What is the definition of

a good Machine Learning algorithm?

After 60 years, is this a closed problem? And if not ...

Antoine Cornuéjols

AgroParisTech – INRA MIA 518

antoine.cornuejols@agroparistech.fr

AI and ML everywhere in the medias today

iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

Outline

1. What **does work**

2. Limitations

3. Learning comes with **which guarantees**?

- Induction: how to win this game?
- The statistical learning theory
- A closed case? Not so sure
- 4. Other paradigms? An **historical perspective**
- 5. Is there **a paradigmatic change in sight**?
- 6. Conclusions

What does work

4 / 110

Object recognition in images

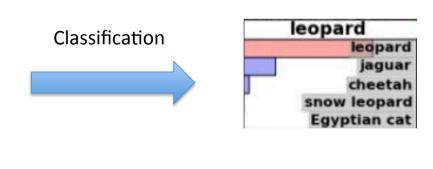
The ImageNet competition

- More than **15M** high resolution **labeled images**
- Approximately **22K categories**
- Taken from the Web and labeled using Amazon Mechanical Turk

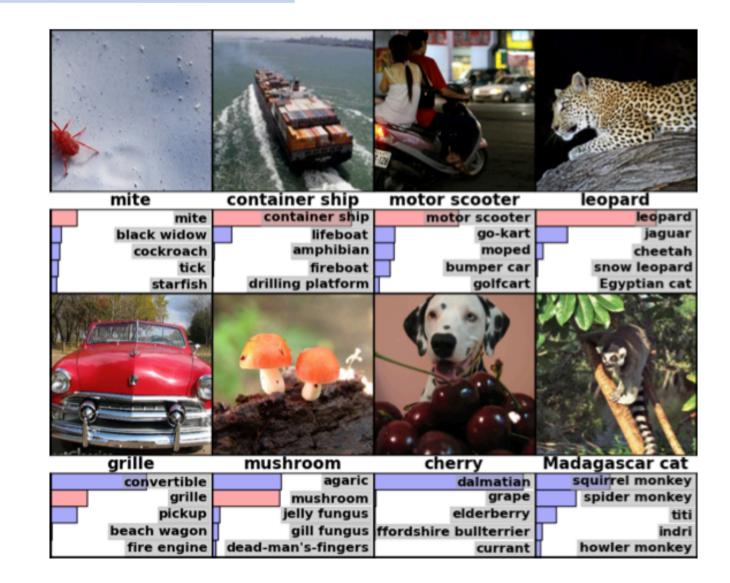
Illustration : ImageNet

The ImageNet competition

- More than **15M** high resolution **labeled images**
- Approximately **22K categories**
- Taken from the Web and labeled using Amazon Mechanical Turk



Results: 8 ILSVRC-2010 test images



• Results

Object recognition

RETRIEVED IMAGES

[Krizhevsky, Sutskever and Hinton (2012)]

iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

Image annotating

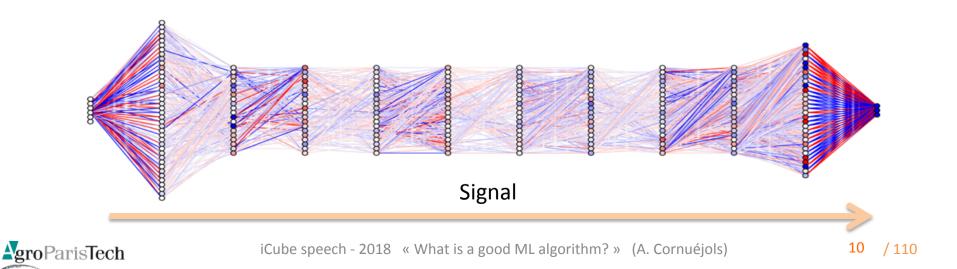
Figure 2.11: "A group of young people playing a game of frisbee"—that caption was written by a computer with no understanding of people, games or frisbees.

iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

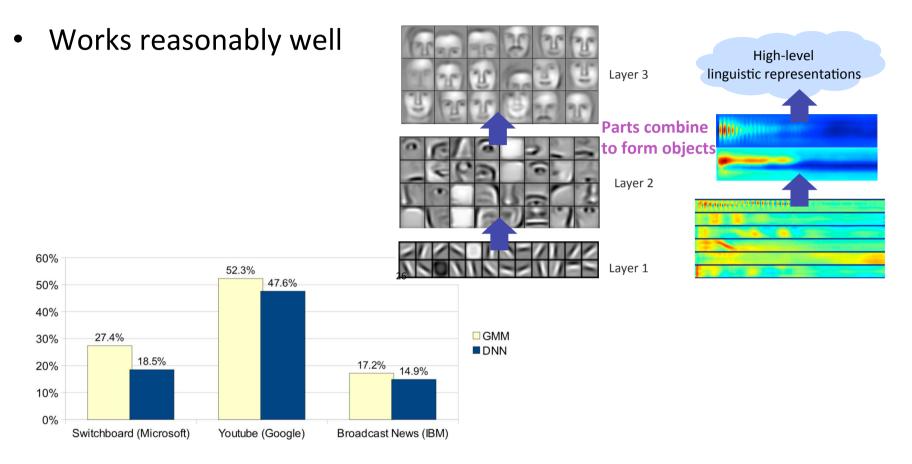
The SuperVision network

Image classification with deep convolutional neural networks <u>http://image-net.org/challenges/LSVRC/2012/supervision.pdf</u>

- 7 hidden "weight" layers
- 650K neurons
- 60M parameters
- 630M connections



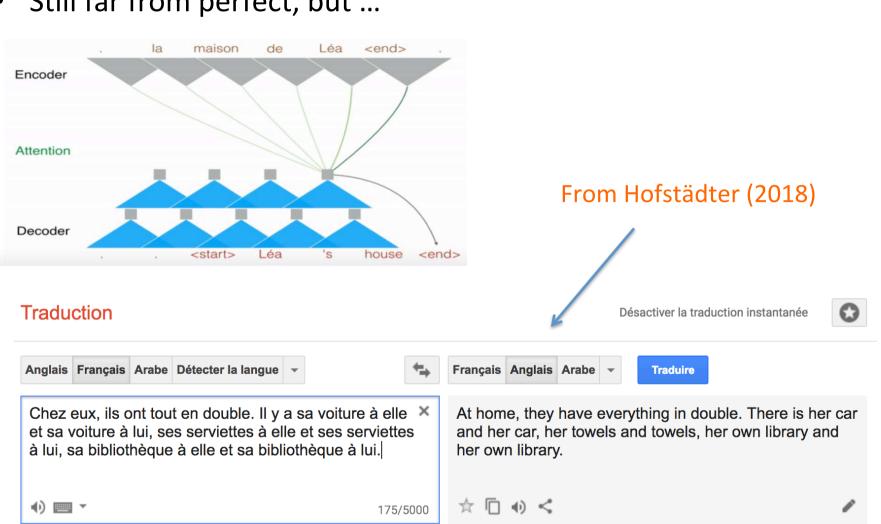
Speech recognition



Comparison (2012) of the word error rates achieved by traditional GMMs and DNNs, reported by three different research groups on three different benchmark.

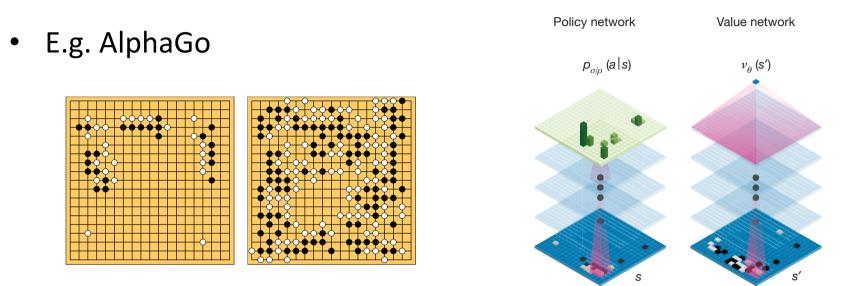
11 / 110

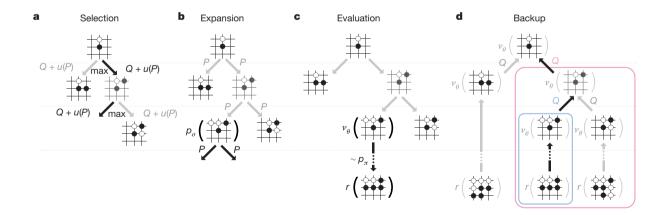
Machine translation



Still far from perfect, but ... •

Game playing with Reinforcement Learning





iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

13 / 110

Outline

1. What does work

2. Limitations

- 3. Learning comes with which guarantees?
 - Induction: how to win this game?
 - The statistical learning theory
 - A closed case? Not so sure
- 4. Other paradigms? An historical perspective
- 5. Is there a paradigmatic change in sight?
- 6. Conclusions

Limitations

15 / 110

- Image recognition
 - Object localization for 1000 categories.
 - **Millions of images**

- Image recognition
 - Object localization for 1000 categories.
 - Millions of images
- AlphaGo

- Image recognition
 - Object localization for 1000 categories.
 - Millions of images
- AlphaGo
 - Training on KGS dataset led to overfitting
 - Self-play data (30 million distinct positions, each sampled from a separate game)

- Image recognition
 - Object localization for 1000 categories.
 - Millions of images
- AlphaGo
 - Training on KGS dataset led to overfitting
 - Self-play data (30 million distinct positions, each sampled from a separate game)
 - Over the course of millions of AlphaGo vs AlphaGo games, the system progressively learned the game of Go from scratch, accumulating thousands of years of human knowledge during a period of just a few days. (In the first three days AlphaGo Zero played 4.9 million games against itself in quick succession.)

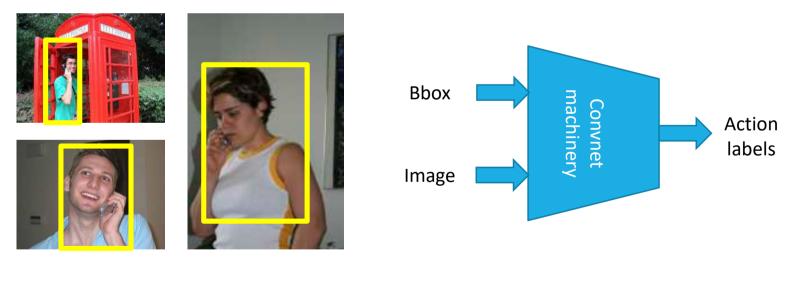
Exclusively focused on error rate

- The Netflix prize
 - The winner system was not used afterwards!!
- Machine translation
 - Good on easy and mundane texts
 - Bad on interesting texts

Weak account of the structure

- **Texts** as *bags of words*
- **Images** as simple *correlations*

Example: detection of the action "giving a phone call"



[Oquab et al., CVPR (2014)]

(~70% correct (SOTA))

Weak account of the structure

Example: detection of the action "giving a phone call"

The learning algorithm is **statistically correct**!

In a typical image dataset, when an image shows a person near a phone (both in the same image),

chances are that the person is giving a phone call

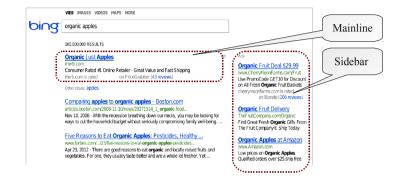
iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

22 / 110

Learning systems do not work together flawlessly

- Two sub-systems
 - One locating the **ads links**
 - The other the adds
- That influence each other
 - Each takes into account the clicks
 - Which **depends** in part from the actions of the other sub-system
 - In addition of other **uncontrolled factors** (price, user's queries, ...)

[L. Bottou et al. *«Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising »*, JMLR, 14, (2013), 3207-3260]



The Simpson's paradox

- Physicians would like to know whether drug A is more or less efficient than drug B
- Two groups of 350 patients each are chosen. One is given drug A, and the other drug B

	Overall
Treatment A: Open surgery	78% (273/350)
Treatment B: Percutaneous nephrolithotomy	83% (289/350)

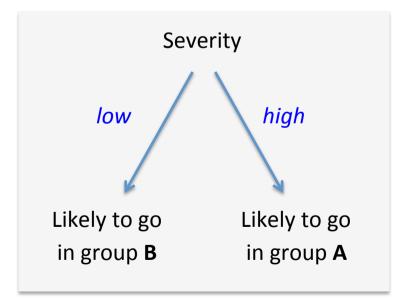
B is best?

The Simpson's paradox

	Overall	Patients with small stones	Patients with large stones
Treatment A: Open surgery	78% (273/350)	93% (81/87)	73% (192/263)
Treatment B: Percutaneous nephrolithotomy	83% (289/350)	87% (234/270)	69% (55/80)

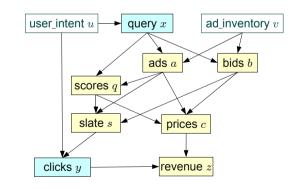
Influencing factor

The choice of the patients for each group was function of the severity of the pathology



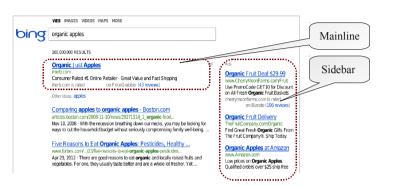
Learning systems do not work together flawlessly

- Two sub-systems
 - One locating the ads links
 - The other the adds
- That influence each other
 - Each takes into account the clicks
 - Which depends in part from the actions of the other sub-system
 - In addition of other **uncontrolled factors** (price, user's queries, ...)



Importance of identifying the causal graph

[L. Bottou et al. *«Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising »*, JMLR, 14, (2013), 3207-3260]



Thus, is the sky so blue?

Learning systems ...

- 1. Require **enormous amounts** of training data
- 2. Are exclusively focused on error rates
- 3. Do not fully take advantage of **structures**
- 4. Do not cooperate well
 - Software engineering with adaptive components is yet to be solved

Outline

1. What does work

2. Limitations

3. Learning comes with **which guarantees**?

- Induction: how to win this game?
- The statistical learning theory
- A closed case? Not so sure
- 4. Other paradigms? An historical perspective
- 5. Is there a paradigmatic change in sight?
- 6. Conclusions

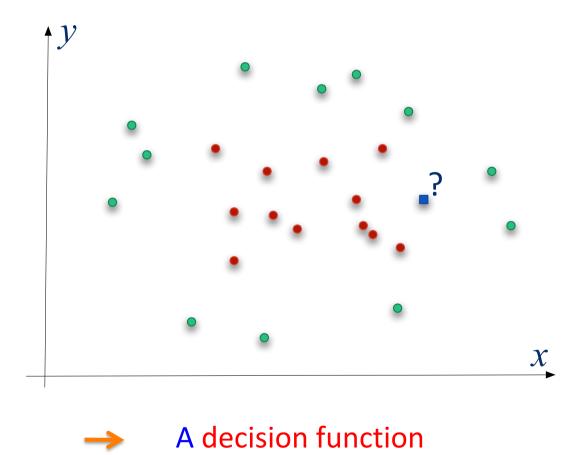
Which guarantees?

The statistical theory of learning

29 / 110

Supervised induction

• We want to be able to predict the class of unseen examples



Supervised learning

Given a training set

$$\mathcal{S}_m = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_i, y_i), \dots, (\mathbf{x}_m, y_m) \}$$

• Find an hypothesis $h \in \mathcal{H}$ such that $h(\mathbf{x}_i) \, pprox \, y_i$

• Hoping that it generalizes well :

$$\forall \mathbf{x} \in \mathcal{X} : \quad h(\mathbf{x}) \approx \mathbf{y}$$

• Examples described using:

Number (1 or 2); *size* (small or large); *shape* (circle or square); *color* (red or green)

• They belong either to class '+' or to class '-'

• Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

• They belong either to class '+' or to class '-'

Description	Your prediction	True class
1 large red square		_
1 large green square		+
2 small red squares		+
2 large red circles		-
1 large green circle		+
1 small red circle		+

• Examples described using:

Number (1 or 2); *size* (small or large); *shape* (circle or square); *color* (red or green)

Description	Your prediction	True class
1 large red square		-
1 large green square		+
2 small red squares		+
2 large red circles		-
1 large green circle		+
1 small red circle		+

How many possible functions altogether from X to Y? $2^{2^4} = 2^{16} = 65,536$

How many functions do remain after 6 training examples? $2^{10} = 1024$

iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

• Examples described using:

Number (1 or 2); *size* (small or large); *shape* (circle or square); *color* (red or green)

	Description	Your prediction	True class	
	1 large red square		-	
	1 large green square		+	
	2 small red squares		+	
	2 large red circles		-	
	1 large green circle		+	
	1 small red circle		+	
	1 small green square		-	
15 -	1 small red square		+	How many
	2 large green squares		+	remaining
	2 small green squares		+	functions?
	2 small red circles		+	
	1 small green circle		-	
	2 large green circles		-	
	2 small green circles		+	
	1 large red circle		-	
	2 large red squares	?		?>

• Examples described using:

Number (1 or 2); size (small or large); shape (circle or square); color (red or green)

Description	Your prediction	True class
1 large red square		_
1 large green square		+
2 small red squares		+
2 large red circles		-
1 large green circle		+
1 small red circle		+

How many possible functions with 2 descriptors from X to Y? $2^{2^2} = 2^4 = 16$

How many functions do remain after $3 \neq$ training examples? $2^1 = 2$

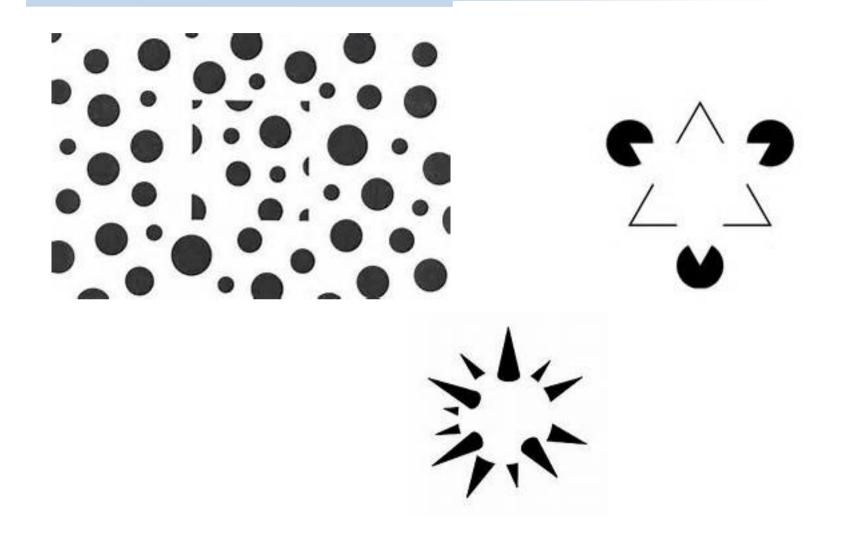
iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

Induction: an impossible game?

• A bias is need

- **Types** of bias
 - Representation bias (declarative)
 - Research bias (procedural)

Interpreting – completion of percepts

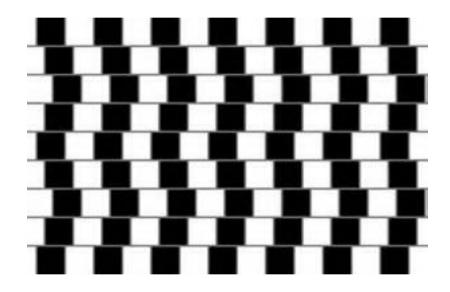


Interpreting – completion of percepts

iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

Induction and its illusions



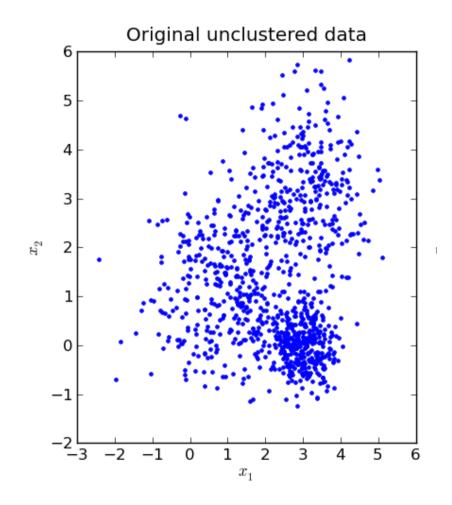


iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

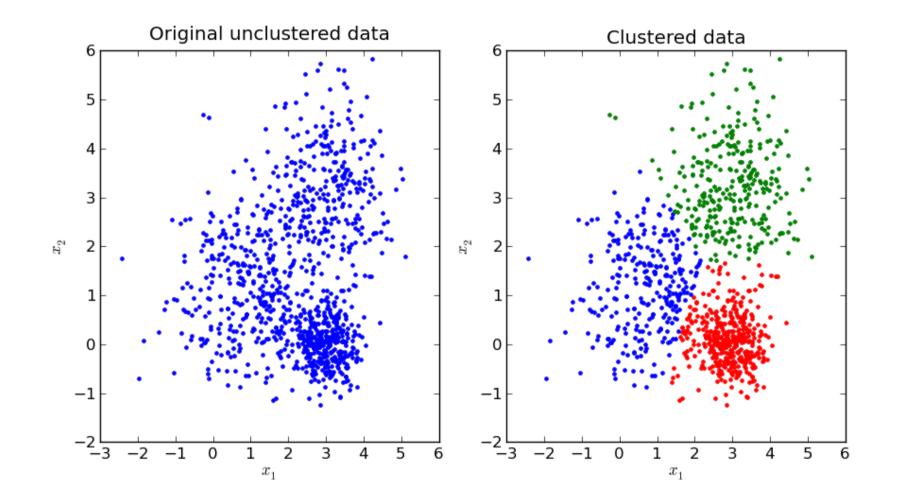
Induction and its illusions

toto ullet

Clustering



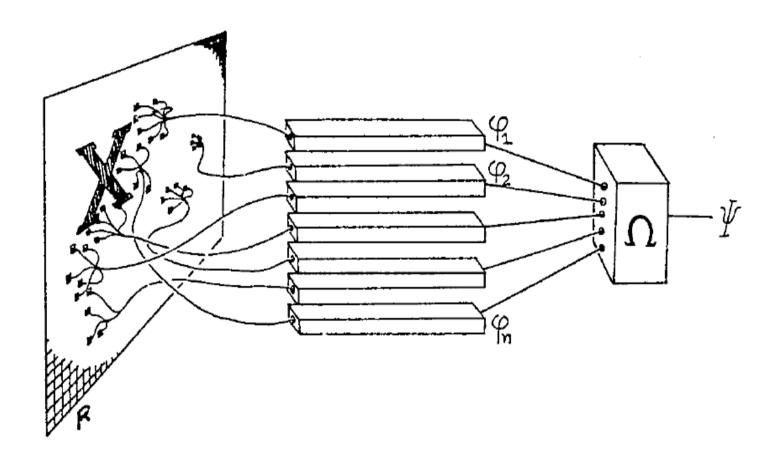
Clustering



iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

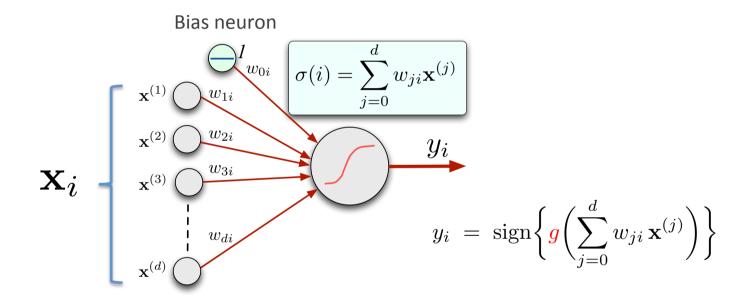
The perceptron

- Rosenblatt (1958-1962)

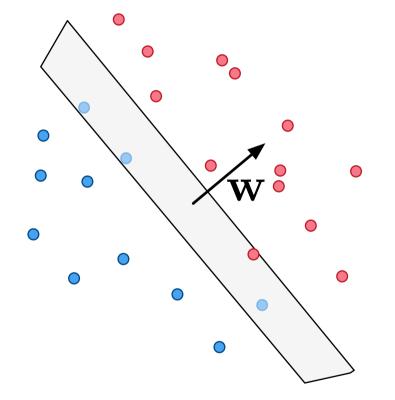


The perceptron

- Rosenblatt (1958-1962)



The perceptron: a linear discriminant



The perceptron learning rule

• Adjustments of the weight w_i

Principle (*Perceptron's rule*): learn only in case of prediction error

Algorithm 1: The perceptron learning algorithm

Data: A training sample: $S_m = \{(\mathbf{x}_i, y_i)\}_{1 \le i \le m}$

Result: A weight vector **w**

while not convergence do

if the randomly drawn \mathbf{x}_i is st. $sign(\mathbf{w} \cdot \mathbf{x}_i) = y_i$ then | do nothing

else

 $\mathbf{w}(t+1) = \mathbf{w}(t) + \eta \mathbf{x}_i y_i$

Randomly select next training example \mathbf{x}_i

The perceptron

NO reasoning !!!

iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

Some remarkable properties !!

- **Convergence** in a finite number of steps
 - Independently of the number of examples
 - Independently of the distribution of the examples
 - Independently of the dimension of the input space

If there exists a linear separator of the training examples

The statistical theory of learning

Guarantees on generalization ??

 Theorems about the performance with respect to the training set

• We want guarantees about **future examples**

Statistical study for $|\mathcal{H}|$ hypotheses

It leads to:

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R(h)}{k} \leq \widehat{R}(h) + \frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{m} \right] > 1 - \delta$$

The Empirical Risk Minimization principle

is sound only if there exists a limit (a bias) on the expressivity of ${\cal H}$

The size *m* of the training set must be large enough w.r.t. to capacity of \mathcal{H}

Bounds on the difference between the true risk and the empirical risk

• \mathcal{H} finite, realizable case

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R(h)}{M} \leq \widehat{R}(h) + \frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{m} \right] > 1 - \delta$$

• \mathcal{H} finite, **non** realizable case

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{\mathbf{R}(h) \leq \mathbf{R}(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2m}} \right] > 1 - \delta$$

Use of **the ERM principle** (fitting the data) **is justified** as long as **the expressiveness** (or capacity) of \mathcal{H} is controlled (and limited)

$$\forall h \in \mathcal{H}, \forall \delta \le 1: \quad P^m \left[\frac{\mathbf{R}(h)}{\mathbf{R}(h)} \le \hat{\mathbf{R}}(h) + \frac{\mathbf{R}_{\mathcal{S}}(\mathcal{H})}{\mathbf{R}_{\mathcal{S}}(\mathcal{H})} + 3\sqrt{\frac{\log \frac{2}{\delta}}{2m}} \right] > 1 - \delta$$

From a theory of justification

to THE recipe for

inventing algorithms

A powerful paradigm

iCube speech - 2018 « What is a good ML algorithm? » (A. Cornuéjols)

HOW TO ... devise learning algorithms

- 1. Define an appropriate **regularized** (inductive) **criterion**
 - 1. Translate the cost of errors of prediction in the domain into a loss function
 - 2. Define a **regularization term** that expresses *assumptions about the underlying regularities of the world*
 - 3. If possible, make the resulting **optimization** problem a **convex** one

$$h_{opt} = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\underbrace{\frac{1}{m} \sum_{i=1}^{m} l(h(\mathbf{x}_i), y_i)}_{\text{empirical risk}} + \lambda \underbrace{\frac{reg(\mathcal{H})}_{\text{bias on the world}}}_{\text{bias on the world}} \right]$$

2. Use or develop an efficient optimization solver

Learning sparse linear approximator

- The **hypothesis** is of the form $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$
- A priori assumption: few non zero coefficients

$$\mathbf{w}_{\text{ridge}}^{*} = \operatorname{Argmin}_{\mathbf{w}} \left\{ \sum_{i=1}^{m} (y_{i} - \mathbf{w} \mathbf{x}_{i})^{2} + \frac{\lambda}{\|\mathbf{w}\|_{2}^{2}} \right\}$$

Lasso regression
$$\mathbf{w}_{\text{lasso}}^* = \operatorname{Argmin}_{\mathbf{w}} \left\{ \sum_{i=1}^m (y_i - \mathbf{w} \mathbf{x}_i)^2 + \frac{\lambda}{\|\mathbf{w}\|_1} \right\}$$

Ridge regression

3.3 du chapitre 3. Ainsi, étant donnés un échantillon source étiqueté $S = \{(x_i^s, y_i^s)\}_{i=1}^m$ constitué de *m* exemples *i.i.d.* selon P_S et un échantillon cible non étiqueté $T = \{(x_i^t)\}_{i=1}^m$ composé de *m* exemples *i.i.d.* selon D_T , en posant $S_u = \{x_i^s\}_{i=1}^m$ l'échantillon *S* privé de

ses étiquettes, on veut minimiser :

$$\min_{\mathbf{w}} c m \mathbf{R}_{\mathcal{S}}(G_{\rho_{\mathbf{w}}}) + a m \operatorname{dis}_{\rho_{\mathbf{a}'}}(S_u, T_u) + \mathrm{KL}(\rho_{\mathbf{w}} \| \pi_0),$$
(7.5)

empirical risk

Regularized

où
$$\operatorname{dis}_{\rho_{\mathbf{a}'}}(S_u, T_u) = \left| \underset{(h,h')\sim\rho_{\mathbf{w}^2}}{\operatorname{E}} \operatorname{R}_{S_u}(h,h') - \underset{(h,h')\sim\rho_{\mathbf{w}^2}}{\operatorname{E}} \operatorname{R}_{T_u}(h,h') \right|$$
 est le désaccord empi-

rique entre S_u et T_u spécialisé à une distribution ρ_w sur l'espace \mathcal{H} des classifieurs linéaires considéré. Les réels a > 0 et c > 0 sont des hyperparamètres de l'algorithme. Notons que les constantes A et C du théorème 7.7 peuvent être retrouvées à partir de n'importe quelle valeur de a et c. Étant donnée la fonction $\ell_{dis}(x) = 2 \ell_{Erf}(x) \ell_{Erf}(-x)$ (illustrée sur la figure 7.1), pour toute distribution D sur X, on a :

$$\begin{split} \underset{(h,h')\sim\rho_{w^2}}{\mathbf{E}} \mathbf{R}_D(h,h') &= \underset{\mathbf{x}\sim D}{\mathbf{E}} \underset{(h,h')\sim\rho_{w^2}}{\mathbf{E}} \mathbf{I} \left[h(\mathbf{x}) \neq h'(\mathbf{x}) \right] \\ &= 2 \underset{\mathbf{x}\sim D}{\mathbf{E}} \underset{(h,h')\sim\rho_{w^2}}{\mathbf{E}} \mathbf{I} \left[h(\mathbf{x}) = 1 \right] \mathbf{I} \left[h'(\mathbf{x}) = -1 \right] \\ &= 2 \underset{\mathbf{x}\sim D}{\mathbf{E}} \underset{h\sim\rho_{w}}{\mathbf{E}} \mathbf{I} \left[h(\mathbf{x}) = 1 \right] \underset{h'\sim\rho_{w}}{\mathbf{E}} \mathbf{I} \left[h'(\mathbf{x}) = -1 \right] \\ &= 2 \underset{\mathbf{x}\sim D}{\mathbf{E}} \underset{h\sim\rho_{w}}{\mathbf{E}} \mathbf{I} \left[h(\mathbf{x}) = 1 \right] \underset{h'\sim\rho_{w}}{\mathbf{E}} \mathbf{I} \left[h'(\mathbf{x}) = -1 \right] \\ &= 2 \underset{\mathbf{x}\sim D}{\mathbf{E}} \underset{\ell_{w}\sim D}{\mathbf{E}} \ell_{\mathsf{Erf}} \left(\frac{\langle \mathbf{w}, \mathbf{x} \rangle}{\|\mathbf{x}\|} \right) \ell_{\mathsf{Erf}} \left(-\frac{\langle \mathbf{w}, \mathbf{x} \rangle}{\|\mathbf{x}\|} \right) \end{split}$$

Surrogate expression of the regularized empirical risk

Optimization

AgroParisTech

Ainsi, trouver la solution optimale de l'équation (7.5) revient à chercher le vecteur w qui minimise :

$$c\sum_{i=1}^{m} \ell_{\mathrm{Erf}}\left(y_{i}^{\mathrm{s}}\frac{\langle \mathbf{w}, \mathbf{x}_{i}^{\mathrm{s}}\rangle}{\|\mathbf{x}_{i}^{\mathrm{s}}\|}\right) + a\left|\sum_{i=1}^{m} \left[\ell_{\mathrm{dis}}\left(\frac{\langle \mathbf{w}, \mathbf{x}_{i}^{\mathrm{s}}\rangle}{\|\mathbf{x}_{i}^{\mathrm{s}}\|}\right) - \ell_{\mathrm{dis}}\left(\frac{\langle \mathbf{w}, \mathbf{x}_{i}^{\mathrm{t}}\rangle}{\|\mathbf{x}_{i}^{\mathrm{t}}\|}\right)\right]\right| + \frac{\|\mathbf{w}\|^{2}}{2}.$$
 (7.6)

L'équation précédente est fortement non convexe. Afin de rendre sa résolution plus facilement contrôlable, nous remplaçons la fonction $\ell_{\text{Erf}}(\cdot)$ par sa relaxation convexe

 $\ell_{\text{Erf}_{\text{exx}}}(\cdot)$ (comme pour PBGD3 et illustrée sur la figure 7.1). L'optimisation se réalise ensuite par une descente de gradient. Le gradient de l'équation 7.6 étant :

1. Based on a justification theory

- Bounds on the generalization error can be claimed (very important for having paper accepted)
- Valid for the worst case: against any possible distribution of the data

2. Seemingly very benign assumptions on the world

- Data (and future questions) supposedly i.i.d.
- − $f \in H$ or $f \notin H$

3. Provides a recipe to produce learning algorithms

- Very generic applicability: *minimization of a regularized empirical risk*
- Learning = optimization

A lot of "Lamppost theorems"

Theorems that guarantee that:

- If the world obeys my a priori assumptions
- Then the learning algorithm will end up with a good hypothesis (closed to the "real" one)
- Otherwise learning can lead to very bad hypotheses (e.g. *If the world is not sparse*)

