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Abstract: Numerous research effort have been aimed to characterize and predict protein-
protein interfaces. This paper introduces a method using only known protein-protein
interfaces and combining frequent item set mining techniques with statistical tests to en-
sure the selection of interesting features. Starting from a database of known interfaces
described with geometrical elements, the method produces the elements and combina-
tions thereof that are characteristic of the interfaces. This approach allows one to elim-
inate the need for negative instances and to come up with easy to interpret features, as
compared to techniques that operate as “black-boxes”. The results obtained on a set
of 459 protein-protein interfaces from the DOCKGROUND database confirm that the
findings are consistent with current knowledge about protein-protein interfaces.
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1 Introduction

Being able to predict protein-protein interactions is of paramount importance for biology and medicine
[6,10]. A first approach is to start from fundamental premisses, i.e. the sequences of amino-acids that
make up the proteins, and knowledge of their physico-chemical properties and how these translate
in terms of energy. In principle, a sufficiently detailed model should allow one to compute with
enough accuracy the energy of each configuration of interest and therefore predict the likely protein-
protein complexes and their probable binding sites. This line of attack is however precluded, at least
at the present time, by the sheer magnitude of the size of the search space and by the complexity
of the energy computations. Another route is to learn by automatic means to discriminate positive
protein-protein complexes from negative ones [3]. One issue is the choice of representation of the
protein-protein complexes. Another one stems from the fact that, usually, databases only contain
positive instances. Negative instances have to be generated, often using random conformations and
orientations of the proteins, assuming that these correspond to bad or impossible pairings. However,
this strategy may be disputed and can profoundly affect the performance of the learning methods.

This is why another approach is proposed here. In our work, interfaces of known protein-protein
complexes are described by collections of small subgraphs taken in a dictionary of elementary pat-
terns, much as transactions in a database of purchases in a supermarket are made of collections of
items in a given set of products. This analogy suggests to use data mining techniques in order to
detect characteristic regularities in known protein-protein interfaces.



After briefly describing the representation of the protein-protein interfaces, section 2 describes in
a generic way the proposed method to analyze whether the interfaces of protein-protein complexes
have special properties, and, if yes, which ones. The results obtained using data extracted from the
Dockground database [7] are described in section 3. Finally, section 4 discusses the results obtained
in light of the overall protein docking problem and opens directions for extensions of this work.

2 The aCID method for the characterization of protein-protein interfaces

In our work, interfaces of known protein-protein complexes are described by collections of edges,
triangles and tetrahedra extracted from a geometric representation of proteins called weighted α-
complexes [5,8] and completed by additional information about the nature of the amino acids involved
in each of them. To obtain a reasonable number of descriptors as compared to the amount of available
data, we grouped the amino acids with respect to their physico-chemical properties [4] : Hydrophobic,
Polar, positively charged, negatively charged and Small (resp. noted H , P , +, − and S). This leads
to a repertoire of 120 distinct descriptive items.

Figure 1. An example of a protein-protein interface in the chosen representation.

In our dataset (see section 3), one typical interface involves between 15 to 50 items, some of them
possibly repeated (e.g. figure 1). On average, each interface contains 22 geometrical items, which
gives rise to approximately 10,000 items for the whole set of the 459 interfaces studied.

The central question is: do the interfaces of the known protein-protein complexes present special
regularities?

2.1 Analysis of the frequencies of items

Suppose we observe that a given item, say (SHP ), occurs 150 times in all (over the 10,000 items
taken altogether) and is present in 50 out of the 459 interfaces. What should we think? Is this feature
normal? Mildly surprising? Quite astonishing? One that could be used as a “signature” of a likely
interface between proteins? To answer these questions necessitates that expectation under “normal
circumstances” be defined (a.k.a. as a “null hypothesis”) and that deviations from it can give rise to
probability assessments.

In order to compute the probability associated with each item A (e.g. (S + +)), one can measure
the probability that it would appear as the result of the combination of half-items AiAj (e.g. (S + +)
could result from (S ! ++) or from (+ ! S+)). In general, given that an event A can result from
pairs of sub-events AiAj , its expected number nA under the binomial assumption3 is:

E[nA] =
∑
i,j

aij · p(Ai) · p(Aj) ·N (1)

3 I.e. independent and identical trials.



where p(X) is the probability of the item X as measured in the interfaces, N is the total number of
events and aij = 1 if Ai = Aj or aij = 2 if Ai <> Aj . And the variance is given by:

V ar[nA] =
(∑

i,j

aij · p(Ai) · p(Aj)
)(

1−
∑
i,j

aij · p(Ai) · p(Aj)
)
N (2)

For instance, suppose again that one is interested in the (S + +) item. One would measure
the probability of having the semi-item (S), (+), (++) and (S+) which would enable to get:
E[n(S++)] = 2

(
p(S)·p(++)+p(+)·p(S+)

)
N , where p(x) would be the observed frequency of the

semi-item x in all semi-interfaces4, and N be the number of items in all 459 interfaces, that is 10,000
(the factor 2 comes from

(∑
i,j p(Ai)·p(Aj)

)
=

(∑
i,i p(Ai)·p(Ai)

)
+2

(∑
i,j,i<j p(Ai)·p(Aj)

)
which

reflects the fact that the same item can be obtained with an Ai coming from either semi-interface).

Note that no combination of semi-items should be considered that lead to items with more than 4
elements (tetrahedra). This must be taken care of in the computation of formula 1 and 2.

2.2 Analysis of the frequencies of the combinations of items

We look for combinations that would be very differently represented than what should be expected
under a null hypothesis where the items would be independent. In general, the expected number of a
m-combination of m items Ai,Aj , . . . ,Ak︸ ︷︷ ︸

m

is:

E[nAB] = Πl=i,j,...,k ai,...,k · p(Al) ·N

and the variance:

V ar[nA] =
(
Πl=i,j,...,k ai,...,k · p(Al)

)(
1−Πl=i,j,...,k ai,...,k · p(Al)

)
·N

with N the number of observed items of size k and ai,...,k the number of permutations of Ai, . . . , Ak.

2.3 Combing the items and combinations

Underrepresented items are not to be retained if the goal is to discover elements that are responsible
for the binding of protein-protein complexes. We keep therefore the items (or the combinations of
items) of which the observed number in the known interfaces exceeds its expected number by more
than twice the standard deviation: nobs

X ≥ E[nX ] + 2
√

V ar[nX ]. Under the normal distribution
assumption, the probability of observing nobs

X events or more is then less that 2.5% 5. The choice of
this threshold controls the rate of false positive elements (Type 1 error)6.

In the same spirit, we would rather identify elements that seem well correlated to as large as pos-
sible a fraction of all known interfaces. This means both that they are significantly over represented
(as detected by the above statistical criterion) and that they intervene in a sufficiently large number of
interfaces. The number of interfaces in which a given element X takes part is called the coverage of
the element and is noted cov(X). A single threshold on the minimal coverage of elements of interest
will select the elements that play a role in at least that many interfaces or fraction of the interfaces. For
instance, in our study, we chose a 5% threshold for the minimal coverage of elements to be considered
for further analysis.

4 The term semi-interface (possibly associated with a subscript) denotes the half belonging to one protein in an interface.
5 Strictly speaking, the probability of measuring nobs

X outside the range [E[nX ]± 1.96
p

V ar[nX ]] is less than 5%. For
symmetry reasons, p

`
nobs

X ≥ E[nX ] + 1.96
p

V ar[nX ]
´

< 2.5%. This is also known as the p-value.
6 For instance, if one keeps all items with nobs

X ≥ E[nX ] +
p

V ar[nX ], then there is a 16% chance that this happened
under the null hypothesis.



2.4 Measuring the spread of the elements and its atypical character

It is also informative to know if a given element (an item or a combination of items) tends to occur in
a widespread fashion among the interfaces or, on the contrary, in a concentrated way. In the former
case, this might indicate a necessary ingredient in at least one type of bonds between proteins. In
the latter case, this could be interpreted as the sign of a kind of autocatalytic reaction that favors the
co-occurrence of a same element inside interfaces. Either way, one must be able to measure to which
degree an element is more widespread or more concentrated than normal. We therefore propose to
compare the measured coverage of elements with their expected coverage.

The coverage of an element is easily computed from the database of known instances. The com-
putation of its expected coverage, on the other hand, requires some caution. Suppose that a given
element has been observed to occur n times. The idea is to calculate the number of different inter-
faces among I (e.g. 459) that can receive at least one element when n elements of the same type are
drawn independently within N elements.

Suppose that the average number of elements in each interface is K = N/I , and let k be the
number of a given element in a given interface. Then k is the size of the intersection between a set of
n elements drawn independently from N and a set of K elements also drawn independently from N .
The hypergeometrical equation gives:

p(k) =

(
n
k

)(
N−n
K−k

)(
N
K

)
In particular, the probability of having a void interface (w.r.t. the element of interest) is:

p(0) =

(
n
0

)(
N−n
K−0

)(
N
K

) =

(
N−n

K

)(
N
K

)
And the expected number of non void interfaces is:

I · p(0) = I ·
(

1−
(
N−n

K

)(
N
K

) )

3 Results on the protein-protein interfaces

Item selection

459 protein-protein complexes were taken from the PDB database [7,2], the existing total number
at the time of the first experiments, and have been described as explained above using 120 different
items. For each of these items, the total number of occurrences and the coverage have been measured,
while the expected number of occurrences (with standard deviation) and the expected coverage have
been computed. The aCIDmethod then automatically extracted the items satisfying the three criteria:

– Overrepresentation. nobs
X ≥ E[nX ]+C

√
V ar[nX ], with C = 2 when selecting items, and C = 1

or C = 2 when selecting patterns.
– Minimum coverage. A threshold of 5% or 7% was used for the selection of patterns. None was

used when selecting items.
– Difference with expected coverage: cov(X) > E[cov(X)].



+- SSP SHP SPP SP- S+- HHH HHP HH+ HP+ H+- PP+ P+- ++-

Table 1. Selected items

It is noteworthy (see table 1) that items known as poor candidates such as: −−, ++, − − −,
+++ have been rejected. On the other hand, items corresponding to mildly hydrophobic or strongly
hydrophobic elements have been retained, such as HHH , HHP , HH+, as well as electrically
charged elements such as +−, S +−, H +−, P +−, + +−. All of these items are indeed expected
to play a role in protein-protein interfaces since they tend to favor stable conformations.

Pattern selection

The same analysis was carried over for the combinations of items, including doublets, triplets, and
quadruplets (no quintuplet were found to satisfy the selection criteria). In order to test the robustness
of the results, selection was carried out using C = 2 and C = 1 for the overrepresentation criterion
and a minimal coverage threshold of 5%.

Doublets
SSP/SSP, SSP/SPP, SP-/SP-, S+-/S+-, S+-/++-, HHH/HHH, HHH/HHP ,
HHH/HH+, HHH/H+-, HHP/HHP, HHP/HP+, HH+/HH+, HP+/HP+, H+-/H+-,
H+-/++-,+-/+-,+-/++-, SHP/SHP, S+-/P+-, HHP/HH+, HH+/HP+, HH+/P+-, HH+/++-

Triplets

{S+-/S+-/S+-, ++-/H+-/S+-, HH+/HHH/HHH, HH+/HH+/HHH, H+-/H+-/H+-
{+-/+-/+-,+-/HH+/HH+,+-/H+-/H+-, SHP/SPP/SSP, SHP/SHP/SHP, H+-/H+-/S+-,
HH+/HHH/HHP, H+-/HHH/HHP, H+-/HH+/HHH, H+-/H+-/HH+, H+-/H+-/HP+,
H+-/HH+/HH+}

Quadruplets
{H+-/HH+/HHH/HHH , +-/HH+/HHH/HHH, SHP/SPP/SSP/SSP,
SHP/SHP/SHP/SHP,++-/H+-/S+-/S+-, H+-/HH+/HH+/HHH, HHP/SHP/SHP/SHP,
HH+/HHH/HHP/HHP, H+-/HHH/HHP/HHP}

Table 2. Items that are over-represented (C=2 (bold), and C=1) and cover at least 5% of the interfaces. Results
for C=1 are a superset of the results for C=2.

Regarding the doublets and the triplets, one can notice a slight overrepresentation of the groups
with amino acids belonging to the hydrophobic group H . In general, however, the items are paired
according to global properties. Two groups of patterns emerge. One with a high proportion of hy-
drophobic amino acids H , the other with opposite charges + and -. Only in one instance these prop-
erties are found together: HH+/++-.

As for the quadruplets, it is noticeable that hydrophobic amino acids are predominant. The elec-
tric charges + and - equilibrate each other, and there is a positive charge + left. The groups with
hydrophobic amino acids takes over.

4 Discussion and future work

Protein docking introduces very challenging problems. In this work, we used a low-resolution geo-
metrical description of protein-protein interfaces and a data mining approach combined with a null
hypothesis criterion. This discovery method can be applied in every contexts where the representation
of the instances involves counts of patterns taken in a dictionary that is not too large wrt. the number
of instances. Furthermore, it naturally adapts to the discovery of disjunctive concepts i.e. different
causal processes. Finally, there is no need for constructing artificial decoys.



Figure 2. Results of the PCA analysis of the extracted item sets.

Applied to the data set of 459 protein-protein complexes taken from the Dockground database,
the aCID method selected items and the combinations thereof that point out to the importance of the
hydrophobic amino acids and the association of amino acids of opposite charges. The findings are
aligned with what is known about protein-protein complexes. Moreover, the results are robust against
variations in the grouping of the amino acids into five groups (S, P, H, + and -) and changes in the
threshold for selecting significant patterns. The value of the alpha parameter for the alpha-shapes
should, however, play a much more important role. This remains to be systematically studied.
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