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	«	Deep	learning	»		

as	THE	universal	solution		(2006–	…)	
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"The	paper	focuses	on	a	subject	that	might	be	of	limited	importance				

		at	ICML,	given	the	current	trend	towards	neural	networks."	
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«	Deep	Neural	Networks		»	

Artificial	Neural	Networks	

–  With	numerous	hidden	layers		 								(possibly	>	100s)	

–  And	a	very	large	number	of	parameters		(~	107	–	108	parameters)		

–  Learn	hierarchical	and	compositional	representations	
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GoogleNet	

•  A	mécano	of	neural	networks	
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1x1 semblent triviaux car ils ne permettent pas de réduire la dimension de l’entrée, mais son critère
non-linéaire lui permet de complexifier la nature des attributs détectés et donc de voir des motifs plus
complexes. Network in Network introduit aussi l’utilisation de réseau complètement constitué par des
couches convolutives, en remplaçant les couches de classification par des filtres 1x1 (Figure 10).

FIGURE 10. Module Network in Network [33]

GoogleNet [58] une des architectures les plus utilisées (avec AlexNet) de part ses performances.
Développé par Google et gagnant du l’ILSVRC 2014, le modèle se différencie des autres par sa com-
plexité (22 couches contre 8 pour AlexNet) et l’utilisation de module inception (Figure 11). Le module
d’inception (Figure 12) est une configuration permettant d’appliquer plusieurs filtres de tailles différentes
en parallèle. La parallélisation et l’application de multiples filtres permettent d’apprendre plusieurs lo-
giques d’extraction d’attributs, allant sur des détails précis pour les filtres 1x1 jusqu’à des formes plus
larges pour les filtres 5x5.

FIGURE 11. Architecture du réseau GoogleNet [58]
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BUT	…	does	deep	learning	

bring	big	trouble	(for	the	theory	of	induction)?	
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Troubling	findings	

A	paper	
–  C.	Zhang,	S.	Bengio,	M.	Hardt,	B.	Recht,	O.	Vinyals	(ICLR,	May	2017).		

“Understanding	deep	learning	requires	rethinking	generalization”	

Extensive	experiments	on	the	classification	of	images	
–  The	AlexNet		(>	1,000,000	parameters)	+	2	other	architectures	

–  The	CIFAR-10	data	set:		
•  60,000	images	categorized	in	10	classes	(50,000	for	training	and	10,000	for	testing)	

•  Images:	32x32	pixels	in	3	color	channels	
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Again, on intuitive grounds we expect that in order to make good predic-
tions we need to select a hypothesis class F that is appropriate for the problem
at hand. More precisely we should use some prior knowledge about the nature
of the link between between the features x and the target y to choose which
functions the class F should possess. For instance if, for any reason, we know
that with high probability the relation between x and y is approximately lin-
ear we better choose F to contain only such functions fw(x) = w · x. In the
most general setting this relationship is encoded in a complicated and unknown
probability distribution P on labeled observations (x, y). In many cases all we
know is that the relation between x and y has some smoothness properties.

The set of techniques that data scientists use to adapt the hypothesis class
F to a specific problem is know as regularization. Some of these are explicit in
the sense that they constrain estimators f in some way as we shall describe in
section 2. Some are implicit meaning that it is the dynamics of the algorithm
which walks its way through the set F in search for a good f (typically using
stochastic gradient descent) that provides the regularization. Some of these
regularization techniques actually pertain more to art than to mathematics as
they rely more on experience and intuition than on theorems.

Figure 1: The architecture of AlexNet which is one of the networks used by the authors

in [1]

Deep Learning is a a very popular class of machine learning models, roughly
inspired by biology, that are particularly well suited for tackling complex, AI-
like tasks such as image classification, NLP or automatic translation. Roughly
speaking these models are defined by stacking layers that, each, combine linear
combinations of the input with non-linear activation functions (and perhaps
some regularization). We won’t enter into defining them in detail here as many
excellent textbooks [3, 4] will do the job. Figure 1 shows the architecture of
AlexNet a deep network used in the experiment [1]. For our purpose, which is a
discussion of the issue of generalization and regularization, su�ce it to say here
that these Deep Learning problems share the following facts:

• The number n of samples available for training these networks is typically
much smaller than the number k of parameters w = (w1, . . . , wk) that
define the functions fw 2 F

1.

• The probability distribution P (x, y) is impossible to describe in any sen-
sible way in practice. For concreteness, think of x as the pixels of and

1The number of parameters k of a Deep Learning network such as AlexNet can be over a
hundred of millions while being trained on “only” a few millions of images in image-net.
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Troubling	findings	

Experiments	

1.  	Original	dataset	without	modification	

•  Results	?	
–  Training	accuracy	=	100%			;				Test	accuracy	=	89%	
–  Speed	of	convergence	~	5,000	steps	
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Troubling	findings	

Experiments	

1.  	Original	dataset	without	modification	

•  Results	?	
–  Training	accuracy	=	100%			;				Test	accuracy	=	89%	
–  Speed	of	convergence	~	5,000	steps	

		Expected	behavior	if	the	capacity	of	the	hypothesis	space	is	limited	

	

i.e.	the	system	cannot	fit	any	(arbitrary)	training	data	

67	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

8h 2 H, 8�  1 : Pm

"
R(h)  bR(h) + 2 dRadm(H) + 3

r
ln(2/�)

m

#
> 1� �



/	110	

Troubling	findings	

Experiments	

1.  	Original	dataset	without	modification	

•  Results	?	
–  Training	accuracy	=	100%			;				Test	accuracy	=	89%	
–  Speed	of	convergence	~	5,000	steps	

2.  	Random	labels	

–  Training	accuracy	=	100%	!!??		;				Test	accuracy	=	9.8%	

–  Speed	of	convergence	=	similar	behavior			(~	10,000	steps)	
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Troubling	findings	

Experiments	

1.  	Original	dataset	without	modification	

•  Results	?	
–  Training	accuracy	=	100%			;				Test	accuracy	=	89%	
–  Speed	of	convergence	~	5,000	steps	

2.  	Random	labels	
–  Training	accuracy	=	100%	!!??		;				Test	accuracy	=	9.8%	
–  Speed	of	convergence	=	similar	behavior			(~	10,000	steps)	

3.  	Random	pixels	

–  Training	accuracy	=	100%	!!??		;				Test	accuracy	~	10%	
–  Speed	of	convergence	=	similar	behavior			(~	10,000	steps)	
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Now,	we	
are	in	

trouble!!	



/	110	

Troubling	findings	

•  Deep	NNs	can	accommodate	ANY	training	set		
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Can	grow	without	limit!!	

But	then,		
	
										why	are	deep	NNs		so	good	on	image	classification	tasks?	
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Adversarial	learning	

Illustration	
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Learning Securely 
Because it is easy to fool, machine learning  
must be taught how to handle adversarial inputs.

the University of California, Berkeley, 
who has crafted audio files that sound 
like white noise to humans, but like 
commands to speech recognition al-
gorithms. “We need to think of the at-
tacks as early as possible.”

Attacking the Black Box
Adversarial machine learning has been 
studied for more than a decade in a few 

OV ER  THE PAS T five years, 
machine learning has blos-
somed from a promising 
but immature technology 
into one that can achieve 

close to human-level performance on a 
wide array of tasks. In the near future, 
it is likely to be incorporated into an in-
creasing number of technologies that 
directly impact society, from self-driv-
ing cars to virtual assistants to facial- 
recognition software.

Yet machine learning also offers 
brand-new opportunities for hack-
ers. Malicious inputs specially crafted 
by an adversary can “poison” a ma-
chine learning algorithm during its 
training period, or dupe it after it has 
been trained. While the creators of a 
machine learning algorithm usually 
benchmark its average performance 
carefully, it is unusual for them to con-
sider how it performs against adversar-
ial inputs, security researchers say.

The emerging field of adversarial 
machine learning is exploring these 
vulnerabilities. In the past few years, 
researchers have figured out, for exam-
ple, how to make tiny, imperceptible 
changes to an image to fool vision pro-
cessing systems into interpreting an 
image humans see as a school bus as 
an ostrich instead. Such deceptions of-
ten can be carried out with virtually no 
knowledge about the inner workings 

of the machine learning algorithm un-
der attack.

Machine learning can be easy to 
fool, computer scientists warn. “We 
don’t want to wait until machine 
learning algorithms are being used 
on billions of devices, and then wait 
for people to mount attacks,” said 
Nicholas Carlini, a graduate student 
in adversarial machine learning at 

Science  |  DOI:10.1145/2994577 Erica Klarreich

School bus + tiny adversarial perturbation = “ostrich”

 Dog  +  tiny adversarial perturbation  =  “ostrich”

Adversarial input can fool a machine-learning algorithm into misperceiving images. 
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Explanations	and	deep	neural	networks	

Identification	object	categories	in	an	image	

–  Here,	two	classes	:	«	dog	»	and	«	tiger	cat	»	
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[Selvaraju	et	al.	(2017)	«	Grad-CAM:	Visual	explanations	from	deep	networks	via	gradient-based	localization	»]	

(a) Original Image (b) Guided Backprop ‘Cat’ (c) Grad-CAM ‘Cat’ (d) Guided Grad-CAM ‘Cat’ (e) Occlusion map for ‘Cat’ (f) ResNet Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’ (j) Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (l) ResNet Grad-CAM ‘Dog’
Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG and ResNet. (b) Guided Backpropagation [46]:
highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives high-
resolution class-discriminative visualizations.Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e),
while being orders of magnitude cheaper to compute. (f, l) are Grad-CAM visualizations for ResNet-18 layer. Note that in (d, f, i, l), red regions corresponds to high score for
class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.

modules for uninterpretable ones that achieve greater perfor-
mance through greater abstraction (more layers) and tighter
integration (end-to-end training). Recently introduced deep
residual networks (ResNets) [18] are over 200-layers deep
and have shown state-of-the-art performance in several chal-
lenging tasks. Such complexity makes these models hard to
interpret. As such, deep models are beginning to explore the
spectrum between interpretability and accuracy.

Zhou et al. [51] recently proposed a technique called
Class Activation Mapping (CAM) for identifying discrimina-
tive regions used by a restricted class of image classification
CNNs which do not contain any fully-connected layers. In
essence, this work trades off model complexity and perfor-
mance for more transparency into the working of the model.
In contrast, we make existing state-of-the-art deep models
interpretable without altering their architecture, thus avoid-
ing the interpretability vs. accuracy tradeoff. Our approach
is a generalization of CAM [51] and is applicable to a signifi-
cantly broader range of CNN model families: (1) CNNs with
fully-connected layers (e.g. VGG), (2) CNNs used for struc-
tured outputs (e.g. captioning), (3) CNNs used in tasks with
multi-modal inputs (e.g. VQA) or reinforcement learning.
What makes a good visual explanation? Consider im-
age classification [10] – a ‘good’ visual explanation from
the model justifying a predicted class should be (a) class-
discriminative (i.e. localize the target category in the image)
and (b) high-resolution (i.e. capture fine-grained detail).

Fig. 1 shows outputs from a number of visualizations for
the ‘tiger cat’ class (top) and ‘boxer’ (dog) class (bottom).
Pixel-space gradient visualizations such as Guided Back-
propagation [46] and Deconvolution [49] are high-resolution
and highlight fine-grained details in the image, but are not
class-discriminative (Fig. 1b and Fig. 1h are very similar).

In contrast, localization approaches like CAM or our pro-
posed method Gradient-weighted Class Activation Mapping

(Grad-CAM), are highly class-discriminative (the ‘cat’ expla-
nation exclusively highlights the ‘cat’ regions but not ‘dog’
regions in Fig. 1c, and vice versa in Fig. 1i).

In order to combine the best of both worlds, we show that
it is possible to fuse existing pixel-space gradient visualiza-
tions with Grad-CAM to create Guided Grad-CAM visualiza-
tions that are both high-resolution and class-discriminative.
As a result, important regions of the image which correspond
to any decision of interest are visualized in high-resolution
detail even if the image contains evidence for multiple possi-
ble concepts, as shown in Figures 1d and 1j. When visualized
for ‘tiger cat’, Guided Grad-CAM not only highlights the
cat regions, but also highlights the stripes on the cat, which
is important for predicting that particular variety of cat.
To summarize, our contributions are as follows:
(1) We propose Grad-CAM, a class-discriminative localiza-
tion technique that can generate visual explanations from any

CNN-based network without requiring architectural changes
or re-training. We evaluate Grad-CAM for localization (Sec-
tion 4.1), pointing (Section 4.2), and faithfulness to model
(Section 5.3), where it outperforms baselines.
(2) We apply Grad-CAM to existing top-performing classi-
fication, captioning (Section 8.1), and VQA (Section 8.2)
models. For image classification, our visualizations help
identify dataset bias (Section 6.3) and lend insight into fail-
ures of current CNNs (Section 6.1), showing that seemingly
unreasonable predictions have reasonable explanations. For
captioning and VQA, our visualizations expose the some-
what surprising insight that common CNN + LSTM models
are often good at localizing discriminative image regions
despite not being trained on grounded image-text pairs.
(3) We visualize ResNets [18] applied to image classification
and VQA (Section 8.2). Going from deep to shallow layers,
the discriminative ability of Grad-CAM significantly reduces
as we encounter layers with different output dimensionality.

(a) Original Image (b) Guided Backprop ‘Cat’ (c) Grad-CAM ‘Cat’ (d) Guided Grad-CAM ‘Cat’ (e) Occlusion map for ‘Cat’ (f) ResNet Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’ (j) Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (l) ResNet Grad-CAM ‘Dog’
Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG and ResNet. (b) Guided Backpropagation [46]:
highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives high-
resolution class-discriminative visualizations.Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e),
while being orders of magnitude cheaper to compute. (f, l) are Grad-CAM visualizations for ResNet-18 layer. Note that in (d, f, i, l), red regions corresponds to high score for
class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.
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and have shown state-of-the-art performance in several chal-
lenging tasks. Such complexity makes these models hard to
interpret. As such, deep models are beginning to explore the
spectrum between interpretability and accuracy.
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CNNs which do not contain any fully-connected layers. In
essence, this work trades off model complexity and perfor-
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interpretable without altering their architecture, thus avoid-
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is a generalization of CAM [51] and is applicable to a signifi-
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tured outputs (e.g. captioning), (3) CNNs used in tasks with
multi-modal inputs (e.g. VQA) or reinforcement learning.
What makes a good visual explanation? Consider im-
age classification [10] – a ‘good’ visual explanation from
the model justifying a predicted class should be (a) class-
discriminative (i.e. localize the target category in the image)
and (b) high-resolution (i.e. capture fine-grained detail).

Fig. 1 shows outputs from a number of visualizations for
the ‘tiger cat’ class (top) and ‘boxer’ (dog) class (bottom).
Pixel-space gradient visualizations such as Guided Back-
propagation [46] and Deconvolution [49] are high-resolution
and highlight fine-grained details in the image, but are not
class-discriminative (Fig. 1b and Fig. 1h are very similar).
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posed method Gradient-weighted Class Activation Mapping

(Grad-CAM), are highly class-discriminative (the ‘cat’ expla-
nation exclusively highlights the ‘cat’ regions but not ‘dog’
regions in Fig. 1c, and vice versa in Fig. 1i).

In order to combine the best of both worlds, we show that
it is possible to fuse existing pixel-space gradient visualiza-
tions with Grad-CAM to create Guided Grad-CAM visualiza-
tions that are both high-resolution and class-discriminative.
As a result, important regions of the image which correspond
to any decision of interest are visualized in high-resolution
detail even if the image contains evidence for multiple possi-
ble concepts, as shown in Figures 1d and 1j. When visualized
for ‘tiger cat’, Guided Grad-CAM not only highlights the
cat regions, but also highlights the stripes on the cat, which
is important for predicting that particular variety of cat.
To summarize, our contributions are as follows:
(1) We propose Grad-CAM, a class-discriminative localiza-
tion technique that can generate visual explanations from any
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or re-training. We evaluate Grad-CAM for localization (Sec-
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(2) We apply Grad-CAM to existing top-performing classi-
fication, captioning (Section 8.1), and VQA (Section 8.2)
models. For image classification, our visualizations help
identify dataset bias (Section 6.3) and lend insight into fail-
ures of current CNNs (Section 6.1), showing that seemingly
unreasonable predictions have reasonable explanations. For
captioning and VQA, our visualizations expose the some-
what surprising insight that common CNN + LSTM models
are often good at localizing discriminative image regions
despite not being trained on grounded image-text pairs.
(3) We visualize ResNets [18] applied to image classification
and VQA (Section 8.2). Going from deep to shallow layers,
the discriminative ability of Grad-CAM significantly reduces
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Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG and ResNet. (b) Guided Backpropagation [46]:
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class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.
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class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.

modules for uninterpretable ones that achieve greater perfor-
mance through greater abstraction (more layers) and tighter
integration (end-to-end training). Recently introduced deep
residual networks (ResNets) [18] are over 200-layers deep
and have shown state-of-the-art performance in several chal-
lenging tasks. Such complexity makes these models hard to
interpret. As such, deep models are beginning to explore the
spectrum between interpretability and accuracy.

Zhou et al. [51] recently proposed a technique called
Class Activation Mapping (CAM) for identifying discrimina-
tive regions used by a restricted class of image classification
CNNs which do not contain any fully-connected layers. In
essence, this work trades off model complexity and perfor-
mance for more transparency into the working of the model.
In contrast, we make existing state-of-the-art deep models
interpretable without altering their architecture, thus avoid-
ing the interpretability vs. accuracy tradeoff. Our approach
is a generalization of CAM [51] and is applicable to a signifi-
cantly broader range of CNN model families: (1) CNNs with
fully-connected layers (e.g. VGG), (2) CNNs used for struc-
tured outputs (e.g. captioning), (3) CNNs used in tasks with
multi-modal inputs (e.g. VQA) or reinforcement learning.
What makes a good visual explanation? Consider im-
age classification [10] – a ‘good’ visual explanation from
the model justifying a predicted class should be (a) class-
discriminative (i.e. localize the target category in the image)
and (b) high-resolution (i.e. capture fine-grained detail).

Fig. 1 shows outputs from a number of visualizations for
the ‘tiger cat’ class (top) and ‘boxer’ (dog) class (bottom).
Pixel-space gradient visualizations such as Guided Back-
propagation [46] and Deconvolution [49] are high-resolution
and highlight fine-grained details in the image, but are not
class-discriminative (Fig. 1b and Fig. 1h are very similar).

In contrast, localization approaches like CAM or our pro-
posed method Gradient-weighted Class Activation Mapping

(Grad-CAM), are highly class-discriminative (the ‘cat’ expla-
nation exclusively highlights the ‘cat’ regions but not ‘dog’
regions in Fig. 1c, and vice versa in Fig. 1i).

In order to combine the best of both worlds, we show that
it is possible to fuse existing pixel-space gradient visualiza-
tions with Grad-CAM to create Guided Grad-CAM visualiza-
tions that are both high-resolution and class-discriminative.
As a result, important regions of the image which correspond
to any decision of interest are visualized in high-resolution
detail even if the image contains evidence for multiple possi-
ble concepts, as shown in Figures 1d and 1j. When visualized
for ‘tiger cat’, Guided Grad-CAM not only highlights the
cat regions, but also highlights the stripes on the cat, which
is important for predicting that particular variety of cat.
To summarize, our contributions are as follows:
(1) We propose Grad-CAM, a class-discriminative localiza-
tion technique that can generate visual explanations from any

CNN-based network without requiring architectural changes
or re-training. We evaluate Grad-CAM for localization (Sec-
tion 4.1), pointing (Section 4.2), and faithfulness to model
(Section 5.3), where it outperforms baselines.
(2) We apply Grad-CAM to existing top-performing classi-
fication, captioning (Section 8.1), and VQA (Section 8.2)
models. For image classification, our visualizations help
identify dataset bias (Section 6.3) and lend insight into fail-
ures of current CNNs (Section 6.1), showing that seemingly
unreasonable predictions have reasonable explanations. For
captioning and VQA, our visualizations expose the some-
what surprising insight that common CNN + LSTM models
are often good at localizing discriminative image regions
despite not being trained on grounded image-text pairs.
(3) We visualize ResNets [18] applied to image classification
and VQA (Section 8.2). Going from deep to shallow layers,
the discriminative ability of Grad-CAM significantly reduces
as we encounter layers with different output dimensionality.

(a) Original Image (b) Guided Backprop ‘Cat’ (c) Grad-CAM ‘Cat’ (d) Guided Grad-CAM ‘Cat’ (e) Occlusion map for ‘Cat’ (f) ResNet Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’ (j) Guided Grad-CAM ‘Dog’ (k) Occlusion map for ‘Dog’ (l) ResNet Grad-CAM ‘Dog’
Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG and ResNet. (b) Guided Backpropagation [46]:
highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives high-
resolution class-discriminative visualizations.Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e),
while being orders of magnitude cheaper to compute. (f, l) are Grad-CAM visualizations for ResNet-18 layer. Note that in (d, f, i, l), red regions corresponds to high score for
class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.

modules for uninterpretable ones that achieve greater perfor-
mance through greater abstraction (more layers) and tighter
integration (end-to-end training). Recently introduced deep
residual networks (ResNets) [18] are over 200-layers deep
and have shown state-of-the-art performance in several chal-
lenging tasks. Such complexity makes these models hard to
interpret. As such, deep models are beginning to explore the
spectrum between interpretability and accuracy.

Zhou et al. [51] recently proposed a technique called
Class Activation Mapping (CAM) for identifying discrimina-
tive regions used by a restricted class of image classification
CNNs which do not contain any fully-connected layers. In
essence, this work trades off model complexity and perfor-
mance for more transparency into the working of the model.
In contrast, we make existing state-of-the-art deep models
interpretable without altering their architecture, thus avoid-
ing the interpretability vs. accuracy tradeoff. Our approach
is a generalization of CAM [51] and is applicable to a signifi-
cantly broader range of CNN model families: (1) CNNs with
fully-connected layers (e.g. VGG), (2) CNNs used for struc-
tured outputs (e.g. captioning), (3) CNNs used in tasks with
multi-modal inputs (e.g. VQA) or reinforcement learning.
What makes a good visual explanation? Consider im-
age classification [10] – a ‘good’ visual explanation from
the model justifying a predicted class should be (a) class-
discriminative (i.e. localize the target category in the image)
and (b) high-resolution (i.e. capture fine-grained detail).

Fig. 1 shows outputs from a number of visualizations for
the ‘tiger cat’ class (top) and ‘boxer’ (dog) class (bottom).
Pixel-space gradient visualizations such as Guided Back-
propagation [46] and Deconvolution [49] are high-resolution
and highlight fine-grained details in the image, but are not
class-discriminative (Fig. 1b and Fig. 1h are very similar).

In contrast, localization approaches like CAM or our pro-
posed method Gradient-weighted Class Activation Mapping

(Grad-CAM), are highly class-discriminative (the ‘cat’ expla-
nation exclusively highlights the ‘cat’ regions but not ‘dog’
regions in Fig. 1c, and vice versa in Fig. 1i).

In order to combine the best of both worlds, we show that
it is possible to fuse existing pixel-space gradient visualiza-
tions with Grad-CAM to create Guided Grad-CAM visualiza-
tions that are both high-resolution and class-discriminative.
As a result, important regions of the image which correspond
to any decision of interest are visualized in high-resolution
detail even if the image contains evidence for multiple possi-
ble concepts, as shown in Figures 1d and 1j. When visualized
for ‘tiger cat’, Guided Grad-CAM not only highlights the
cat regions, but also highlights the stripes on the cat, which
is important for predicting that particular variety of cat.
To summarize, our contributions are as follows:
(1) We propose Grad-CAM, a class-discriminative localiza-
tion technique that can generate visual explanations from any

CNN-based network without requiring architectural changes
or re-training. We evaluate Grad-CAM for localization (Sec-
tion 4.1), pointing (Section 4.2), and faithfulness to model
(Section 5.3), where it outperforms baselines.
(2) We apply Grad-CAM to existing top-performing classi-
fication, captioning (Section 8.1), and VQA (Section 8.2)
models. For image classification, our visualizations help
identify dataset bias (Section 6.3) and lend insight into fail-
ures of current CNNs (Section 6.1), showing that seemingly
unreasonable predictions have reasonable explanations. For
captioning and VQA, our visualizations expose the some-
what surprising insight that common CNN + LSTM models
are often good at localizing discriminative image regions
despite not being trained on grounded image-text pairs.
(3) We visualize ResNets [18] applied to image classification
and VQA (Section 8.2). Going from deep to shallow layers,
the discriminative ability of Grad-CAM significantly reduces
as we encounter layers with different output dimensionality.

dog	

cat	
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bottom-left illustrates this fusion. This visualization is both
high-resolution (when the class of interest is ‘tiger cat’, it
identifies important ‘tiger cat’ features like stripes, pointy
ears and eyes) and class-discriminative (it shows the ‘tiger
cat’ but not the ‘boxer (dog)’). Replacing Guided Backpropa-
gation with Deconvolution in the above gives similar results,
but we found Deconvolution to have artifacts (and Guided
Backpropagation visualizations were generally less noisy),
so we chose Guided Backpropagation over Deconvolution.
4. Evaluating Localization
4.1. Weakly-supervised Localization

In this section, we evaluate the localization capability
of Grad-CAM in the context of image classification. The
ImageNet localization challenge [10] requires competing ap-
proaches to provide bounding boxes in addition to classifica-
tion labels. Similar to classification, evaluation is performed
for both the top-1 and top-5 predicted categories. Given an
image, we first obtain class predictions from our network
and then generate Grad-CAM maps for each of the predicted
classes and binarize with threshold of 15% of the max in-
tensity. This results in connected segments of pixels and we
draw our bounding box around the single largest segment.

We evaluate the pretrained off-the-shelf VGG-16 [45]
model from the Caffe [21] Model Zoo. Following ILSVRC-
15 evaluation, we report both top-1 and top-5 localization
error on the val set in Table. 1. Grad-CAM localization errors
are significantly lower than those achieved by c-MWP [50]
and Simonyan et al. [44] for the VGG-16 model, which uses
grabcut to post-process image space gradients into heat maps.
Grad-CAM also achieves better top-1 localization error than
CAM [51], which requires a change in the model archi-
tecture, necessitates re-training and thereby achieves worse
classification errors (2.98% increase in top-1), whereas Grad-
CAM makes no compromise on classification performance.

Method Top-1 loc error Top-5 loc error Top-1 cls error Top-5 cls error
Backprop on VGG-16 [44] 61.12 51.46 30.38 10.89
c-MWP on VGG-16 [50] 70.92 63.04 30.38 10.89

Grad-CAM on VGG-16 (ours) 56.51 46.41 30.38 10.89

VGG-16-GAP (CAM) [51] 57.20 45.14 33.40 12.20

Table 1: Classification and Localization results on ILSVRC-15 val (lower is better).

Weakly-supervised Segmentation. We use Grad-CAM lo-
calization as weak-supervision to train the segmentation
architecture from SEC [26]. We provide more details along
with qualitative results in the supplementary Section E.
4.2. Pointing Game

Zhang et al. [50] introduced the Pointing Game experi-
ment to evaluate the discriminativeness of different attention
maps for localizing target objects in scenes. Their evaluation
protocol cues each competing visualization technique with
the ground-truth object label and extracts the maximum point
on the generated heatmap and evaluates if it lies in one of the
annotated instances of the cued object category, thereby a hit
or a miss is counted. The localization accuracy is then cal-
culated as Acc = #Hits

#Hits+#Misses
. However this evaluation

Figure 3: AMT interfaces for evaluating different visualizations for class discrimina-
tion (left) and trust worthiness (right). Guided Grad-CAM outperforms baseline ap-
proaches (Guided-backprop and Deconvolution) showing that our visualizations are
more class-discriminative and help humans place trust in a more accurate classifier.
only measures the precision aspect of the visualization tech-
nique. Hence we modify the protocol to also measure the
recall as follows. We compute the visualization for the top-
5 class predictions from the CNN classifiers2 and evaluate
them using the pointing game setup with an additional option
that a visualization may reject any of the top-5 predictions
from the model if the max value in the visualization is below
a threshold, i.e. if the visualization correctly rejects the pre-
dictions which are absent from the ground-truth categories,
it gets that as a hit. We find that our approach Grad-CAM
outperforms c-MWP [50] by a significant margin (70.58% vs.
60.30%). Qualitative examples comparing c-MWP [50] and
Grad-CAM on COCO, imageNet, and PASCAL categories
can be found in supplementary Section F3.

5. Evaluating Visualizations
Our first human study evaluates the main premise of

our approach: are Grad-CAM visualizations more class-
discriminative than previous techniques? Having established
that, we turn to understanding whether it can lead an end
user to trust the visualized models appropriately. For these
experiments, we compare VGG-16 and AlexNet CNNs fine-
tuned on PASCAL VOC 2007 train set and use the val set to
generate visualizations.

5.1. Evaluating Class Discrimination
In order to measure whether Grad-CAM helps distinguish

between classes we select images from VOC 2007 val set
that contain exactly two annotated categories and create vi-
sualizations for each one of them. For both VGG-16 and
AlexNet CNNs, we obtain category-specific visualizations
using four techniques: Deconvolution, Guided Backprop-
agation, and Grad-CAM versions of each these methods
(Deconvolution Grad-CAM and Guided Grad-CAM). We
show visualizations to 43 workers on Amazon Mechanical
Turk (AMT) and ask them “Which of the two object cate-
gories is depicted in the image?” as shown in Fig. 3.

Intuitively, a good prediction explanation is one that pro-
duces discriminative visualizations for the class of interest.
The experiment was conducted using all 4 visualizations

2We use the GoogLeNet CNN finetuned on COCO provided in [50].
3 c-MWP [50] highlights arbitrary regions for predicted but non-existent

categories, unlike Grad-CAM maps which seem more reasonable.

bottom-left illustrates this fusion. This visualization is both
high-resolution (when the class of interest is ‘tiger cat’, it
identifies important ‘tiger cat’ features like stripes, pointy
ears and eyes) and class-discriminative (it shows the ‘tiger
cat’ but not the ‘boxer (dog)’). Replacing Guided Backpropa-
gation with Deconvolution in the above gives similar results,
but we found Deconvolution to have artifacts (and Guided
Backpropagation visualizations were generally less noisy),
so we chose Guided Backpropagation over Deconvolution.
4. Evaluating Localization
4.1. Weakly-supervised Localization

In this section, we evaluate the localization capability
of Grad-CAM in the context of image classification. The
ImageNet localization challenge [10] requires competing ap-
proaches to provide bounding boxes in addition to classifica-
tion labels. Similar to classification, evaluation is performed
for both the top-1 and top-5 predicted categories. Given an
image, we first obtain class predictions from our network
and then generate Grad-CAM maps for each of the predicted
classes and binarize with threshold of 15% of the max in-
tensity. This results in connected segments of pixels and we
draw our bounding box around the single largest segment.

We evaluate the pretrained off-the-shelf VGG-16 [45]
model from the Caffe [21] Model Zoo. Following ILSVRC-
15 evaluation, we report both top-1 and top-5 localization
error on the val set in Table. 1. Grad-CAM localization errors
are significantly lower than those achieved by c-MWP [50]
and Simonyan et al. [44] for the VGG-16 model, which uses
grabcut to post-process image space gradients into heat maps.
Grad-CAM also achieves better top-1 localization error than
CAM [51], which requires a change in the model archi-
tecture, necessitates re-training and thereby achieves worse
classification errors (2.98% increase in top-1), whereas Grad-
CAM makes no compromise on classification performance.

Method Top-1 loc error Top-5 loc error Top-1 cls error Top-5 cls error
Backprop on VGG-16 [44] 61.12 51.46 30.38 10.89
c-MWP on VGG-16 [50] 70.92 63.04 30.38 10.89

Grad-CAM on VGG-16 (ours) 56.51 46.41 30.38 10.89

VGG-16-GAP (CAM) [51] 57.20 45.14 33.40 12.20

Table 1: Classification and Localization results on ILSVRC-15 val (lower is better).

Weakly-supervised Segmentation. We use Grad-CAM lo-
calization as weak-supervision to train the segmentation
architecture from SEC [26]. We provide more details along
with qualitative results in the supplementary Section E.
4.2. Pointing Game

Zhang et al. [50] introduced the Pointing Game experi-
ment to evaluate the discriminativeness of different attention
maps for localizing target objects in scenes. Their evaluation
protocol cues each competing visualization technique with
the ground-truth object label and extracts the maximum point
on the generated heatmap and evaluates if it lies in one of the
annotated instances of the cued object category, thereby a hit
or a miss is counted. The localization accuracy is then cal-
culated as Acc = #Hits

#Hits+#Misses
. However this evaluation

Figure 3: AMT interfaces for evaluating different visualizations for class discrimina-
tion (left) and trust worthiness (right). Guided Grad-CAM outperforms baseline ap-
proaches (Guided-backprop and Deconvolution) showing that our visualizations are
more class-discriminative and help humans place trust in a more accurate classifier.
only measures the precision aspect of the visualization tech-
nique. Hence we modify the protocol to also measure the
recall as follows. We compute the visualization for the top-
5 class predictions from the CNN classifiers2 and evaluate
them using the pointing game setup with an additional option
that a visualization may reject any of the top-5 predictions
from the model if the max value in the visualization is below
a threshold, i.e. if the visualization correctly rejects the pre-
dictions which are absent from the ground-truth categories,
it gets that as a hit. We find that our approach Grad-CAM
outperforms c-MWP [50] by a significant margin (70.58% vs.
60.30%). Qualitative examples comparing c-MWP [50] and
Grad-CAM on COCO, imageNet, and PASCAL categories
can be found in supplementary Section F3.

5. Evaluating Visualizations
Our first human study evaluates the main premise of

our approach: are Grad-CAM visualizations more class-
discriminative than previous techniques? Having established
that, we turn to understanding whether it can lead an end
user to trust the visualized models appropriately. For these
experiments, we compare VGG-16 and AlexNet CNNs fine-
tuned on PASCAL VOC 2007 train set and use the val set to
generate visualizations.

5.1. Evaluating Class Discrimination
In order to measure whether Grad-CAM helps distinguish

between classes we select images from VOC 2007 val set
that contain exactly two annotated categories and create vi-
sualizations for each one of them. For both VGG-16 and
AlexNet CNNs, we obtain category-specific visualizations
using four techniques: Deconvolution, Guided Backprop-
agation, and Grad-CAM versions of each these methods
(Deconvolution Grad-CAM and Guided Grad-CAM). We
show visualizations to 43 workers on Amazon Mechanical
Turk (AMT) and ask them “Which of the two object cate-
gories is depicted in the image?” as shown in Fig. 3.

Intuitively, a good prediction explanation is one that pro-
duces discriminative visualizations for the class of interest.
The experiment was conducted using all 4 visualizations

2We use the GoogLeNet CNN finetuned on COCO provided in [50].
3 c-MWP [50] highlights arbitrary regions for predicted but non-existent

categories, unlike Grad-CAM maps which seem more reasonable.

54	subjets	on	Amazon	Turk	->	robot	B	evaluated	1.27	(between	-2	et	+2)	
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ambiguities inherent in ImageNet classification. We can also
see that seemingly unreasonable predictions have reasonable

explanations, an observation also made in HOGgles [48].
6.2. Effect of adversarial noise on VGG-16

Goodfellow et al. [17] demonstrated the vulnerability of
current deep networks to adversarial examples, which are
slight imperceptible perturbations of input images which
fool the network into misclassifying them with high confi-
dence. We generate adversarial images for the ImageNet
trained VGG-16 model such that it assigns a high probability
(>0.9999) to a category that is absent in the image and a
very low probability to categories that are present. We then
compute Grad-CAM visualizations for the categories that are
present. We can see from Fig. 5 that inspite of the network
being completely certain about the absence of these cate-
gories (tiger cat and boxer), Grad-CAM visualizations can
correctly localize the categories. This shows the robustness
of Grad-CAM to adversarial noise.

Boxer: 0.40 Tiger Cat: 0.18

(a) Original image
Airliner: 0.9999

(b) Adversarial image
Boxer: 1.1e-20

(c) Grad-CAM “Dog”

Tiger Cat: 6.5e-17

(d) Grad-CAM “Cat”

Figure 5: (a-b) Original image and the generated adversarial image for category “air-
liner”. (c-d) Grad-CAM visualizations for the original categories “tiger cat” and
“boxer (dog)” along with their confidence. Inspite of the network being completely
fooled into thinking that the image belongs to “airliner” category with high confi-
dence (>0.9999), Grad-CAM can localize the original categories accurately.

6.3. Identifying bias in dataset
In this section we demonstrate another use of Grad-CAM:

identifying and thus reducing bias in training datasets. Mod-
els trained on biased datasets may not generalize to real-
world scenarios, or worse, may perpetuate biases and stereo-
types (w.r.t. gender, race, age, etc.) [6, 37]. We finetune an
ImageNet trained VGG-16 model for the task of classify-
ing “doctor” vs. “nurse”. We built our training dataset using
the top 250 relevant images (for each class) from a popular
image search engine. The trained model achieves good ac-
curacy on validation images from the search engine. But at
test time the model did not generalize as well (82%).

Grad-CAM visualizations of the model predictions re-
vealed that the model had learned to look at the person’s face
/ hairstyle to distinguish nurses from doctors, thus learning
a gender stereotype. Indeed, the model was misclassifying
several female doctors to be a nurse and male nurses to be
a doctor. Clearly, this is problematic. Turns out the im-
age search results were gender-biased (78% of images for
doctors were men, and 93% images for nurses were women).

Through this intuition gained from our visualization, we
reduced the bias from the training set by adding in male
nurses and female doctors to the training set, while main-
taining the same number of images per class as before. The

re-trained model now generalizes better to a more balanced
test set (90%). Additional analysis along with Grad-CAM
visualizations from both models can be found in the supple-
mentary. This experiment demonstrates that Grad-CAM can
help detect and remove biases in datasets, which is impor-
tant not just for generalization, but also for fair and ethical
outcomes as more algorithmic decisions are made in society.

7. Counterfactual Explanations
We propose a new explanation modality - Counterfactual

explanations. Using a slight modification to Grad-CAM we
obtain these counterfactual explanations, which highlight the
support for the regions that would make the network change
its decision. Removing concepts occurring in those regions
would make the model more confident about the given target
decision.

Specifically, we negate the gradient of yc (score for class
c) with respect to feature maps A of a convolutional layer.
Thus the importance weights ↵c

k
, now become,
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Negative gradients
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As in (2), we weighted sum the forward activation maps, A
with weights ↵c

k
, and follow it by a ReLU to obtain counter-

factual explanations as shown in Fig. 6.

(a) Original Image (b) Cat Counterfactual exp (c) Dog Counterfactual exp
Figure 6: Negative Explanations with Grad-CAM

8. Image Captioning and VQA
Finally, we apply our Grad-CAM technique to the im-

age captioning [7, 23, 47] and Visual Question Answering
(VQA) [3, 15, 36, 41] tasks. We find that Grad-CAM leads to
interpretable visual explanations for these tasks as compared
to baseline visualizations which do not change noticeably
across different predictions. Note that existing visualization
techniques are either not class-discriminative (Guided Back-
propagation, Deconvolution), or simply cannot be used for
these tasks or architectures, or both (CAM or c-MWP).
8.1. Image Captioning

In this section, we visualize spatial support for an image
captioning model using Grad-CAM. We build on top of the
publicly available ‘neuraltalk2’4 implementation [25] that
uses a finetuned VGG-16 CNN for images and an LSTM-
based language model. Note that this model does not have

4https://github.com/karpathy/neuraltalk2
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Concepts$≠$Statistics
Computer#vision#is#not#a#statistical#problem

Car#examples#in#ImageNet
Is#this#less#of#a#car

because#the#context#is#wrong?

[Léon	Bottou	(ICML-2015,	invited	talk)	«	Two	big	challenges	in	Machine	Learning	»]	
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Assessment	

1.  A	theory		
–  for	stationary	environments	and	i.i.d.	data	and	queries!!	

–  focused	on	the	expectation	of	the	cost	of	errors	
•  Prior	knowledge	must	be	encoded	in	the	cost	

–  that	can	produce	learning	algorithms	when	combined		
with	optimization	techniques	

2.  Deep	NNs		

–  depart	from	this	framework	
•  Demand	at	least	a	reworking	of	the	theory	

•  Prior	knowledge	encoded	in	the	architecture	

–  Still		
•  require	enormous	amount	of	data	
•  Focused	on	error	rates	

•  Based	on	correlations	
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Outline	
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1.  	What	does	work	

2.  	Limitations	

3.  	Learning	comes	with	which	guarantees?	
–  Induction:	how	to	win	this	game?	

–  The	statistical	learning	theory	

–  A	closed	case?	Not	so	sure	

4.  	Other	paradigms?	An	historical	perspective	

5.  	Is	there	a	paradigmatic	change	in	sight?	

6.  	Conclusions	
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Are	there	other	paradigms?	

An	historical	perspective	on	ML	
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Learning	…	

…	as	

a	means	to	improve	the	efficiency	of	a	problem	solver	
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E.g.	The	PRODIGY	system	

ACM	SIGART	Bulletin,	1991,	vol.	2,	no	4,	p.	51-55	
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ABSTRACT 

Artificial intelligence has progressed to the point where mul- 
tiple cognitive capabilities are being integrated into compu- 
tational architectures, such as SOAR, PRODIGY~ THEO, and 
ICARUS. This paper reports on the PRODIGY architecture, 
describing its planning and problem solving capabilities and 
touching upon its multiple learning methods. Learning in 
PRODIGY Occurs at all decision points and integration in 
PRODIGY is at the knowledge level; the learning and reason- 
ing modules produce mutually interpretable knowledge struc- 
tures. Issues in architectural design are discussed, providing 
a context to examine the underlying tenets of the PRODIGY 
architecture. 

1 I n t r o d u c t i o n  

A common dream for many AI researches, present authors 
included, is the construction of a general purpose learning 
and reasoning system that given basic axiomatic knowledge 
of a domain is capable of becoming an expert problem solver. 

Our machine learning approach, implemented in PRODIGY [2], 
starts with a general problem-solving engine based on a possi- 
bly incomplete domain theory. The problem solver improves 
its performance through experience by refining the initial do- 
main knowledge and learning knowledge to control the search 
process. The paper is divided into two parts. The first part 
describes the basic architecture, including the problem solver 
and the various learning modules. The second part discusses 
the design issues in building an integrated architecture. 

2 T h e  PRODIGY A r c h i t e c t u r e  

2.1 T h e  P r o b l e m  S o l v e r  

PRODIGY'$ basic reasoning engine is a general-purpose prob- 
lem solver and planner [10] that searches for sequences of op- 
erators (i.e., plans) to accomplish a set of goals from a spec- 
ified initial state description. Search in PRODIGY is guided 
by a set of control rules that apply at each decision point. 
Search control rules may be general or domain specific, hand- 
coded or automatically acquired, and may consist of heuris- 
tic preferences or definitive selections. In the absence of any 
search control, PRODIGY defaults to depth-first means-ends 
analysis. But, with appropriate search control knowledge it 
can emulate other search disciplines, including breath-first 
search, depth-first iterative-deepening, best-first search, and 
knowledge-based plan instantiation. 

2 .2  K n o w l e d g e  R e p r e s e n t a t i o n  

Each operator has a precondition expression that must be sat- 
isfied before the operator can be applied, and a list of effects 
that describe how the application of the operator changes the 
world. Precondition expressions are well-formed formulas in 
a form of predicate logic encompassing negation, conjunction, 

disjunction, and existential and universal quantification. The 
effects are atomic formulas that describe the facts that are 
added or deleted from the current state when the operator 
is applied. Operators may also contain conditional effects, 
which represent changes to the world that are dependent on 
the state in which the operator is applied. 

2.3 P r o b l e m  D e f i n i t i o n  a n d  P r o b l e m  S o l v i n g  

A problem consists of an initial state and a goal expression. 
To solve a problem, PRODIGY must find a sequence of opera- 
tors that, if applied to the initial state, produces a final state 
satisfying the goal expression. The search tree initially starts 
out as a single node containing the initial state and goal ex- 
pression. The tree is expanded by repeating the following 
two steps: 

1. Dec i s ion  phase :  There are four types of decisions 
that PRODIGY makes during problem solving. First, it 
must decide what node in the search tree to expand 
next, defaulting to a depth-first expansion. Each node 
consists of a set of goals and a state describing the 
world. After a node has been selected, one of the node's 
goals must be selected, and then an operator relevant 
to this goal must be chosen. Finally, a set of bindings 
for the parameters of that operator must be decided 
upon. 

2. E x p a n s i o n  phase :  If the instantiated operator's pre- 
conditions are satisfied, the operator is applied. Oth- 
erwise, PRODIGY subgoals on the unmatched precondi- 
tions. In either case, a new node is created with up- 
dated information about the state or the subgoals. 

The search terminates after creating a node whose state sat- 
isfies the top-level goal expression. 

2 .4  C o n t r o l  R u l e s  

As PRODIGY attempts to solve a problem, it must make de- 
cisions about which node to expand, which goal to work on, 
which operator to apply, and which objects to use. These 
decisions can be influenced by control rules to increase the 
efficiency of the problem solver's search and to improve the 
quality of the solutions that are found. 

PRODIGY's reliance on explicit control rules, which can be 
learned for specific domains, distinguishes it from most do- 
main independent problem solvers. Instead of using a least- 
commitment search strategy, for example, PRODIGY expects 
that any important decisions will be guided by the presence 
of appropriate control knowledge. If no control rules are rel- 
evant to a decision, then PRODIGY makes a quick, arbitrary 
choice. If in fact the wrong choice is made, and costly back- 
tracking proves necessary, an attempt will be made to learn 
the control knowledge that must be missing. The rationale 
for PRODIGY's casual commi tment  strategy is that for any 
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Résolution
de problèmes Généralisation

Critique

Génération
de problèmes

Calculer la primitive de :
∫ 3x cos(x) dx

∫ 3x cos(x) dx

3x sin(x) - ∫ 3x sin(x) dx

3x sin(x) - 3 ∫ x sin(x) dx

3x sin(x) - 3x cos(x) dx + C

OP2 avec :
u = 3x
dv = cos(x) dx

OP1

OP5

Un des exemples positifs proposés :

 ∫ 3x cos(x) dx
→ Appliquer OP2 avec :

u = 3x
            dv = cos(x) dx

Espace des versions pour l'utilisation de
l'opérateur OP2 :

S ={ ∫ 3x cos(x) dx → Appliquer OP2
avec : u = 3x

                        dv = cos(x) dx}
G ={ ∫ f1(x) f2(x) dx → Appliquer OP2

avec :  u = f1(x)
                   dv = f2(x) dx}
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Illustration:	LEX	(Tom	Mitchell)	
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Learning	from	one	example	

1.  From	a	single	example	

2.  	Try	to	prove	the	“fork”	

3.  	Generalize	

Explanation-Based	Learning	
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Explanation-Based	Learning	

Ex	:	learn	the	concept			stackable(Object1, Object2)

•  Domain	theory	:	
(T1) : weight(X, W) :- volume(X, V), density(X, D), W is V*D.

(T2) : weight(X, 50) :- is_a(X, table).

(T3) : lighter_than(X, Y) :- weight(X, W1), weight(X, W2), W1 < W2.

•  Operationality	constraint:	

•  Concept	should	be	expressible	using		volume,	density,	color,	…	

•  Positive	example	(solution)	:	
on(obj1, obj2). volume(object1, 1).

is_a(object1, box). volume(object2, 0.1).

  is_a(object2, table). owner(object1, frederic).

color(object1, red). density(object1, 0.3).

color(object2, blue). Made_of(object1, cardboard).

made_of(object2, wood). owner(object2, marc).	
iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 86	
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Explanation-Based	Learning	

Generalized	search	tree	resulting	from	regression	of	the	target	concept	in	the	proof	tree		
by	computing	at	each	step	the	most	general	literals	allowing	this	step.	
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Explanation-Based	Learning	

•  Induction	from	a	single	example	

–  …	plus	a	strong	domain	theory		

•  Based	on	

–  Logic-based	knowledge	representation	

–  Reasoning	Operators	(deduction,	goal	regression	in	a	proof	tree,	…)	

	 	 	Now	used	in	SAT	“solvers”	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 88	
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Explanation-Based	Learning	

•  	What	was	the	aim	of	learning?		

•  	What	was	a	good	theory/	method	of	learning	?	
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Explanation-Based	Learning	

•  	What	was	the	aim	of	learning?		

•  	What	was	a	good	method	of	learning	?	

1.  Method	improving	the	problem	solving	performances	
–  [Steve	Minton	(1990)	«	Quantitative	results	concerning	the	utility	of	Explanation-Based	

Learning	»]	

2.  Method	that	simulates	the	performances	(and	limits)	of	a	natural	
cognitive	agent	(human	or	animal)	

–  [Laird,	Rosenbloom,	Newell	(1986)	«	Chunking	in	SOAR:	The	anatomy	of	a	general			
		learning	mechanism	»]	

–  [Anderson	(1993)	«	Rules	of	the	mind	»	;		
	Taatgen	(2003)	«	Learning	rules	and	productions	»]	
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Learning	and	reasoning	

Papers	like		

•  Stephen	José	Hanson	(1990).	Conceptual	clustering	and	categorization:	
bridging	the	gap	between	induction	and	causal	models.		

Machine	Learning	journal,	1990,	pp.235-268.		

91	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

	Difficulties	to	scale	up	and	to	face	noisy	data	

					 	 	 	…	when	data	started	to	pour	down	

No	measure	of	generalization	
performance	independent	of	
the	problem-solver		

But	
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Outline	

92	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

1.  	What	does	work	

2.  	Limitations	

3.  	Learning	comes	with	which	guarantees?	
–  Induction:	how	to	win	this	game?	

–  The	statistical	learning	theory	

–  A	closed	case?	Not	so	sure	

4.  	Other	paradigms?	An	historical	perspective	

5.  	Is	there	a	paradigmatic	change	in	sight?	

6.  	Conclusions	
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New	learning	scenarios	

=>	Is	there	a	paradigmatic	change	in	sight?	
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Identification	of	causal	relationships	

•  In	images	

•  With	unsupervised	learning!!	
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(a) Original image xj (b) Object image xo
j (c) Context image xc

j

Figure 4: Blackout processes for object of interest “dog”. Original images xj produce features
{fjl}l and class-probabilities {cjk}k. Object images xo

j produce features {fo
jl}l. Context images xc

j

produce features {f c
jl}l. Blackout processes are performed after image normalization, in order to

obtain true zero (black) pixels.

multiple objects from different categories. The objects may appear at different scales and angles
and may be partially visible or occluded. In the PASCAL dataset, we study all the twenty classes
aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike,
person, potted plant, sheep, sofa, train, and television. This dataset contains 11541 images. In the
COCO dataset, we study the same classes. This selection amounts to 99,309 images. We preprocess
the images to have a shortest side of 224 pixels, and then take the central 224 ⇥ 224 crop.

4.2 Feature extraction

We use the last hidden representation (before its nonlinearity) of a residual deep convolutional neural
network of 18 layers [3] as a feature extractor. This network was trained on the entire ImageNet
dataset [3]. In particular, we denote by fj = f(xj) 2 R512 the vector of real-valued features
obtained from the image xj 2 R3⇥224⇥224 using this network.

Building on top of these features and using the images from the PASCAL dataset, we train a neural
network classifier formed by two hidden layers of 512 units each to distinguish between the 20
classes under study. In particular, we denote by cj = c(xj) 2 R20 the vector of continuous log odds
(activations before the classifier nonlinearity) obtained from the image xj 2 R3⇥224⇥224 using this
classifier. We use features before their nonlinearity and log odds instead of the class probabilities or
class labels because NCC has been trained on continuous data with full support on R.

In the following we describe how to compute, for each feature l = 1, . . . , 512, four different scores:
its object score, context score, causal score, and anticausal score. Importantly, the object/context
scores are computed independently from the causal/anticausal scores. For simplicity, the follow-
ing sections describe how to compute scores for a particular object of interest k. However, our
experiments will repeat this process for all the twenty objects of interest.

4.2.1 Computing “object” and “context” feature scores

We featurize each image xj in the COCO dataset in three different ways, for all j = 1 . . . ,m. First,
we featurize the original image xj as fj := f(xj). Second, we blackout the context of the objects
of interest k in xj by placing zero-valued pixels outside their bounding boxes. This produces the
object image xo

j , as illustrated in Figure 4b. We featurize xo
j as fo

j = f(xo
j). Third, we blackout the

objects of interest k in xj by placing zero-valued pixels inside their bounding boxes. This produces
the context image xc

j , as illustrated in Figure 4c. We featurize xc
j as f c

j = f(xc
j).

Using the previous three featurizations we compute, for each feature l = 1, . . . , 512, its object score

sol =
Pm

j=1|fc
jl�fjl|Pm

j=1|fjl|
and its context score scl =

Pm
j=1|fo

jl�fjl|Pm
j=1|fjl|

. Intuitively, features with high object

scores are those features that react violently when the object of interest is removed from the image.

Furthermore, we compute the log odds for the presence of the object of interest k in the original
image xj as cjk = c(xj)k.

7

[	David	Lopez-Paz,	Robert	Nishihara,	Soumith	Chintala,	Bernhard	Schölkopf,	and	Léon	Bottou.		
«	Discovering	causal	signals	in	images	».	arXiv	preprint	arXiv	:1605.08179,	2016.	]	
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Identification	of	causal	relationships	

•  Results	

95	

[	David	Lopez-Paz,	Robert	Nishihara,	Soumith	Chintala,	Bernhard	Schölkopf,	and	Léon	Bottou.		
«	Discovering	causal	signals	in	images	».	arXiv	preprint	arXiv	:1605.08179,	2016.	]	
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Results

§Top anticausal features have higher object scores for all twenty categories.
§The probability that this happens for all 20 classes out of chance is  2-20≈ 10-6.
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The	AlphaGo	case	

•  Plays	like	an	«	alien	»	

•  Out	of	the	blue	moves	

•  A	revolution	in	the	theory	of	the	game	

•  Excitement	in	the	go	schools	
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The	AlphaGo	case:	understanding	

Fan	Hui,	Gu	Li,	Zhou	Ruyang	(very	strong	Go	players)	turn	to	the	activity	of	

analyzing	the	games	played	by	AlphaGo	

•  Kind	on	of	exegesis.	Explanations	a	posteriori	

•  Necessary	for	

–  communication	

–  teaching	
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And	even	AlphaGo	might	err	
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Explanations	in	Expert	Systems	

.	

98	

10  Cours Systèmes Experts 

 

 

Exemple 2 :    Explication par le système de son propre raisonnement 
 

MYCIN :  L'infection du malade a t-elle été contractée à l'hôpital ? 

Util isateur : pourquoi ? 

TEIRESIAS : [pourquoi est-ce important de savoir cela ?] 

 Cela aidera à déterminer la catégorie à laquelle appartient l'organisme responsable 
de l'infection : 

 - il a déjà été établi que 1° l'organisme est à Gram négatif, 2° c'est un bâtonnet, 3° il 
se développe à l'air ou sans air, 

 - donc si l'infection par cet organisme n'a pas été contactée lors du séjour à l'hôpital 

 alors il est presque certain (0,8) que l'organisme est de la catégorie des 
enterobactoriaceae; de plus, il se peut (0,1 ; règle 37) que ce soit la pseudomonia 
aeruginosa. 

Util isateur :  pourquoi n'avez-vous pas envisagé la possibilité que l'organisme soit un  
streptocoque ? 

TEIRESIAS :  la règle 33 aurait du être utilisée pour identifier l'organisme comme un 
streptocoque, mais la seconde clause "la morphologie est de type coque" était déjà 
connue comme fausse et la règle 33 n'a jamais été essayée. 

 

1.5 Structure des systèmes experts 

Un système de production peut être vu comme constitué de trois composants de base : une base de connaissance 
(généralement ensemble de règles), une mémoire de travail ou de faits, et un interpréteur de règles (moteur 
d'inférences), augmenté de modules annexes d'interfaçage avec l'utilisateur et l'expert.  
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Explanations	in	Expert	Systems	

•  Quel	est	l’âge	du	patient	?	

•  **	Pourquoi	

•  Pour	déterminer	si	on	peut	prescrire	de	la	tétracycline	

–  Si	le	patient	a	moins	de	8	ans	

–  Alors	on	ne	peut	pas	prescrire	de	tétracycline	

–  [Règle	122]	

•  **	Pourquoi	?	

•  …	

99	

Pourquoi	ne	faut-il	pas	prescrire	de	tétracycline	à	un	enfant	de	moins	de	8	ans	?	
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Explanations	in	Expert	Systems	

Why	should	we	not	prescribe	tetracycline	to	a	child	under	the	age	of	8?	

Expert	justifications	
Drug	depot	on	developping	bones	

						Definitive	blackening	of	the	teeth	

												Socially	unwanted	coloration	

																		Do	not	administer	tetracycline	to	children	under	the	age	of	

Notion	of	undesirable	side	effects	

Causality	relationships	
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Transfer	learning	

						Definition	[Pan,	TL-IJCAI’13	tutorial]	

–  Ability	of	a	system	to	recognize	and	apply	knowledge	and	skills	learned	in	
previous	domains/tasks	to	novel	domains/tasks	
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					Example	

–  We	have	labeled	images	(person	/	no	person)	from	a	web	corpus	

–  Novel	task:	is	there	a	person	in	unlabeled	images	from	a	video	corpus?	

Transfer Learning

Definition [Pan, TL-IJCAI’13 tutorial]

Ability of a system to recognize and apply knowledge and skills learned in
previous domains/tasks to novel domains/tasks

An example

• We have labeled images from a Web image corpus

• Is there a Person in unlabeled images from a Video corpus ?

Person no Person

�

Is there a Person?

(LaHC) Domain Adaptation - EPAT’14 4 / 95Web	corpus	 Video	corpus	
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Transfert	learning:	questions	

•  What	can	be	the	basis	of	transfer	learning?	

								How	to	translate	formally	:		

																											“the	target	domain	is	like	the	source	domain”?	

•  What	determine	a	good	transfer?	
–  A	“good	source”?	

–  A	high	“similarity”	between	source	and	target?		

•  What	formal	guarantees	can	we	have	on	the	transferred	

hypothesis?	
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Not	i.i.d.	
anymore	
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Transfer	and	analogy	

103	

a b c

a b d

a a b a b c

?
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Why	should			‘a		a		b		a		b		c		d’			be	any	better	than				‘a		b		d’?		
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Transfer	and	sequence	effects	

•  t	
104	

a b c

a b d

a a b a b c

?
a b c

a b d

a a b a b c

?
i j j k k k

?

a b c
a a b a b c

?

1 2 3

1 2 4

?
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Long-life	learning	

•  Learning	organized	in	a	sequence	of	tasks	
–  Very	far	from	the	i.i.d.	scenario	

													Learning	will	be	affected	by	the	history	of	the	system	

•  We	need	a	theory	of	the	dynamics	of	learning	

1.  Which	sequence	effects	can	we	expect?	

2.  How	to	best	organize	the	curriculum	of	a	learning	system?			
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Conclusions	
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The	current	situation	

•  Inductive	learning	needs	biases	
–  No	objective	bias-free	results	

•  The	theory		
–  Is	focused	entirely	on	the	error	rate	

–  Assumes	stationary	environment	and	random	inputs	(i.i.d.)	

–  Requires	large	enough	data	sets	w.r.t.	to	the	capacity	of	H		

•  We	do	not	understand	well	deep	neural	networks	

•  Correlations			≠			structures,		semantics,		causation	
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We	start	to	pay	attention	to	new	demands	

1.  The	need	for	explanations	

–  Structures		
–  Causal	reasoning	
–  No	more	only	error	rate	

2.  The	need	for	transfer	learning		

–  What	should	be	transferred?	

–  Conditions	for	positive	/	negative	transfer?	

3.  Scenarios	away	from	the	i.i.d.	assumption	

–  Online	learning	/	changing	environments	

–  Curriculum	learning	

–  Long-life	learning	
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We	start	to	pay	attention	to	new	demands	

1.  The	need	for	explanations	

–  Structures		
–  Causal	reasoning	
–  No	more	only	error	rate	

2.  The	need	for	transfer	learning		

–  What	should	be	transferred?	

–  Conditions	for	positive	/	negative	transfer?	

3.  Scenarios	away	from	the	i.i.d.	assumption	

–  Online	learning	/	changing	environments	

–  Curriculum	learning	

–  Long-life	learning	
109	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		



/	110	

We	start	to	pay	attention	to	new	demands	

1.  The	need	for	explanations	

–  Structures		
–  Causal	reasoning	
–  No	more	only	error	rate	

2.  The	need	for	transfer	learning		

–  What	should	be	transferred?	

–  Conditions	for	positive	/	negative	transfer?	

3.  Scenarios	away	from	the	i.i.d.	assumption	

–  Online	learning	/	changing	environments	

–  Curriculum	learning	

–  Long-life	learning	
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Conclusions:	“new”	scenarios	

•  Limited	data	sources		

–  We	often	learn	from	(very)	few	examples	

•  The	past	history	of	learning	affects	learning:	Education	

–  Sequence	effects	

•  We	learn	in	order	to	build	“theories”	

–  All	the	time:	small	and	large	theories	
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For	instance,	what	would	you	like	to	ask?	
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A	bet	

	

	Towards	systems	that	know	how	to	teach	

1.  	Explain	a	case	

2.  	Synthesizing	

3.  	Organize	a	curriculum	

Ø  Evaluating	the	systems	by	the	performance	of	their	pupils?	
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Suppléments	
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Sequence	effects	

Instructions:	cut	the	following	geometrical	figure	into	n	parts	that	can	be	superposed	
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Into	2:		 Into	3:		 Into	4:		 Into	5:		


