
A new on-line learning method for coping with
recurring concepts: the ADACC system

Ghazal Jaber1,2,3, Antoine Cornuéjols1,2, and Philippe Tarroux3

1 AgroParisTech, UMR 518 MIA, F-75005 Paris, France
2 INRA, UMR 518 MIA, F-75005 Paris, France

3 Université de Paris-Sud, LIMSI, Bâtiment 508, F-91405 Orsay Cedex, France
{ghazal.jaber,antoine.cornuejols}@agroparistech.fr

philippe.tarroux@limsi.fr

Abstract. When the environment changes, as is increasingly the case
when considering unending streams and long-life learning tasks, it is nec-
essary to rely on on-line learning with the capability to adapt to changing
conditions a.k.a. concept drifts. Previous works have focused on means to
detect changes and to adapt to them. Ensemble methods relying on com-
mittees of base learners have been among the most successful approaches.
In this paper, we introduce a new second-order learning mechanism that
is able to detect relevant states of the environment in order to recognize
recurring contexts and act pro-actively to concepts changes. Empirical
comparisons with existing methods on well-known data sets show the
advantage of the proposed algorithm.

Keywords: online learning, ensemble methods, concept drift

1 Introduction

Recent years have witnessed the emergence of a whole new set of applications
involving data streams made of pairs (xt, yt), where the “answer” or true label yt
is revealed (sometimes long) after the input xt. Additionally, it is often the case
that the unknown target function evolves with time, something known as concept
drift. These new needs have spurred a surge of research works geared towards the
development of adaptive strategies [1]. Most of them operate either by passively
tracking the evolving concept or by using an explicit detection mechanism of
concept changes before launching an adaptation or relearning process.

However, better learning strategies may take advantage of the examination
of the history of past concept in order to anticipate likely future changes or to
recognize when a past concept recurs. We have developed ADACC (Anticipative
Dynamic Adaptation to Concept Change), a system that uses this kind of second
order learning to accelerate its adaptation to changing conditions in the envi-
ronment. This is accomplished through an ensemble method that controls a pool
of incremental learners. Our main innovation lies in the design of a method to
select decisive concepts in the history of the system. This enables the recognition

2 Ghazal Jaber et al.

of recurring concepts and opens at the same time the possibility of learning the
underlying trends. The latter will be described elsewhere.

In the following, noticeable existing works on online learning in the context
of concept changes are described in Section 2. ADACC is presented in Section
3 while Section 4 reports our empirical results and a comparison to the state of
the art methods. Section 5 concludes with possible avenues for future work.

2 Relevant Works

In presence of concept drift, the central concern it to learn from data relevant
to the regularities currently governing the world. Several directions have been
proposed to dynamically adapt the memory of the past data. One is to use time
sliding windows with a fixed or a varying size [2]. This necessitates either a
priori knowledge about the dynamics of the environment, or a good heuristic
that guesses when to shrink or expand the sliding window. Another approach
relies on weighting past data with respect to their relevance to the current situ-
ation [3]. Again, this is all dependent on the design of an appropriate weighting
mechanism. By contrast with these types of approaches that explicitly control
the memory of past data, another set of techniques relies instead on the con-
trol of past hypotheses. Thus, ensemble-based approaches maintain a pool of
on-line learners that each maintain their own memory of the past and com-
pete for giving advice on the current query xt. By managing the population of
these base-learners, and possibly their weights, based on their current prediction
performance, one is implicitly controlling the use of past data [4].

A specially interesting case is the one of recurring concepts. This may happen
for instance when the environment is subject to seasonal variations which repeats
over time. This problem introduces a new challenge in that apparently obsolete
data or learned concepts may well be relevant again in the future. It would
thus be profitable to exploit this past knowledge as soon as it is appropriate
rather than learn anew from the incoming data stream. This requires, however,
that interesting memory traces be stored and that their relevance to the current
situation be quickly recognized. In recent years, several proposals have been put
forward to meet this challenge, particularly within the ensemble-based approach
(see for instance [5–9]). They either work at the level of the examples themselves,
by chunking them in some way, possibly organizing a hierarchy of chunks, or they
work at the level of the learned concepts, trying to learn significant concepts in
the stream of examples while avoiding redundancy.

This paper presents a new technique which solves both the problem of de-
tecting regularities (concepts) that are significant and new, and the problem of
recognizing when to use past knowledge. It is supposed that the data stream is
governed by piecewise stationary environments with concept shifts in between.
We show how an ensemble-based method can be used to detect stable envi-
ronments and how a memory of past concepts can be built which both avoids
redundancies and permits a quicker recognition of relevant past concepts than
a purely adaptive approach. Unlike other systems handling concept recurrence

ADACC: on-line learning in the presence of recurring concepts 3

[6, 7], our method does not recognize new concepts using a drift detection sys-
tem. Thus, it avoids the difficulties inherent in having to detect gradual concept
changes while still being robust to false alarms.

3 Concept Changes: Adaptive and Anticipative

The proposed technique, called ADACC, implements an anticipative mechanism,
able in particular to exploit recurring concepts, build on top of an ensemble-based
adaptive online learner. We first briefly describe the latter one.

3.1 Adapting to Concept Changes

The main idea is to maintain a pool of base learners {hit}1≤i≤N , each of them
adapting to the new input data, and to administer this pool or ensemble thanks
to a strategy for inserting and deleting base learners. Sketchily:

– Each base learner in the pool continuously adapts with new incoming data
until it is removed from the pool.

– Every τ time steps, the base learners are evaluated on a window of size τeval.
– Based on the results of this evaluation, the deletion procedure chooses a base

learner to be removed.
– A new base learner is created and inserted in the pool. It is protected from

possible deletion for a duration τmat.
– For each new incoming instance xt, the prediction H(xt) results from a

combination of the prediction of the individual base learners ht(xt).

Variations around this general framework lead to specific algorithms [4, 10–13].
For instance, after extensive testings, we converged on the following settings.
The evaluation procedure counts the number of erroneous predictions on the
last τeval time steps. The deletion strategy randomly selects one base learner
from the worst half of the pool evaluated as above. The global prediction uses
the prediction from the current best base learner (a vote is applied in case of
ties). For simplicity τ = τmat. This simple method offers a good trade-off between
keeping as much as possible relevant information about the past and be reactive
when the underlying concept changes aka. the stability-plasticity dilemma.

3.2 Recognizing recurring concepts

Coping with recurring concepts implies, first, to be able to store memory traces
of past relevant concepts and, second, to recognize which past concept is relevant
again in order to exploit this knowledge.

In our approach, the memory lies entirely in the pool of base-learners. The
question is then to use this pool in order to detect when a regularity deserves to
be stored away and then to memorize this regularity for potential future use.

The technique we propose is based on the assumption that the base learners
converge toward approximately the same, near optimal, concept, as measured

4 Ghazal Jaber et al.

by their prediction performance, given a stationary environment and a sequence
of examples of sufficient length. Assuming this, therefore, one way to detect that
a stationary environment has settled is to check that the diversity of the base
learners is low, under some threshold, while their prediction rate peaks.

Accordingly, we define a stability index that compounds a measure of diver-
sity with an estimation of performance for the best half of the base learners in
the pool4. We suggest the kappa statistics K [14] in order to compute diversity.
This statistics measure evaluates the degree of agreement between the classifica-
tion of a set of items by two classifiers5. In case of complete agreement, K = 1.
If there is no agreement other than what would be expected by chance, K = 0.
The stability index at time t is computed over the last τs received examples:
Istability = agreement− error where agreement and error are computed over
the best half of the current hypotheses in the pool.

agreement =

∑N/2
i=1

∑N/2
j=1
i6=j

Khi
t,h

j
t

N
2 ∗ (N2 − 1)

(1)

and:

error =

∑τs−1
j=0

∑N/2
i=1 err

(
hit(xt−j), yt−j

)
τs ∗ N2

(2)

where N is the size of the pool.
It is then possible to draw a curve of the successive stability indexes (see Fig-

ure 1 bottom). For each time step when the curve overcomes a given threshold,
the best base learner in the pool is considered as a candidate snapshot (a descrip-
tion of the current governing concept). This snapshot is compared with the list
of already stored ones and is kept only insofar as it sufficiently differs from all of
them. Here again the agreement statistics can be used to measure the difference
between a candidate snapshot h∗t and each stored snapshot h∗tk on the last τs
examples. In case the agreement is less than some predefined threshold θd, the
current candidate snapshot h∗t is added to the list MLT (Long Term Memory)
which represents past stationary states of the environment. These snapshots are
evaluated in the same way as the base learners in the pool and compete for the
prediction of yt given the current xt. In this way, except for a moderate over-
head, the prediction performance of the system is guaranteed to be at least as
good as the one of the purely adaptive strategy. (See Algorithm 1)

4 Datasets and experiments

We carried out experiments on two artificial datasets (STAGGER and ELIST)
and one real dataset (SPAM). These data sets are well-known benchmarks (see
for instance [2, 5, 10, 12]).

4 Taking into account the poorest base learners induces instabilities that lead to
inferior performances

5 Other agreement statistics should do as well.

ADACC: on-line learning in the presence of recurring concepts 5

Algorithm 1: Selection of snapshots by ADACC.

input : The stability threshold θI , the difference threshold θd, and the
evaluation window τs

begin1

E0 ← ∅; /* Ensemble of experts */2

MLT ← ∅; /* List of snapshots */3

k ← 0;4

for t = 1 to ∞ do5

/* Adaptation */

(xt, yt) is the current training instance;6

[Et, ỹt]← AdaptationEnsemble(Et−1,xt, yt);7

/* Anticipation */

H =
{
hit

}N/2
i=1

is the best half of experts in Et;8

agr =
1

N
2
∗ (N

2
− 1)

N/2∑
i=1

N/2∑
j=1
i6=j

K
hi
t,h

j
t
;

9

error =
1

τs ∗ N2

τs−1∑
j=0

N/2∑
i=1

err
(
hit(xt−j), yt−j

)
;

10

Istability = agr − error;11

/* Detect Stable Concept */

if Istability ≥ θI then12

h∗
t = snapshot(Et);13

/* Detect New Concept */

if isEmpty(MLT) or KCj ,h
∗
t
≤ θd, ∀j ∈ [1 . . . k] then14

k = k + 1;15

Ck = h∗
t ;16

MLT = add(MLT , Ck);17

end18

STAGGER [15] This data stream corresponds to three successive target con-
cepts: A⇔ size = small ∧ color = red, B ⇔ color = green ∧ shape = circular
and C ⇔ size = medium ∨ large. Each concept governs the labeling of 10,000
training instances chosen uniformly from the instance space. To simulate recur-
ring contexts, we concatenated the original sequence with a copy of it, creating
a stream of size 60,000.

ELIST [5] This is a stream of email messages from different topics that are
sequentially labeled as interesting or junk by a user. The stream contains 1,500
examples with 913 attributes (boolean bag-of-words representation). Two con-
texts succeed each other. In one, the user is only interested in messages related
to medicine. In the other, the user’s interest switches to space and baseball. The
stream is the sequence C1, C2, C1, C2, C1 where C1 and C2 are sequences of 300
email messages, labeled according to the first and second context respectively.

6 Ghazal Jaber et al.

SPAM This dataset [5] consists of 9,324 instances drawn from the email mes-
sages of the Spam Assassin Collection using the boolean bag-of-words represen-
tation with 500 attributes. As mentioned in [5], the characteristics of the spam
messages gradually change as time passes. ELIST and SPAM are available in
arff format at http://mlkd.csd.auth.gr/concept_drift.html.

4.1 Experiments

The ADACC system was evaluated against the following methods:

Simple incremental classifier (SIC): a single incremental classifier.
Moving window (MW): incrementally learns over the last w instances.
Weighted examples (WE): larger weights are assigned to recent examples in
order to gradually forget the outdated information.
Dynamic Weighted Majority (DWM) [10]: an ensemble method that does
not use a drift detection system. Each classifier is initially assigned a weight of
one. If a classifier misclassifies an instance, its weight is multiplied by a factor
ρ < 1. A classifier is removed if its weight falls below a threshold θ. A new clas-
sifier is added when the ensemble misclassifies an instance. The ensemble size is
thus variable. The frequency of updating weights, removing and adding classi-
fiers, is controlled by a parameter p. The decision of the ensemble is obtained by
weighted majority voting.
Leveraging Bagging (LBAG) [16]: a version of online bagging that uses the
ADWIN method [17] to detect concept drifts. The instances are weighted accord-
ing to a Poisson(λ) distribution with λ > 1 in order to achieve more diversity in
the generated weight values. When a concept drift is detected, the worst classi-
fier is replaced with a new one. ADWIN’s parameter is a confidence bound γ.
Early Drift Detection Method (EDDM) [18]: a classifier with a drift de-
tection system. EDDM monitors the distance between consecutive classifica-
tion errors d and defines two distance levels (warning and drift) with respective
thresholds α, β (β < α). If d < α, the examples are stored in anticipation for
change. If d < β, the classifier is reset and trained on the examples stored since
the warning level.
Conceptual Clustering and Prediction (CCP) [5] : an ensemble method
that uses clustering and is able to handle recurring concepts. Each batch of m
instances is mapped into a conceptual vector (descriptor). The vector is either
assigned to an existing cluster according to a distance threshold θ or a new clus-
ter is created. In the latter case, a classifier trained on the batch is assigned
to the cluster. In the former case, the classifier of the corresponding cluster is
updated with the batch instances. The classifier of the new or existing cluster
is then used to classify the next m instances. The number of clusters cannot be
larger than cmax otherwise the new item is incorporated into the nearest cluster.
Dynamic Adaptation to Concept Changes (DACC) the mere adaptive
side of the ADACC approach, as presented in Section 3.1.

ADACC: on-line learning in the presence of recurring concepts 7

4.2 Experimental Setup

Incremental Naive Bayes classifiers were used as base learners, because they
naturally learn incrementally and are often used in studies of on-line learning.

LBAG and EDDM algorithms are available in the MOA (Massive Online
Analysis) API6. We implemented all remaining algorithms on top of MOA, ex-
cept for CCP and DWM whose results reported below are taken from the work
of Katakis et al. in [5]. The parameters of DWM were set to ρ = 0.5, θ = 0.01,
p = 1 and those of CCP were set to b = 50, cmax = 10 and θ = 4 for ELIST and
θ = 2.5 for SPAM. Both DWM and CCP were not evaluated on STAGGER in
[5] and thus no results are reported on this dataset.

We evaluated MW with three different window sizes: 50, 100 and 200 (re-
taining the best one: 100). WE was tested with the weighting formula w(n) =
w(n−1)+n2 where w(n) is the weight of the n-th example. The threshold values
of EDDM are automatically set by MOA.

In LBAG, we tuned the parameters λ and γ experimentally converging on
λ = 20, γ = 0.002 for ELIST and STAGGER and on λ = 20, γ = 0.01 for
SPAM. Error correcting codes can be used for LBAG to add more diversity in
the ensemble, but this does not improve the accuracy and is thus not used.

The parameters of ADACC, our anticipative meta-learning approach, were
set to θI = 0.8, θd = 0.7 and τs = 100 in all experiments. To reduce the
computation cost, the anticipation mechanism is called every p = 100 time steps
(lines 8 to 17 of Algorithm 1). Finally, the parameters of the adaptive learning
mechanism, DACC, were optimized experimentally and τeval = τmat = 20 were
used for all datasets. The ensemble size was fixed to 20 for DACC and LBAG.

4.3 Results

Table 1 reports the results averaged over 10 runs showing the accuracy, precision,
recall and the run time in CPU seconds. All experiments were executed on an
Intel Core i5 CPU at 2.4 GHz with 4.0 GB of RAM. The execution time of DWM
and CCP are not given since they were tested in [5] on a different machine.

In all cases, ADACC yields the best accuracy. Figure 1 (top) shows a mov-
ing average of the accuracy of DACC, ADACC, LBAG and EDDM over sliding
windows of 1,000 instances. DACC adapts faster to concept drifts than EDDM
and LBAG, probably because of the frequent removal and addition of classifiers
(every 20 time steps) which makes it ready to any upcoming change. However,
despite the very good performance of DACC, ADACC still tops it by recognizing
recurring concepts starting at time step 30,000. This comes at the expense of the
execution time which is multiplied by a factor of 1.5 to 3. The amount of com-
putation can be reduced by increasing the value of p, the period separating two
calls of the meta-learning mechanism. In STAGGER, the run time of ADACC
is reduced to 2.8 CPU seconds when p = 1, 000 time steps (instead of 100). Note
that the classification performance is not hurt as long as p is small enough to
take snapshots of all encountered concepts (i.e. p < 10, 000 for STAGGER).

6 http://sourceforge.net/projects/moa-datastream/

8 Ghazal Jaber et al.

Table 1. The accuracy, precision, and recall (in %) along with the execution time
(in CPU seconds) of the different approaches on the ELIST, SPAM and STAGGER
datasets using Naive Bayes classifiers as base learners.

ELIST SPAM STAGGER
Algorithm Acc. Precis. Recall Time Acc. Precis. Recall Time Acc. Precis. Recall Time

SIC 54.2 50.7 69.3 0.53 90.7 94.2 93.2 1.27 64.5 62.4 89.5 0.35
MW 74.7 70.6 78.4 0.48 90.7 90.6 97.5 1.28 98.8 98.4 99.3 0.39
WE 66.9 64.9 63.9 0.53 92.8 95.2 95.0 1.28 78.5 77.6 85.9 0.4
DWM 43.8 47 42.5 - 91.8 84.8 83.1 - - - - -
CCP 77.5 79.7 77.6 - 92.3 85.7 83.9 - - - - -
EDDM 75.6 72.9 75.9 1.15 90.8 92.0 95.9 1.68 99.7 99.73 99.8 0.6
LBAG 58.5 54.4 68.3 15.0 91.8 95.6 93.3 14.60 89.9 85.7 98.1 1.51
DACC 76.2 73.8 75.9 9.52 94.7 95.1 97.8 11.9 99.9 99.9 99.9 1.06
ADACC 77.5 75.2 77.2 13.6 94.9 95.6 97.6 18.92 99.9 99.9 99.9 3.22

Figure 1 (bottom) shows the stability index on the STAGGER dataset and
highlights when snapshots are stored. All data points above θI = 0.8 are can-
didate snapshots (a total of 575) but only 5 are kept as relevant in the list
MLT . The unstable behavior of the stability index from time step 1 to 10,000
reflects the difficulty of learning the first concept. Three different snapshots of
the first concept are stored during this period, capturing different subspaces.
Only one additional snapshot is stored for the first concept when it reappears
(time steps 30,000 to 40,000) confirming that redundant snapshots are avoided
by ADACC. The second concept is learnt more easily and only two distinct snap-
shots are taken. Learning the third concept corresponds to the highest stability
index, suggesting a rather easy learning task. Only one representative snapshot
of the third concept is stored at the end of the experiment. Regarding the other
streams, a total of 8 snapshots were stored for SPAM and 4 for ELIST.

In our experiments, the threshold values for stability and conceptual equiv-
alence were fixed. We varied their values on the STAGGER dataset to study
their effect on the number of candidate snapshots, the number of stored snap-
shots and the classification performance of ADACC. The results are shown in
Table 2. Smaller stability thresholds increase the number of candidate snapshots
and thus of the stored ones but very much less significantly. Only 5 additional
snapshots are stored when the threshold switches from 0.9 to 0.5. When vary-
ing the concept equivalence threshold, the number of candidates doesn’t change
since it is only related to the stability threshold value. The stored snapshots
however evolve. Larger threshold values entice larger numbers of stored snap-
shots. Remarkably, changing both threshold values may impact the accuracy of
the anticipative mechanism (ADACC) but never to the extent of being worse
than the mere adaptive scheme (DACC).

ADACC: on-line learning in the presence of recurring concepts 9

Fig. 1. (Top) The classification accuracy of ADACC, DACC, LBAG and EDDM on
STAGGER, averaged over sliding windows of size 1,000. (Bottom) The evolution of
the stability index on STAGGER.

Table 2. Left : The effect of the conceptual equivalence threshold on ADACC with
θI = 0.8. Right : The effect of the stability index threshold on ADACC with θd = 0.7.

θd # candidates # stored Accuracy

0.5 575 4 99.918
0.6 575 5 99.915
0.7 575 7 99.916
0.8 575 9 99.918
0.9 575 12 99.918

θI # candidates # stored Accuracy

0.5 596 9 99.908
0.6 594 9 99.908
0.7 587 9 99.91
0.8 575 7 99.916
0.9 540 4 99.916

5 Conclusions and Future Work

A meta-learning mechanism that deals with recurrent concepts in the context of
online machine learning has been presented. The main contribution of ADACC,
which explains the good performances obtained on the benchmark datasets, lies
in the use of a stability measure that monitors the pool of base learners and the
long-term memory of past useful concepts. Snapshots of the relevant states of the
world are stored and re-used them when old contexts reappear. This mechanism
is completely embedded in the natural functioning of the ensemble method. It
relies on few parameters that do not need to be finely tuned.

We conducted experiments on real and artificial benchmark datasets and
compared our method with various online learning systems. The empirical results
show that combining the meta-learning mechanism with an ensemble method
that adapts rapidly to drifting concepts (in comparison to other systems) can
bring improvement in the classification performance, outperforming all compared
systems.

In the future, we will explore ways to keep constant the size of the long
term memory of the memorized snapshots. One such promising avenue is to
store prototypes of snapshots instead of the original ones, using a hierarchical

10 Ghazal Jaber et al.

clustering technique. We also plan to reduce the execution time of ADACC by
computing the stability index using an agreement measure whose computational
cost is less than quadratic in the number of base learners.

References

1. Gama, J.: Knowledge discovery from data streams. In: Citeseer (2010)
2. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden con-

texts. In: Machine learning, 23(1), pp. 69–101 (1996)
3. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weight-

ing. In: Intelligent Data Analysis, 8(3), pp. 281–300 (2004)
4. Stanley, K. O.: Learning concept drift with a committee of decision trees. In: Informe

técnico: UT-AI-TR-03-302, Department of Computer Sciences, University of Texas
at Austin, USA (2003)

5. Katakis, I., Tsoumakas, G., Vlahavas, I.: Tracking recurring contexts using ensemble
classifiers: an application to email filtering. In: Knowledge and Information Systems,
22(3), pp. 371–391 (2010)

6. Yang, Y., Wu, X., Zhu., X.: Mining in anticipation for concept change: Proactive-
reactive prediction in data streams. In: Data mining and knowledge discovery, 13(3),
pp. 261–289 (2006)

7. Alippi, C., Boracchi, G., Roveri, M.: Just-In-Time Classifiers for Recurrent Con-
cepts. In: IEEE Transactions on Neural Networks and Learning Systems, to be
published (2013)

8. Gama, J., Kosina, P.: Tracking recurring concepts with meta-learners. In: Progress
in Artificial Intelligence, pp. 423–434. Springer Berlin Heidelberg (2009)

9. Gomes, J. B., Sousa, P. A., Menasalvas, E.: Tracking recurrent concepts using con-
text. In: Intelligent Data Analysis, 16(5), pp. 803–825 (2012).

10. Kolter, J. Z., Maloof, M.A.: Dynamic weighted majority: A new ensemble method
for tracking concept drift. In: Data Mining, 2003. ICDM 2003. Third IEEE Inter-
national Conference, pp. 123-130 (2013)

11. Tsymbal, A., Pechenizkiy, M., Cunningham, P., Puuronen, S.: Dynamic integration
of classifiers for handling concept drift. In: Information Fusion, 9(1), (2008)

12. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble meth-
ods for evolving data streams. In: Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM (2009)

13. Scholz, M., Klinkenberg, R.: An ensemble classifier for drifting concepts. In: Pro-
ceedings of the Second International Workshop on Knowledge Discovery in Data
Streams. Porto, Portugal (2005)

14. Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. In:
Computational linguistics, 22(2), pp. 249–254 (1996)

15. Schlimmer, J. C., Granger Jr, R. H.: Incremental learning from noisy data. In:
Machine learning, 1(3), pp. 317–354 (1986)

16. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams.
In: Machine Learning and Knowledge Discovery in Databases, pp. 135–150. Springer
Berlin Heidelberg (2010)

17. Bifet, A.: Adaptive learning and mining for data streams and frequent patterns.
In: ACM SIGKDD Explorations Newsletter, 11(1), pp. 55–56 (2009)

18. Baena-Garca, M., del Campo-vila, J., Fidalgo, R., Bifet, A., Gavald, R., Morales-
Bueno, R.: Early drift detection method. In: Fourth International Workshop on
Knowledge Discovery from Data Streams (2006)

