	

Performs	magic!	

–  Automatically	self-adapt	from	the	data	

–  And	resistant	to	noisy	data	



Deep	learning			=>		automatic	feature	construction	

...	

27	



Automated	translation	

From	[Melanie	Mitchell	“Artificial	Intelligence:	A	Guide	for	Thinking	Humans”	(2021)]	

	 28	



Learning	a	“semantic	space”	

...	

29	



Learning	a	“semantic	space”	

...	

30	



Automated	image-captioning	

31	

A	group	of	young	people	playing	a	game	of	frisbee	



Automated	image-captioning	

From	[Melanie	Mitchell	“Artificial	Intelligence:	A	Guide	for	Thinking	Humans”	(2021)]	 32	



The	deep	learning	revolution	

–  brings	unexpected	levels	of	performance	

–  solves	new	problems	

•  Automatic	translation	

•  Autonomous	vehicles	

•  Discovery	of	protein	foldings	
•  ...	

	

	

33	

Shall/should	we	reason	in	terms	of	neural	networks	units?	
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Outline	

1.  	Has	AI	been	bio-inspired?	

2.  	Interfacing	AI	with	Humans	

3.  	Interfacing	AI	with	AI	

4.  	Conclusion	



35	/	85	

How	Artificial	Intelligence	will	change	Medical	Imaging	

...	



Automated	image-captioning	

•  Not	always	so	good!	

36	
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The	AlphaGo	case	

•  Plays	like	an	“alien”	

•  An	amazing	game		

•  Revolutionizes	the	way	we	play	

•  Effervescence	in	go	schools	
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The	AlphaGo	case:	understanding	

Fan	Hui,	Gu	Li,	Zhou	Ruyang	(very	strong	Go	players)	turn	to	the	activity	of	

analyzing	the	games	played	by	AlphaGo	

•  Kind	of	exegesis.	Explanations	a	posteriori	

•  Necessary	for	

–  Communication	

–  teaching	

And	even	AlphaGo	might	err	
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Error	in	medicine	

22	March	2019	

Exemple en médecine

Et sans doute des enjeux financiers 
qui motiveraient ce type d’attaques

Exemple en médecine

Et sans doute des enjeux financiers 
qui motiveraient ce type d’attaques
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Problem	

•  So	far	efficient	predictors	are	often	black	boxes	

•  This	is	an	issue	for	a	number	of	applications	(e.g.	in	medicine)	

–  We	want	to	be	able	to	be	confident	in	the	system	

–  It	can	justify	its	decisions	

–  It	can	justify	its	reasoning		 The	ability	of	providing	
explanations	is	required	in	Europe	
since	May	2018	(GDRP,	Recital	71)	

XAI:	Explainable	Artificial	Intelligence	
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What	is	a	(good)	explanation?	
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Local	simplification	

•  LIME	

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z  {}
for i 2 {1, 2, 3, ..., N} do

z0i  sample around(x0)
Z  Z [ hz0i, f(zi),⇡x(zi)i

end for

w  K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.
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Sensitivity	analysis	

•  The	pixels	that	best	“explain”	

–  The	recognition	of	a	electric	guitar	

–  The	recognition	of	an	acoustic	guitar	

–  The	recognition	of	a	dog	

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top

3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not su�cient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.
Even though explanations of multiple instances can be

insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n⇥ d0 explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ⇠(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many di↵erent instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d0 = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

pPn
i=1 Wij . For images, I must measure something

that is comparable across the super-pixels in di↵erent images,

Figure 5: Toy example W. Rows represent in-

stances (documents) and columns represent features

(words). Feature f2 (dotted blue) has the highest im-

portance. Rows 2 and 5 (in red) would be selected

by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi 2 X do

Wi  explain(xi, x
0
i) . Using Algorithm 1

end for

for j 2 {1 . . . d0} do

Ij  
pPn

i=1 |Wij | . Compute feature importances
end for

V  {}
while |V | < B do . Greedy optimization of Eq (4)

V  V [ argmaxi c(V [ {i},W, I)
end while

return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .
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•  		Still	very	rudimentary	
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Many	types	of	representations	and	of	operations	

…	

? 
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Lots	of	types	of	“explanations”	

...	

? 



Explanations	in	Expert	Systems	

.	

47	

10  Cours Systèmes Experts 

 

 

Exemple 2 :    Explication par le système de son propre raisonnement 
 

MYCIN :  L'infection du malade a t-elle été contractée à l'hôpital ? 

Util isateur : pourquoi ? 

TEIRESIAS : [pourquoi est-ce important de savoir cela ?] 

 Cela aidera à déterminer la catégorie à laquelle appartient l'organisme responsable 
de l'infection : 

 - il a déjà été établi que 1° l'organisme est à Gram négatif, 2° c'est un bâtonnet, 3° il 
se développe à l'air ou sans air, 

 - donc si l'infection par cet organisme n'a pas été contactée lors du séjour à l'hôpital 

 alors il est presque certain (0,8) que l'organisme est de la catégorie des 
enterobactoriaceae; de plus, il se peut (0,1 ; règle 37) que ce soit la pseudomonia 
aeruginosa. 

Util isateur :  pourquoi n'avez-vous pas envisagé la possibilité que l'organisme soit un  
streptocoque ? 

TEIRESIAS :  la règle 33 aurait du être utilisée pour identifier l'organisme comme un 
streptocoque, mais la seconde clause "la morphologie est de type coque" était déjà 
connue comme fausse et la règle 33 n'a jamais été essayée. 

 

1.5 Structure des systèmes experts 

Un système de production peut être vu comme constitué de trois composants de base : une base de connaissance 
(généralement ensemble de règles), une mémoire de travail ou de faits, et un interpréteur de règles (moteur 
d'inférences), augmenté de modules annexes d'interfaçage avec l'utilisateur et l'expert.  

 

 
 



Explanations	in	Expert	Systems	

•  How	old	is	the	patient?	

•  **	Why	

•  In	order	to	determine	if	tetracycline	can	be	prescribed	

–  If	the	patient	is	less	than	8	years	old	

–  Then,	it	is	not	possible	to	prescribe	tetracycline	

–  [Rule	122]	

•  **	Why?	

•  …	

48	

Why	is	it	not	possible	to	prescribe	tetracycline	to	a	child	less	than	8	years	old?	



Explanations	in	Expert	Systems	

Why	should	we	not	prescribe	tetracycline	to	a	child	under	the	age	of	8?	

49	



Explanations	in	Expert	Systems	

Why	should	we	not	prescribe	tetracycline	to	a	child	under	the	age	of	8?	

Expert	justifications	
Drug	depot	on	developing	bones	

						Definitive	blackening	of	the	teeth	

												Socially	unwanted	coloration	

																		Do	not	administer	tetracycline	to	children	under	the	age	of	

Notion	of	undesirable	side	effects	

Causality	relationships	

50	
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Counterfactuals	

•  If	James	Dean	had	taken	the	train	the	day	of	his	car	accident,		
he	would	not	have	died	

•  If	you	could	increase	your	savings	by	5000€	each	year,	you	
would	get	this	loan	
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Counterfactuals	

•  If	James	Dean	had	taken	the	train	the	day	of	his	car	accident,		
he	would	not	have	died	

•  If	you	could	increase	your	savings	by	5000€	each	year,	you	
would	get	this	loan	

work, we focus solely on a specific family of explainability

methods—counterfactual explanations—and identify barri-
ers to their widespread deployment and use in industry.

Counterfactual Explainability: A Tiny Primer
Explainability research in ML either aims to develop in-
herently interpretable models [25] or to explain complex
models. Examples of interpretable models include linear
models, rule sets, shallow decision trees; examples of com-
plex models include random forests and neural networks.
Methods explaining complex models either take a holistic
approach (global explanations) or explain individual pre-
dictions (local explanations). Global explanations generally
approximate a complex model with an interpretable model;
local explanations generally do not approximate the model.

Counterfactual explanations (CFEs) are an emerging tech-
nique of local explainability. They explain a prediction by
calculating a change (usually minimal) in a datapoint that
would cause the underlying ML model to classify it in a
desired class. For example, if an individual were denied a
loan request, a CFE might tell them that if they could in-
crease their savings by $5000, then their request would be
approved. CFEs do not necessarily approximate the ML
model and are therefore fidelitous to it. Unlike other ex-
plainability methods, CFEs aim to provide a precise and
actionable recommendation to achieve a desired outcome.

CFE in the context of ML was introduced by Wachter et
al. [35] in 2017. (CFEs have existed in philosophy [20]
and psychology [4] from decades.) A burgeoning ML lit-
erature addresses different parts of the CFEs’ desider-
ata, yet several challenges remain to be addressed be-
fore CFEs are widely adopted in industry. Counterfactual
explainability is defined variously in the ML literature [33,
17]. Some works [19, 16] differentiate between contrastive

and counterfactual explanations–largely based on the pres-
ence of and assumptions about the causal relations be-
tween features–while others do not [35, 6]. Yet, all CFEs–
contrastive and counterfactual alike–share a high-level goal
of communicating to stakeholders the underlying behavior
of an ML model. Our present paper is largely agnostic to
the detailed definition of CFEs; indeed, the obstacles we
identify hold broadly, and interfere with industry deployment
of even the “weaker” notions of CFEs. Our goal is to surface
challenges and directions for HCI and AI/ML researchers.

Desiderata of Counterfactual Explainability

Figure 1: Two possible paths for a datapoint (shown in blue),
originally classified in the negative class, to cross the decision
boundary. The end points of both the paths (shown in red and
green) are valid counterfactuals for the original point. Figure
adapted from Verma et al. [33].

In this section, we list the desirable properties of CFEs as
pointed out by recent surveys [33, 17]. These are, largely,
the focus of the AI/ML sub-community focused on CFEs;
their enumeration here enables discussion of some chal-
lenges we identify in the subsequent section.

Local	explanation	for	a	
given	prediction	

Two	possible	counterfactuals:	CF1	is	closest	to	x	than	CF2	
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Counterfactuals	

•  Oh	yes.	But	what	is	the	difference	with	adversarial	examples?!	

work, we focus solely on a specific family of explainability

methods—counterfactual explanations—and identify barri-
ers to their widespread deployment and use in industry.

Counterfactual Explainability: A Tiny Primer
Explainability research in ML either aims to develop in-
herently interpretable models [25] or to explain complex
models. Examples of interpretable models include linear
models, rule sets, shallow decision trees; examples of com-
plex models include random forests and neural networks.
Methods explaining complex models either take a holistic
approach (global explanations) or explain individual pre-
dictions (local explanations). Global explanations generally
approximate a complex model with an interpretable model;
local explanations generally do not approximate the model.

Counterfactual explanations (CFEs) are an emerging tech-
nique of local explainability. They explain a prediction by
calculating a change (usually minimal) in a datapoint that
would cause the underlying ML model to classify it in a
desired class. For example, if an individual were denied a
loan request, a CFE might tell them that if they could in-
crease their savings by $5000, then their request would be
approved. CFEs do not necessarily approximate the ML
model and are therefore fidelitous to it. Unlike other ex-
plainability methods, CFEs aim to provide a precise and
actionable recommendation to achieve a desired outcome.

CFE in the context of ML was introduced by Wachter et
al. [35] in 2017. (CFEs have existed in philosophy [20]
and psychology [4] from decades.) A burgeoning ML lit-
erature addresses different parts of the CFEs’ desider-
ata, yet several challenges remain to be addressed be-
fore CFEs are widely adopted in industry. Counterfactual
explainability is defined variously in the ML literature [33,
17]. Some works [19, 16] differentiate between contrastive

and counterfactual explanations–largely based on the pres-
ence of and assumptions about the causal relations be-
tween features–while others do not [35, 6]. Yet, all CFEs–
contrastive and counterfactual alike–share a high-level goal
of communicating to stakeholders the underlying behavior
of an ML model. Our present paper is largely agnostic to
the detailed definition of CFEs; indeed, the obstacles we
identify hold broadly, and interfere with industry deployment
of even the “weaker” notions of CFEs. Our goal is to surface
challenges and directions for HCI and AI/ML researchers.

Desiderata of Counterfactual Explainability

Figure 1: Two possible paths for a datapoint (shown in blue),
originally classified in the negative class, to cross the decision
boundary. The end points of both the paths (shown in red and
green) are valid counterfactuals for the original point. Figure
adapted from Verma et al. [33].

In this section, we list the desirable properties of CFEs as
pointed out by recent surveys [33, 17]. These are, largely,
the focus of the AI/ML sub-community focused on CFEs;
their enumeration here enables discussion of some chal-
lenges we identify in the subsequent section.

“toilet	paper”	This	is	not		 because	this	is	 “dog”	

And	the	difference	is	
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What	is	a	good	level	of	communication?	

“No	computation	can	get	around	the	semantic	problem”	

K.	Browne	&	B.	Swift	(2020).	“Semantics	and	explanation:	why	counterfactual	explanations	produce	
adversarial	examples	in	deep	neural	networks”.	arXiv	preprint	arXiv:2012.10076.	
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What	is	a	good	level	of	communication?	

•  Should	we	look	at	intermediate	layers	in	deep	NNs?		
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Outline	

1.  	Has	AI	been	bio-inspired?	

2.  	Interfacing	AI	with	Humans	

3.  	Interfacing	AI	with	AI	

4.  	Conclusion	



What	should	learning	sub-systems	exchange?	

•  Two	sub-systems		

1.  One	locating	the	ads	links		

2.  The	other	choosing	the	adds	to	present	

•  That	influence	each	other	

–  Each	takes	into	account	the	clicks	

–  Which	depend	in	part	from	the	actions	of	the	other	sub-system	

–  In	addition	of	other	uncontrolled	factors	(price,	user’s	queries,	…)	
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Figure 1: Mainline and sidebar ads on a search result page. Ads placed in the mainline are more
likely to be noticed, increasing both the chances of a click if the ad is relevant and the risk
of annoying the user if the ad is not relevant.

• Let x represent the auction context information, such as the user query, the user profile, the
date, the time, etc. The ad placement engine first determines all eligible ads a1 . . .an and the
corresponding bids b1 . . .bn on the basis of the auction context x and of the matching criteria
specified by the advertisers.

• For each selected ad ai and each potential position p on the web page, a statistical model
outputs the estimate qi,p(x) of the probability that ad ai displayed in position p receives a user
click. The rank-score ri,p(x) = biqi,p(x) then represents the purported value associated with
placing ad ai at position p.

• Let L represent a possible ad layout, that is, a set of positions that can simultaneously be
populated with ads, and let L be the set of possible ad layouts, including of course the empty
layout. The optimal layout and the corresponding ads are obtained by maximizing the total
rank-score

max
L2L

max
i1,i2,...

Â
p2L

rip,p(x) , (1)

subject to reserve constraints

8p 2 L, rip,p(x)� Rp(x) ,

and also subject to diverse policy constraints, such as, for instance, preventing the simultane-
ous display of multiple ads belonging to the same advertiser. Under mild assumptions, this
discrete maximization problem is amenable to computationally efficient greedy algorithms
(see appendix A.)

• The advertiser payment associated with a user click is computed using the generalized second
price (GSP) rule: the advertiser pays the smallest bid that it could have entered without chang-
ing the solution of the discrete maximization problem, all other bids remaining equal. In other
words, the advertiser could not have manipulated its bid and obtained the same treatment for
a better price.

3210

Leon	Bottou	et	al.	«Counterfactual	Reasoning	and	Learning	Systems:	The	
Example	of	Computational	Advertising	»,	JMLR,	14,	(2013),	3207-3260	
		



What	should	learning	sub-systems	exchange?	

•  The	subsystem	locating	the	adds	gathers	the	following	statistics	

58	

Overall	

Add	placed	in	
mainline	

0.78%	
(273/35000)	

Add	placed	on	
sideline	

0.83%	
(289/35000)	

What	is	the	best	choice?		



What	should	learning	sub-systems	exchange?	

•  The	subsystem	locating	the	adds	gathers	the	following	statistics	
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Overall	 Add	ranked	1st		 Add	ranked	2nd	

Add	placed	in	
mainline	

0.78%	
(273/35000)	

0.93%		
(81/8700)	

0.73%	
(192/26300)	

Add	placed	on	
sideline	

0.83%	
(289/35000)	

0.87%	
(234/27000)	

0.69%		
(55/8000)	

What	is	the	best	choice?		



What	should	learning	sub-systems	exchange?	
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Overall	 Add	ranked	1st		 Add	ranked	2nd	

Add	placed	in	
mainline	

0.78%	
(273/35,000)	

0.93%		
(81/8700)	

0.73%	
(192/26,300)	

Add	placed	on	
sideline	

0.83%	
(289/35,000)	

0.87%	
(234/27,000)	

0.69%		
(55/8000)	

...	

•  Influencing	factor	
The	choice	of	the	placement	was	
function	of		the	ranking	of	the	add		
(by	the	other	subsystem)	

Ranking	

Likely	to	be	placed		
in	sideline	

Likely	to	be	placed	
in	mainline	

1st		 2nd	



What	should	learning	sub-systems	exchange?	

•  The	subsystems	should	communicate	on		

–  the	influencing	factors		

–  and	causality	relationships	
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Figure 3: Causal graph associated with the structural equation model of Figure 2. The mutually
independent noise variables e1 to e8 are implicit. The variables a, b, q, s, c, and z depend
on their direct causes in known ways. In contrast, the variables u and v are exogenous
and the variables x and y depend on their direct causes through unknown functions.

• Simulation – Let us assume that we know both the exact form of all functional dependencies
and the value of all exogenous variables, that is, the variables that never appear in the left hand
side of an equation. We can compute the values of all the remaining variables by applying the
equations in their natural time sequence.

• Intervention – As long as the causal graph remains acyclic, we can construct derived structural
equation models using arbitrary algebraic manipulations of the system of equations. For
instance, we can clamp a variable to a constant value by rewriting the right-hand side of the
corresponding equation as the specified constant value.

The algebraic manipulation of the structural equation models provides a powerful language to
describe interventions on a causal system. This is not a coincidence. Many aspects of the mathe-
matical notation were invented to support causal inference in classical mechanics. However, we no
longer have to interpret the variable values as physical quantities: the equations simply describe the
flow of information in the causal model (Wiener, 1948).

3.2 The Isolation Assumption

Let us now turn our attention to the exogenous variables, that is, variables that never appear in the
left hand side of an equation of the structural model. Leibniz’s principle of sufficient reason claims
that there are no facts without causes. This suggests that the exogenous variables are the effects of
a network of causes not expressed by the structural equation model. For instance, the user intent
u and the ad inventory v in Figure 3 have temporal correlations because both users and advertisers
worry about their budgets when the end of the month approaches. Any structural equation model
should then be understood in the context of a larger structural equation model potentially describing
all things in existence.

Ads served on a particular page contribute to the continued satisfaction of both users and ad-
vertisers, and therefore have an effect on their willingness to use the services of the publisher in the
future. The ad placement structural equation model shown in Figure 2 only describes the causal de-
pendencies for a single page and therefore cannot account for such effects. Consider however a very

3216

•  Ok.	But	what	about		

			a	neural	network	learning	from	another	one?		

Conceptual	level	
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“Distillation”	

One	neural	network	teaching	another	one	
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AI	to	AI	

• Why?	

–  		A	“master”	complex	neural	network	

	

–  		A	“student”	neural	network	with	limited	capacity	
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Motivation	

Example:	A	sophisticated	learning	technique	-	GoogLeNet	

Quite	a	costly	machine	to	train		
AND	to	use	for	prediction	
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“Distillation”	

Many	ways	to	do	it	

1.  	Changing	the	training	examples	(xi,	yi)	by	modifying	the	targets	yi		
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“Distillation”	

Many	ways	to	do	it	

1.  	Changing	the	training	examples	(xi,	yi)	by	modifying	the	targets	yi		

2.  	Changing	the	training	inputs	xi		
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“Distillation”	

Many	ways	to	do	it	

1.  	Changing	the	training	examples	(xi,	yi)	by	modifying	the	targets	yi		

2.  	Changing	the	training	inputs	xi		

3.  Changing	the	learning	task	through	a	“curriculum”:	sequence	of	

intermediate	tasks	
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How	to	measure	the	difficulty	

of	examples?	
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“Prediction	depth”	

•  The	number	of	hidden	layers	after	which	the	network’s	final	
prediction	is	already	determined	

Baldock,	R.,	Maennel,	H.,	&	Neyshabur,	B.	(2021).	Deep	learning	through	the	lens	
of	example	difficulty.	Advances	in	Neural	Information	Processing	Systems,	34.	

Deep	neural	networks	use		

–  fewer	layers	to	determine	the	prediction	for	easy	examples		

–  and	more	layers	for	hard	examples	
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“Prediction	depth”	

•  The	number	of	hidden	layers	after	which	the	network’s	final	
prediction	is	already	determined	

Input

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the last layer

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the first layer

Figure 1: Deep models use fewer layers to (effectively) determine the prediction for easy examples and more layers

for hard examples. Left: A cartoon illustrating the definition of prediction depth (given in Section 2.1). Also shown
are training examples from CIFAR100 (“Clock”) and SVHN (“Digit 8”). The examples shown are predicted at the
input (first layer) or softmax (last layer) of ResNet18. The examples predicted in the input are visually typical
(“easy”), while those predicted in the softmax are mislabeled and/or visually confusing (“hard” examples). To find the
prediction depth, we build k-NN classifiers from the embeddings of the training set in different layers of the model.
The prediction depth corresponds to the earliest layer at which the predictions of all subsequent k-NN classifiers
converge to a fixed label. Right: Probability of prediction depth in ResNet18 models for four datasets (training split).
We see that the four distributions have different characteristic prediction depths. Ranking the mean prediction depths
of these datasets in ascending order, we observe: Fashion MNIST (smallest), SVHN (second), CIFAR10 (third), and
CIFAR100 (largest). This order aligns with how one might intuitively rank the difficulties of these classification tasks.

existing notions of example difficulty (E.g. Carlini et al. (2019)) provide a one-dimensional view of difficulty
which can not distinguish between examples that are difficult for different reasons.

In this paper, we take a significant step towards resolving the above shortcomings. To take the processing
of the data into account we propose a new measure of example difficulty, the prediction depth, which is
determined from the hidden embeddings. To escape the one-dimensional view of difficulty, we introduce three
distinct difficulty types by relating the hidden embeddings for an input to high-level concepts about example
difficulty: “Does this example look mislabeled?”; “Is classifying this example only easy if the label is given?”;
“Is this example ambiguous both with and without its label?”. Furthermore, we show how this enhanced
notion of example difficulty can unify our understanding of several seemingly unrelated phenomena in deep
learning. We hope that the results presented in this work will aid the development of models that capture
heteroscedastic uncertainty, our understanding of how deep networks respond to distributional shift, and
the advancement of curriculum learning approaches and machine learning fairness. These connections are
discussed in Section 5.

Contributions Our main contributions are as follows:

• We introduce a measure of computational example difficulty : the prediction depth (PD). The prediction
depth, illustrated in Figure 1, represents the number of hidden layers after which the network’s final
prediction is already (effectively) determined (Section 2).

• We show that the prediction depth is larger for examples that visually appear to be more difficult, and
that prediction depth is consistent between architectures and random seeds (Section 2.2).

• Our empirical investigation reveals that prediction depth appears to establish a linear lower bound on
the consistency of a prediction. We further show that predictions are on average more accurate for
validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training are typically
determined in earlier layers which establishes a correspondence between the training history of the
network and the processing of data in the hidden layers (Section 3.2).

2

Easy	examples	 Hard	examples	
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How	to	measure	the	prediction	depth?	

•  k-NN	classifier	probes		(with	k	=	30)	
–  Compare	the	the	hidden	embedding	of	an	input	to	those	of	the	training	

set	(what	is	the	class	of	the	k	nearest	neighbors	in	the	embedding	
considered)	

•  A	prediction	is	defined	to	be	made	at	a	depth	L	=	l	if	

–  The	k-NN	classification	after	layer	l	=	l	–	1		is	different	from	the	network’s	
final	classification,		

–  but	the	classification	of	k-NN	probes	after	every	layer	L	≥	l		are	all	equal	to	
the	final	classification	of	the	network	
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What	they	claim	to	show	

1.  The	prediction	depth	is	larger	for	examples	that	visually	appear	to	be	more	
difficult	

–  And	this	is	consistent	between	NN’s	architectures	and	random	seeds	

2.  Predictions	are	on	average	more	accurate	for	validation	points	with	small	
prediction	depths	

3.  Final	predictions	for	data	points	that	converge	earlier	during	training	are	
typically	determined	in	earlier	layers		

4.  Both	the	adversarial	input	margin	and	output	margin	are	larger	for	examples	
with	smaller	prediction	depths	

–  Intervention	to	reduce	the	output	margin	leads	to	predictions	being	made	only	in	the	latest	
hidden	layers	
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What	they	claim	to	show	
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What	they	claim	to	show	

1.  The	prediction	depth	is	larger	for	examples	that	visually	appear	to	be	more	
difficult	

–  And	this	is	consistent	between	NN’s	architectures	and	random	seeds	

2.  Predictions	are	on	average	more	accurate	for	validation	points	with	small	
prediction	depths	

3.  Final	predictions	for	data	points	that	converge	earlier	during	training	are	
typically	determined	in	earlier	layers		

4.  Both	the	adversarial	input	margin	and	output	margin	are	larger	for	examples	
with	smaller	prediction	depths	

–  Intervention	to	reduce	the	output	margin	leads	to	predictions	being	made	only	in	the	latest	
hidden	layers	
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What	they	claim	to	show	

1.  The	prediction	depth	is	larger	for	examples	that	visually	appear	to	be	more	
difficult	

–  And	this	is	consistent	between	NN’s	architectures	and	random	seeds	

2.  Predictions	are	on	average	more	accurate	for	validation	points	with	small	
prediction	depths	

3.  Final	predictions	for	data	points	that	converge	earlier	during	training	are	
typically	determined	in	earlier	layers		

4.  Both	the	adversarial	input	margin	and	output	margin	are	larger	for	examples	
with	smaller	prediction	depths	

–  Intervention	to	reduce	the	output	margin	leads	to	predictions	being	made		
only	in	the	latest	hidden	layers	
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What	they	claim	to	show	

1.  	Early	layers	generalize	while	later	layers	memorize	

2.  	Networks	converge	from	input	layers	towards	output	layers	

3.  	Easy	examples	are	learned	first		

4.  	Networks	present	simpler	functions	earlier	in	the	training	
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What	they	claim	to	show	

•  The	prediction	depth	is	larger	for	examples	that	visually	appear	to	be	more	

difficult	

Input

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the last layer

Digit 8 (SVHN)Clock (CIFAR100)

Examples predicted in the first layer

Figure 1: Deep models use fewer layers to (effectively) determine the prediction for easy examples and more layers

for hard examples. Left: A cartoon illustrating the definition of prediction depth (given in Section 2.1). Also shown
are training examples from CIFAR100 (“Clock”) and SVHN (“Digit 8”). The examples shown are predicted at the
input (first layer) or softmax (last layer) of ResNet18. The examples predicted in the input are visually typical
(“easy”), while those predicted in the softmax are mislabeled and/or visually confusing (“hard” examples). To find the
prediction depth, we build k-NN classifiers from the embeddings of the training set in different layers of the model.
The prediction depth corresponds to the earliest layer at which the predictions of all subsequent k-NN classifiers
converge to a fixed label. Right: Probability of prediction depth in ResNet18 models for four datasets (training split).
We see that the four distributions have different characteristic prediction depths. Ranking the mean prediction depths
of these datasets in ascending order, we observe: Fashion MNIST (smallest), SVHN (second), CIFAR10 (third), and
CIFAR100 (largest). This order aligns with how one might intuitively rank the difficulties of these classification tasks.

existing notions of example difficulty (E.g. Carlini et al. (2019)) provide a one-dimensional view of difficulty
which can not distinguish between examples that are difficult for different reasons.

In this paper, we take a significant step towards resolving the above shortcomings. To take the processing
of the data into account we propose a new measure of example difficulty, the prediction depth, which is
determined from the hidden embeddings. To escape the one-dimensional view of difficulty, we introduce three
distinct difficulty types by relating the hidden embeddings for an input to high-level concepts about example
difficulty: “Does this example look mislabeled?”; “Is classifying this example only easy if the label is given?”;
“Is this example ambiguous both with and without its label?”. Furthermore, we show how this enhanced
notion of example difficulty can unify our understanding of several seemingly unrelated phenomena in deep
learning. We hope that the results presented in this work will aid the development of models that capture
heteroscedastic uncertainty, our understanding of how deep networks respond to distributional shift, and
the advancement of curriculum learning approaches and machine learning fairness. These connections are
discussed in Section 5.

Contributions Our main contributions are as follows:

• We introduce a measure of computational example difficulty : the prediction depth (PD). The prediction
depth, illustrated in Figure 1, represents the number of hidden layers after which the network’s final
prediction is already (effectively) determined (Section 2).

• We show that the prediction depth is larger for examples that visually appear to be more difficult, and
that prediction depth is consistent between architectures and random seeds (Section 2.2).

• Our empirical investigation reveals that prediction depth appears to establish a linear lower bound on
the consistency of a prediction. We further show that predictions are on average more accurate for
validation points with small prediction depths (Section 3.1).

• We demonstrate that final predictions for data points that converge earlier during training are typically
determined in earlier layers which establishes a correspondence between the training history of the
network and the processing of data in the hidden layers (Section 3.2).

2
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What	they	claim	to	show	

•  Predictions	are	on	average	more	accurate	for	validation	points	with	small	prediction	
depths	

250	ResNet18	were	trained	on	CIFAR100	(90:10%	
random	train:validation	splits).	Comparison	of	the	
average	prediction	depth	of	a	point	to	the	consensus-
consistency	of	the	corresponding	prediction.	

For	each	dataset,	250	ResNet18	were	trained	on	
CIFAR100	(90:10%	random	train:validation	splits).	
Each	time	a	point	appears	in	the	validation	split,	its	
prediction	depth	and	whether	the	prediction	was	
correct	was	recorded.	

Consensus-consistency:	the	fraction	of	NNs	that	
predict	the	ensemble’s	consensus	class		
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What	they	claim	to	show	

•  Final	predictions	for	data	points	that	converge	earlier	during	training	are	typically	

determined	in	earlier	layers	

–  Measure	of	the	difficulty	of	learning	an	example	by	the	speed	at	which	the	model’s	prediction	converges	

for	that	input	during	training	

–  Iteration	learned.	A	data	point	is	said	to	be	learned	by	a	classifier	at	training	iteration	t	=	τ	if	the	predicted	

class	at	iteration	t	=	τ	–	1	is	different	from	the	final	prediction	of	the	converged	NN	and	the	predictions	at	

all	iterations	t	≥	τ	are	equal	to	the	final	prediction	of	the	converged	NN.	
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What	they	claim	to	show	

•  Different	forms	of	example	difficulty	
•  Validation:	points	with	low	prediction	depth	are	“clear”		
																					and	“ambiguous”	otherwise	

•  Training:	idem	

–  Easy	examples	(Low	PDval	and	low	Pdtrain)	

–  Look	like	a	different	class	(Low	PDval	and	high	Pdtrain).		
•  E.g.	mislabeled	examples	

–  Ambiguous	unless	the	label	is	given	(High	PDval	and	low	Pdtrain).		

•  E.g.	ressemble	both	their	own	class	and	another	class.	Likely	to	be	
misclassified	

–  Ambiguous	(High	PDval	and	high	Pdtrain).		

•  Examples	that	may	be	corrupted	or	of	a	rare	sub-class.	



81	/	85	

What	they	claim	to	show	

•  Illustration	

Looks like a different classEasy AmbiguousAmbiguous w/o its label

C
la

ss
: B

ird

Figure 7: The prediction depth can be the same, or very different for the same input when it occurs in the train and

validation splits. Corners of this plot correspond to different forms of example difficulty. (See Section 4 for discussion.)
We train 250 ResNet18 models on CIFAR10 with random 90:10% train:validation splits as described in Appendix A.
These histograms compare average prediction depth for each data point when it occurs in the validation split vs the
training split. This behavior is consistently reproduced for all datasets and architectures in Appendix C.5. Below we
show extreme (not hand-chosen) images of “Birds” that appear closest to the corners of this plot. The consensus class
is given above each image (tiebreaks favor the class “Bird”.).

control, we additionally train a model in the standard fashion using the cross-entropy loss and SGD with
momentum and large initial learning rate. Since full-batch gradients are computationally expensive, we
train on a subset of CIFAR10 (see Appendix A.7, where we also give the hyperparameters and learning
curves.). The output margin obtained with the intervention is 5 orders of magnitude smaller than in the
control experiment: 2.0⇥ 10�4 ± 2.0⇥ 10�4 for the 0-Hinge loss and 1.6⇥ 101 ± 0.50⇥ 101 for cross-entropy
loss. Figure 6 (right) compares the accuracies of the k-NN probes resulting from these training approaches.
The 0-Hinge loss training achieves only a marginal improvement in accuracy (red) over an untrained network
(purple), and the training split is accurately clustered only in the latest layers. This confirms the predicted
behavior: the intervention leads to a model that exhibits both very small average output margins and very
late clustering of the data. Very late clustering of the data implies high prediction depths since the k-NN
probe classifications change in the latest layers for many data points.

4 Beyond a One-Dimensional Picture of Example Difficulty
In this section we transcend the one-dimensional picture of example difficulty by identifying different underlying
reasons behind the difficulty of an example, in a way that is general to different architectures and datasets.

Figure 7 shows that the prediction depth can be different when an input occurs in the training split vs.
the validation split. Thus, there are two axes of example difficulty:

1. Difficulty of making a prediction when an input is in the validation set
2. Difficulty of finding commonalities during training with other examples of the same ground truth class

Both axes have a range from “clear” to “ambiguous”. In Section 3.1 we show that predictions made
for validation points with later prediction depths are often inconsistent, with low consensus-consistency.
Conversely, a low prediction depth typically indicates an input with high consensus-consistency. For Axis
1 we will identify validation points with low prediction depths as “clear” and those with high prediction
depths as “ambiguous”. We will additionally identify a low or high prediction depth in the training split
with examples that are respectively “clear” and “ambiguous” on Axis 2. By making combinations of low/high
values of (PDVal.,PDTrain) we obtain four extremes of example difficulty:

9

ressemble	both	their	own	class		
and	another	class.	Likely	to	be	misclassified	
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Collaborative	learning	

•  Exchanges	between	learning	agents	(methods)	
–  E.g.	supervised	and	unsupervised	methods	

	[	ANR	“Herelles”	on	satellite	image	processing.	Pierre	Gançarski	(PI).		
										ICube	]	

•  Exchange	of	parameters		
–  Number	of	clusters	

–  Prototypes	

–  Labels	for	training	examples		

•  NOT	the	specifics	of	the	methods	(e.g.	neuron	activations)	
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Outline	

1.  	Has	AI	been	bio-inspired?	

2.  	Interfacing	AI	with	Humans	

3.  	Interfacing	AI	with	AI	

4.  	Conclusion	
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Conclusions	

•  The	brain	metaphor	has	not	played	a	determining	role	in	AI	

•  The	cognitive	level	is	important		(inescapable?)	

–  Explaining	results	and	“reasoning”	

•  Exchanges	between	AIs	is	(currently)	done	at	the	level	of	
training	examples	and	the	organization	of	curricula	

•  We	are	far	from	

–  being	able	to	“read”	the	brain	/	mind	

–  being	able	to	interact	at	the	level	of	neurons	for	conceptual	exchanges	
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BUT	...	

•  Does	AI	plays	a	role	in	our	brain?	
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BUT	...	

Does	the	use	of	computers,	the	Internet,	and	

“intelligent”	assistants		

change	our	brain?		


