The SuperVision network

Image classification with deep convolutional neural networks <u>http://image-net.org/challenges/LSVRC/2012/supervision.pdf</u>

- 7 hidden "weight" layers
- 650K neurons
- 60M parameters
- 630M connections

The SuperVision network

Image classification with deep convolutional neural networks http://image-net.org/challenges/LSVRC/2012/supervision.pdf

- 7 hidden "weight" layers
- 650K neurons
- 60M parameters
- 630M connections
- Rectified Linear Units (ReLU)
- Overlapping pooling
- Dropout trick
- Randomly extracted 224x224 patches for more data

ILSVRC

ImageNet classification error throughout years and groups

Li Fei-Fei: ImageNet Large Scale Visual Recognition Challenge, 2014 http://image-net.org/

GoogleNet

• Un mécano de réseaux de neurones

Illustration

Système développé par Google et U. de Stanford

- Reconnaissance de visages
 - Sous conditions de lumière diverses
 - Sous tout angle
- Apprentissage non supervisé
 - 9 couches ; 10^9 connexions
 - 10 millions d'images
 - 3 jours de calcul sur 16 000 processeurs
- Amélioration des performances de 70% / état de l'art

Object recognition

Object retrieval. ConvNet-Based Google+ Photo Tagger

Searched my personal collection for "bird"

Montpellier SupAgro (2020) « Une perspettive sur l'apprentissage » (A. Cornuéjols)

Game playing with Reinforcement Learning

Beaucoup de « recettes de cuisine »

Les grandes idées nouvelles

• La rétro-propagation classique ne marche pas avec un grand nombre de couches (trop dilué)

• Risque de sur-apprentissage avec un nombre gigantesque de paramètres

Auto-encoder : couches apprises en non-supervisé

Réseaux à convolutions :

imposer une structure (avec motifs répétitifs) au réseau

Le « Drop Out »

- Classiquement :
 - Les poids sont initialisés aléatoirement et difficiles à ajuster

- Principe :
 - Débrancher des neurones aléatoirement lors de l'apprentissage (tirage aléatoire à chaque nouvel exemple)
 - Paramètre par défaut : 0.5

Le « Drop Out »

FIGURE 9: Schéma descriptif du dropout

Techniques d'optimisation

• Très grande activité de recherche

Du nouveau dans le hardware

<u>Technologie</u> : du hardware spécifique

- GPU (Graphics Processing Unit) historiquement utilisé comme carte graphique pour les jeux vidéo
- Hardware spécialisé dans le calcul matriciel hautement parallélisé
- Des algorithmes <u>très contraints</u>: des milliers « threads » qui doivent exécuter la même opération simultanément

Des implémentations modernes des réseaux de neurones permettent de tirer partie des GPU (ex: Torch 7, Cuda conv-net, Theano, TensorFlow ...)

Montpellier SupAgro (2020) « Une perspective sur l'apprentissage » (A. Cornuéjols)

148 / 178

Un « bolide » délicat à piloter

Requiert

- 1. beaucoup de **données** (en général)
 - Des millions d'images
 - Des dizaines de milliers de documents
- 2. du savoir-faire (des data scientists)
 - Nombreuses « astuces » d'ingénierie
 - Utilisation de réseaux déjà appris (transfert)
 - L'état de l'art progresse très vite
- 3. des machines adaptées
 - Puissance **calcul** : clusters et/ou cartes graphiques
 - **Mémoire** centrale importante (≥ 128 Go)

Enseigné dans certaines écoles et universités

Les comportements étranges

Sait-on pourquoi ça marche ... Quand ça marche

C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals (ICLR, May 2017).
"Understanding deep learning requires rethinking generalization"

C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals (ICLR, May 2017).
"Understanding deep learning requires rethinking generalization"

Extensive experiments on the classification of images

– The AlexNet (> 1,000,000 parameters) + 2 other architectures

- The CIFAR-10 data set:

- 60,000 images categorized in 10 classes (50,000 for training and 10,000 for testing)
- Images: 32x32 pixels in 3 color channels

Experiments

- 1. **Original dataset** without modification
 - Results ?
 - Training accuracy = 100% ; Test accuracy = 89%
 - Speed of convergence ~ 5,000 steps

Experiments

- 1. **Original dataset** without modification
 - Results ?
 - Training accuracy = 100% ; Test accuracy = 89%
 - Speed of convergence ~ 5,000 steps

Expected behavior if the **capacity** of the hypothesis space is **limited**

i.e. the system cannot fit any (arbitrary) training data

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R(h)}{m} \leq \widehat{R}(h) + 2\widehat{Rad}_m(\mathcal{H}) + 3\sqrt{\frac{\ln(2/\delta)}{m}} \right] > 1 - \delta$$

Troubling findings

Experiments

- 1. **Original dataset** without modification
 - Results ?
 - Training accuracy = 100% ; Test accuracy = 89%
 - Speed of convergence ~ 5,000 steps
- 2. Random labels

- Training accuracy = 100% !!?? ; Test accuracy = 9.8%
- Speed of convergence = similar behavior (~ 10,000 steps)

Troubling findings

Experiments

- 1. Original dataset without modification
 - Results ?
 - Training accuracy = 100% ; Test accuracy = 89%
 - Speed of convergence ~ 5,000 steps

Troubling findings

• Deep NNs can accommodate ANY training set

Can grow without limit!!

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R(h)}{R(h)} \leq \widehat{R}(h) + 2 \widehat{Rad}_m(\mathcal{H}) + 3 \sqrt{\frac{\ln(2/\delta)}{m}} \right] > 1 - \delta$$

But then,

why are deep NNs so good on image classification tasks?

Plan

- **1.** Pourquoi toute cette excitation ?
- 2. Grands types d'apprentissage
- 3. Apprentissage prédictif par réseaux de neurones
- 4. Quelles garanties ?
- 5. Recette pour créer des algorithmes d'apprentissage
- 6. Les réseaux de neurones profonds

7. Ce que l'on sait faire et les défis à relever

Ce que l'on sait faire.

Sait-on d'ailleurs vraiment le faire ?

Ce qui interroge.

Ce qui reste à faire.

Ce que l'on sait faire

Ce que l'on sait faire

- Apprentissage prédictif
 - En environnement **stationnaire**
 - À partir de (très) nombreux exemples
 - Classification / régression
- Apprentissage descriptif
 - Problème de la validation
- Apprentissage de recommandation
- Apprentissage de contrôle / commande (app. par renforcement)

Nombreuses méthodes d'apprentissage

Ce que l'on sait faire

Quoique !?

Adversarial learning

Adversarial input can fool a machine-learning algorithm into misperceiving images.

Montpellier SupAgro (2020) « Une perspective sur l'apprentissage » (A. Cornuéjols)

165 / 178

Explanations and deep neural networks

Optical illusions: how to explain them?

(a) Original image

[Selvaraju et al. (2017) « Grad-CAM: Visual explanations from deep networks via gradient-based localization »]

« Les réseaux de neurones artificiel » (A. Cornuéjols)

166 / 178

Machine translation

Annotation d'images

Figure 2.11: "A group of young people playing a game of frisbee"—that caption was written by a computer with no understanding of people, games or frisbees.

Montpellier SupAgro (2020) « Une perspective sur l'apprentissage » (A. Cornuéjols)

Exemple en médecine

The anatomy of an adversarial attack

Demonstration of how adversarial attacks against various medical AI systems might be executed without requiring any overtly fraudulent misrepresentation of the data.

/ 178

MACHINE LEARNING

Science Adversarial attacks on medical machine learning

Emerging vulnerabilities demand new conversations

22 March 2019

Voiture dans une piscine

• ... ou pas de voiture ... ?

Is this less of a car because the context is wrong?

[Léon Bottou (ICML-2015, invited talk) « Two big challenges in Machine Learning »]

Montpellier SupAgro (2020) « Une perspective sur l'apprentissage » (A. Cornuéjols) 170

170 / 178
L'IA comprend-t-elle ?

https://www.youtube.com/watch?v=QPSgM13hTK8&t=117

Montpellier SupAgro (2020) « Une perspective sur l'apprentissage » (A. Cornuéjols) 171 / 178

WATSON et le jeu Jeopardy! (2011)

Jeopardy! In the category U.S. cities:

- "Its largest airport was named for a World War II hero; its second largest, for a World War battle."
- What is *Toronto*?

New-York!!

IBM's Watson Supercomputer Destroys Humans in Jeopardy | Engadget

Sait-on expliquer une conclusion ?

Explication et réseaux de neurones profonds

Identification de classes d'objets dans une image

– Ici deux classes : « chien » et « chat tigré »

[Selvaraju et al. (2017) « Grad-CAM: Visual explanations from deep networks via gradient-based localization »]

Montpellier SupAgro (2020) « Une perspective sur l'apprentissage » (A. Cornuéjols) 174 / 178

Les assistants « intelligents » : quelle assistance ?

Décident

- L'attribution d'un crédit
- La sélection dans les filières (e.g. Parcours Sup)

Suggèrent un diagnostic

- Médical
- Légal
- Quelle transparence ?
 - Les « raisons » de la décision
 - Peut-on les orienter, les remettre en cause ?

Question supplémentaire

 Comment garder une trace des « raisons » d'une décision quand le système apprend en permanence et évolue donc ?

Le cas AlphaGo

- Un joueur « extraterrestre »
- Un jeu stupéfiant
- Révolutionne la manière de jouer
- Effervescence dans les écoles de go

Le cas AlphaGo : comprendre

Fan Hui, Gu Li, Zhou Ruyang (très forts joueurs de Go) se reconvertissent dans l'analyse des parties jouées par AlphaGo

- Sorte d'exégèse. Explications a posteriori
- Nécessaire pour
 - La communication
 - L'enseignement

Et même AlphaGo peut se tromper

La recherche de relations causales

• Qu'est-ce qui cause l'appétence pour des plats protéinés ?

- La faim ?
- L'heure dans la journée ?
- Le genre ?
- L'aspect visuel ?
- L'aspect olfactif ?
- La richesse en **protéines** des **repas précédents** ?

...

Conclusions

Le paradigme actuel

- Induire nécessite d'avoir des biais
- La **théorie**
 - Est entièrement focaliée sur le taux d'erreur
 - Présuppose un environnement stationnaire et des entrées/requêtes (i.i.d.)
 - Exige un nombre de données d'apprentissage assez grand par rapport à la capacité de ${\cal H}$
- Nous ne comprenons pas bien les réseaux de neurones profonds
- Corrélations ≠ structures, sémantique, causalité

Limites

- Apprentissage **passif** et **données et questions i.i.d.**
 - Agents situés : le monde n'est pas i.i.d.
- Requiert **beaucoup** d'exemples
 - Nous sommes beaucoup plus efficaces
 - « Producteurs de théories », théories que nous testons ensuite
- Pas adapté à la recherche de causalités
- Pas intégré avec un raisonnement

Ces machines apprenantes ne sont pas des machines pensantes

Mes paris pour l'avenir

Mes paris sur les directions à venir

- 1. Apprendre à partir de très peu d'exemples
- 2. Apprendre à partir de **multiples sources de données** hétérogènes
- 3. Apprendre par analogie et par transfert
- 4. Apprendre pour **construire des théories ?** (causalité et explications)
- 5. L'intégration de multiples systèmes apprenants
- 6. Le « teaching data science »

Mes paris sur les directions à venir

- 1. Apprendre à partir de **multiples sources de données** hétérogènes
- 2. Apprendre à partir de très peu d'exemples
- 3. Apprendre par analogie et par transfert
- 4. Apprendre pour construire des théories ? (causalité et explications)
- 5. L'intégration de multiples systèmes apprenants
- 6. Le « teaching data science »

ARCH [Winston, 1970]

• Apprentissage de concept (e.g. arche) dans un monde de blocs

ARCH [Winston, 1970]

• Les exemples ne sont pas choisis au hasard

Apprentissage à partir d'un seul exemple

...

Apprentissage à partir d'un seul exemple

A child learns about four+ new words a day

Goulden, R., Nation, P. & Read, J. (1990). How large can a receptive vocabulary be? Applied linguistics, 11 (4), 341-363.

Montpellier SupAgro (2020) « Une perspective sur l'apprentissage » (A. Cornuéjols) 189 / 178

Mes paris sur les directions à venir

- 1. Apprendre à partir de très peu d'exemples
- 2. Apprendre à partir de **multiples sources de données** hétérogènes
- 3. Apprendre par analogie et par transfert
- 4. Apprendre pour construire des théories ? (causalité et explications)
- 5. L'intégration de multiples systèmes apprenants
- 6. Le « teaching data science »

Intégration de multiple sources de données

• Annotation de protéines

Protéine « sp|P00004|CYC_HORSE » is activated by ...

1 titcagitigi 61 tgctttcgg 121 aaataccg 181 gtagaaat 402 gaacaa 40 catgg

ttcagttgtg aatgaatgga cgtgccaaat agacgtgccg ccgccgctcg attcgcactt
tgctttcggt tttgccgtcg tttcacgcgt ttagttccgt tcggttcatt cccagttctt
aaataccgga cgtaaaaata cactctaacg gtcccgcgaa gaaaaagata aagacatctc
gtagaaatat taaaataaat tcctaaagtc gttggtttct cgttcacttt cgctgcctgc

402 gaacacgcc gaggctccat tcatagcacc acttcgtcgt cttaatcccc tccctcatcc 402 catggcgg tgcaaaaat aaaaagaact c

Intégration de multiple sources de données

KI

-

GIEC •

- Documents scientifiques multiples ____
- **Tableaux** _
- mesures _

Moore's Law has, for nigh half a century, reliably predicted the growth in efficiency of processors: Moore's Law states that the number of transistors that can be placed on a given surface area doubles every two years [Intel Corporation, 2005]. As a consequence, the number of transistors – and consequently, the computing power – of processors has grown exponentially until recently. However, this growth can no longer be sustained due to a combination of several factors. The most important cause are quantum mechanical effects which raise the electrical resistance of the transistors and thus cause heat dissipation problems which result in energy loss [Feynman, 1985; Tanenbaum, 1990].

	10										
10* -			MaxEnt			MaxEnt + GE			Unsup GE		
10 ⁸	41 10"		Р	R	F	Р	R	F	Р	R	F
10 ⁶	2 10 ²	BKG	.38	.19	.25	.49	.48	.48	.49	.44	.40
a 10 ⁵	10 ¹ 10 ¹	PROB	0	0	0	.38	.23	.29	.28	.38	.32
10 ³	10-1	METH	0	0	0	.29	.50	.37	.08	.56	.14
1971 1980 1990 2000 2008 Year	1971 1980 1990 2000 2008 Year	RES	0	0	0	.68	.51	.58	.08	.51	.14
Figure 1: Moore's Law illustrated by the number of transist	CON	.69	.96	.80	.81	.84	.82	.74	.69	.7	
of typical processors for each era. Note that the y axis is log ithmic. ¹	jar- and their mean values for each year,'	CN	.35	.06	.10	.39	.29	.33	.40	.13	.20
On the other band and		DIFF	0	0	0	.21	.30	.25	.12	.13	.12
on the other hand, we grams have to process. P	FUT	0	0	0	.24	.44	.31	.26	.61	.30	

International J	ournil of Trend i	n Scientific Re wi	starch and Deve viscijtard com	slopment, Volume 1(4), R	SSN: 2456	5-6470						
Docu	ment Ran	king usin	ng Custon	nizes Vector M	lethod	1						
Pris	anka Mesariya			Nidhi Ma	dia							
Computer Engine Un	ering, Gujarat T iversity, India	echnological	Con	nputer Engineering, Gu University, I	ijarat Tecl India	hnologi	al					
STRACT iornation retrieval ords from extensiv damentally lookin in rank. Document svant document a see model is in iornation retrieval do on similarity v the significant of 1 a in course poor	(IR) system is a 's question and e dataset. Arch in g, the pertisen ranking is bas coording to the additional and models to alues. Terr an informa	about position get the impor we positionen it record as ically search ier rank. Ve widely app > REPLA	of docu set of d ing equivals ant basically ga in inform the challeng tor in doc ind composi- CE THIS LINE V	ments [15] Information occuments to discover net to a suce's query. I y data can be type to discover a second pro- generation of the second pro- per (i) normally until ment database, (iii) ed in unconstrained dh WITH YOUR PAPER IDEN WITH YOUR PAPER IDEN	n retrieva convenier in inform g flom e of com ents ma ructured reports anacterist	al system nt information re web sto tent, pi de this information are ty- tic diale	n is a nation trieval ucture ctures, task son is socially (C, sii) BER (DOUBL	e-cli	:K HERE TO EDIT)	i< 3		
ked calculates the	term weigh	16			-	and tables	can be at the	e end c	f the paper. Large f	igures and		
ny on basis of	term whi	14			••	tables may	span both co	lumns.	Place figure captions ILET	below the		
cuments. When us	ier enter q	€ 12			-		UNITS P	FOR MAG	ACTIC PROPERTIES			
vill court the term	ne query te colculate th	× 10			-	Symbol	Quantity	(COnversion from Oan CGS EMU to 5	issian and 52 *		
highest weight or	f value it v	a stor		••	-	ф 8	magnetic flux magnetic flux da	ansity,	$1 \text{ Mx} \rightarrow 10^{-1} \text{ Wb} = 10^{-1}$ $1 \text{ O} \rightarrow 10^{-1} \text{ T} = 10^{-1} \text{ Wb}$	V-s		
cuments.		e GZ				п	magnetic induc magnetic field st	ction trangfu	$1 \text{ Oe} \rightarrow 10^{3}$ (4g) Aim			
		68 4				10	magnetic mome	ter	1 erg/0 = 1 enu			
THORE		2 2			-	М	mignetization		1 erg/(G-cm ²) = 1 ensuio	78 ⁵		
ormation retrieva	l, serm fi	0				$4\pi M$	magnetization		$1 \text{ G} \rightarrow 10^{1}(4\pi) \text{ A/m}$			
quency, vector spa	ce model, C		1	2 3 4	5	a	specific migneti	raipai	1 mg/(G-g) = 1 mm/g -	►1 A-m ⁻ /kg		
INTRODUC the information n ranked optimally	TION ctrieval (18 by using us	Fig. 1. M abbreviated spaces. It i caption.	pretication as There is a pe good practice	Applied Mecha ISSN: 1662-74 doi:10.4028/w © 2014 Trans	nics and i 82, Vols ww.scient Tech Pubi	Material 543-547, ific.net/A lications,	pp 4180-41 MM 543-54 Switzerland	84 7.418 1	1		Onli	ne: 2014-03-24
aset [21]. When the isolited to archiver	tuser gives the most	An IE submissic	singnt Porm EE copyrigh n. You ean	Rese	arch a	and Ir	nprover Primar	men ry ai	t Strategies nd Seconda	s on Disast ary School	er Educatio	n for
e relevant docume their degree of rele	nts are thei vance. Maj	volume o	the IEEE 1				Yingii	an I	Hu ^{1,a} , Man	Zhang ^{2,b}		
y on search engine	ts for extra	are respon	sable for obli	¹ Jia	naxi Sci	ence a	nd Techno	loav	Normal Univers	sity. Nanchang.	Jianoxi, P.R.Cl	nina.
eries are processes	d by the s	If you	are using W	² Schor	ol of Info	rmatio	Engineer	rina. I	Nanchang Univ	ersity Nanchar	a Jianaxi P.B	China
tain information r	etrieval or	Editor or	the MathTy		*E ma	JI- 122	0676461 @	Daa o	om : ^b Emoil: m	onzhona20101	0@162.com	
need to obtain the	cluster of	for equat Microsoft	ens in your Equation or		Ema	11: 132	50/5451 (gdd.c	om; "Email: m	anznangzurur	0@165.00m	
portant task is to p ere documents at	resent thes the top are	should no	t be selected.	Keywords:	Disaste	r Educa	ition; Prim	ary a	nd Secondary	School; Strateg	ies	
re relevant for the	user. This	Use eit strongly e units (in storage, eccorption such as " units, sa oersteds, not balar clearly stu The SE	her SI (MKS neoumged.): purentheses for example, is when Eng. 3½ in disk th as currer This often le ce dimensio to the units f unit for mag.	Abstract. 7 education, b ideal. The p through CN to improve t Introductio China is e occurred dis	The free out the si paper ve KI. The the situat n one of the sasters a	puent of ituation rified paper p tion acc he cour ffect or	ccurrence of primar the viewpo proposed the cording to tries most onomic de	e of a ry an oint t he po the a t affe	lisasters make d secondary sel rom the analy int above and p adysis of the di cted by the national second	people pay r hool on disaste sis of documen proposed an im ata collected fo ural disasters ir ial stability of t	nore attention r education in i its on the ther provement strat the paper.	on disaster China is not ne retrieved tegies model e frequently sing a great
				economic lo	isses and	l casual	ties. Table	1 is	part of econom	ic losses and ca	sualties caused	by disasters
+ GE	Ung	sup G	E	choose from	1 China	Statisti	cal yearbo	ook .	2011. Especiall	y after the We	nchuan earthau	ake, experts
	· · · ·	r		and scholar	s in Ch	ina beg	gin to foc	us m	ore attention of	on disaster edu	cation research	h, and have
F	P	R	F	achieved so	me succ	ess. He	owever, re	searc	hes on primary	and secondar	school are in	a low level
-	-		-	contrast to d	lisaster e	ducatio	n to other	grou	ps.	tias canoad he di-	where	
.48	.49	.44	.46		Year	Direct	economic	Di	ect economic	Casualties	Casualties	1
						losses	caused by	los	ses caused by	caused by	caused by	
.29	.28	.38	.32			eart (m	hquake illion)	natu di	ral and Oceanic aster(billion)	earthquake (frequency)	disaster (frequency)	

	Table 1. The ec	onomic losses and casua	Ities caused by dis	asters
Year	Direct economic losses caused by earthquake (million)	Direct economic losses caused by natural and Oceanic disaster(billion)	Casualties caused by earthquake (frequency)	Casualties caused by disaster (frequency)
2000	1467.92	12.08	2855	79
2001	1484.49	10.01		401
2002	147.74	6.59	362	124
2003	4660.40	8.05	7465	128
2004	949.59	5.42	696	140
2005	2628.11	33.24	882	371
2006	799.62	21.85	229	492
2007	2019.22	8.84	422	161
2008	859495.94	20.61	446293	152
2009	2737.82	10.02	407	95
2010	23610.77	13.28	13795	137

Source China Sharking and Annual Sharking and Sharking an researchers in China is defined as education on improving citizens' awareness and ability to cope

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written Tech Publications, www.scientific.net. (20/1 1/17,1628:38)

Mes paris sur les directions à venir

- 1. Apprendre à partir de très peu d'exemples
- 2. Apprendre à partir de multiples sources de données hétérogènes
- 3. Apprendre par analogie et par transfert
- 4. Apprendre pour construire des théories ? (causalité et explications)
- 5. L'intégration de multiples systèmes apprenants
- 6. Le « teaching data science »

Que savons-nous de l'apprentissage en environnement non stationnaire ?

Transfert et analogie

Transfer and analogy

Transfer learning

Definition [Pan, TL-IJCAI'13 tutorial]

Ability of a system to recognize and apply knowledge and skills learned in previous domains/tasks to novel domains/tasks

Example

- We have labeled images (person / no person) from a web corpus
- Novel task: is there a person in unlabeled images from a video corpus?

Person no Person

Is there a Person?

Web corpus

Video corpus

Montpellier SupAgro (2020) « Une perspective sur l'apprentissage » (A. Cornuéjols) 197 / 178

Transfert learning: questions

• What can be **the basis** of transfer learning?

How to translate formally :

"the target domain *is like* the source domain"?

- What **determine a good transfer**?
 - A "good source"?
 - A high "similarity" between source and target?
- What **formal guarantees** can we have on the transferred hypothesis?

Not i.i.d. anymore

Apprentissage en environnement non stationnaire

- La distribution en **utilisation** n'est pas la même qu'en apprentissage
 - L'échantillon d'apprentissage n'est pas représentatif

E.g.:

- Apprendre à discriminer des évènements rares
- Apprentissage actif
- Environnement changeant

La théorie statistique de l'apprentissage ne fonctionne plus

- Les garanties théoriques sont trop éloignées de l'usage

Mes paris sur les directions à venir

- 1. Apprendre à partir de très peu d'exemples
- 2. Apprendre à partir de **multiples sources de données** hétérogènes
- 3. Apprendre par analogie et par transfert
- 4. Apprendre pour **construire des théories ?** (causalité et explications)
- 5. L'intégration de multiples systèmes apprenants
- 6. Le « teaching data science »

We start to pay attention to new demands

- 1. The need for explanations
 - Structures
 - Causal reasoning
 - No more only error rate

Mes paris sur les directions à venir

- 1. Apprendre à partir de très peu d'exemples
- 2. Apprendre à partir de **multiples sources de données** hétérogènes
- 3. Apprendre par analogie et par transfert
- 4. Apprendre pour construire des théories ? (causalité et explications)
- 5. L'intégration de multiples systèmes apprenants
- 6. Le « teaching data science »

Interactions between learning modules

Adaptive advertising placement system

- Two sub-systems
 - One placing advertising links
 - The other one choosing the adds
- Mutually influencing each other
 - Each one is based on click data
 - Which also depends on the intervention of the other system
 - And other **uncontrolled factors** (price, user requests, ...)

[L. Bottou et al. *«Counterfactual Reasoning and Learning Systems: The Example of Computational Advertising »*, JMLR, 14, (2013), 3207-3260]

Mes paris sur les directions à venir

- 1. Apprendre à partir de très peu d'exemples
- 2. Apprendre à partir de **multiples sources de données** hétérogènes
- 3. Apprendre par analogie et par transfert
- 4. Apprendre pour construire des théories ? (causalité et explications)
- 5. L'intégration de multiples systèmes apprenants
- 6. Le « teaching data science »

Transfer and sequence effects

Long-life learning

- Learning organized in **a sequence of tasks**
 - Very far from the i.i.d. scenario

Learning will be affected by the history of the system

- We need a theory of the dynamics of learning
 - 1. Which **sequence effects** can we expect?
 - 2. How to **best organize the curriculum** of a learning system?

Un pari

Aller vers des systèmes capables d'enseigner

- 1. **Expliquer** un cas
- 2. Synthétiser
- 3. Organiser un **curriculum**
- > Vers une évaluation des systèmes par la performance de leurs élèves ?

Conclusions: "new" scenarios

- Limited data sources
 - We often learn from (very) few examples
- The past **history** of learning affects learning: Education
 - Sequence effects
- We learn in order to **build "theories"**
 - All the time: small and large theories

For instance, what would you like to ask?

Suppléments

En pratique

En pratique

- 1. Obtenir les données
- 2. Importance des **prétraitements**
- 3. Importance de la disponibilité des experts métier
- 4. Bien penser le recueil des données
- 5. Les questions **juridiques**

Obtenir les données

Souvent difficile !!!

- Les données ne sont pas encore disponibles
- Le donneur d'ordre n'est **pas détenteur des données**
 - Pas le même service / département
- Les données sont **protégées par des droits**
- Une partie des données **reste à recueillir**

Les prétraitements

- 90% du temps d'un projet
- Recueil des données
- Mise dans un format adéquat
- Nettoyage
 - Bruit dans les données
 - Données manquantes
 - Données aberrantes
 - Doublons
 - Normalisation des mesures
 - **Discrétisation** de valeurs continues
 - Rendre continues des valeurs discrètes
- Élimination des attributs rougeondants / calcul de nouveaux attributs
- Précision / incertitude
- Intégration de plusieurs sources de données (hétérogènes)
- ...

Choix d'un bon critère de performance

Disponibilité des experts métier

Essentiel !!!

- Comprendre le problème
- Établir un vocabulaire commun
- Évaluer les résultats
- Orienter / ré-orienter
- S'approprier les résultats / assurer la suite

Bien penser le recueil des données

Essentiel !!!

- Exemple : Internet des Objets (IoT)
 - Objets faciles et agréables à utiliser
 - Mais
 - Ne recueille pas les données nécessaires
 - Développement « agile »
 - ✓ Changements de formats
 - Changements des mesures recueillies

2 ans de perdus

Tout reprendre à zéro

Les questions juridiques

Essentiel !!!

- Données **personnelles**
- Obtenir l'autorisation
 - CNIL
 - RGPD
 - À partir du 25 mai 2018, le Règlement Général Européen sur la Protection des Données (RGPD) affectera toutes les organisations traitant les données personnelles identifiables (DPI) de résidents européens.

