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Abstract. Learning from data streams in the presence of concept drifts
has become an important application area. When the environment changes,
it is necessary to rely on on-line learning with the capability to forget
outdated information. Ensemble methods have been among the most suc-
cessful approaches because they do not need hard-coded and difficult to
obtain prior knowledge about the changes in the environment. However,
the management of the committee of experts which ultimately controls
how past data is forgotten has not been thoroughly investigated so far.
This paper shows the importance of the forgetting strategy by compar-
ing several approaches. The results lead us to propose a new ensem-
ble method which compares favorably with the well-known CDC system
based on the classical “replace the worst experts” forgetting strategy.
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1 Introduction

Recent years have witnessed the emergence of a new research area which focuses
on learning from data streams in the presence of evolving concepts. For instance,
spam filtering systems are continuously classifying incoming emails (observation
x) into spam or non-spam (label y) depending on their content. Because of
changes in the spammers’ strategies, corresponding to a change of the conditional
distribution function p(y|x), the filtering systems must adapt their decision rule
lest they rapidly become useless.

When learning under concept drift, one central concern is to optimize a
tradeoff between learning from as much data as possible, in order to get the
most precise classification model, while at the same time recognizing when data
points become obsolete and potentially misleading, impeding the adaptation to
new trends. This is known as the stability-plasticity dilemma. While stability
entails accumulating knowledge regarding the supposedly stationary underlying
concept, plasticity, however, requires forgetting some or all of the old acquired
knowledge in order to learn the new upcoming concept.
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On-line ensemble methods have raised much interest in recent years ([1–
6]). For a large part, this is due to the fact that they seem to adapt more
naturally to changes in the environment than other approaches based on explicit
strategies for controlling the stability-plasticity dilemma ([7]). Because of the
assumed diversity of the base learners4 in the committee, it is indeed expected
that at any time some of them are ready to take over and adapt to the novelties
of the environment ([8]). This diversity, however, ultimately depends on the
information kept by each base learner and on the control of which learner is
authorized to be part of the committee. In addition, the way the votes of the base
learners are combined participates also in the overall solution to the stability-
plasticity dilemma. Each of these three factors: the memory of each expert, the
control of the population of experts in the committee and the weight attached
to each expert in the final decision, plays a role in the way past data is taken
into account by the system, what can be called the forgetting strategy.

In most ensemble methods, the first factor is implicitly governed by the sec-
ond one. Each expert learns using an ever growing memory of the past data until
the controller of the pool of experts decides to expel it from the committee.

In compliance with the demands of the stability-plasticity dilemma, the con-
trol strategy must be ready to introduce in the committee new base learners that
will try to catch up with potential novel regularities in the environment. At the
same time, it must weaken the effect of past data that no longer represent relevant
information. There exist two main approaches to this problem. One is to set a
threshold on the performance of the expert and to remove from the committee
all experts of which the prediction performance falls below this threshold. The
idea is to remove all experts that are overly biased toward obsolete regularities
of the environment. This approach raises two issues. First, how to measure the
prediction performance of each base learner? Second, how to set the threshold?
The second family of methods does not depend on a threshold but relies instead
on a perpetual renewal of the population of the committee which tends to favor
a higher level of diversity. The concern here is to remove the experts that are
less relevant to the current environment. Again, the question arises about the
appropriate measure of performance. In addition, one must choose an insertion
strategy in order to allow for the introduction of new base learners in the pool.

This paper focuses on the possible control strategies and on their impact on
the performance of the system depending on the characteristics of the changing
environment. We compare the two families of approaches with a special attention
to the study of the deletion strategy. We do not consider the voting strategy here
and keep it constant for all systems that we compare.

In the following, Section 2 describes the framework of the ensemble methods
used to adapt to concept drifts while Section 3 addresses the analysis of the
strategies presented above. Section 4 presents a new ensemble method using an
enhanced forgetting strategy. Section 5 then reports an extensive comparison of
our method with CDC ([2]) a well-known and representative ensemble method.
Finally, Section 6 concludes and suggests future research directions.

4 We use interchangeably the terms “base learner” and “expert” in this paper.



Online Learning: Forgetting under Concept Drift 3

2 Ensemble methods for on-line learning

Ensemble methods for on-line learning maintain a pool of base learners {hit}1≤i≤N ,
each of them adapting to the new input data, and administer this pool or ensem-
ble thanks to a deleting strategy and an insertion one. The main components of
these ensemble methods are the following:

– Learning : each base learner in the pool continuously adapts with new in-
coming data until it is removed from the pool.

– Deletion strategy : every τ time steps, the base learners are evaluated on a
window of size τeval. Based on the results of the evaluation, base learners
might be eliminated from the committee.

– Insertion strategy : every τ time steps, new base learners can be created and
inserted in the pool. Each new learner starts from scratch with no knowledge
of the past. It is protected from possible deletion for a duration τmat.

– Prediction: For each new incoming instance xt, the prediction ỹt = H(xt) of
the committee results from a combination of the predictions of the individual
base learners ht(xt).

Variations around this general framework lead to specific algorithms ([2–6]).
The remainder of this paper will be concerned with the deletion strategy i.e.
with the base learners selected for deletion. The insertion strategy will simply
replace deleted base learners by new ones in order to keep the committee size
fixed. This approach is used in most current ensemble methods ([2, 3, 5, 6]).

3 Analysis of the deletion strategies

The deletion strategy plays a key role in the adaptation process since it allows
the system to forget the memory of outdated training data. In this section, we
explicitly study deletion strategies based on a threshold and deletion strategies
that remove the worst base learners in the committee. For the latter approach,
we compare systems based on the removal of the worst expert with systems that
remove experts based on other strategies.

3.1 Deletion strategies using a threshold value

A deletion strategy based on a threshold replaces base learners in the ensemble
when their prediction record, evaluated on the window size τeval, is below a
predefined threshold θd. When the performance is computed as the percentage
of correctly classified instances on the evaluation window, only the base learners
with a classification accuracy of at least θd% thus remain in the committee.

This strategy leads to different behaviors depending on the characteristics
of the environment. For the sake of the analysis, let us suppose that a concept
drift occurs corresponding to a change in the label of sev% of the input space.
This is called the severity of the concept drift ([8]). Let’s suppose further that all
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learners in the committee have a perfect classification accuracy of 100% before
the drift. We are then faced with a difficult conundrum.

If sev << 1 − θd, the severity of the concept change is below the detection
capability, and we may end up with an unchanged committee of base learners.

However, the choice of a higher threshold is loaded with two potential pitfalls.
First, in case of a noisy environment, the classification accuracy of many learners
may drop under the θd value resulting in a severely impoverished committee even
though no real concept drift did happen. Second, new base learners may not be
able to reach the exacting threshold before they reach the maturity age (τmat)
and are therefore no longer protected from deletion.

Overall, it is difficult to set a value for a threshold without well-informed prior
knowledge on the dynamics of the environment. Too low a threshold threatens
the plasticity of the system, while a high one may cause havoc in the commit-
tee and prevent stability and good prediction performance. For these reasons,
ensemble methods that do not rely on explicit threshold have been promoted.

3.2 Strategies that delete the worst base learner

Rather than setting a threshold for deciding which base learners to eliminate, one
can encourage the diversity in the committee while preserving the best current
base learners by removing the worst one every τ time steps. This should discard
base learners that no longer correspond to the current state of the environment
and introduce at the same time new base learners. However, a potentially vicious
interaction involving the parameters τ and τmat may ruin this hope.

Let us first suppose that the period of time during which a new base learner
is protected from deletion: τmat is less than τ . At each new deletion time, the
newest base learner is prone to be deleted and will be if it did not have time to
learn enough of the regularities in the environment. But τ cannot be too large
lest the system looses any plasticity.

Suppose then that τ ≤ τmat. Again the risk exists that deletion will affect
only the newest learners in the committee effectively dividing the committee
into a protected subset of the best and oldest base learners and a subset of the
newest ones that are never able to catch up with the other ones except when
the overall performance of the system has so declined that even a low prediction
performance may allow a base learner to avoid elimination. And decreasing the
value of τ cannot solve this problem either because if then the newly introduced
base learners can survive more deletion cycles, they will still not be able to
reach the performance of the established experts. Moreover, this will then tend
to introduce new learners at a too high rate, threatening now to disrupt the
stability and therefore the committee’s performance. A question is then whether
it is possible to break this poor behavior which impedes plasticity by never
allowing new learners to enter the top subset.
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3.3 A new deletion strategy based on a stochastic mechanism

One can soften the “eliminate the worst learner” strategy’s drawbacks by picking
randomly a learner from the subset of the k (k < N) worst base learners. In this
way, the newest base learners have a chance to learn enough of the regularities
of the current environment to enter the pool of the top experts, and, at the same
time, preserving the best performers. This promotes the plasticity of the system
while not deteriorating its stability. The size k of the subset where base learners
can be picked up to be eliminated controls the plasticity-stability trade-off.

We studied the effect of five deletion sizes (by setting the value of k) on
the forgetting strategy: N , 0.75 ∗ N , 0.5 ∗ N , 0.25 ∗ N and 1 (corresponding
to the “always eliminate the worst base learner)”. Figure 1 shows the mean
classification error depending on the different deletion sizes on the datasets of
the Line, SineH and Circle artificial problems suggested by Minku et al. [8] to
evaluate drift handling methods. The parameters were set to the values: τ =
τmat = τeval = 20, and N is 10, 20 or 30. The global prediction merely uses the
prediction from the current best base learner. The base learners are decision trees
(as implemented in Matlab) and all the experiments start with the same random
seed so that we have the same learners at the beginning of the experiments.
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Fig. 1. The mean classification error using different deletion sizes.

Case of a stationary environment The deletion size k = 1 gives the best
classification accuracy when learning in a stationary environment. The learners
trained on the smallest windows are generally the ones that tend to be removed
from the ensemble since they perform poorly compared to learners that have
benefited from a large training set. Meanwhile, the remaining learners tune up
their knowledge of the current concept, improving their classification record. By
increasing k, the probability of removing a relatively good learner is also in-
creased which hurts (to some extent) the classification accuracy of the ensemble.

Case of a concept drift Increasing k increases the probability of a newly
added learner to survive a deletion. A large deletion size removes most of the
learners from the ensemble after a concept drift. Thus, for maximum plasticity,
the best deletion size is k = N .
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The experiments suggest that k should be small enough for stability and large
enough for plasticity. With a minimum deletion size (k = 1), the ensemble has
the lowest classification error before the drift because stability is favored over
plasticity. With a maximum deletion size however (k = N) the ensemble favors
plasticity over stability which hurts the classification performance when learning
stationary concepts.

A deletion size that is half the size of the ensemble (k = 0.5 ∗ N) seems to
correspond to a satisfactory trade-off between plasticity and stability. It yields
the lowest classification error in average, before and after the concept drift.

4 DACC

We devised DACC (dynamic adaptation to concept changes), an online ensemble
method with adaptation to possible concept drifts.

Instead of removing the worst learner of the pool, DACC selects randomly a
member from the worst half of the pool and forces it to retire. In order to control
the rate of deletion, we impose all the learners to be mature before a deletion
operation. Therefore, τ = τmat time steps separates two consecutive deletions.

A learner hbad belonging to the worst half of the pool survives a deletion
operation with a probability

p =
N/2− 1

N/2
(1)

Each time hbad escapes deletion, it is given another τmat time steps of training
data before the next deletion operation. The expectation of s, the number of
times hbad survives a deletion operation, is:

E[s] =

∞∑
m=1

mpm(1− p) = p(1− p)
∞∑

m=1

mpm−1

= p(1− p) d

dp

( ∞∑
m=1

pm
)

= p(1− p) d

dp

(
p

1− p

)
E[s] =

p

(1− p)

By replacing p with its value from equation 1, we get: E[s] = N
2 − 1

Increasing the life expectancy of the relatively bad learners in the pool makes
DACC less exposed to cases where new learners are expelled from pool because
they didn’t get enough time to improve their predictive performance. In other
words, the suggested forgetting strategy is less sensitive to a high deletion rate
than the replace the worst learner strategy. A higher deletion rate entails a faster
reactivity to a potential concept drift.

The new deletion strategy creates the following behavior. In periods of stabil-
ity, the top base learners, being protected from deletion, will have their prediction
performance improved with time as new training data are received and learnt.
Their improved performance will further keep them in the top subset, allowing
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them to accumulate knowledge about the underlying stable target concept. The
worst half of the pool will undergo periodic deletion operations. By constantly
adding new learners, DACC is ready to any upcoming change, and this, without
explicitly identifying a concept drift. Hence, young learners tend to be valuable
during changing times while oldest learners are reliable in stable environments.

DACC follows the framework described in Section 2. The evaluation procedure
simply counts the number of erroneous predictions on the last τeval time steps.
The deletion strategy randomly selects one base learner from the worst half of the
pool evaluated as above every τ = τmat time steps. The global prediction merely
uses the prediction from the current best base learner (a vote is applied in case
of ties). An unmature learner does not contribute to the global prediction.

5 Experiments

We evaluated the mean classification error of DACC, CDC [2] and a learning
system that does not handle drifting concepts. CDC differs from DACC in two
major points. First, its deletion strategy evaluates the learners each time step
(i.e. τ = 1). A learner is removed if it is mature, if its evaluation record is below
a threshold value, and if it is the worst learner in the ensemble. Secondly, the
global prediction is the result of a weighted vote, where the weight of a learner
reflects its evaluation record.

The experiments used artificial, semi-artificial and real datasets. The base
learners were decision trees. The system that does not handle drifting concepts
was a single decision tree trained on every training example received. CDC was
evaluated with three thresholds: 0.6, 0.7 and 0.8.

The datasets used in the experiments are described in Table 1. The artifi-
cial datasets included Minku’s et al. artificial problems [8]: Circle, Line, SineH,
SineV, Boolean and Plane. Each problem consists of 9 datasets with different
drift severity and speed levels (3 severities×3 speeds). The STAGGER [9] and
FLORA [10] problems are among the pioneer artificial problems simulating drift-
ing scenarios. FLORA consists of two datasets, with moderate and slow speeds of
concept drifts, respectively. The semi-artificial datasets included IRIS and CAR
[8], which are modified versions of the IRIS and CAR real datasets available in
the UCI Machine Learning Repository [11]. The original real datasets were repli-
cated several times and class labels were modified in order to simulate datas-
treams with multiple concept drifts. Finally, the real dataset was issued from
the COLD database of the Saarbrücken laboratory [12], a benchmark for vision-
based localization systems. It contains sequences of images recorded by a mobile
robot under different variations of illumination and weather: sunny, cloudy and
night. We worked on the dataset captured in sunny conditions. Images were
first pre-processed into a 128-dimensional space using the Self-Organizing Map
described in [13].

Table 1 reports the mean classification error of the different approaches along
with the preset parameter values. For Minku’s artificial problems, the error was
averaged over the 9 different datasets of the corresponding problem. For STAG-
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Table 1. The mean classification error of the different approaches along with the
predefined parameter values, with τmat = τeval. We detail the size of each dataset,
the size of its feature space, the number of classes and the dataset type: A, S, R, for
artificial, semi-artificial and real, respectively.

Datasets mean classification error Settings
name size #feat. #class. type DACC CDC 0.8 CDC 0.7 CDC 0.6 NoDriftH. τeval, N

CAR 1296 6 2 S 14.66 23.47 15.14 13.98 40.77 20,20
IRIS 338 4 4 S 15.33 15.38 18.34 20.71 34.62 20,20
Circle 2000 2 2 A 6.92 35.66 8.09 8.73 12.56 20,20
Line 2000 2 2 A 3.72 8.12 4.64 7.01 10.52 20,20
Boolean 1000 3 2 A 2.75 3.85 4.17 4.47 17.63 20,20
SineH 2000 2 2 A 13.0 47.81 20.66 13.26 21.25 20,20
SineV 2000 2 2 A 4.32 7.98 5.15 5.85 11.08 20,20
Plane 1000 11 2 A 20.87 20.55 18.01 19.95 27.23 20,20
STAGGER 120 3 2 A 14.33 16.08 17.75 20.25 32.52 10,10
FLORA-M 500 6 2 A 5.34 10.19 6.32 6.02 16 10,10
FLORA-S 500 6 2 A 7.7 12.46 9.21 9 18.9 10,10
COLD 753 128 4 R 6.04 7.83 8.23 9.16 35.46 10,30

GER and FLORA problems, the error was averaged over 10 instantiations of the
datasets. For IRIS, CAR and the COLD datasets, the error was averaged over
10 runs on the same dataset.

DACC has the smallest classification error in all cases, except for the CAR
and Plane datasets. The results on the CAR dataset suggest that a deletion
threshold of 0.6 is adapted to the CAR learning problem. Hence, removing learn-
ers with a classification accuracy smaller than 60% allows the ensemble to adapt
to the simulated concept changes. For the Plane dataset, the difference between
DACC and CDC 0.7 is likely due to the noise in the Plane dataset. Generally,
the use of a max function for the global prediction (as in DACC) instead of a
weighted combination (as in CDC) affects the predictive accuracy in noisy envi-
ronments. It results in this case in a higher classification error for DACC by a
margin of 2.86%.

6 Conclusion and Future Work

This paper presents an analysis of two main forgetting strategies used by ex-
isting online ensemble methods to adapt to concept drifts: (a) deleting experts
with poor predictive performance, according to a preset threshold value, and (b)
deleting periodically the worst expert in the ensemble. The ensuing analysis lead
to the definition of a new approach (DACC) to handle concept drifts.

The analysis shows that the forgetting strategy r(a) equires prior knowledge
on the dynamics of the environment in order to choose an adapted threshold
value, while strategy (b) may result in unwanted behavior, affecting the ability
of the ensemble to adapt to new trends.
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DACC deletes periodically one expert chosen randomly from the worst half
of the ensemble. According to our study, this strategy corrects unexpected be-
haviors of the latter forgetting strategy. Empirical comparisons with CDC, a
representative method based on the former forgetting strategy, show that DACC
overcomes the difficulty of finding the appropriate threshold, and this on a large
variety of concept drifts, with several levels of severity and speed.

For future work, we plan to study another key component of the forgetting
strategy: the way experts are weighted and the way their decisions are combined
in the ensemble’s final decision.
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