
/	110	

Antoine	Cornuéjols	

AgroParisTech	–	INRA			MIA	518	

antoine.cornuejols@agroparistech.fr	

	

What is the definition of

a good Machine Learning algorithm?

After 60 years, is this a closed problem? And if not …

/	110	

AI	and	ML	everywhere	in	the	medias	today	

•  L’AA	dans	tous	les	médias	aujourd’hui	

2	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Outline	

1.  	What	does	work	

2.  	Limitations	

3.  	Learning	comes	with	which	guarantees?	
–  Induction:	how	to	win	this	game?	

–  The	statistical	learning	theory	

–  A	closed	case?	Not	so	sure	

4.  	Other	paradigms?	An	historical	perspective	

5.  	Is	there	a	paradigmatic	change	in	sight?	

6.  	Conclusions	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 3	

/	110	

What	does	work	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 4	

/	110	

Object	recognition	in	images	

The	ImageNet	competition	

5	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

•  More	than	15M	high	resolution	labeled	images	

•  Approximately	22K	categories	

•  Taken	from	the	Web	and	labeled	using	Amazon	Mechanical	Turk	

ImageNet

•  Over 15M labeled high resolution images
•  Roughly 22K categories
•  Collected from web and labeled by Amazon Mechanical

Turk

h-p://image4net.org/+

/	110	

Illustration	:	ImageNet	

The	ImageNet	competition	

6	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

•  More	than	15M	high	resolution	labeled	images	

•  Approximately	22K	categories	

•  Taken	from	the	Web	and	labeled	using	Amazon	Mechanical	Turk	
Goal

Classifica(on+

/	110	

Results:	8	ILSVRC-2010	test	images	

•  Results		

7	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

Eight ILSVRC-2010 test images

/	110	

Object	recognition	

[Krizhevsky,	Sutskever	and	Hinton	(2012)]	

8	

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

TEST
IMAGE RETRIEVED IMAGES

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Image	annotating	

•  Example	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 9	

/	110	

The	SuperVision	network	

Image	classification	with	deep	convolutional	neural	networks	

	

–  7	hidden	“weight”	layers	

–  650K	neurons	

–  60M	parameters	

–  630M	connections	

10	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

SuperVision (SV)

Image classification with deep convolutional neural networks

•  7 hidden “weight” layers
•  650K neurons
•  60M parameters
•  630M connections

•  Rectified Linear Units, overlapping pooling, dropout trick
•  Randomly extracted 224x224 patches for more data

h-p://image4net.org/challenges/LSVRC/2012/supervision.pdf+

Signal	

/	110	

Speech	recognition	

•  Works	reasonably	well	

11	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

Speech recognition

Comparison (2012) of the word error rates achieved by
traditional GMMs and DNNs, reported by three different
research groups on three different benchmark.

#4 Learning multiple levels
of representation
!"##$%%&'$()*+$,(,-.$/%(,$-/0(+$$1$/(&02$/)$+&-2$(/$1/$%$02-3*0%(

(

4-.$/(5(

4-.$/(6(

4-.$/(7(
8&9:;,$'$,(

,&09"&%3#(/$1/$%$02-3*0%(

<4$$=(>:-)=(4-/9)-0(?(@9=(@A>!(6BBCD(
<4$$=(E/*%%$=(F-09-0-2:(?(@9=(AGH4(6BBCD((

6I(

!"#$"%&'()*"+,#(-&./01$"2&3&0$(0*412&0$54/01+,&*64"*22*)&78&5'+94+*&+*:*+2&$.&/;21"/09$(&
(

!/"12&0$5;#(*&
1$&.$"5&$;<*012&

/	110	

Machine	translation	

•  Still	far	from	perfect,	but	…	

12	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

Machine translation

From	Hofstädter	(2018)	

/	110	

Game	playing	with	Reinforcement	Learning	

•  E.g.	AlphaGo	

13	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)
∂

σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 µs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: + 1 for winning and − 1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ∼ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

Re
gr

es
si

on

C
la

ss
ifi

ca
tio

nC
lassification

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

pS pV pV�U (a⎪s) QT (s′)pU QT

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
er

ro
r

on
 e

xp
er

t g
am

es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59
Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 filters
192 filters
256 filters
384 filters

A
lp

ha
G

o
w

in
 ra

te
 (%

)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

Training Deep Convolutional Neural Networks to Play Go

Christopher Clark CHRISC@ALLENAI.ORG

Allen Institute for Artificial Intelligence⇤, 2157 N Northlake Way Suite 110, Seattle, WA 98103, USA

Amos Storkey A.STORKEY@ED.AC.UK

School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, EH9 1DG, United Kingdom

Abstract
Mastering the game of Go has remained a long-
standing challenge to the field of AI. Modern
computer Go programs rely on processing mil-
lions of possible future positions to play well,
but intuitively a stronger and more ‘humanlike’
way to play the game would be to rely on pattern
recognition rather than brute force computation.
Following this sentiment, we train deep convo-
lutional neural networks to play Go by training
them to predict the moves made by expert Go
players. To solve this problem we introduce a
number of novel techniques, including a method
of tying weights in the network to ‘hard code’
symmetries that are expected to exist in the target
function, and demonstrate in an ablation study
they considerably improve performance. Our fi-
nal networks are able to achieve move prediction
accuracies of 41.1% and 44.4% on two different
Go datasets, surpassing previous state of the art
on this task by significant margins. Additionally,
while previous move prediction systems have not
yielded strong Go playing programs, we show
that the networks trained in this work acquired
high levels of skill. Our convolutional neural net-
works can consistently defeat the well known Go
program GNU Go and win some games against
state of the art Go playing program Fuego while
using a fraction of the play time.

1. Introduction
Go is an ancient, deeply strategic board game that is notable
for being one of the few board games where human experts
are still comfortably ahead of computer programs in terms
of skill. Predicting the moves made by expert players is

⇤Work completed at the University of Edinburgh

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

an interesting and challenging machine learning task, and
has immediate applications to computer Go. In this section
we provide a brief overview of Go, previous work, and the
motivation for our deep learning based approach.

1.1. The Game of Go

Figure 1. Capturing pieces in Go. Here white’s stones in the upper
left are connected to each other through adjacency so they form a
single group (left panel). When black places a stone on the indi-
cated grid point (middle panel) that group is surrounded, meaning
there are no longer any empty grid points adjacent to it, so the
entire group is removed from the board (right panel).

Figure 2. Example of positions from a game of Go after 50 moves
have passed (left) and after 200 moves have passed (right). In the
right panel it can be seen that white is gaining control of territory
in the center and top of the board, while black is gaining influence
over the left and right edges.

We give a very brief introduction to the rules of Go. We de-
fer to (Bozulich, 1992) or (Müller, 2002) for a more com-
prehensive account of the rules. Go has a number of differ-
ent rulesets that subtly differ as to when moves are illegal
and how the game is scored, here we focus on generalities

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ∼…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a P s a
N s a

, ,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

pS

pV

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

QT

QT

QT

QT

QT QT

© 2016 Macmillan Publishers Limited. All rights reserved

/	110	

Outline	

1.  	What	does	work	

2.  	Limitations	

3.  	Learning	comes	with	which	guarantees?	
–  Induction:	how	to	win	this	game?	

–  The	statistical	learning	theory	

–  A	closed	case?	Not	so	sure	

4.  	Other	paradigms?	An	historical	perspective	

5.  	Is	there	a	paradigmatic	change	in	sight?	

6.  	Conclusions	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 14	

/	110	

Limitations	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 15	

/	110	

Requires	enormous	training	sets	

•  Image	recognition	

–  Object	localization	for	1000	categories.		
Millions	of	images	

•  AlphaGo	

–  Training	on	KGS	dataset	led	to	overfitting	

–  Self-play	data	(30	million	distinct	positions,	each	sampled	from	a	separate	
game)	

–  Over	the	course	of	millions	of	AlphaGo	vs	AlphaGo	games,	the	system	
progressively	learned	the	game	of	Go	from	scratch,	accumulating	thousands	
of	years	of	human	knowledge	during	a	period	of	just	a	few	days.	(In	the	first	
three	days	AlphaGo	Zero	played	4.9	million	games	against	itself	in	quick	
succession.)	

16	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Requires	enormous	training	sets	

•  Image	recognition	

–  Object	localization	for	1000	categories.		
Millions	of	images	

•  AlphaGo	

–  Training	on	KGS	dataset	led	to	overfitting	

–  Self-play	data	(30	million	distinct	positions,	each	sampled	from	a	separate	
game)	

–  Over	the	course	of	millions	of	AlphaGo	vs	AlphaGo	games,	the	system	
progressively	learned	the	game	of	Go	from	scratch,	accumulating	thousands	
of	years	of	human	knowledge	during	a	period	of	just	a	few	days.	(In	the	first	
three	days	AlphaGo	Zero	played	4.9	million	games	against	itself	in	quick	
succession.)	

17	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Requires	enormous	training	sets	

•  Image	recognition	

–  Object	localization	for	1000	categories.		
Millions	of	images	

•  AlphaGo	

–  Training	on	KGS	dataset	led	to	overfitting	

–  Self-play	data	(30	million	distinct	positions,	each	sampled	from	a	separate	
game)	

–  Over	the	course	of	millions	of	AlphaGo	vs	AlphaGo	games,	the	system	
progressively	learned	the	game	of	Go	from	scratch,	accumulating	thousands	
of	years	of	human	knowledge	during	a	period	of	just	a	few	days.	(In	the	first	
three	days	AlphaGo	Zero	played	4.9	million	games	against	itself	in	quick	
succession.)	

18	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Requires	enormous	training	sets	

•  Image	recognition	

–  Object	localization	for	1000	categories.		
Millions	of	images	

•  AlphaGo	

–  Training	on	KGS	dataset	led	to	overfitting	

–  Self-play	data	(30	million	distinct	positions,	each	sampled	from	a	separate	
game)	

–  Over	the	course	of	millions	of	AlphaGo	vs	AlphaGo	games,	the	system	
progressively	learned	the	game	of	Go	from	scratch,	accumulating	thousands	
of	years	of	human	knowledge	during	a	period	of	just	a	few	days.	(In	the	first	
three	days	AlphaGo	Zero	played	4.9	million	games	against	itself	in	quick	
succession.)	

19	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Exclusively	focused	on	error	rate	

•  The	Netflix	prize	
–  The	winner	system	was	not	used	afterwards!!	

•  Machine	translation	

–  Good	on	easy	and	mundane	texts	

–  Bad	on	interesting	texts	

20	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Weak	account	of	the	structure	

•  Texts	as	bags	of	words	

•  Images	as	simple	correlations	

21	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

(Oquab et al., CVPR 2014)
~70% correct (SOTA)

Convnet
m

achinery

Bbox

Image

Action
labels

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

(Oquab et al., CVPR 2014)
~70% correct (SOTA)

Convnet
m

achinery

Bbox

Image

Action
labels

[Oquab	et	al.,	CVPR	(2014)]														(~70%	correct	(SOTA))	

Example:	detection	of	the	action	“giving	a	phone	call”		

/	110	

Weak	account	of	the	structure	

The	learning	algorithm	is	statistically	correct!	
In	a	typical	image	dataset,	when	an	image	shows	a	person	near	a	phone	(both	in	the	same	image),		

chances	are	that	the	person	is	giving	a	phone	call	

22	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

Example:	detection	of	the	action	“giving	a	phone	call”		

The statistical problem is only a proxy
Example: detection of the action “giving a phone call”

Not giving a phone call.

Giving a phone call ????

/	110	

Learning	systems	do	not	work	together	flawlessly	

•  Two	sub-systems		

–  One	locating	the	ads	links		

–  The	other	the	adds	

•  That	influence	each	other	

–  Each	takes	into	account	the	clicks	

–  Which	depends	in	part	from	the	actions	of	the	other	sub-system	

–  In	addition	of	other	uncontrolled	factors	(price,	user’s	queries,	…)	

23	

BOTTOU, PETERS, ET AL.

!"#$%#$&

'#(&)"*+

Figure 1: Mainline and sidebar ads on a search result page. Ads placed in the mainline are more
likely to be noticed, increasing both the chances of a click if the ad is relevant and the risk
of annoying the user if the ad is not relevant.

• Let x represent the auction context information, such as the user query, the user profile, the
date, the time, etc. The ad placement engine first determines all eligible ads a1 . . .an and the
corresponding bids b1 . . .bn on the basis of the auction context x and of the matching criteria
specified by the advertisers.

• For each selected ad ai and each potential position p on the web page, a statistical model
outputs the estimate qi,p(x) of the probability that ad ai displayed in position p receives a user
click. The rank-score ri,p(x) = biqi,p(x) then represents the purported value associated with
placing ad ai at position p.

• Let L represent a possible ad layout, that is, a set of positions that can simultaneously be
populated with ads, and let L be the set of possible ad layouts, including of course the empty
layout. The optimal layout and the corresponding ads are obtained by maximizing the total
rank-score

max
L2L

max
i1,i2,...

Â
p2L

rip,p(x) , (1)

subject to reserve constraints

8p 2 L, rip,p(x)� Rp(x) ,

and also subject to diverse policy constraints, such as, for instance, preventing the simultane-
ous display of multiple ads belonging to the same advertiser. Under mild assumptions, this
discrete maximization problem is amenable to computationally efficient greedy algorithms
(see appendix A.)

• The advertiser payment associated with a user click is computed using the generalized second
price (GSP) rule: the advertiser pays the smallest bid that it could have entered without chang-
ing the solution of the discrete maximization problem, all other bids remaining equal. In other
words, the advertiser could not have manipulated its bid and obtained the same treatment for
a better price.

3210

[L.	Bottou	et	al.	«Counterfactual	Reasoning	and	Learning	Systems:	The	
Example	of	Computational	Advertising	»,	JMLR,	14,	(2013),	3207-3260]		
		

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

The	Simpson’s	paradox	

•  Physicians	would	like	to	know	whether	drug	A	is	more	or	less	efficient	than	
drug	B	

•  Two	groups	of	350	patients	each	are	chosen.	One	is	given	drug	A,		
and	the	other	drug	B	

24	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

BOTTOU, PETERS, ET AL.

Overall Patients with
small stones

Patients with
large stones

Treatment A:
Open surgery 78% (273/350) 93% (81/87) 73% (192/263)

Treatment B:
Percutaneous nephrolithotomy 83% (289/350) 87% (234/270) 69% (55/80)

Table 1: A classic example of Simpson’s paradox. The table reports the success rates of two treat-
ments for kidney stones (Charig et al., 1986, Tables I and II). Although the overall success
rate of treatment B seems better, treatment B performs worse than treatment A on both
patients with small kidney stones and patients with large kidney stones. See Section 2.3.

For instance, the empirical comparison of certain kidney stone treatments illustrates this dif-
ficulty (Charig et al., 1986). Table 2.3 reports the success rates observed on two groups of 350
patients treated with respectively open surgery (treatment A, with 78% success) and percutaneous
nephrolithotomy (treatment B, with 83% success). Although treatment B seems more successful, it
was more frequently prescribed to patients suffering from small kidney stones, a less serious con-
dition. Did treatment B achieve a high success rate because of its intrinsic qualities or because it
was preferentially applied to less severe cases? Further splitting the data according to the size of
the kidney stones reverses the conclusion: treatment A now achieves the best success rate for both
patients suffering from large kidney stones and patients suffering from small kidney stones. Such
an inversion of the conclusion is called Simpson’s paradox (Simpson, 1951).

The stone size in this study is an example of a confounding variable, that is an uncontrolled
variable whose consequences pollute the effect of the intervention. Doctors knew the size of the
kidney stones, chose to treat the healthier patients with the least invasive treatment B, and therefore
caused treatment B to appear more effective than it actually was. If we now decide to apply treat-
ment B to all patients irrespective of the stone size, we break the causal path connecting the stone
size to the outcome, we eliminate the illusion, and we will experience disappointing results.

When we suspect the existence of a confounding variable, we can split the contingency tables
and reach improved conclusions. Unfortunately we cannot fully trust these conclusions unless we
are certain to have taken into account all confounding variables. The real problem therefore comes
from the confounding variables we do not know.

Randomized experiments arguably provide the only correct solution to this problem (see Stigler,
1992). The idea is to randomly chose whether the patient receives treatment A or treatment B.
Because this random choice is independent from all the potential confounding variables, known
and unknown, they cannot pollute the observed effect of the treatments (see also Section 4.2). This
is why controlled experiments in ad placement (Section 2.2) randomly distribute users between
treatment and control groups, and this is also why, in the case of an ad placement engine, we
should be somehow concerned by the practical impossibility to randomly distribute both users and
advertisers.

3212

B	is	best?	

/	110	

The	Simpson’s	paradox	

•  Influencing	factor	
The	choice	of	the	patients	for	each	
group	was	function	of	the	severity	of	
the	pathology	

25	

BOTTOU, PETERS, ET AL.

Overall Patients with
small stones

Patients with
large stones

Treatment A:
Open surgery 78% (273/350) 93% (81/87) 73% (192/263)

Treatment B:
Percutaneous nephrolithotomy 83% (289/350) 87% (234/270) 69% (55/80)

Table 1: A classic example of Simpson’s paradox. The table reports the success rates of two treat-
ments for kidney stones (Charig et al., 1986, Tables I and II). Although the overall success
rate of treatment B seems better, treatment B performs worse than treatment A on both
patients with small kidney stones and patients with large kidney stones. See Section 2.3.

For instance, the empirical comparison of certain kidney stone treatments illustrates this dif-
ficulty (Charig et al., 1986). Table 2.3 reports the success rates observed on two groups of 350
patients treated with respectively open surgery (treatment A, with 78% success) and percutaneous
nephrolithotomy (treatment B, with 83% success). Although treatment B seems more successful, it
was more frequently prescribed to patients suffering from small kidney stones, a less serious con-
dition. Did treatment B achieve a high success rate because of its intrinsic qualities or because it
was preferentially applied to less severe cases? Further splitting the data according to the size of
the kidney stones reverses the conclusion: treatment A now achieves the best success rate for both
patients suffering from large kidney stones and patients suffering from small kidney stones. Such
an inversion of the conclusion is called Simpson’s paradox (Simpson, 1951).

The stone size in this study is an example of a confounding variable, that is an uncontrolled
variable whose consequences pollute the effect of the intervention. Doctors knew the size of the
kidney stones, chose to treat the healthier patients with the least invasive treatment B, and therefore
caused treatment B to appear more effective than it actually was. If we now decide to apply treat-
ment B to all patients irrespective of the stone size, we break the causal path connecting the stone
size to the outcome, we eliminate the illusion, and we will experience disappointing results.

When we suspect the existence of a confounding variable, we can split the contingency tables
and reach improved conclusions. Unfortunately we cannot fully trust these conclusions unless we
are certain to have taken into account all confounding variables. The real problem therefore comes
from the confounding variables we do not know.

Randomized experiments arguably provide the only correct solution to this problem (see Stigler,
1992). The idea is to randomly chose whether the patient receives treatment A or treatment B.
Because this random choice is independent from all the potential confounding variables, known
and unknown, they cannot pollute the observed effect of the treatments (see also Section 4.2). This
is why controlled experiments in ad placement (Section 2.2) randomly distribute users between
treatment and control groups, and this is also why, in the case of an ad placement engine, we
should be somehow concerned by the practical impossibility to randomly distribute both users and
advertisers.

3212

Severity	

Likely	to	go		
in	group	B	

Likely	to	go		
in	group	A	

low	 high	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Learning	systems	do	not	work	together	flawlessly	

•  Two	sub-systems		

–  One	locating	the	ads	links		

–  The	other	the	adds	

•  That	influence	each	other	

–  Each	takes	into	account	the	clicks	

–  Which	depends	in	part	from	the	actions	of	the	other	sub-system	

–  In	addition	of	other	uncontrolled	factors	(price,	user’s	queries,	…)	

26	

BOTTOU, PETERS, ET AL.

!"#$%#$&

'#(&)"*+

Figure 1: Mainline and sidebar ads on a search result page. Ads placed in the mainline are more
likely to be noticed, increasing both the chances of a click if the ad is relevant and the risk
of annoying the user if the ad is not relevant.

• Let x represent the auction context information, such as the user query, the user profile, the
date, the time, etc. The ad placement engine first determines all eligible ads a1 . . .an and the
corresponding bids b1 . . .bn on the basis of the auction context x and of the matching criteria
specified by the advertisers.

• For each selected ad ai and each potential position p on the web page, a statistical model
outputs the estimate qi,p(x) of the probability that ad ai displayed in position p receives a user
click. The rank-score ri,p(x) = biqi,p(x) then represents the purported value associated with
placing ad ai at position p.

• Let L represent a possible ad layout, that is, a set of positions that can simultaneously be
populated with ads, and let L be the set of possible ad layouts, including of course the empty
layout. The optimal layout and the corresponding ads are obtained by maximizing the total
rank-score

max
L2L

max
i1,i2,...

Â
p2L

rip,p(x) , (1)

subject to reserve constraints

8p 2 L, rip,p(x)� Rp(x) ,

and also subject to diverse policy constraints, such as, for instance, preventing the simultane-
ous display of multiple ads belonging to the same advertiser. Under mild assumptions, this
discrete maximization problem is amenable to computationally efficient greedy algorithms
(see appendix A.)

• The advertiser payment associated with a user click is computed using the generalized second
price (GSP) rule: the advertiser pays the smallest bid that it could have entered without chang-
ing the solution of the discrete maximization problem, all other bids remaining equal. In other
words, the advertiser could not have manipulated its bid and obtained the same treatment for
a better price.

3210

[L.	Bottou	et	al.	«Counterfactual	Reasoning	and	Learning	Systems:	The	
Example	of	Computational	Advertising	»,	JMLR,	14,	(2013),	3207-3260]		
		

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

BOTTOU, PETERS, ET AL.

!"#$%&'(#'()! *+%&',#'(-$.)"/!#$.)#

*+")$ 0&+")%

"1-$#")&

"2*(#)' 3$&1#")(

12&14")) $#,#'!#)*

Figure 3: Causal graph associated with the structural equation model of Figure 2. The mutually
independent noise variables e1 to e8 are implicit. The variables a, b, q, s, c, and z depend
on their direct causes in known ways. In contrast, the variables u and v are exogenous
and the variables x and y depend on their direct causes through unknown functions.

• Simulation – Let us assume that we know both the exact form of all functional dependencies
and the value of all exogenous variables, that is, the variables that never appear in the left hand
side of an equation. We can compute the values of all the remaining variables by applying the
equations in their natural time sequence.

• Intervention – As long as the causal graph remains acyclic, we can construct derived structural
equation models using arbitrary algebraic manipulations of the system of equations. For
instance, we can clamp a variable to a constant value by rewriting the right-hand side of the
corresponding equation as the specified constant value.

The algebraic manipulation of the structural equation models provides a powerful language to
describe interventions on a causal system. This is not a coincidence. Many aspects of the mathe-
matical notation were invented to support causal inference in classical mechanics. However, we no
longer have to interpret the variable values as physical quantities: the equations simply describe the
flow of information in the causal model (Wiener, 1948).

3.2 The Isolation Assumption

Let us now turn our attention to the exogenous variables, that is, variables that never appear in the
left hand side of an equation of the structural model. Leibniz’s principle of sufficient reason claims
that there are no facts without causes. This suggests that the exogenous variables are the effects of
a network of causes not expressed by the structural equation model. For instance, the user intent
u and the ad inventory v in Figure 3 have temporal correlations because both users and advertisers
worry about their budgets when the end of the month approaches. Any structural equation model
should then be understood in the context of a larger structural equation model potentially describing
all things in existence.

Ads served on a particular page contribute to the continued satisfaction of both users and ad-
vertisers, and therefore have an effect on their willingness to use the services of the publisher in the
future. The ad placement structural equation model shown in Figure 2 only describes the causal de-
pendencies for a single page and therefore cannot account for such effects. Consider however a very

3216

Importance	of	identifying	the	causal	graph	

/	110	

Thus,	is	the	sky	so	blue?	

Learning	systems	…	

1.  	Require	enormous	amounts	of	training	data	

2.  	Are	exclusively	focused	on	error	rates	

3.  	Do	not	fully	take	advantage	of	structures	

4.  	Do	not	cooperate	well	

–  Software	engineering	with	adaptive	components	is	yet	to	be	solved	

27	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Outline	

28	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

1.  	What	does	work	

2.  	Limitations	

3.  	Learning	comes	with	which	guarantees?	
–  Induction:	how	to	win	this	game?	

–  The	statistical	learning	theory	

–  A	closed	case?	Not	so	sure	

4.  	Other	paradigms?	An	historical	perspective	

5.  	Is	there	a	paradigmatic	change	in	sight?	

6.  	Conclusions	

/	110	

Which	guarantees?	

The	statistical	theory	of	learning	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 29	

/	110	

Supervised	induction	

•  We	want	to	be	able	to	predict	the	class	of	unseen	examples	

	A	decision	function	

x

y

!

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 30	

/	110	

Supervised	learning	

Given	a	training	set	

•  Find	an	hypothesis																		such	that	

•  Hoping	that	it	generalizes	well	:				

31	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

Sm =
�
(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xm, ym)

f	

h	

h(xi) ⇡ yi

8x 2 X : h(x) ⇡ y

h 2 H

/	110	

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

•  They	belong	either	to	class	‘+’	or	to	class	‘-’	

One	example	that	tells	a	lot	…		

32	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Description Your prediction True class

				1	large	red	square	 -

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

•  They	belong	either	to	class	‘+’	or	to	class	‘-’	

1	large	green	square	

2	small	red	squares	

2	large	red	circles	

1	large	green	circle	

1	small	red	circle	

+	

+	

+	

-	

+	

One	example	that	tells	a	lot	…		

33	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Description Your prediction True class

				1	large	red	square	 -

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

1	large	green	square	

2	small	red	squares	

2	large	red	circles	

1	large	green	circle	

1	small	red	circle	

+	

+	

+	

-	

+	

One	example	that	tells	a	lot	…		

34	

How	many	possible	functions	altogether	from	X	to	Y	?	

How	many	functions	do	remain	after	6	training	examples?	

22			=		216		=		65,536	4	

210		=		1024	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

One	example	that	tells	a	lot	…		

35	

Description	 Your	prediction	 True	class	
1	large	red	square	 	 -	
1	large	green	square	 	 +	
2	small	red	squares	 	 +	
2	large	red	circles	 	 -	
1	large	green	circle	 	 +	
1	small	red	circle	 	 +	
1	small	green	square	 	 -	
1	small	red	square	 	 +	
2	large	green	squares	 	 +	
2	small	green	squares	 	 +	
2	small	red	circles	 	 +	
1	small	green	circle	 	 -	
2	large	green	circles	 	 -	
2	small	green	circles	 	 +	
1	large	red	circle	 	 -	
2	large	red	squares	 ?	 	

	

How	many	
remaining	
functions?	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

15	

?	

/	110	

Description Your prediction True class

				1	large	red	square	 -

•  Examples	described	using:		

Number	(1	or	2);	size	(small	or	large);	shape	(circle	or	square);	color	(red	or	green)	

1	large	green	square	

2	small	red	squares	

2	large	red	circles	

1	large	green	circle	

1	small	red	circle	

+	

+	

+	

-	

+	

One	example	that	tells	a	lot	…		

36	

How	many	possible	functions	with	2	descriptors	from	X	to	Y	?	

How	many	functions	do	remain	after	3	≠	training	examples?	

22			=		24		=		16	2	

21		=		2	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Induction:	an	impossible	game?	

•  A	bias	is	need	

•  Types	of	bias	

–  Representation	bias 	(declarative)	

–  Research	bias		 	 	(procedural) 		

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 37	

/	110	

Interpreting	–	completion	of	percepts	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 38	

/	110	

Interpreting	–	completion	of	percepts	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 39	

/	110	

Induction	and	its	illusions	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 40	

/	110	

Induction	and	its	illusions	

•  toto	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 41	

/	110	

Clustering	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 42	

/	110	

Clustering	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 43	

/	110	

–  Rosenblatt	(1958-1962)	

The	perceptron	

44	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

The	perceptron	

45	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

neurone de biais

1

yi

x
(1)

x
(2)

x
(3)

x
(d)

w1i

w2i

w3i

wdi

σ(i) =
d∑

j=0

wjix
(j)w0i

–  Rosenblatt	(1958-1962)	

xi

				Bias	neuron					

yi = sign

⇢
g

✓ dX

j=0

wji x
(j)

◆�

/	110	

The	perceptron:	a	linear	discriminant	

46	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

w

/	110	

The	perceptron	learning	rule	

•  Adjustments	of	the	weight	

			Principle	(Perceptron’s	rule):	learn	only	in	case	of	prediction	error	

47	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

Algorithm 1: The perceptron learning algorithm

Data: A training sample: Sm = {(xi, yi)}1im

Result: A weight vector w
while not convergence do

if the randomly drawn xi is st. sign(w · xi) = yi then
do nothing

else

w(t+ 1) = w(t) + ⌘ xi yi

Randomly select next training example xi

/	110	

The	perceptron	

NO	reasoning	!!!	

48	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Some	remarkable	properties	!!	

•  Convergence	in	a	finite	number	of	steps	

–  	Independently	of	the	number	of	examples	

–  	Independently	of	the	distribution	of	the	examples	

–  	Independently	of	the	dimension	of	the	input	space	

49	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

If	there	exists	a	linear	separator	of	the	training	examples	

!!!	

/	110	

The	statistical	theory	of	learning	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 50	

/	110	

Guarantees	on	generalization	??	

•  	Theorems	about	the	performance		

	with	respect	to	the	training	set	

•  	We	want	guarantees	about	future	examples	

51	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

/	110	

Statistical	study	for	|H|	hypotheses	

It	leads	to:	

The	Empirical	Risk	Minimization	principle	

is	sound	only	if	there	exists	a	limit	(a	bias)	on	the	expressivity	of	H		

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 52	

8h 2 H, 8� 1 : Pm

"
R(h) bR(h) +

log |H|+ log 1
�

m

#
> 1� �

The	size	m	of	the	training	set	must	be	large	enough	w.r.t.	to	capacity	of	H

/	110	

Bounds	on	the	difference	between	the	true	risk	and	the	empirical	risk	

•  H	finite,	realizable	case	

•  H	finite,	non	realizable	case	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 53	

8h 2 H, 8� 1 : Pm

"
R(h) bR(h) +

log |H|+ log 1
�

m

#
> 1� �

8h 2 H, 8� 1 : Pm

"
R(h) R(h) +

s
log |H|+ log 1

�

2m

#
> 1� �

/	110	

Statistical	theory	of	learning	as	a	theory	of	justification	

Use	of	the	ERM	principle	(fitting	the	data)	is	justified	as	long	as	the	

expressiveness	(or	capacity)	of	H		is	controlled	(and	limited)	

54	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

8h 2 H, 8� 1 : Pm

"
R(h) R̂(h) + RS(H) + 3

s
log 2

�

2m

#
> 1� �

/	110	

From	a	theory	of	justification		

to	THE	recipe	for		

inventing	algorithms	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 55	

A	powerful	paradigm	

/	110	

HOW	TO	…	devise	learning	algorithms	

1.  Define	an	appropriate	regularized	(inductive)	criterion	

1.  Translate	the	cost	of	errors	of	prediction	in	the	domain	into	a	loss	function	

2.  Define	a	regularization	term	that	expresses	
	assumptions	about	the	underlying	regularities	of	the	world	

3.  If	possible,	make	the	resulting	optimization	problem	a	convex	one	

2.  Use	or	develop	an	efficient	optimization	solver	

56	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

hopt = ArgMin
h2H

1

m

mX

i=1

l(h
�
xi), yi

�

| {z }
empirical risk

+ � reg(H)| {z }
bias on the world

�

/	110	

Learning	sparse	linear	approximator	

•  The	hypothesis	is	of	the	form	

•  A	priori	assumption:	few	non	zero	coefficients	

57	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

w�
ridge = Argmin

w

� m�

i=1

�
yi �wxi

�2 + � ||w||22
�

w�
lasso = Argmin

w

� m�

i=1

�
yi �wxi

�2 + � ||w||1
�

Ridge	regression	

Lasso	regression	

h(x) = w · x

/	110	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 58	

Regularized	
empirical	risk	

Surrogate	
expression	of	
the	regularized	
empirical	risk	

Optimization	

/	110	

A	very	alluring	framework	

1.  Based	on	a	justification	theory	
–  Bounds	on	the	generalization	error	can	be	claimed			

(very	important	for	having	paper	accepted)		

–  Valid	for	the	worst	case:	against	any	possible	distribution	of	the	data	

2.  Seemingly	very	benign	assumptions	on	the	world	
–  Data	(and	future	questions)	supposedly		i.i.d.	

–  f	∈	H	or	f	∉	H	

3.  Provides	a	recipe	to	produce	learning	algorithms	
–  Very	generic	applicability:	minimization	of	a	regularized	empirical	risk	

–  Learning	=	optimization	

iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		 59	

/	110	

A	lot	of	“Lamppost	theorems”	

Theorems	that	guarantee	that:	

–  If	the	world	obeys	my	a	priori	assumptions	

–  Then	the	learning	algorithm	will	end	up	with	a	
good	hypothesis	(closed	to	the	“real”	one)	

–  Otherwise	learning	can	lead	to	very	bad	
hypotheses	
(e.g.		If	the	world	is	not	sparse)	

60	iCube	speech	-	2018			«	What	is	a	good	ML	algorithm?	»			(A.	Cornuéjols)		

