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Intro Static view Dynamic view Changes Conclusions

“Incremental learning”: a new topic?

The first learning algorithms were all incremental:

Perceptron [Rosenblatt, 1957-1962]

CHECKER [Samuel, 1959]

ARCH [Winston, 1970]

Version Space [Mitchell, 1978, 1982], ...

However, most existing learning algorithms are not!

C4.5 / Regression trees / ...

SVM / Neural Networks / ...

ILP systems / Grammatical inference / ...

...

2 / 63



Intro Static view Dynamic view Changes Conclusions

Outline

1 Introduction

2 On-line learning in a static world

3 On-line learning in a world in movement

4 Focus on changes, not on pictures

5 Conclusions

3 / 63



Intro Static view Dynamic view Changes Conclusions Standard setting Renewed interest

Outline

1 Introduction
The standard setting: one-shot and i.i.d.
On-line learning: a renewed interest

2 On-line learning in a static world

3 On-line learning in a world in movement

4 Focus on changes, not on pictures

5 Conclusions

4 / 63



Intro Static view Dynamic view Changes Conclusions Standard setting Renewed interest

Illustration

Example

Descriptors

Descriptor values

Labels

Concept
or 

hypothesis
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Choix de H
Fonctions de décision à base de dictionnaire

h(x, w) =
Pn

i=1 wi gi(x) + w0

where the gi(x) are the basis functions

Exemple : Multi-Layer Perceptron
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Choix de H
The Support Vector Machines: SVM

h∗(x) = (w? x) + w?
0 =

m∑
i=1

α?
i ui . 〈φ(xi) , φ(x)〉 + w?

0

SVM : redescription space Φ(X )

Marge

maximale

Hyperplan
optimal

h(x)  =  0

h(x)  = +1

h(x) = -1

Vecteurs
de support

h(x) > 1

h(x) < -1

w

1
w

SVM : initial space X
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Decision Trees

Exemple :Decision Trees

x1 = 0.70x1 = 0.17

x1 = 0.35

x2 = 0.88

x2 = 0.40

x2 = 0.50

c1c2

c1c1 c2

c1 c2

x1 < 0.35

x1 < 0.17

x1 < 0.70

x2 < 0.88x2 < 0.40

x2 < 0.50
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The standard setting

Learning algorithms geared to the analysis of large data bases

Stationary and identical distribution for learning and test

i.i.d. assumption (independently and identically distributed)

PY PX|Y

y < x , y >

Figure: Generative process for the examples.

Almost correct prediction (most of the time) (PAC)

L(h) = PXY{h(x) 6= y}
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The standard setting
Optimizing the expected risk

Real risk: expected loss

R(h) = E[`(h(x), y)] =

Z
x∈X ,y∈Y

`(h(x), y) PXY d(x, y)

But PXY is unknown, then use: Sm = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m

Empirical risk Minimization

ĥ = ArgMin
h∈H

ˆ
Rm(h)

˜
+ Reg

˜
= ArgMin

h∈H

»
1
m

mX
i=1

`(h(xi), yi)

–
+ λ Capacity(H)

˜

1 All examples are equal: no forgetting
2 Commutative criterion: no information from the sequence
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Key idea no1:

Essential character of the inductive criterion

Expresses the problem:

Cost of misclassification
Global measure of performance taken as a substitute for the real one

Allows us to analyze the conditions for a successful induction

Did motivate most modern learners (SVM, Boosting, ...)

11 / 63



Intro Static view Dynamic view Changes Conclusions Standard setting Renewed interest

The paradigm ... and its limits

Link between the past and the future:
distributions PX et PY|X are supposed stationnary

I.i.d. data
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Measuring and controlling a world in movement

New types of data

Data are made available through unlimited streams that continuously flow,
possibly at high-speed

The underlying regularities may evolve over time rather than be stationary

The data is now often spatially as well as time situated

The data can no longer be considered as independent and identically
distributed
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On-line learning: why bother?

A wealth of new applications

1 Limited resources:
Learning from very large data bases (e.g. Telecoms: millions of
examples ; EGEE: billions of examples, ...)

2 “Anytime” constraints: Data streaming

3 Covariate shift: stationary target concept but changing distribution

4 Active learning

5 Concept drift

6 Transfer learning from one task to another

7 Tutored learning with a professor

The data can no longer be considered as independent and
identically distributed
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Empirical incremental learning

Lots of empirical and heuristic techniques

to solve computational and on-line issues

Reduce computational cost

Heuristic approaches
k-nearest neighbors
Decision Trees

Issues raised
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Stochastic gradient vs. total gradient
Total gradient

ĥ = ArgMin
h∈H

Rm(h) = ArgMin
h∈H

1
m

mX
i=1

`(h(xi), yi)

Total gradient

ht = ht−1 − Φt
∂Rm(ht−1)

∂h

= ht−1 − Φt
1
m

∂

∂h

mX
i=1

(ht−1(xi), yi)

Linear convergence towards the optimum ĥ de Rm(h) : (ht − ĥ)2 converges as e−t.

BLC05 L. Bottou et Y. Le Cun (2005) “On-line learning for very large datasets” Applied Stochastic Models in
Business and Industry, 21(2):137-151, 2005.
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Stochastic gradient vs. total gradient
Stochastic gradient

ĥ = ArgMin
h∈H

Rm(h) = ArgMin
h∈H

1
m

mX
i=1

`(h(xi), yi)

Stochastic gradient

ht = ht−1 −
1
t

Φt
∂L
∂h

(ht−1(xt), yt)

Converges slowly towards a local optimum of Rm(h) : (ht − ĥ)2 converges as 1
t .

In fact, converges quickly towards the region of the optimum
but slowly then because of the noisy (stochastic) gradient.

Much simpler than batch
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Stochastic gradient vs. total gradient

Computational complexity

Batch
Store N examples
Gradient in O(N) operations

On-line
Must memorize the “sufficient past” (in ht)
Gradient in O(1) operations

Approximation

Batch
Converges towards h∗ = ArgMinh∈H R(h) with approximation O(1/t)

On-line
Converges towards h∗ = ArgMinh∈H R(h) with approximation O(1/t)

But can consider more examples !!
(O(N log N) instead of N for batch)
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Key idea no2:

On-line learning is simpler (less costly)

... which can lead to better learning performance!
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Incremental learning
Illustration

Nearest neighbors

X ?

Simple algorithm (“lazy learning”)

Order independent

But growing computational cost (time and space): O(m)
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Incremental learning
Illustration

Nearest neighbors (2)
with limited memory

?

Selection of “prototypes”
Eliminate the outlier
Eliminate the most ancien
Compute and keep center of gravity with the closest point
...

Order dependent
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Incremental learning
Illustration

Incremental induction of decision trees (ID5R)

Actually memorizes all examples

Order independent

But computational time at each step : O(m · d · bd)

UTG89 Paul Utgoff (1989) “Incremental Induction of Decision Trees” Machine Learning Journal, vol.4, No.2,
161-186
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Incremental learning
Assessment

Numerous heuristic algorithms

Motivations

Computational constraints (e.g. constant time)

Time series

New questions

What to keep in memory?

Sequence effects

How to reduce them?
(How to use the information in the sequence?)
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Data streams
A first illustrative example

Paul presents a permutation of the n first integers, one by one, with one
integer missing

E.g.: n = 10 3, 7, 6, 8, 5, 1, 9, 2

Carol must identify the missing number.

Caveat : She cannot store all the numbers seen so far (which would take
O(n log n) digits).

Solution:

Carol adds all the numbers seen so far (O(log n) digits and
computational cost O(log n)

and she subtracts that sum from n·(n+1)
2

Total cost : space O(log n) digits ; computation O log n
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Data streams
A first illustrative example

What if Paul shows all but two numbers?

E.g.: n = 10 3, 7, 6, 5, 1, 9, 2

Solution:

Carol keeps the sum and sum of squares of numbers seen so far
(O(n log n) digits and computational cost O(n log n))

P9
i=1 xi = n·(n+1)

2 = 9 · 10/2 = 45P9
i=1 x2

i = n(n+1)(2n+1)
6 = 9·90·19

6 = 285

3 + 7 + 6 + 5 + 1 + 1 + 9 + 2 = 33

9 + 49 + 36 + 25 + 1 + 81 + 4 = 205

x1 + x2 = 12 et x2
1 + x2

2 = 80

d’où x1 = 4 et x2 = 8
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Data streams
Lessons

Lessons:

The solution relies on keeping summaries of the data

Here, the solution is exact. Most of the time, it can only be approximate
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Data streams
Challenges

Not enough space to store all the stream data

Hence, impossible to rescan the whole data set

Need to adapt to changing data distribution

Processing should be as fast as possible

Data streaming is an incremental process

(i.e. new iterations are built based on previous ones)
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Data streams
Frequently used learners

Desirable properties

Low runtime complexity

Inherently incremental

Frequently used learners

Decision trees (VFDT, adaptive VFDT)

Rule learners

SVM (Support Vector Machines)

Naïve Bayes

Instance-based learners (e.g. k-nearest neighbors)
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On-line learning: the issues

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach,
but too costly computationally
→ Reduce time and space complexity

Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

Not i.i.d.
→ Anticipate and take advantage of sequence information

covariate shift / transductive learning / tracking

Changing environment

Not i.i.d. + Non stationary
→ Anticipate and take advantage of sequence information

concept drift

transfer learning / tutored learning
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Covariate shift
Definition

Changing PX

Examples:
Non stationary input data (PX changes but not PY|X )

Medicine: seasonal variations
Spam filtering (adaptation to a new user)

Bias in the selection process in learning

Artificially balanced training data (but not in test)
Active learning
Interpolation vs. extrapolation (in regression)
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Covariate shift
Why is it a problem?

No longer a “direct” link between empirical risk and real risk

Modify the inductive criterion

The performance for the target distribution P′
X (generalization) depends on :

The performance for PX (learning)

The similarity between PX and P′
X
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Covariate shift
Approaches

“Importance weighted” inductive criterion

Principle : weighting the classical ERM

RCov(h) =
1
m

mX
i=1

„
PX ′(xi)

PX (xi)

«λ

(h(xi − yi)
2

λ controls the
stability /

consistency
(absence of bias)

SKM07 M. Sugiyama and M. Kraudelat and K.-R. Müller (2007) “Covariate Shift Adaptation by Importance
Weighted Cross Validation” Journal of Machine Learning Research, vol.8: 985-1005.
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Covariate shift
Approaches

“Importance weighted” inductive criterion (classification task)

SKM07 M. Sugiyama and M. Kraudelat and K.-R. Müller (2007) “Covariate Shift Adaptation by Importance
Weighted Cross Validation” Journal of Machine Learning Research, vol.8: 985-1005.
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Covariate shift
Approaches

“Importance weighted” inductive criterion

How to get PX′ (xi)
PX (xi)

?

Empirical estimation

Semi-supervised learning
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On-line learning: the issues

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach,
but too costly computationally
→ Reduce time and space complexity

Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

Not i.i.d.
→ Anticipate and take advantage of sequence information

covariate shift / transductive learning / tracking

Changing environment

Not i.i.d. + Non stationary
→ Anticipate and take advantage of sequence information

concept drift

transfer learning / tutored learning
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Concept drift
Definition

Drift of PX|Y

Exemples :

Profiles of customers (purchases function of income, age, ...)

Document filtering function of the interests of the user
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Concept drift
Definition

Drift of PY|X

Profiles of customers (purchases function of income, age, ...)

Document filtering function of the interests of the user

Problems:

Detecting variations but be robust to noise

Follow the evolutions but stay robust: Control forgetting

The oldest the data, the more likely they are obsolete
But:

The larger the training set, the better the generalization

Heuristic approaches

Window based approaches. Problem: control their size

Weighting the examples with respect to time. Problem: control their weights
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Key idea no3:

Control the memory of the past
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Concept drift
The decision tree approach: VFDT

Stream Mining: VFDT = Very Fast Decision Tree Learner

Key question: How much data is needed to safely induce node?

Use Hoeffding-bound: estimate the nb of examples necessary to
acknowledge IG(Xbest) - IG(X2nd best) > ε, with prob. 1− δ

DH00 Domingos, Hulten (2000) “Mining high-speed data streams” KDD 2000, 71-80.
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Concept drift
Concept adapting VFDT

VFDT assumes stationarity

If no stationarity: node may violates IG(Xbest) - IG(X2nd best) > ε

If drift suspected:
start learning alternative subtree
exchange subtree if more accurate than current subtree

Fast adaptation by forgetting
maintain window in memory to correct sufficient statistics at nodes
but window of fixed size (forgetting is not adaptive)

HSD01 Hulten, Spencer, Domingos (2001) “Mining time changing data streams” KDD 2001, 97-106.
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Concept drift
Sliding window approach

Principle:

xt

t

Performance

Performance

t

xt+∆

WK96 G. Widmer and M. Kubat (1996) “Learning in the presence of concept drift ans hidden contexts” Ma-
chine Learning 23: 69–101, 1996.
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Concept drift
Sliding window approach

One (among many) method for the selection of windows

Learn a classifier on the last batch

Test it on every preceding windows

Keep the windows where error < ε

SK M. Scholz and R. Klinkenberg (1996) “Boosting classifiers for drifting concepts” Intelligent Data Analysis
(IDA) Journal, Volume 11, Number 1, March 2007.
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Concept drift
Locally weighted forgetting

Forget redundant data first

All data starts with weight 1

Weights of k nearest neighbors are adjusted
The closer the data to the new sample, the more the weight is decayed
If weight drops below some threshold, remove data

Sal97 Salganikoff (1997) “Tolerating concept and sampling shift in lazy learning using prediction error context
switching” Artificial Intelligence Review, Volume 11, pp.133-155, 1997.

45 / 63



Intro Static view Dynamic view Changes Conclusions Issues Cov. shift Drift

Concept drift
Ensemble methods

Learn a number of models on different parts of the data

Weigh classifiers according to recent performance

If classifier performance degrades, replace it by a new classifier
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Concept drift
Ensemble methods

Dynamic weighted majority

Classifiers in ensemble have initially a weight of 1

For each new instance:
If a classifier predicts incorrectly, reduce its weight
If weight drops below threshold, remove classifier
If ensemble then predicts incorrectly, install new classifier
Finally, all classifiers are (incrementally) updated by considering new
instance

KM03 Kolter, Maloof (2003) “Dynamic weighted majority: a new ensemble method for tracking concept drift”
ICDM 2003, 123-130.
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Concept drift
Ensemble methods

Accuracy weighted majority

Divide streams into chunks

Learn new classifier from n such chunks
and keep the k top performing classifiers

Use most recent chunk to estimate expected accuracy of each classifier

Weigh classifiers in the ensemble by expected accuracy
(Results are provably better than by averaging decisions)

WFYH03 Wang, Fan, Yu, Han (2003) “Mining concept-drifting data streams using ensemble classifiers” KDD
2003, 226-235.
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Concept drift
A Boosting approach

How to learn concept 2 before the end of the transition ?

SK M. Scholz and R. Klinkenberg (1996) “Boosting classifiers for drifting concepts” Intelligent Data Analysis
(IDA) Journal, Volume 11, Number 1, March 2007.
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Concept drift
A Boosting approach

Principle :
gradually modify the distribution of the examples

by “substracting” the distribution associated with concept
1.

∀〈x, y〉 ∈ X × Y : PD′ (x, y) = PD(x, y) ·
PD[ht−1(x) = ŷ] · PD[y = y∗]

PD[ht−1(x) = ŷ, y = y∗]

h(x) = sign

[ T
∑

t=0

αt · ht(x)

]
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Concept drift
Assessment

Heuristics

Efficient in their respective application domains

Require a fine tuning

Not easily transferable to other domains

Lack theoretical fundations

Theoretical analyses

What are the conditions for PAC learning with an error of ε ?
Depends upon dH and the speed of the drift v (measured as the prob. that 2 subsequent

concepts disagree on a randomly drawn example)

Possible if v = O(ε2/d2
H ln 1

ε
)) (usually impractically large)

Rk: adversary protocol

HL94 D. P. Helmbold and P. M. Long (1994) “Tracking drifting concepts by minimizing disagreements” Ma-
chine Learning 14 (1): 27–45, 1994.
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Concept drift
... further issues

Desirable to:

Recognize and treat recurring contexts
E.g. seasonal variations
→ quickly recover old models if appropriate

Provide insights about change
Trends, “Second derivative"
Interpretability: “What has changed and how?"
By comparison with the last model(s): discover interesting new
knowledge

Useful properties:

keeping models

Having a model for change vs. a model for current context
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Concept drift
... further issues
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Key idea no4:

Focus on the changes themselves

... and not only on models of the current context
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Tracking
Motivation

In a lot of natural settings:

Data comes sequentially

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

This enables:

Powerful learning

with limited resources
(time + memory)

x1

x2

X

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.
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Tracking
Characteristics

If “temporal consistency” holds ...

... enormous advantage for learning

1 Less computational cost
Time: take into account fewer examples at each time step
Space: does not store every past examples

2 Intrinsically on-line and adapted to non stationary environments

But can we:

1 Formalize this?
2 Measure this advantage?
3 Turn this into a learning strategy?
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Tracking
Analysis

A fundamental tradeoff

Temporal Consistency

Small memory
Simple H

←→

i.i.d. data

Large memory
“Complex” H
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Tracking
A new inductive problem

Notion of temporal consistency

f (·, θt) continuous
and with bounded variation / θt

New inductive criterion

L〈0,T〉(r) =

TX
t=0

`(ht(xt), yt)

+ λ
X
||ht − ht−1||2

+ Capacity(R)

x

y

fenêtre

x

y

fenêtre

Do not optimize the choice of ONE h any longer!!

but optimize the learning rule (r ∈ R) instead: (ht−1, xt)
r−→ ht !!
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Tracking
Issues in want of answers

New inductive criterion

L〈0,T〉 =

TX
t=0

`(ht(xt), yt) + λ
X
||ht − ht−1||2 + Capacity(R)| {z }

new criterion

How to find a good learning rule r ∈ R ?

rule complexity

(memory + complexity)
←→

Local complexity
of target function

Control of bias-variance (overfitting)
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Conclusions
Emerging applications can not be solved within the classical setting

non i.i.d. data: the sequence conveys information

Learning is a limited rationality activity

Lots of open questions

How to deal with non i.i.d. data

What to memorize? / What to forget?
How to cope with or take advantage of ordering effects?
How to facilitate future learning: change representations, ...?

What should the inductive criterion be?

How to take the computational resources into the inductive criterion?
Optimize h ∈ H or r ∈ R?

Already a growing body of works

Covariate shift, transduction, concept drift, tracking ...

Transfer between tasks / Teachability

A mature science of on-line learning is in demand
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The future ...

... starts here!

THANK YOU!
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