On-line learning Where are we so far?

Antoine Cornuéjols

MMIP, AgroParisTech, Paris

May 14th, 2008

"Incremental learning": a new topic?

The first learning algorithms were all incremental:

- Perceptron [Rosenblatt, 1957-1962]
- CHECKER [Samuel, 1959]
- ARCH [Winston, 1970]
- Version Space [Mitchell, 1978, 1982], ...

"Incremental learning": a new topic?

The first learning algorithms were all incremental:

- Perceptron [Rosenblatt, 1957-1962]
- CHECKER [Samuel, 1959]
- ARCH [Winston, 1970]
- Version Space [Mitchell, 1978, 1982], ...

However, most existing learning algorithms are not!

- C4.5 / Regression trees / ...
- SVM / Neural Networks / ...
- ILP systems / Grammatical inference / ...
- ...

Outline

- 2 Some relevant works
- A case study into the new science: tracking

4 Conclusions

Outline

Introduction

- The standard setting: one-shot and i.i.d.
- Why one-line learning?
- One-line learning: the issues

2 Some relevant works

3 A case study into the new science: tracking

4 Conclusions

The standard setting

Learning algorithms geared to the analysis of large data bases

- Stationary and identical distribution for learning and test
- i.i.d. assumption (independently and identically distributed)

$$P_{\mathcal{Y}} \xrightarrow{y} P_{\mathcal{X}|\mathcal{Y}} \stackrel{\langle x, y \rangle}{\longrightarrow}$$

Figure: Generative process for the examples.

The standard setting

Learning algorithms geared to the analysis of large data bases

- Stationary and identical distribution for learning and test
- i.i.d. assumption (independently and identically distributed)

$$\begin{array}{c|c} & y \\ \hline \mathbf{P}_{\mathcal{Y}} \end{array} \xrightarrow{ \begin{array}{c} y \\ \hline \mathbf{P}_{\mathcal{X}|\mathcal{Y}} \end{array} } \begin{array}{c} < x, y > \\ \hline \end{array}$$

Figure: Generative process for the examples.

Almost correct prediction (most of the time) (PAC)

$$L(h) = \mathbf{P}_{\mathcal{X}\mathcal{Y}}\{h(\mathbf{x}) \neq y\}$$

Standard setting On-line Issues

The standard setting Optimizing the expected risk

Real risk: expected loss

$$R(h) = \mathbb{E}[\ell(h(\mathbf{x}), y)] = \int_{\mathbf{x} \in \mathcal{X}, y \in \mathcal{Y}} \ell(h(\mathbf{x}), y) \mathbf{P}_{\mathcal{X}\mathcal{Y}} d(\mathbf{x}, y)$$

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の < で 6/42

The standard setting Optimizing the expected risk

Real risk: expected loss

$$R(h) = \mathbb{E}[\ell(h(\mathbf{x}), y)] = \int_{\mathbf{x} \in \mathcal{X}, y \in \mathcal{Y}} \ell(h(\mathbf{x}), y) \mathbf{P}_{\mathcal{X}\mathcal{Y}} d(\mathbf{x}, y)$$

But \mathbf{P}_{XY} is unknown, then use: $S_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (X \times Y)^m$

Empirical risk Minimization

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} [R_m(h)] = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{1}{m} \sum_{i=1}^m \ell(h(\mathbf{x}_i), y_i) \right]$$

The standard setting Optimizing the expected risk

Real risk: expected loss

$$R(h) = \mathbb{E}[\ell(h(\mathbf{x}), y)] = \int_{\mathbf{x} \in \mathcal{X}, y \in \mathcal{Y}} \ell(h(\mathbf{x}), y) \mathbf{P}_{\mathcal{X}\mathcal{Y}} d(\mathbf{x}, y)$$

But \mathbf{P}_{XY} is unknown, then use: $S_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (X \times Y)^m$

Empirical risk Minimization

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} [R_m(h)] + \operatorname{Reg}] = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{1}{m} \sum_{i=1}^m \ell(h(\boldsymbol{x}_i), y_i) \right] + \lambda \operatorname{Capacity}(\mathcal{H}) \right]$$

The standard setting Optimizing the expected risk

Real risk: expected loss

$$R(h) = \mathbb{E}[\ell(h(\mathbf{x}), y)] = \int_{\mathbf{x} \in \mathcal{X}, y \in \mathcal{Y}} \ell(h(\mathbf{x}), y) \mathbf{P}_{\mathcal{X}\mathcal{Y}} d(\mathbf{x}, y)$$

But \mathbf{P}_{XY} is unknown, then use: $S_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (X \times Y)^m$

Empirical risk Minimization

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} [R_m(h)] + \operatorname{Reg}] = \operatorname{ArgMin}_{h \in \mathcal{H}} \left[\frac{1}{m} \sum_{i=1}^m \ell(h(\boldsymbol{x}_i), y_i) \right] + \lambda \operatorname{Capacity}(\mathcal{H}) \right]$$

All examples are equal: no forgetting

Commutative criterion: no information from the sequence

On-line learning: why bother?

A wealth of new applications

1 Limited resources:

- Learning from very large data bases (e.g. Telecoms: millions of examples; EGEE: billions of examples, ...)
- 2 "Anytime" constraints: Data streaming

On-line learning: why bother?

A wealth of new applications

Limited resources:

- Learning from very large data bases (e.g. Telecoms: millions of examples; EGEE: billions of examples, ...)
- 2 "Anytime" constraints: Data streaming
- **Ovariate shift:** stationary target concept but changing distribution
- Active learning

On-line learning: why bother?

A wealth of new applications

Limited resources:

- Learning from very large data bases (e.g. Telecoms: millions of examples; EGEE: billions of examples, ...)
- 2 "Anytime" constraints: Data streaming
- Covariate shift: stationary target concept but changing distribution
- Active learning
- Concept drift
- Transfer learning from one task to another
- Tutored learning with a professor

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach, but too costly computationally

- → Reduce time and space complexity
 - Stochastic gradient / incremental learning

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach, but too costly computationally

- \rightarrow Reduce time and space complexity
 - Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

Not i.i.d.

- \rightarrow Anticipate and take advantage of sequence information
 - ovariate shift / transductive learning / tracking

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach, but too costly computationally

- → Reduce time and space complexity
 - Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

Not i.i.d.

- \rightarrow Anticipate and take advantage of sequence information
 - ovariate shift / transductive learning / tracking

Changing environment

Not i.i.d. + Non stationary

- \rightarrow Anticipate and take advantage of sequence information
 - concept drift
 - transfer learning / tutored learning

Outline

Some relevant works

- Reduce computational cost
 - Stochastic gradient approaches
 - Existing incremental algorithms
- Non i.i.d. data
 - Covariate shift
 - Transduction
- Non stationary environment
 - Concept drift
- A view on the theory of on-line learning

3 A case study into the new science: tracking

4 Conclusions

Stochastic gradient vs. total gradient Total gradient

Stochastic gradient vs. total gradient Total gradient

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} R_m(h) = \operatorname{ArgMin}_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \ell(h(\mathbf{x}_i), y_i)$$

Total gradient

$$h_t = h_{t-1} - \Phi_t \frac{\partial R_m(h_{t-1})}{\partial h}$$

= $h_{t-1} - \Phi_t \frac{1}{m} \frac{\partial}{\partial h} \sum_{i=1}^m (h_{t-1}(\mathbf{x}_i), y_i)$

Linear convergence towards the optimum \hat{h} de $R_m(h)$: $(h_t - \hat{h})^2$ converges as e^{-t} .

BLC05 L. Bottou et Y. Le Cun (2005) "On-line learning for very large datasets" Applied Stochastic Models in Business and Industry, 21(2):137-151, 2005.

Stochastic gradient vs. total gradient Stochastic gradient

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} R_m(h) = \operatorname{ArgMin}_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \ell(h(\mathbf{x}_i), y_i)$$

Stochastic gradient

$$h_t = h_{t-1} - \frac{1}{t} \Phi_t \frac{\partial L}{\partial h}(h_{t-1}(\mathbf{x}_t), y_t)$$

Stochastic gradient vs. total gradient Stochastic gradient

$$\hat{h} = \operatorname{ArgMin}_{h \in \mathcal{H}} R_m(h) = \operatorname{ArgMin}_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \ell(h(\mathbf{x}_i), y_i)$$

Stochastic gradient

$$h_t = h_{t-1} - \frac{1}{t} \Phi_t \frac{\partial L}{\partial h}(h_{t-1}(\boldsymbol{x}_t), y_t)$$

- Converges slowly towards a local optimum of $R_m(h)$: $(h_t \hat{h})^2$ converges as $\frac{1}{t}$.
- In fact, converges quickly towards the region of the optimum but slowly then because of the noisy (stochastic) gradient.

Much simpler than batch

Computational complexity

- Batch
 - Store N examples
 - Gradient in $\mathcal{O}(N)$ operations

Computational complexity

Batch

- Store N examples
- Gradient in O(N) operations

On-line

- Must memorize the "sufficient past" (in h_t)
- Gradient in O(1) operations

Computational complexity

Batch

- Store N examples
- Gradient in O(N) operations

On-line

- Must memorize the "sufficient past" (in h_t)
- Gradient in O(1) operations

Approximation

Batch

Converges towards h∗ = ArgMin_{h∈H} R(h) with approximation O(1/t)

On-line

• Converges towards $h^* = \operatorname{ArgMin}_{h \in \mathcal{H}} R(h)$ with approximation $\mathcal{O}(1/t)$

Computational complexity

Batch

- Store N examples
- Gradient in O(N) operations

On-line

- Must memorize the "sufficient past" (in h_t)
- Gradient in O(1) operations

Approximation

Batch

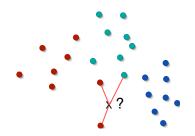
Converges towards h∗ = ArgMin_{h∈H} R(h) with approximation O(1/t)

On-line

- Converges towards h∗ = ArgMin_{h∈H} R(h) with approximation O(1/t)
- But can consider more examples !!
 (O(N log N) instead of N for batch)

Incremental learning

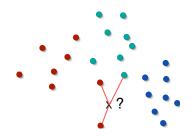
Nearest neighbors



Simple algorithm ("lazy learning")

Incremental learning

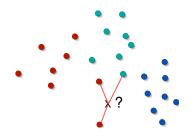
Nearest neighbors



- Simple algorithm ("lazy learning")
- Order independent

Incremental learning Illustration

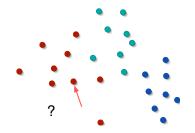
Nearest neighbors



- Simple algorithm ("lazy learning")
- Order independent
- But growing computational cost (time and space): $\mathcal{O}(m)$

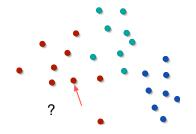
Incremental learning

Nearest neighbors (2) with limited memory



Incremental learning Illustration

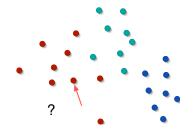
Nearest neighbors (2) with limited memory



- Selection of "prototypes"
 - Eliminate the outlier
 - Eliminate the most ancien
 - Compute and keep center of gravity with the closest point
 - Ο ...

Incremental learning Illustration

Nearest neighbors (2) with limited memory

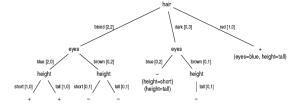


- Selection of "prototypes"
 - Eliminate the outlier
 - Eliminate the most ancien
 - Compute and keep center of gravity with the closest point
 - ...
- Order dependent

Incremental learning

Incremental induction of decision trees (ID5R)

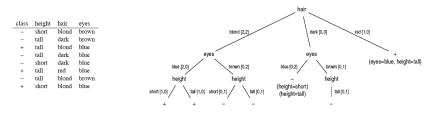
class	height	hair	eyes
-	short	blond	brown
-	tall	dark	brown
+	tall	blond	blue
-	tall	dark	blue
-	short	dark	blue
+	tall	red	blue
-	tall	blond	brown
+	short	blond	blue



UTG89 Paul Utgoff (1989) "Incremental Induction of Decision Trees" Machine Learning Journal, vol.4, No.2, 161-186

Incremental learning

Incremental induction of decision trees (ID5R)



- Actually memorizes all examples
- Order independent
- But computational time at each step : $\mathcal{O}(\mathbf{m} \cdot d \cdot b^d)$

UTG89 Paul Utgoff (1989) "Incremental Induction of Decision Trees" Machine Learning Journal, vol.4, No.2, 161-186

Incremental learning Assessment

Numerous heuristic algorithms

Motivations

- Computational constraints (e.g. constant time)
- Time series

New questions

- What to keep in memory?
- Sequence effects
 - How to reduce them?
 - (How to use the information in the sequence?)

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach, but too costly computationally

- → Reduce time and space complexity
 - Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

Not i.i.d.

- → Anticipate and take advantage of sequence information
 - ovariate shift / transductive learning / tracking

Changing environment

Not i.i.d. + Non stationary

- Anticipate and take advantage of sequence information
 - concept drift
 - transfer learning / tutored learning

Cost Non i.i.d. Drift Theory

Covariate shift Definition

Changing $\boldsymbol{\mathsf{P}}_{\mathcal{X}}$

Covariate shift Definition

Changing $\boldsymbol{\mathsf{P}}_{\mathcal{X}}$

Examples:

- Non stationary input data (P_X changes but not P_{Y|X})
 - Medicine: seasonal variations
 - Spam filtering (adaptation to a new user)

Covariate shift Definition

Changing $\boldsymbol{\mathsf{P}}_{\mathcal{X}}$

Examples:

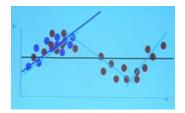
- Non stationary input data (P_X changes but not P_{Y|X})
 - Medicine: seasonal variations
 - Spam filtering (adaptation to a new user)
- Bias in the selection process in learning
 - Artificially balanced training data (but not in test)
 - Active learning
 - Interpolation vs. extrapolation (in regression)

Covariate shift Why is it a problem?

No longer a "direct" link between empirical risk and real risk

Covariate shift Why is it a problem?

No longer a "direct" link between empirical risk and real risk



Cost Non i.i.d. Drift Theory

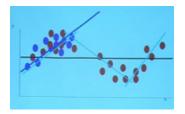
Covariate shift Why is it a problem?

No longer a "direct" link between empirical risk and real risk

Modify the inductive criterion

The performance for the target distribution $\mathbf{P}'_{\mathcal{X}}$ (generalization) depends on :

- The performance for **P**_X (*learning*)
- The similarity between $\textbf{P}_{\mathcal{X}}$ and $\textbf{P}_{\mathcal{X}}'$



Covariate shift Approaches

"Importance weighted" inductive criterion

Principle : weighting the classical ERM

$$R_{Cov}(h) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\mathbf{P}_{\mathcal{X}'}(\mathbf{x}_i)}{\mathbf{P}_{\mathcal{X}}(\mathbf{x}_i)} \right)^{\lambda} (h(\mathbf{x}_i - y_i)^2)$$

Cost Non i.i.d. Drift Theory

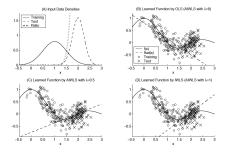
Covariate shift Approaches

"Importance weighted" inductive criterion

Principle : weighting the classical ERM

$$R_{Cov}(h) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{\mathbf{P}_{\mathcal{X}'}(\mathbf{x}_i)}{\mathbf{P}_{\mathcal{X}}(\mathbf{x}_i)} \right)^{\lambda} (h(\mathbf{x}_i - y_i)^2)$$

 λ controls the stability / consistency (absence of bias)



SKM07 M. Sugiyama and M. Kraudelat and K.-R. Müller (2007) "Covariate Shift Adaptation by Importance Weighted Cross Validation" Journal of Machine Learning Research, vol.8: 985-1005; A C = A C

20/42

Covariate shift Approaches

"Importance weighted" inductive criterion

How to get $\frac{\mathsf{P}_{\chi'}(x_i)}{\mathsf{P}_{\chi}(x_i)}$?

Empirical estimation

Semi-supervised learning

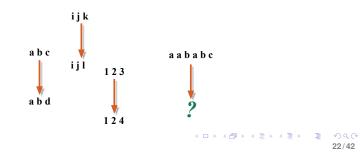
Transduction Definition

- Given a training set S_m = ((x₁, y₁),..., (x_m, y_m)),
 and the knowledge of test data points x_{m+1},..., x_{m+k}
- Identify the best classification vector y_{m+1},..., y_{m+k} from a given set of possible vectors Y ∈ 𝔅^k

One is no longer looking for a decision function defined over $\mathcal{X} \mathrel{!\!!}$

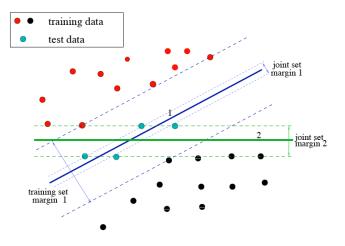
- Given a training set S_m = ((x₁, y₁),..., (x_m, y_m)),
 and the knowledge of test data points x_{m+1},..., x_{m+k}
- Identify the best classification vector y_{m+1},..., y_{m+k} from a given set of possible vectors Y ∈ 𝔅^k

One is no longer looking for a decision function defined over $\mathcal{X} \mathrel{!\!!}$



Cost Non i.i.d. Drift Theory

Transduction Methods



On-line learning: the issues

Computational constraints

Possible in principle with standard (one-shot and i.i.d.) approach, but too costly computationally

- → Reduce time and space complexity
 - Stochastic gradient / incremental learning

Stationary environment but changing distribution + anytime constraints

- → Anticipate and take advantage of sequence information
 - ovariate shift / transductive learning / tracking

Changing environment

Not i.i.d. + Non stationary

- \rightarrow Anticipate and take advantage of sequence information
 - concept drift
 - transfer learning / tutored learning

Concept drift Definition

Drift of $\mathbf{P}_{\mathcal{Y}|\mathcal{X}}$

- Profiles of customers (purchases function of *income, age, ...*)
- Document filtering function of the interests of the user

Concept drift Definition

Drift of $\textbf{P}_{\mathcal{Y}|\mathcal{X}}$

- Profiles of customers (purchases function of income, age, ...)
- Document filtering function of the interests of the user

Problems:

- Detecting variations but be robust to noise
- Follow the evolutions but stay robust: Control forgetting

• The oldest the data, the more likely they are obsolete But:

The larger the training set, the better the generalization

Concept drift Definition

Drift of $\textbf{P}_{\mathcal{Y}|\mathcal{X}}$

- Profiles of customers (purchases function of income, age, ...)
- Document filtering function of the interests of the user

Problems:

- Detecting variations but be robust to noise
- Follow the evolutions but stay robust: Control forgetting

• The oldest the data, the more likely they are obsolete But:

The larger the training set, the better the generalization

Heuristic approaches

Window based approaches.

Problem: control their size

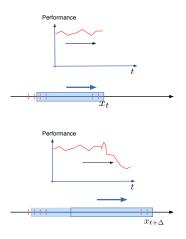
Weighting the examples with respect to time. Problem: control their weights

25/42

Cost Non i.i.d. Drift Theory

Concept drift Sliding window approach

Principle:



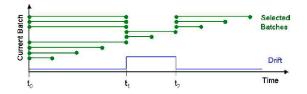
WK96 G. Widmer and M. Kubat (1996) "Learning in the presence of concept drift ans hidden contexts" Machine Learning 23: 69–101, 1996.

26/42

Concept drift Sliding window approach

One (among many) method for the selection of windows

- Learn a classifier on the last batch
- Test it on every preceding windows
- Keep the windows where error $< \varepsilon$



SK

M. Scholz and R. Klinkenberg (1996) "Boosting classifiers for drifting concepts" Intelligent Data Analysis (IDA) Journal, Volume 11, Number 1, March 2007.

Cost Non i.i.d. Drift Theory

Concept drift A Boosting approach

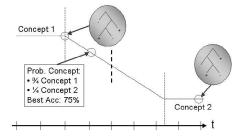


Fig. 4. Continuous concept drift, starting with a pure Concept 1 and ending with a pure Concept 2. In between, the target distribution is a probabilistic mixture. It is optimal to predict Concept 1 before the dotted line, and Concept 2, afterwards.

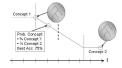
How to learn concept 2 before the end of the transition ?

Cost Non i.i.d. Drift Theory

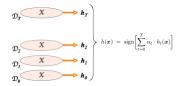
Concept drift A Boosting approach

Principle : gradually modify the distribution of the examples

by "substracting" the distribution associated with concept 1.



$$\forall \langle \mathbf{x}, \mathbf{y} \rangle \in \mathcal{X} \times \mathcal{Y} : P_{D'}(\mathbf{x}, \mathbf{y}) = P_D(\mathbf{x}, \mathbf{y}) \cdot \frac{P_D[h_{t-1}(\mathbf{x}) = \hat{y}] \cdot P_D[\mathbf{y} = \mathbf{y}*]}{P_D[h_{t-1}(\mathbf{x}) = \hat{y}, \mathbf{y} = \mathbf{y}*]}$$



Concept drift Assessment

Heuristics

- Efficient in their respective application domains
- Require a fine tuning
- Not easily transferable to other domains
- Lack theoretical fundations

Concept drift Assessment

Heuristics

- Efficient in their respective application domains
- Require a fine tuning
- Not easily transferable to other domains
- Lack theoretical fundations

Theoretical analyses

What are the conditions for PAC learning with an error of ε ?

- Depends upon $d_{\mathcal{H}}$ and the speed of the drift v
- Possible if $v = \mathcal{O}(\varepsilon^2/d_{\mathcal{H}}^2 \ln \frac{1}{\varepsilon}))$
- Rk: adversary protocol

HL94 D. P. Helmbold and P. M. Long (1994) "Tracking drifting concepts by minimizing disagreements" Machine Learning 14 (1): 27–45, 1994.

A theoretical approach to on-line learning

A weak framework:

• No assumption about the generative process of the examples

Introduction Relevant works Tracking Conclusions

A theoretical approach to on-line learning

A weak framework:

• No assumption about the generative process of the examples

Inductive criterion

- No more notion of risk
- Comparison a posteriori to the performance of a set of N "experts"

Introduction Relevant works Tracking Conclusions

A theoretical approach to on-line learning

A weak framework:

• No assumption about the generative process of the examples

Inductive criterion

- No more notion of risk
- Comparison a posteriori to the performance of a set of N "experts"

Learning algorithms

Maintain a vector of weights on the expert advices

$$\hat{p}_t = \frac{\sum_{i=1}^N w_{i,t-1} p_{i,t}}{\sum_{i=1}^N w_{i,t-1}}$$

The weights are function of the regret of each expert.

But does not take into account the information in the data sequence

31/42

32/42

The theoretical viewpoint on on-line learning Questions ...

Do we have answers to these questions?

- Do we have theoretical guarantees about the performance of usual on-line learning systems (NNs, SVM, ID5, ...)?
- Do we have a satisfactory inductive criterion to replace "Empirical Risk Minimization"?
- Are we able to predict sequence effects?

The theoretical viewpoint on on-line learning Questions ...

Do we have answers to these questions?

 Do we have theoretical guarantees about the performance of usual on-line learning systems (NNs, SVM, ID5, ...)?

• NO!

• Do we have a satisfactory inductive criterion to replace "Empirical Risk Minimization"?

• NO!

Are we able to predict sequence effects?

• NO!

Outline

1 Introduction

- 2 Some relevant works
- A case study into the new science: tracking
 - Definition
 - Analysis
 - A new inductive problem

4 Conclusions

Tracking Motivation

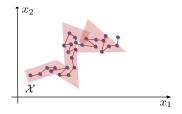
In a lot of natural settings:

- Data comes *sequentially*
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.

Tracking Motivation

In a lot of natural settings:

- Data comes *sequentially*
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.



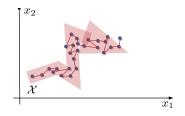
Tracking Motivation

In a lot of natural settings:

- Data comes *sequentially*
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.

This enables:

- Powerful learning
- with limited resources (time + memory)

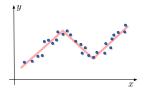


Assumptions:

- Data streams
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.
- Limited resources: Restricted hypothesis space *H*

Assumptions:

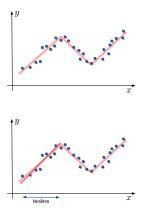
- Data streams
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.
- Limited resources: Restricted hypothesis space H



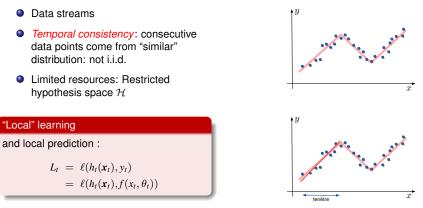
SKS:07 R. Sutton and A. Koop and D. Silver (2007) "On the role of tracking in stationary environments" (ICML-07) Proceedings of the 24th international conference on Machine learning, ACM, pp.871-878, 2007.

Assumptions:

- Data streams
- Temporal consistency: consecutive data points come from "similar" distribution: not i.i.d.
- Limited resources: Restricted hypothesis space H



Assumptions:



Tracking Characteristics

If "temporal consistency" holds ...

... enormous advantage for learning

Less computational cost

- Time: take into account fewer examples at each time step
- Space: does not store every past examples

Intrinsically on-line and adapted to non stationary environments

Tracking Characteristics

If "temporal consistency" holds ...

... enormous advantage for learning

Less computational cost

- Time: take into account fewer examples at each time step
- Space: does not store every past examples

Intrinsically on-line and adapted to non stationary environments

But can we:

- **Formalize** this?
- 2 Measure this advantage?
- Output this into a learning strategy?

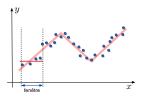
Tracking Analysis

A fundamental tradeoff			
Temporal Consistency		i.i.d. data	
$\begin{array}{c} \textbf{Small memory} \\ \textbf{Simple} \ \mathcal{H} \end{array}$	\longleftrightarrow	Large memory "Complex" \mathcal{H}	

Tracking A new inductive problem

Notion of temporal consistency

 $f(\cdot, \theta_t)$ continuous and with bounded variation / θ_t



イロト イヨト イヨト イヨト

38/42

Definition Analysis A new problem

Tracking A new inductive problem

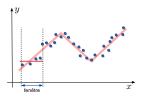
Notion of temporal consistency

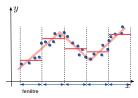
 $f(\cdot, \theta_t)$ continuous and with bounded variation / θ_t

New inductive criterion

$$L_{\langle 0,T \rangle}(r) = \sum_{t=0}^{T} \ell(h_t(\mathbf{x}_t), y_t)$$

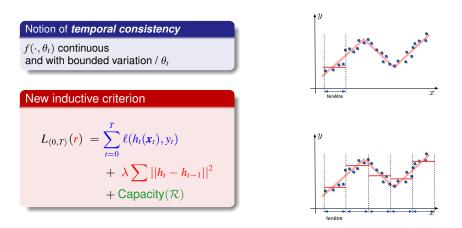
+ $\lambda \sum_{t=0}^{T} ||h_t - h_{t-1}||^2$
+ Capacity(\mathcal{R})





A new problem

Tracking A new inductive problem



Do not optimize the choice of ONE h any longer!! but optimize the learning rule ($r \in \mathcal{R}$) instead: $(h_{t-1}, \mathbf{x}_t) \xrightarrow{r} h_t \parallel$

38/42

Tracking Issues in want of answers

New inductive criterion

$$L_{\langle 0,T\rangle} = \sum_{t=0}^{T} \ell(h_t(\mathbf{x}_t), y_t) + \underbrace{\lambda \sum ||h_t - h_{t-1}||^2 + \text{Capacity}(\mathcal{R})}_{\text{new criterion}}$$

How to find a good learning rule $r \in \mathcal{R}$?

Outline

Introduction

2 Some relevant works

3 A case study into the new science: tracking

4 Conclusions

Emerging applications can not be solved within the classical setting

- non i.i.d. data: the sequence conveys information
- Learning is a limited rationality activity

Emerging applications can not be solved within the classical setting

- non i.i.d. data: the sequence conveys information
- Learning is a limited rationality activity

Lots of open questions

Emerging applications can not be solved within the classical setting

- non i.i.d. data: the sequence conveys information
- Learning is a limited rationality activity

Lots of open questions

- How to deal with non i.i.d. data
 - What to memorize? / What to forget?
 - How to cope with or take advantage of ordering effects?
 - How to facilitate future learning: change representations, ...?

Emerging applications can not be solved within the classical setting

- non i.i.d. data: the sequence conveys information
- Learning is a limited rationality activity

Lots of open questions

- How to deal with non i.i.d. data
 - What to memorize? / What to forget?
 - How to cope with or take advantage of ordering effects?
 - How to facilitate future learning: change representations, ...?

What should the inductive criterion be?

- How to take the computational resources into the inductive criterion?
- Optimize $h \in \mathcal{H}$ or $r \in \mathcal{R}$?

Emerging applications can not be solved within the classical setting

- non i.i.d. data: the sequence conveys information
- Learning is a limited rationality activity

Lots of open questions

- How to deal with non i.i.d. data
 - What to memorize? / What to forget?
 - How to cope with or take advantage of ordering effects?
 - How to facilitate future learning: change representations, ...?

What should the inductive criterion be?

- How to take the computational resources into the inductive criterion?
- Optimize $h \in \mathcal{H}$ or $r \in \mathcal{R}$?

Already a growing body of works

- Covariate shift, transduction, concept drift, tracking ...
- Transfer between tasks / Teachability

Emerging applications can not be solved within the classical setting

- **non i.i.d. data**: the sequence conveys information
- Learning is a limited rationality activity

Lots of open questions

- How to deal with non i.i.d. data
 - What to memorize? / What to forget?
 - How to cope with or take advantage of ordering effects?
 - How to facilitate future learning: change representations, ...?

What should the inductive criterion be?

- How to take the computational resources into the inductive criterion?
- Optimize $h \in \mathcal{H}$ or $r \in \mathcal{R}$?

Already a growing body of works

- Covariate shift, transduction, concept drift, tracking ...
- Transfer between tasks / Teachability

A mature science of on-line learning is in demand

The future ...

... starts here!

THANK YOU!