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Introduction Relevant works Tracking Conclusions

“Incremental learning”: a new topic?

The first learning algorithms were all incremental:

Perceptron [Rosenblatt, 1957-1962]

CHECKER [Samuel, 1959]

ARCH [Winston, 1970]

Version Space [Mitchell, 1978, 1982], ...

However, most existing learning algorithms are not!

C4.5 / Regression trees / ...

SVM / Neural Networks / ...

ILP systems / Grammatical inference / ...

...
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The standard setting

Learning algorithms geared to the analysis of large data bases

Stationary and identical distribution for learning and test

i.i.d. assumption (independently and identically distributed)

PY PX|Y

y < x , y >

Figure: Generative process for the examples.

Almost correct prediction (most of the time) (PAC)

L(h) = PXY{h(x) 6= y}
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The standard setting
Optimizing the expected risk

Real risk: expected loss

R(h) = E[`(h(x), y)] =

Z
x∈X ,y∈Y

`(h(x), y) PXY d(x, y)

But PXY is unknown, then use: Sm = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m

Empirical risk Minimization

ĥ = ArgMin
h∈H

ˆ
Rm(h)

˜

+ Reg
˜

= ArgMin
h∈H

»
1
m

mX
i=1

`(h(xi), yi)

–

+ λ Capacity(H)
˜

1 All examples are equal: no forgetting
2 Commutative criterion: no information from the sequence
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ĥ = ArgMin
h∈H

ˆ
Rm(h)

˜
+ Reg

˜
= ArgMin

h∈H

»
1
m

mX
i=1

`(h(xi), yi)

–
+ λ Capacity(H)

˜

1 All examples are equal: no forgetting
2 Commutative criterion: no information from the sequence

6 / 42



Introduction Relevant works Tracking Conclusions Standard setting On-line Issues

The standard setting
Optimizing the expected risk

Real risk: expected loss

R(h) = E[`(h(x), y)] =

Z
x∈X ,y∈Y

`(h(x), y) PXY d(x, y)

But PXY is unknown, then use: Sm = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m

Empirical risk Minimization
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On-line learning: why bother?

A wealth of new applications

1 Limited resources:
Learning from very large data bases (e.g. Telecoms: millions of
examples ; EGEE: billions of examples, ...)

2 “Anytime” constraints: Data streaming

3 Covariate shift: stationary target concept but changing distribution

4 Active learning

5 Concept drift

6 Transfer learning from one task to another

7 Tutored learning with a professor
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On-line learning: the issues

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach,
but too costly computationally
→ Reduce time and space complexity

Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

Not i.i.d.
→ Anticipate and take advantage of sequence information

covariate shift / transductive learning / tracking

Changing environment

Not i.i.d. + Non stationary
→ Anticipate and take advantage of sequence information

concept drift

transfer learning / tutored learning
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Outline

1 Introduction

2 Some relevant works
Reduce computational cost

Stochastic gradient approaches
Existing incremental algorithms

Non i.i.d. data
Covariate shift
Transduction

Non stationary environment
Concept drift

A view on the theory of on-line learning

3 A case study into the new science: tracking

4 Conclusions
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Stochastic gradient vs. total gradient
Total gradient

ĥ = ArgMin
h∈H

Rm(h) = ArgMin
h∈H

1
m

mX
i=1

`(h(xi), yi)

Total gradient

ht = ht−1 − Φt
∂Rm(ht−1)

∂h

= ht−1 − Φt
1
m

∂

∂h

mX
i=1

(ht−1(xi), yi)

Linear convergence towards the optimum ĥ de Rm(h) : (ht − ĥ)2 converges as e−t.

BLC05 L. Bottou et Y. Le Cun (2005) “On-line learning for very large datasets” Applied Stochastic Models in
Business and Industry, 21(2):137-151, 2005.
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Stochastic gradient vs. total gradient
Stochastic gradient

ĥ = ArgMin
h∈H

Rm(h) = ArgMin
h∈H

1
m

mX
i=1

`(h(xi), yi)

Stochastic gradient

ht = ht−1 −
1
t

Φt
∂L
∂h

(ht−1(xt), yt)

Converges slowly towards a local optimum of Rm(h) : (ht − ĥ)2 converges as 1
t .

In fact, converges quickly towards the region of the optimum
but slowly then because of the noisy (stochastic) gradient.

Much simpler than batch
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Stochastic gradient vs. total gradient

Computational complexity

Batch
Store N examples
Gradient in O(N) operations

On-line
Must memorize the “sufficient past” (in ht)
Gradient in O(1) operations

Approximation

Batch
Converges towards h∗ = ArgMinh∈H R(h) with approximation O(1/t)

On-line
Converges towards h∗ = ArgMinh∈H R(h) with approximation O(1/t)

But can consider more examples !!
(O(N log N) instead of N for batch)
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Incremental learning
Illustration

Nearest neighbors

X ?

Simple algorithm (“lazy learning”)

Order independent

But growing computational cost (time and space): O(m)
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Incremental learning
Illustration

Nearest neighbors (2)
with limited memory

?

Selection of “prototypes”
Eliminate the outlier
Eliminate the most ancien
Compute and keep center of gravity with the closest point
...

Order dependent
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Incremental learning
Illustration

Incremental induction of decision trees (ID5R)

Actually memorizes all examples

Order independent

But computational time at each step : O(m · d · bd)

UTG89 Paul Utgoff (1989) “Incremental Induction of Decision Trees” Machine Learning Journal, vol.4, No.2,
161-186

15 / 42



Introduction Relevant works Tracking Conclusions Cost Non i.i.d. Drift Theory

Incremental learning
Illustration

Incremental induction of decision trees (ID5R)

Actually memorizes all examples

Order independent

But computational time at each step : O(m · d · bd)

UTG89 Paul Utgoff (1989) “Incremental Induction of Decision Trees” Machine Learning Journal, vol.4, No.2,
161-186

15 / 42



Introduction Relevant works Tracking Conclusions Cost Non i.i.d. Drift Theory

Incremental learning
Assessment

Numerous heuristic algorithms

Motivations

Computational constraints (e.g. constant time)

Time series

New questions

What to keep in memory?

Sequence effects

How to reduce them?
(How to use the information in the sequence?)
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On-line learning: the issues

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach,
but too costly computationally
→ Reduce time and space complexity

Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

Not i.i.d.
→ Anticipate and take advantage of sequence information

covariate shift / transductive learning / tracking

Changing environment

Not i.i.d. + Non stationary
→ Anticipate and take advantage of sequence information

concept drift

transfer learning / tutored learning
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Covariate shift
Definition

Changing PX

Examples:

Non stationary input data (PX changes but not PY|X )

Medicine: seasonal variations
Spam filtering (adaptation to a new user)

Bias in the selection process in learning

Artificially balanced training data (but not in test)
Active learning
Interpolation vs. extrapolation (in regression)
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Covariate shift
Why is it a problem?

No longer a “direct” link between empirical risk and real risk

Modify the inductive criterion

The performance for the target distribution P′
X (generalization) depends on :

The performance for PX (learning)

The similarity between PX and P′
X
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Covariate shift
Approaches

“Importance weighted” inductive criterion

Principle : weighting the classical ERM

RCov(h) =
1
m

mX
i=1

„
PX ′(xi)

PX (xi)

«λ

(h(xi − yi)
2

λ controls the
stability /

consistency
(absence of bias)

SKM07 M. Sugiyama and M. Kraudelat and K.-R. Müller (2007) “Covariate Shift Adaptation by Importance
Weighted Cross Validation” Journal of Machine Learning Research, vol.8: 985-1005.
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Covariate shift
Approaches

“Importance weighted” inductive criterion

How to get PX′ (xi)
PX (xi)

?

Empirical estimation

Semi-supervised learning
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Transduction
Definition

Given a training set Sm = ((x1, y1), . . . , (xm, ym)),
and the knowledge of test data points xm+1, . . . , xm+k

Identify the best classification vector ym+1, . . . , ym+k from a given set of
possible vectors Y ∈ Yk

One is no longer looking for a decision function defined over X !!

a b c

a b d

a a b a b c

?

i j k

i j l 1 2 3

1 2 4
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Transduction
Methods
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On-line learning: the issues

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach,
but too costly computationally
→ Reduce time and space complexity

Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

Not i.i.d.
→ Anticipate and take advantage of sequence information

covariate shift / transductive learning / tracking

Changing environment

Not i.i.d. + Non stationary
→ Anticipate and take advantage of sequence information

concept drift

transfer learning / tutored learning
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Concept drift
Definition

Drift of PY|X

Profiles of customers (purchases function of income, age, ...)

Document filtering function of the interests of the user

Problems:

Detecting variations but be robust to noise

Follow the evolutions but stay robust: Control forgetting

The oldest the data, the more likely they are obsolete
But:

The larger the training set, the better the generalization

Heuristic approaches

Window based approaches. Problem: control their size

Weighting the examples with respect to time. Problem: control their weights
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Concept drift
Sliding window approach

Principle:

xt

t

Performance

Performance

t

xt+∆

WK96 G. Widmer and M. Kubat (1996) “Learning in the presence of concept drift ans hidden contexts” Ma-
chine Learning 23: 69–101, 1996.
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Concept drift
Sliding window approach

One (among many) method for the selection of windows

Learn a classifier on the last batch

Test it on every preceding windows

Keep the windows where error < ε

SK M. Scholz and R. Klinkenberg (1996) “Boosting classifiers for drifting concepts” Intelligent Data Analysis
(IDA) Journal, Volume 11, Number 1, March 2007.

27 / 42



Introduction Relevant works Tracking Conclusions Cost Non i.i.d. Drift Theory

Concept drift
A Boosting approach

How to learn concept 2 before the end of the transition ?
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Concept drift
A Boosting approach

Principle :
gradually modify the distribution of the examples

by “substracting” the distribution associated with concept
1.

∀〈x, y〉 ∈ X × Y : PD′ (x, y) = PD(x, y) ·
PD[ht−1(x) = ŷ] · PD[y = y∗]

PD[ht−1(x) = ŷ, y = y∗]

h(x) = sign

[ T
∑

t=0

αt · ht(x)

]

29 / 42
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Concept drift
Assessment

Heuristics

Efficient in their respective application domains

Require a fine tuning

Not easily transferable to other domains

Lack theoretical fundations

Theoretical analyses

What are the conditions for PAC learning with an error of ε ?
Depends upon dH and the speed of the drift v

Possible if v = O(ε2/d2
H ln 1

ε
))

Rk: adversary protocol

HL94 D. P. Helmbold and P. M. Long (1994) “Tracking drifting concepts by minimizing disagreements” Ma-
chine Learning 14 (1): 27–45, 1994.
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A theoretical approach to on-line learning

A weak framework:

No assumption about the generative process of the examples

Inductive criterion

No more notion of risk

Comparison a posteriori to the performance of a set of N “experts”

Learning algorithms

Maintain a vector of weights on the expert advices

p̂t =

PN
i=1 wi,t−1pi,tPN

i=1 wi,t−1

The weights are function of the regret of each expert.

But does not take into account the information in the data sequence

31 / 42



Introduction Relevant works Tracking Conclusions Cost Non i.i.d. Drift Theory

A theoretical approach to on-line learning

A weak framework:

No assumption about the generative process of the examples

Inductive criterion

No more notion of risk

Comparison a posteriori to the performance of a set of N “experts”

Learning algorithms

Maintain a vector of weights on the expert advices

p̂t =

PN
i=1 wi,t−1pi,tPN

i=1 wi,t−1

The weights are function of the regret of each expert.

But does not take into account the information in the data sequence

31 / 42



Introduction Relevant works Tracking Conclusions Cost Non i.i.d. Drift Theory

A theoretical approach to on-line learning

A weak framework:

No assumption about the generative process of the examples

Inductive criterion

No more notion of risk

Comparison a posteriori to the performance of a set of N “experts”

Learning algorithms

Maintain a vector of weights on the expert advices

p̂t =

PN
i=1 wi,t−1pi,tPN

i=1 wi,t−1

The weights are function of the regret of each expert.

But does not take into account the information in the data sequence

31 / 42



Introduction Relevant works Tracking Conclusions Cost Non i.i.d. Drift Theory

The theoretical viewpoint on on-line learning
Questions ...

Do we have answers to these questions?

Do we have theoretical guarantees about the performance of usual
on-line learning systems (NNs, SVM, ID5, ...)?

NO!

Do we have a satisfactory inductive criterion to replace “Empirical Risk
Minimization”?

NO!

Are we able to predict sequence effects?

NO!
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Tracking
Motivation

In a lot of natural settings:

Data comes sequentially

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

This enables:

Powerful learning

with limited resources
(time + memory)

x1

x2

X

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.
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Tracking
Definition

Assumptions:

Data streams

Temporal consistency : consecutive
data points come from “similar”
distribution: not i.i.d.

Limited resources: Restricted
hypothesis space H

x

y

“Local” learning

and local prediction :

Lt = `(ht(xt), yt)

= `(ht(xt), f (xt, θt))
x

y

fenêtre

SKS:07 R. Sutton and A. Koop and D. Silver (2007) “On the role of tracking in stationary environments” (ICML-
07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.
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Tracking
Characteristics

If “temporal consistency” holds ...

... enormous advantage for learning

1 Less computational cost
Time: take into account fewer examples at each time step
Space: does not store every past examples

2 Intrinsically on-line and adapted to non stationary environments

But can we:

1 Formalize this?
2 Measure this advantage?
3 Turn this into a learning strategy?
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Tracking
Analysis

A fundamental tradeoff

Temporal Consistency

Small memory
Simple H

←→

i.i.d. data

Large memory
“Complex” H
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Tracking
A new inductive problem

Notion of temporal consistency

f (·, θt) continuous
and with bounded variation / θt

New inductive criterion

L〈0,T〉(r) =

TX
t=0

`(ht(xt), yt)

+ λ
X
||ht − ht−1||2

+ Capacity(R)

x

y

fenêtre

x

y

fenêtre

Do not optimize the choice of ONE h any longer!!

but optimize the learning rule (r ∈ R) instead: (ht−1, xt)
r−→ ht !!
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Tracking
Issues in want of answers

New inductive criterion

L〈0,T〉 =

TX
t=0

`(ht(xt), yt) + λ
X
||ht − ht−1||2 + Capacity(R)| {z }

new criterion

How to find a good learning rule r ∈ R ?

rule complexity

(memory + complexity)
←→

Local complexity
of target function

Control of bias-variance (overfitting)
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Outline

1 Introduction

2 Some relevant works

3 A case study into the new science: tracking

4 Conclusions
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Conclusions
Emerging applications can not be solved within the classical setting

non i.i.d. data: the sequence conveys information

Learning is a limited rationality activity

Lots of open questions

How to deal with non i.i.d. data

What to memorize? / What to forget?
How to cope with or take advantage of ordering effects?
How to facilitate future learning: change representations, ...?

What should the inductive criterion be?

How to take the computational resources into the inductive criterion?
Optimize h ∈ H or r ∈ R?

Already a growing body of works

Covariate shift, transduction, concept drift, tracking ...

Transfer between tasks / Teachability

A mature science of on-line learning is in demand
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The future ...

... starts here!

THANK YOU!
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