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1 Introduction

While Machine Learning is still a young field, having approximately 50 years of existence,
its history is now sufficiently long that some historical perspective and deep trends can
be perceived. Thus, the first learning algorithms were all incremental. For instance,
the perceptron, the Checker program, Arch or the Candidate Elimination Algorithm
for Version Space learning, to name but a few. Various reasons motivated this state of
affair. One was that these programs were, in part at least, aimed at simulating human
learning, which is mostly incremental in nature. Another was that the very limited
available computing power, by today’s standard, prevented the storage and processing
of large data bases of learning examples. However, this rule was completely overturned
in the 80s. A wealth of new algorithms were developed: viz. decision trees, feed-forward
neural networks, Support Vector Machines, Grammatical inference systems, and many
more. Almost all are “batch” learners, meaning that they learn from a single batch
of examples, optimizing some inductive criterion over the whole training set. If new
training instances are made available, then the learning process must start all over
again from scratch.

It is interesting to examine reasons for this complete about-turn from the previous
period. Thus, section 2 in particular provides the fundamentals of the now standard
setting. Recent years, however, have witnessed a renewal of interest for on-line learning.
Sections 2.1 provides reasons for this and the issues that are raised in consequence.
Then, section 3, describes essential issues in on-line learning. Each of these issues
remains essentially to solve, both at a theoretical level but also at the engineering level
of conceiving new learning algorithms. Section 4, describes a special on-line learning
framework called tracking. We show how new ideas could be brought to play in order
to provide both original theoretical tools and learning methods to solve this problem.
We think this nicely underlines the range of issues at play as well as the type of new
ideas that we could call upon. Finally, we conclude with an appeal to a new scientific
outlook for learning.

2 The standard setting: one-shot and i.i.d.

An agent learns when it interacts with the world, using percepts to make decisions and
take actions, and then measuring its performance, without which it would not be able
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to sense in what direction it should modify its decision making process. In order to
learn, one has to be able to compare situations, that is to measure similarities or to
make generalizations. One central concern in the study of learning has focussed on
generalization and on questions such as: which conditions allow one to generalize? how
to perform generalization? how to evaluate the confidence in the result of generalization?

Most studies in inductive learning assume that the learning agent comes across
random feature vectors x (called the “observables”), which are generated according to
the following two-stage process. First, a random class e.g. y ∈ {−1, 1} is selected using
the a priori probabilities pY ; then, the observed feature vector x is generated according
to the class-conditional distribution pX|Y . The distribution over labelled patterns is
thus given by pXY = pYpX|Y = pXpY|X .

PY PX|Y

y < x , y >

Figure 1: The two-stage generation of learning examples.

When acting as a classifier, the agent is facing the following problem: given a realiza-
tion of the measured feature vector x, decide whether the unknown object engendering
x belongs to class -1 or 1. A classifier or decision rule, in this setting, is simply a map
h : X → {−1, 1}, which determines the class h(x) to which an observed feature vector x
should be assigned. In the context of Machine Learning, this map is called a hypothesis,
hence the notation h1. It is thus possible to define the performance of a classifier (or
hypothesis) as the probability of error given by:

L(h) = pXY{h(x) 6= y} (1)

More generally, if different costs are assigned to different types of errors2, specified
through the definition of a loss function `, defined as:

`(h) : X × Y → R+

(x, y) 7→ `(h(x), y) (2)

Then, the performance of a classifier is defined as a risk, which is an expectation over
the possible events:

R(h) = E[`(h(x), y)] =
∫
x∈X ,y∈Y

`(h(x), y) pXY d(x, y) (3)

If the a priori probabilities pY and conditional distributions pY|X are known, the
optimal decision rule, in the sense of minimum probability of error (or of minimum risk)
is the Bayes decision rule, denoted h∗ and defined as:

h∗(x) = ArgMin
y∈{0,1}

(
`(y, 1− y)P{y|x}

)
(4)

In many situations, however, these distributions are unknown or only partially
known, but one is given a training set Sm = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m

1 In Statistics, this notion is known as a model.
2 In medicine, for instance, it is much more costly to miss an appendicitis diagnosis, than to decide

to operate, only to discover it was a false alert.
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supposed to be drawn according to the unknown probability distribution pXY . The
basic assumption enabling learning is that all the data (both observed and unseen) are
generated by the same process, which is formalized by saying that the data is sampled
independently from a fixed identical probability distribution (i.i.d. sampling).

The learning problem is thus: given a training set consisting of labelled objects
supposedly drawn i.i.d. from the unknown distribution pXY , find a function h that
assigns labels to objects such that, if new objects are given, this function will label
them correctly.

Short of attaining a perfect identification of the target dependency between the
feature vectors and their label, the performance of a classifier or hypothesis is measured
with the risk R(h) (see equation 3). A large part of the theory in Machine Learning
focuses on finding conditions for constructing good classifiers h whose risk is as close to
R∗ = R(h∗) as possible.

A natural and simple approach is to consider a classH of hypotheses h : X → {−1, 1}
and to estimate the performance of the hypotheses based on their empirical performance
measured on the learning set. The most obvious choice to estimate the risk associated
with a hypothesis is to measure its empirical risk on the learning set Sm:

Rm(h) =
1
m

m∑
i=1

`(h(xi), yi) (5)

which, in the case of binary classification with 0-1 loss, gives:

Rm(h) =
1
m

m∑
i=1

I(h(xi) 6=yi), (6)

where one counts the number of prediction errors on the training set.
In this framework, it is then natural to select a hypothesis with the minimal empirical

risk as a most promising one to classify unseen events. This inductive criterion is
called the Empirical Risk Minimization principle. According to it, the best candidate
hypothesis is:

ĥ∗ = ArgMin
h∈H

Rm(h) (7)

However, the statistical theory of learning has shown that it is crucial that the
hypothesis space from which candidate hypotheses are drawn be limited in terms of its
expressive power. Specifically, one should not concentrate only on finding hypotheses
that minimize the empirical risk irrespective of the hypothesis space, but one should
indeed take into account its capacity or expressive power. In fact, the less diverse is H,
the tighter the link between the measured empirical risk Rm(h) and the expected risk
R(h) for a given sample size m. This yields a regularized inductive criterion:

ĥ∗ = ArgMin
h∈H

[
Rm(h) + Capacity(H)

]
(8)

From this section, one can retain that the inductive criterion, be it empirical risk
minimization, maximum likelihood or minimum description length principle, plays an
essential role in machine learning. It both expresses the characteristics of the problem:
misclassification costs and measures of performance, and allows us to analyze the condi-
tions for successful induction. In addition, it did motivate several, if not most, modern
learners (SVM, boosting, ...). However, it presupposes a special kind of link between the
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past and the future. The assumption is that both pX and pY|X are stationary, and that
the data are drawn independently and identically from these probability distributions.

While these assumptions were seen as reasonable when most applications involved
the analysis of limited static data bases, their validity appear increasingly questionable
in face of new learning tasks. This is especially true for knowledge discovery from
ubiquitous systems.

3 On-line learning: motivations and issues

Two new trends are shaping the future of machine learning. The first one is that
new types of data sources are more and more taped in in order to discover regularities
or tendencies that help understand the world and make decisions. This is in part
due to the growing availability of digitalized observations series (e.g. environmental
measurements over time) and to the birth of new sensor systems, that can both be
spatially distributed and produce temporal data. Data are thus made increasingly
available through unlimited streams that continuously flow, possibly at high speed.
Furthermore, the underlying regularities may evolve over time rather than be stationary.
Finally, the data is now often spatially as well as time situated. The second trend has
to do with the learning systems themselves. They are indeed more and more embedded
within complex data processing and management systems that are designed to be “long-
life” systems. Consequently, the learning component itself must be able to process the
data as it flows in while providing at any given time an hypothesis about the world.
This entails that the learning systems must become incremental learning systems.

The overall upshot is that data can therefore no longer be considered i.i.d.. This
forces the field to reconsider the basic and fundamental tenets of the theory of induction.

More precisely, the wealth of new applications and learning situations can be cate-
gorized into broad classes according to the underlying characteristics of the world.

1. Possibly stationary world

• But the learner has limited resources. This is the case, for instance, of learn-
ing from very large data bases (e.g. Telecoms: millions of examples ; EGEE
systems in particle physics: billions of examples, ...)

• But there are “anytime” constraints on learning that preclude to wait for
all the necessary data to be observed and processed before hypotheses or
decisions must be made. Data streaming is one typical example of this family
of applications.

2. The target concept is stationary while the distribution pX of the descrip-
tive, also known as explanatory, variables is changing. This is called “covariate
shift” [12] and is currently the focus of some research effort. Active learning is
naturally prone to covariate shift since the learning data, chosen by the learner,
is not representative of the underlying distribution.

3. Finally, the target dependencies pY|X themselves might change over time.
This is also known as concept drift. This might occur because the world is changing
(e.g. the customers’s tastes change with fashion), or because learning is transfered
from one task to another one. Another such situation occurs when learning is
tutored with the help of a teacher who (carefully) chooses the sequence of learning
tasks, with increasingly difficult rules to learn.
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4 Aspects of on-line learning

4.1 Reducing computational cost

Since the advent of modern learning algorithms, in the 80s, the common wisdom has
been that batch learning was to be preferred to on-line learning. One important reason
was that on-line learning tends to be sensitive to the order of presentation of the training
examples, which was considered as a nuisance. Furthermore, studies showed that batch
gradient algorithms converge much more rapidly to the optimum ĥ? of the empirical
risk Rm(·) over a sample of size m, than the corresponding on-line learning algorithms.

More precisely, a batch gradient algorithm minimizes the empirical risk Rm(h) using
the following formula:

hk+1 = hk − γk∇hRm(hk) = hk − γk
1
m

m∑
i=1

∇h`
(
hk(xi), yi

)
(9)

where the learning rate γk is a positive number. Studies have shown that (hk − ĥ?)2

converges like e−k, where k denotes the kth epoch or sweep over the training set.
By contrast, an on-line or stochastic gradient procedure updates the current hypoth-

esis on the basis of a single sample (xt, yt), usually picked randomly at each iteration.

ht+1 = ht − γt∇h`
(
ht(xt), yt

)
(10)

Under mild assumptions, on-line algorithms converge almost surely to a local min-
imum of the empirical risk. But, if they converge to the general area of the optimum
at least as fast as batch algorithms, stochastic fluctuations due to the noisy gradient
estimate make the hypothesis randomly wobble around the optimum region whose size
decreases slowly. The analysis shows that the expectation E(ht − ĥ?)2 converges like
1/t at best. This seems to condemn on-line algorithms.

However, this study begs two issues. The first one is that, in fact, one is not in-
terested in the convergence to the exact minimum of the empirical risk, but rather in
the convergence to the minimum expected risk R. Therefore, fine optimization is not
required, and it is the one that is costly for on-line procedures. The second issue is that
one should not only compare the convergence with respect to the number of learning
steps, but one should also take into account the total computational costs involved. In
this respect, on-line learning is quite simple to implement and only involves one random
example at each iteration which can be discarded afterwards. On the contrary, each it-
eration of a batch algorithm involves a large summation over all the available examples,
and memory must be allocated to hold these examples and to perform possibly complex
computations, for instance if second order derivatives are estimated.

Studies [1, 2] have shown that whereas a batch learning algorithm can process N
learning examples, using the same computational resources an on-line learning algorithm
can examine T instances, where T is of the order O(N log log N). Thus, for instance,
while a batch learner could afford to examine 10, 000 instances, a on-line learner could
process ≈ 22, 200 instances, or about as twice as much!

This has profound implications for learning from large data sets or from data streams.
Indeed, most of the time, learning is mainly limited by the fact that some informative
examples have not yet been observed rather than by the fact that the examples already
seen have not been fully exploited by the optimization process. When this is true, then
on-line algorithms may turn out to be vastly superior to their batch learning
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counterparts since, for the same computational resources they can process
more examples.

This is thus a first reason to seriously consider on-line learning, even when the world
is stationary. Of course, this is even more so in face of changing conditions. But first,
let us consider some issues raised in incremental learning irrespective of the conditions
of the world.

4.2 Incremental learning: issues raised

In principle, it is not difficult to produce an incremental learning system. It suffices
to take a batch learner and to make it learn each time this is warranted on the basis
of all the training examples seen so far. There are, however, at least two obstacles on
the road to the actual implementation of such a scheme. First, this would require a
memory size that would grow at least linearly with time (the growth could be worse if
the computations required for learning are more than linear on the size of the training
set). Additionally, the computation cost can be expected to grow at least in the same
proportion. Second, this is ineffective in face of a changing environment because past
data may become obsolete and harmful. Control of the memory is therefore required in
incremental learning. The question is: how to carry out this control?

As an illustration, suppose we take a very simple incremental supervised learning
system, the lazy learner that stores past examples and decides the label of a new unseen
instance on the basis of the labels of its k nearest neighbors. After a while, it cannot
afford to store all past data, and must per force select instances to be discarded. What
should be the optimal forgetting strategy?

There are numerous options, including the following ones:

1. Discard the oldest training instance.

2. Discard the most obvious outlier in the training instances.

3. Discard the instance with the highest proportion of neighbors of the same label.

4. Discard a randomly chosen training instance.

5. Discard a training instance that is the farthest apart from instances of any other
class.

6. ...

Each strategy is associated with an implicit model of the world and implies a com-
putational load that may vary between “not worth to mention” (e.g. strategy 4) and
“really worrisome” (e.g. strategies 2, 5). Most importantly, there is no best strategy.
It all depends on the properties of the varying conditions of the world. Furthermore, as
soon as forgetting is allowed to occur, the learning result is prone to be order dependent,
that is to depend on the order in which the training instances have been considered [10].

It is worth mentioning that an important part of current research of data streaming
systems centers on the question of which summary should be kept about past data (see
for instance [4]).

To sum up, it was common wisdom that learning required carefully designed search
strategies in order to find a (quasi) optimal hypothesis, or in order to chose the most
informative examples in active learning. It now appears that learning should, very
generally, require forgetting as well and that this entails a whole new search and
optimization problem in its own right.
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Control of the memory will soon emerge as an essential issue, both to limit the space
and computational load, but also in order to adapt to the changing conditions of the
world. In addition, sequencing effects will have to be mastered. It was usual to
ignore or to try to reduce them, usually through some randomization process. It may
become profitable to use them instead as ways to take into account the history of the
environment.

4.3 Covariate shift: changing pX

Even if the dependencies that link inputs to outputs are stationary, the distribution of
the input pattern may vary over time, and, therefore, be different between learning and
predicting, a situation called covariate shift. For instance, even though the fundamental
characteristics of diseases are determined by biological rules and therefore are quite
stable, their prevalence may present seasonal variations. Another common situation in
learning arises when the distribution of learning instances is tweaked in order to facilitate
learning. Thus, one may want to balance the classes of instances when some classes have
few representatives, a situation commonly encountered in medical diagnosis. Similarly,
in active learning, the training instances are selected by the learner, which, generally,
leads to a distorted representation of the true underlying distribution. In these cases,
the training data can no longer be considered as independent and distributed according
to the true distribution pX , and, therefore, the measured empirical risk is no longer an
empirical measure of the true risk. Of course, all of this misrepresentation of the training
data is ever more true with data streams corresponding to an evolving phenomenon.

In this case, it is known that the classical inductive criteria, such as (regularized)
empirical risk minimization or the maximum likelihood estimator, lose their consistency:
the learnt estimator or hypothesis does not converge in probability to the optimal one.

Figure 2: In a stationary environment where the dependency p(y|x) is stationary, it
may happen that the learning and the testing samples (respectively in light gray and
dark gray) are not drawn from the same distribution (borrowed from [9]).

Suppose pX denotes the training distribution and pX ′ the test distribution. The
performance of the hypothesis learnt using a training sample drawn according to pX
depends on:

• the performance of the hypothesis over pX

• the similarity between pX and pX ′ .

One obvious solution to regain consistency is to weight the training instances ac-
cording to what is called their importance, that is the ratio of the test and training
input densities: pX ′(x)/pX (x). One then gets the importance weighted ERM [12]:

ĥ? = ArgMin
h∈H

[
1
m

m∑
i=1

pX ′(x)
pX (x)

`(h(xi), yi)
]

(11)
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Apart from stability considerations that imposes some modification, this new induc-
tive criterion necessitates the estimation of the importance pX ′(x)/pX (x). However, the
naive approach which is to first estimate the training and test input densities and then
compute their ratio is rather impractical since density estimation is notoriously hard,
especially in high dimensional cases. This is why recent research efforts have aimed
at directly estimating the importance, bypassing density estimations. See e.g. [13] for
more details.

4.4 Concept drift: changing pY|X

Because of the increasing availability of data streams gathered over a long stretches of
time, handling changing distributions and concept drifts has become a new important
topic in machine learning. For instance, a company may find that her customer profile
is varying over time. Likewise, in document filtering applications, the interests of the
users may drift, or even abruptly change. The learning system should then revise and
continuously adapt its model accordingly. We restrict ourselves here to the pattern
recognition framework, that is to supervised learning of classes of patterns.

The learning problem may be characterized as follows. We suppose that data arrives
in sequence, either one at a time or in small batches. Within each batch the data is
independently and identically distributed with respect to a “local” distribution pXY(t).
A concept drift occurs when the conditional distribution pY|X changes with time. The
aim of the learner is to sequentially predict the label of the next example or batch,
and to minimize the cumulated loss. Often this cumulated loss will correspond to the
number of prediction errors.

It is assumed that the newly arrived data most closely resemble the current true
concept. Furthermore, a reasonable assumption is that there exists some sort of tem-
poral consistency in the changing environment corresponding to the fact that, most
of the time, the underlying distribution of the data is changing continuously. These
two assumptions imply that recent data carries more information about the current
underlying concept than more ancient data.

Accordingly, learning in a changing environment is often handled by keeping windows
of fixed or adaptive length on the data stream, or by weighting data or parts of the
current hypothesis in accordance with their age or their utility for the learning task.

Whatever the approach, maintaining sliding windows or weights, the same tradeoff
must be solved. On one hand, the system must be able to detect true variations against
a noisy background, meaning it must be robust to irrelevant variations. On the other
hand, the system should adapt as quickly as possible to variations in the environment
in order to minimize its cumulated loss. Unfortunately, these two demands point to
opposite strategies. Robustness to noise increases with the amount of data that is
taken into account, but, in changing conditions, the oldest the data, the more likely it
is obsolete. Therefore, at the same time, one would want to keep as much as possible
information from the past, while reducing its importance for fear of being erroneously
biased. Most works in concept drift have focused on devising heuristics to solve this
conundrum, that is to control the memory of the past.

Domingos and Hulten, [5], attack head on the issue of learning in face of very rapid
data streams. They require their Very Fast Decision Tree learner to induce a decision
tree on the flight so that the result is with high probability almost the same as the
one that would be obtained with a batch learner but using only constant time and
space complexity. For this, they rely on the statistical theory of learning, specifically
on Hoeffding formula, in order to compute bounds on the required minimal training set
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size to approximate the optimal decision function within a given error factor. Here, this
bound is iteratively used for the determination of each node in the tree. Of course, this
learning methods uses much more data than would be strictly necessary to ensure to get
a good approximation of the target tree, but it is assumed that there is an over-supply
of data. The interesting idea in this approach therefore lies in using the theory to get
estimates of the required window size on the past sequence of data. The limit, however,
is that it assumes stationarity. In a subsequent paper, [7], the problem of time-changing
environment was tackled and another useful concept was put forward: to grow a new
tree when the data is starting to drift away from the previous distribution and to start
using the new tree when it becomes more accurate than the old one. This enables to
use past information as long as it is useful, and to overcome to some degree an explicit
trade-off for the choice of the window size.

Managing window size
If a fixed size is to be chosen for sliding windows, the choice results from a com-

promise between fast adaptability (small window to the risk of under-fitting) and good
generalization (large window). It can only be made on the basis of assumptions about
the pace of the changes in the environment. If no such well-informed assumption is
possible, one has to rely on adaptive strategies for the window size management. The
challenge in automatically adjusting the size of the window is to minimize at each time
the expected loss on new examples. This requires that the model of the data is as
accurate as possible at each time step. When the underlying distribution is stable,
the window size can safely increase, enabling better generalization and the learning of
more detailed and accurate models of the environment, whereas when the distribution
is changing, the window size must shorten in order to not incorporate obsolete and
harmful training instances (see figure 3).

xt

t

Performance Performance

t

xt+∆

Figure 3: When the underlying distribution is stable, or at least, the performance is,
the size of the window may increas (left). When the performance is falling, betraying a
change in the distribution, the window size must be reduced (right).

One way to implement an adaptive strategy goes as follows. Suppose that batches
of equal size arrive at each time step. Suppose also that the current time step is T while
the learning process started at time t = 0. A classifier is learnt over the most recent
batch, and is tested over every preceding windows of size less than max(max length, T ).
The window of maximal size for which the error is < ε for a given ε is kept. A classifier
is learned over this window and is used for predicting the class of the newly arriving
unclassified example(s) (see figure 3). In case of a abrupt change of distribution, it may
happen that the learning window is reduced to the most recent batch of data.

One problem with this strategy is that there is no memory of the past when the
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underlying distribution has changed. Let us suppose, for instance, that the underlying
distribution switches from distribution p1

Y|X to distribution p2
Y|X , and then reverses back

to distribution p1
Y|X . Then, when the first distribution p1

Y|X rules the generation of data
once more, learning will have to restart all over again. This is why other approaches
have been proposed [11]. For instance, one may envision that all past batches for which
the prediction error of the classifier learnt over the most recent batch is < ε are kept for
learning the classifier used for prediction (see figure 4). In this way, past data that seems
relevant to the current learning situation may be used for learning. The relearning time
may thus be greatly reduced, enabling better performance.

Time

Concept driftCu
rre

nt
 b

at
ch Selected 

batches

Figure 4: Adaptive management of window size with memory if a concept is encountered
again. (Borrowed from [11]).

Weighting past examples
There have been very numerous proposals for selecting or weighting past instances

in order to confront changing environments. For the purpose of illustration, we mention
here one technique called “locally weighted forgetting” and used in nearest neighbors
classification. In this scheme, all data starts with weight 1, and when a new data point is
observed, the weights of the k nearest neighbors are adjusted according to the following
rule: (1) The closer the data to the new sample, the more the weight is decayed; (2) If
weight drops below some threshold, remove data.

In this way, it is hoped that only sufficiently scattered representatives of the data
are kept.

But it is also possible to maintain weights on hypotheses rather than on data points.

Weighting past hypotheses
In the wake of the success of boosting techniques, ensemble methods for tracking

concept drift have been recently proposed. The overall strategy is the following.

1. Learn a number of models on different parts of the data.

2. Weigh classifiers according to recent performance.

3. If classifier performance degrades, replace it by a new classifier.

More specifically, for instance, Kolter and Maloof in [8] describe the “dynamic weighted
majority” algorithm that dynamically creates and removes weighted classifiers in re-
sponse to changes in performance.

1. Classifiers in ensemble have initially a weight of 1

2. For each new instance:
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• If a classifier predicts incorrectly, reduce its weight
• If weight drops below threshold, remove classifier
• If the ensemble of current classifiers then predicts incorrectly, install new

classifier
• Finally, all classifiers are (incrementally) updated by considering new in-

stance

Among other proposals involving ensemble methods, like [15], one is standing out by
introducing an intriguing and tempting idea [11]. Suppose that the underlying data
distribution is continuously changing from concept 1 to concept 2, is it possible to learn
concept 2 before the end of the transition? (See figure 5). Under some admittedly
restrictive assumptions, this turns out indeed to be possible.

Figure 5: Continuous concept drift changing linearly from concept 1 to concept 2. It is
optimal to predict concept 1 before the dotted line, and concept 2 afterwards. (Borrowed
from [11]).

The main assumption is that, during the concept drift, the training instances are
sampled from a mixture distribution, that is a weighted combination of the two pure
distributions characterizing concept 1 and concept 2. The optimal model during the
concept drift can only be derived according to the Bayes’s optimal rule. The idea is to
decompose the mixture distribution as soon as the concept drift starts. It this respect,
the boosting algorithm is very seducing since it is based on the principle to sample the
data points at each step orthogonally to the current distribution. In the approach of
Scholz and Klinkenberg, this becomes sampling orthogonally to the distribution induced
by the prediction of h1, the hypothesis learnt from data corresponding to concept 1. A
careful analysis leads to a weighting scheme that modifies the weight of the examples
with respect to hypothesis h1 so that the new distribution reflects the characteristics of
the new incoming distribution.

Lessons about concept drift
Learning in the presence of concept drift is still very much an open research issue

even though a lot of interesting ideas and heuristics have been put forward. Overall,
the existing methods are sometimes efficient in their respective application domains,
but they usually require fine tuning. Furthermore, they are still not easily transferable
to other domains. This denotes a lack of a satisfying theoretical ground.

There are indeed relatively few theoretical analyses, and most of them date back
to the early 90s. One significant work is the one by Helmbold and Long [6]. They
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study the conditions for PAC learning with an error of ε in the presence of concept
drift. This depends upon the diversity of the hypothesis space H and on the speed
of the drift (measured as the probability that the 2 subsequent concepts disagree on a
randomly drawn example). The outcome is a bound of the size of the required window
size. Regrettably, these bounds are usually impractically large. This is due in part to
the adversary protocol used in the analysis.

Besides the shortcoming of our current theoretical understanding, there are other
desirable developments. Among them is the need for the capability to recognize and
treat recurring contexts, for instance associated with seasonal variations, so that old
models can be quickly recovered if appropriate. But, more significantly, there is a
growing feeling that it would be profitable to focus on the changes themselves
rather than merely trying to follow concept drifts as closely as possible. Reasoning
about the “second derivatives” of the evolving situation and representing them would
allow for quicker adaptation, as well as interpretability about what has changed and
how. This raises the issue of having models for change and to incorporate them in new
appropriate inductive criteria.

5 A new perspective on on-line learning

In the following, we focus on a special case of learning task that has been conjured up
in a recent paper by Sutton, Koop and Silver [14], called tracking.

5.1 The tracking problem

Sutton et al. argue that while most existing learning systems are geared to find a single
best solution to the learning problem, one that applies to any possible input x ∈ X , it
might be possible that better performance be attained with the same amount of training
data and computing resources by tracking the current situation rather than by searching
the best overall model of the world. In this view, the agent continuously learns a local
model that applies to the situations that can be encountered at the time being.

More precisely, it is assumed that the learning agent encounters different parts of
the environment at different times. The underlying distribution on X is now a function
of time: pX (t), in such a manner that the data are not identically and independently
distributed, but are governed by some time dependent process, like, for instance, a
Markov decision process. In this case, it might be advantageous for the agent to adapt
to the local environment defined by pX (t) and, possibly, by pY|X (t), if the later one is
evolving too. Figure 6 schematizes the evolution of such a data-driven agent.

Temporal consistency, which we loosely define as the fact that pX (t) and pY|X (t)
tend to evolve with cumulated bounded variation over limited periods of time, offers
the opportunity to perform well in term of predictions by learning simple models with
limited resources. Indeed, because of temporal consistency, the learner may expect that
it will have to make predictions about inputs that lies in its “local environment”. In
addition, temporal consistency imposes that the laws governing the local environment
are simpler than the laws governing the whole input space and the whole time evolution
of the world. Thus, even though the overall model of the world and it’s time evolution
may be arbitrary complex, it can be expected that, locally, in term of both input space
and time, simple models may suffice for appropriate decisions.

Figure 7 illustrates this in a simple but extreme case. Suppose that X = R, and
that the target dependency pY|X (t) is stationary and takes the form of a piecewise linear
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x1

x2

X

Figure 6: In tracking, the learning agent receives input that are driven by a time
dependent process. It therefore encounters different parts of the environment at different
times.

curve. Suppose that the local environment of the learning agent may be depicted by
a window of limited size. As the agent is exploring X , passively or actively, it may
perform rather accurate predictions solely by maintaining a model of the world that is
simply a “constant” prediction. This constant is updated with time, a process described
by tracking.

x

y

window
x

y

window

Figure 7: Even though the world involves a piecewise linear law, the learning agent may
perform well by maintaining a very simple model, a constant, over its local environment.

Therefore, if time consistency holds, good prediction performance can be obtained
with less computational cost than the classical batch learning. At each time step, the
learner is searching for simpler models of the world and does so on the basis of limited
amount of past data. There is thus a kind of spectrum to be expected along the following
lines:

Temporal Consistency

Small memory
Simple H

←→

i.i.d. data

Large memory
“Complex” H

If, intuitively, a tracking strategy seems advantageous, several questions remain to
be answered. The tracking problem, well-known in engineering sciences, but new in
machine learning, needs to be formally defined. More importantly, we do not know yet
how to measure the position of a learning problem along the afore-mentioned spectrum
and how to evaluate the advantage in terms of learning resources needed for a given
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performance level in terms of prediction. In fact, the classical notion of expected per-
formance and the associated risk formula certainly needs to be revisited. Finally, all of
this, yet to come, analysis should be turned into new learning strategies.

In the following, we just propose a glimpse of the kind of new inductive criteria that
could be interesting to consider.

5.2 A new perspective for on-line induction

In the classical stationary framework, where learning is supposed to occur once for all
from the available training data, the expected performance is defined with respect to
each possible model of the world h:

R(h) = E[`(h(x), y)] =
∫
x∈X ,y∈Y

`(h(x), y) pXY d(x, y)

which gives rise to the inductive criterion based on empirical risk:

Rm(h) =
1
m

m∑
i=1

`(h(xi), yi)

With on-line learning of successive hypotheses, these criteria can no longer be used
as such. While it is clear that the performance still involves a cumulated loss over
time, neither the model of the world h, nor the underlying data distribution pXY are
stationary. It is therefore necessary to include their variations in the performance and
inductive criteria. In fact, not only to include these variations, but to make them the
focus of the optimization problem.

Indeed, the very notion of training sample needs to be cross-examined. In on-line
learning, it is rarely the case that the learning system will be submitted twice to the
same kind of history. Therefore, past data cannot be considered as representative of
what will happen next. In other words, all past distributions pX (t − k), and, possibly
as well, all past pY|X (t− k) for 0 ≤ k ≤ t may very well never be encountered again.

But, then, what would link the past to the future and allow for prediction and
induction? One inductive assumption is that the underlying regularity to be learned
is the rule that governs the variations of the environment. Denote r the model of the
rule that the learner tries to estimate, then the risk associated with such a rule can be
expressed as:

R(r) = E[`(ht(xt), yt)] =
∫

t

`(ht(xt), yt) pXY(t) d(xt, yt) (12)

While the rule r does not appear explicitly in the above expression, it is nonetheless
present by the fact that the successive hypotheses ht are linked by the rule:

ht+dt = r(ht, (xt, yt),memory, `, dt) (13)

or, if time flows in discrete time steps:

ht+1 = r(ht, (xt, yt),memory, `) (14)

Here, the memory term is used to denote what trace of the past data is used by the
update rule r.
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Then, a possible inductive criterion, based on past data from time 0 to time T , could
be of the form:

L〈0,T 〉(r) =
T∑

t=1

`(ht(xt), yt)︸ ︷︷ ︸
classical cumulated loss

+ λ
T∑

t=1

||ht − ht−1||2 + Capacity(R)︸ ︷︷ ︸
new criterion on r

(15)

Where λ > 0 is a parameter weighting the importance of conditions over the regularity
of the rule r. This regularity is conditioned both by the cumulated variations over ht

temporal consistency imposes limited variations , and by the complexity of the possible
rules. Indeed, the capacity is a function of the memory used for updating the current
hypothesis at each time step. This memory should be kept as limited as possible.

We do not delve into details within the limited scope of this chapter, but it is
obvious that this kind of criterion is related to the theory of reinforcement learning and
the underlying assumption of Markov Decision Process. There also, what the learning
agent is estimating are the rules that govern the transition from one state to the following
and the reward function attached to states transitions3.

6 Conclusions

Recent years have witnessed a wealth of emerging applications that can not be solved
within the classical inductive setting. New learning tasks often involve data coming in
unlimited streams and long-life learning systems that, in addition, have limited compu-
tational resources. The fact that data can no longer be considered as identically and
independently distributed, and that the learner needs, per force, to implement on-line
learning raises important new issues and announces profound evolutions of the field of
machine learning.

Among the list of open questions are the following ones:

• How to deal with non i.i.d. data?

– What to memorize? / What to forget?

– How to cope with or take advantage of ordering effects?

– How to facilitate future learning, what should be transfered? Representa-
tions, learned rules, ...?

• What should the inductive criterion be?

– How to take the computational resources into the inductive criterion?

– What kind of regularity should we optimize: h ∈ H or r ∈ R?

There is already a growing body of work that touches on these questions. Covariate
shift, transduction, concept drift, tracking, transfer of learning, even teachability, are
subject matters that bear on the issue of on-line learning.

One important clue seems to be that, in evolving environments, the changes them-
selves should be the focus of learning. Works in concept drift have shown that this can
accelerate recovery of useful past regularity, but, more generally, the analysis of possible

3 It must be noticed that the problem of the performance criterion is approached quite differently
in the theory of on-line learning based on regret criteria. For lack of space, we defer the reader to [3].
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new inductive criteria adapted to the problem of on-line learning seem to point to that
direction as well.

In any case, whatever will be its scientific outcome, the present time is a privileged
one for machine learning, a time for exciting research both for a better fundamental
understanding of learning and for the design of new learning techniques. Ubiquitous
learning environments, specially, are both the fuel and the beneficiaries of these incoming
developments.
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