
A Note on Phase Transitions and Computational
Pitfalls of Learning from Sequences

Antoine Cornuéjols1 & Michèle Sebag2

1AgroParisTech / INRA
UMR 518, Mathématiques et Informatique Appliquées

F75005 Paris (France)

2 Laboratoire de Recherche en Informatique, CNRS UMR 8623
Bât.490, Université de Paris-Sud, Orsay

91405 Orsay Cedex (France)
antoine,sebag@lri.fr

January 10, 2007

Abstract

An ever greater range of applications call for learning from sequences. Gram-
mar induction is one prominent tool for sequence learning, it is therefore important
to know its properties and limits.

This paper presents a new type of analysis for inductive learning. A few years
ago, the discovery of a phase transition phenomenon in inductive logic program-
ming proved that fundamental characteristics of the learning problems may affect
the very possibility of learning under very general conditions.

We show that, in the case of grammatical inference, while there is no phase
transition when considering the whole hypothesis space, there is a much more
severe “gap” phenomenon affecting the effective search space of standard gram-
matical induction algorithms for deterministic finite automata (DFA). Focusing on
standard search heuristics, we show that they overcome this difficulty to some ex-
tent, but that they are subject to overgeneralization. The paper last suggests some
directions to alleviate this problem.

1 Introduction
A wide range of applications which includes language modeling in speech recognition,
translation, bioinformatics, music modeling, circuit testing, alarm detection or time
series, are dependent upon the capability to model, generate and learn distributions
over sets of possibly infinite cardinality of strings, sequences, words, phrases and even
trees. A set of representations for sequences has therefore been developed over the
years. Among them: Finite State Automata (FSA) (deterministic or not), probabilistic

1

Finite State Automata, stochastic regular grammars, Markov chains, hidden Markov
models, n-grams.

In bioinformatics, for instance, linguistic methods have provided some interest-
ing results in the recognition of complex biological signals [Sakakibara et al., 1994].
However, the hand development of grammars is difficult and, because it requires human
expertise, expensive. Thus, given the enormous volume of data arising from genome
projects, there is a need to automate the acquisition of grammars from sets of biological
sequences.

Therefore, in front of the growing area of applications that deal with the analysis
of sequences, it is important to be aware of the properties of learning from sequences.

In this paper, we concentrate on learning grammars from sequences, and more par-
ticularly regular grammars, which form the simplest class in the Chomsky hierarchy
of formal languages. Regular languages correspond to Finite State Automata. An un-
derstanding of the issues and difficulties encountered in learning regular languages are
indeed likely to provide insights into the problem of learning more general classes of
languages.

In the field of grammatical inference, it is known that exact learning of the target
regular language from an arbitrary presentation of labeled examples is a hard problem
[Gold, 1978]. Gold showed that the problem of identifying the minimum state DFA
(Deterministic Finite State Automata) consistent with a finite non-empty set of positive
examples and possibly a finite non-empty set of negative examples is NP-hard. It is
therefore necessary to provide additional information in order to get efficient learning
algorithms. Several learning frameworks have been proposed in this perspective.

In the query learning framework, the learner may ask queries to an oracle. Angluin
[Angluin, 1987] proved that regular languages are exactly learnable within polynomial
time using membership and equivalence queries. The availability of an oracle is how-
ever questionable in many real-world settings. In the Probably Approximately Correct
framework (PAC), one only seeks a language that is close to the target language in the
sense that there is only a low probability, under the distribution on the example space,
that an example be labeled differently by the target automata and the learned one. The-
oretical analyzes mostly conclude that regular languages cannot be learned in this set-
ting. One can then restrict the distributions of the examples so that simple examples are
more probable. For instance, in the so-called PACS setting [Denis et al., 1996], it has
been proved that the class of regular languages is learnable [Parekh & Hanovar, 1997].

Another way to provide insightful information to the learning system is to supply
it with a so-called structurally complete learning sample. Intuitively, this is a learning
set that is sufficiently representative of the language to be learned. In concrete terms,
this means that every component of the target automaton is exercised in the recognition
of at least one learning example. Most of the standard grammatical inference systems
have been devised following this assumption since it confers desirable properties to
the search space (see section 3 below). For instance, the regular positive and negative
inference (RPNI) algorithm is a framework for identifying in polynomial time a DFA
consistent with a given sample S. Further, if S is a superset of a structurally complete
set (technically, a characteristic set) for the target DFA, then the DFA output by the
RPNI algorithm is guaranteed to be equivalent to the target [Oncina & Garcia, 1992].

Benchmarks and competitions have spurred the development of algorithms and al-

2

low the community of researchers to test their methods (for instance, in the Abbadingo
competition, DFA’s of 512 states had to be inferred [Lang et al., 1998]).

However, at present, a lot remains unknown about the feasibility of grammar in-
duction. On the theoretical side, new frameworks have been defined, but the results are
overly of a negative nature. Further and surprisingly, the statistical theory of induction
linking the empirical risk minimization principle and the “capacity” of the hypothesis
space [Vapnik, 1995] has not influenced the field of grammatical inference. On the
practical side, many problems are still unsolved, even in old challenges like the Ab-
badingo one. Researchers have turned their attention toward more powerful languages,
like Probabilistic Finite State Automata or Markov models, but there is still a need to
better understand the induction of regular languages.

This paper presents a new type of analysis of grammar induction. Inspired by the
works on Constraint Satisfaction problems (CSP) that show that a phase transition phe-
nomenon affects many problems and conditions in great part the complexity of solving
them, we undertook a closely related systematic investigation in the grammar induc-
tion framework. The results clearly demonstrates the existence of a phase transition
like phenomenon in grammatical inference as well. This gives reasons for concern
as the induction of FSA’s, and most noticeably of DFA’s, is shown to incur serious
potential obstacles in the learning of a wide range of possible target languages.

Our contribution in this paper is threefold. First, we introduce a new type of anal-
ysis for grammar induction that focuses on a property linking the hypothesis represen-
tation language and the characteristics of the learning sequences. Second, thanks to
this framework, we demonstrate that induction of regular languages is prone to a phase
transition phenomenon that questions the feasibility of learning in other than toy envi-
ronments. Third, we provide an analysis and an explanation for this phenomenon and
sketch possible directions to remedy it.

The paper is organized as follows. Section 2 introduces the phase transition phe-
nomenon in the context of inductive learning and its meaning. Then, section 3 briefly
introduces the domain of Grammatical Inference, the principles of the inference al-
gorithms and defines the control parameters used in the rest of the paper. Sections 4
reports the sets of experiments that were carried out in order to explore the behavior
of inductive algorithms in grammatical inference. The performances of two represen-
tative learning algorithms are specially examined in section 5. Section 6 discusses the
scope of the presented study and lays out some perspectives for future research.

2 Phase transition and learning
Inductive learning is concerned with the discovery of hypotheses, taken from an hy-
pothesis space, that well account for the learning instances that are supposed to be
representative of some general law. The usual approach is to explore the hypothesis
space in order to find some hypothesis that explains the positive instances in the train-
ing set while it rejects negative instances. Induction is therefore tightly linked with a
covering test procedure whereby an expression of the candidate hypothesis is tested
against the expressions of the training instances. Furthermore, the search in the hy-
pothesis space usually follows a gradient like strategy by which candidate hypotheses

3

of ever greater performance over the training set are explored until a best one is found.
It is therefore obvious that the covering test and its properties play an essential role

in learning. First, its computational complexity determines the overall complexity of
induction. In the worst scenario, induction can become intractable. Second, and even
more importantly, if the gradient of the coverage of the hypotheses with regard to the
learning instances is not well-behaved, then the exploration of the hypothesis space can
simply become unmanageable.

As it is, it just happened that a new paradigm has been studied in the Constraint Sat-
isfaction community since the early 90s, motivated by computational complexity con-
cerns: where are the really hard problems? [Cheeseman et al., 1991] Indeed, the worst
case complexity analysis poorly accounts for the fact that, despite an exponential worst-
case complexity, empirically, the complexity is low for most CSP instances. These re-
marks led to developing the so-called phase transition framework [Hogg et al., 1996],
which considers the satisfiability and the resolution complexity of CSP instances as
random variables depending on order parameters of the problem instance (e.g. con-
straint density and tightness). This framework unveiled an interesting structure of the
CSP landscape. Specifically, the landscape is divided into three regions: the YES re-
gion, corresponding to underconstrained problems, where the satisfiability probability
is close to 1 and the average complexity is low; the NO region, corresponding to over-
constrained problems, where the satisfiability probability is close to 0 and the average
complexity is low too; last, a narrow region separating the YES and NO regions, referred
to as phase transition region, where the satisfiability probability abruptly drops from 1
to 0 and which concentrates on average the computationally heaviest CSP instances.

The phase transition paradigm has been transported to relational machine learning
and inductive logic programming (ILP) by [Giordana & Saitta, 2000], motivated by the
fact that the covering test most used in ILP [Muggleton & Raedt, 1994] is equivalent to
a CSP. As anticipated, a phase transition phenomenon appears in the framework of ILP:
a wide YES (respectively NO) region includes all hypotheses which cover (resp. reject)
all examples, and the hypotheses that can discriminate the examples lie in the narrow
phase transition region, where the average computational complexity of the covering
test reaches its maximum.

Besides computational complexity, the phase transition phenomenon has far-reach-
ing effects on the success of relational learning [Botta et al., 2003]. For instance, a
wide Failure Region is observed: for all target concepts/training sets in this region, no
learning algorithms among the prominent ILP ones could find hypotheses better than
random guessing [Botta et al., 2003].

The phase transition paradigm thus provides another perspective on the pitfalls fac-
ing machine learning, focusing on the combinatoric search aspects while statistical
learning focuses on the statistical aspects.

3 Grammatical inference
After introducing general notations and definitions, this section briefly discusses the
state of the art and introduces the order parameters used in the rest of the paper.

4

3.1 Notations and definitions
Grammatical inference is concerned with inferring grammars from positive (and pos-
sibly negative) examples. It is known that any regular language can be produced by
a finite-state automaton (FSA), and that any FSA generates a regular language. In the
remaining of the paper, we will mostly use the terminology of finite-state automata. A
FSA is a 5-tuple A = 〈Σ,Q,Q0, F, δ〉 where Σ is a finite alphabet, Q is a finite set
of states, Q0 ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, δ is the
transition function defined from Q× Σ to 2Q.

A positive example of a FSA is a string on Σ, produced by following any path in
the graph linking one initial state q0 to any accepting state.

A finite state-automaton (FSA) is deterministic (DFA) if Q0 contains exactly one
element q0 and if ∀q ∈ Q,∀x ∈ Σ, Card(δ(q, x)) ≤ 1. Otherwise it is non-determinis-
tic (NFA). Every NFA can be translated into an equivalent DFA, possibly at the price
of being exponentially more complex in terms of number of states. Given any FSA A’,
there exists a minimum state DFA (also called canonical DFA) A such that L(A) =
L(A′) (where L(A) denotes the set of strings accepted by A). Without loss of general-
ity, it can be assumed that the target automaton being learned is a canonical DFA.

A set S+ is said to be structurally complete with respect to a DFA A if S+ covers
each transition of A and uses every element of the set of final states of A as an accepting
state. Clearly, L(PTA(S+)) = S+.

Given a FSA A and a partition π on the set of statesQ of A, the quotient automaton
is obtained by merging the states of A that belong to the same block in partition π (see
[Dupont et al., 1994] for more details). Note that a quotient automaton of a DFA might
be a NFA and vice versa. The set of all quotient automata obtained by systematically
merging the states of a DFA A represents a lattice of FSAs. This lattice is ordered
by the grammar cover relation �. The transitive closure of � is denoted by �. We
say that Aπi

� Aπj
iff L(Aπi

) ⊆ L(Aπj
). Given a canonical DFA A and a set S+

that is structurally complete with respect to A, the lattice derived from PTA(S+) is
guaranteed to contain A.

From these assumptions follows the paradigmatic approach of most grammatical
inference algorithms (see, e.g., [Dupont et al., 1994, Pitt, 1989, Sakakibara, 1997]),
which equates generalization with state merging operations starting from the PTA.

3.2 Learning biases in grammatical inference
The core task of GI algorithms is thus to select iteratively a pair of states to be merged.
The differences among algorithms is related to the choice of: (i) the search criterion
(which merge is the best one); (ii) the search strategy (how is the search space ex-
plored); and (iii) the stopping criterion.

We shall consider here the setting of learning FSAs from positive and negative
examples, and describe the algorithms studied in section 4. In this setting, the stopping
criterion is determined from the negative examples: generalization proceeds as long as
the candidate solutions remain correct, not covering any negative example1

1 In this paper, following the standard Machine Learning terminology, a string is said to be covered by a
FSA iff it belongs to the language thereof.

5

The RPNI algorithm [Oncina & Garcia, 1992] uses a depth first search strategy with
some backtracking ability, favoring the pair of states which is closest to the start state,
such that their generalization (FSA obtained by merging the two states and subse-
quently applying the determinisation operator) does not cover any negative example.

The RED-BLUE algorithm (also known as BLUE-FRINGE) [Lang et al., 1998] uses
a beam search from a candidate list, selecting the pair of states after the Evidence-
Driven State Merging (EDSM) criterion, i.e. such that their generalization involves a
minimal number of final states. RED-BLUE thus also performs a search with limited
backtracking, based on a more complex criterion and a wider search width than RPNI.

4 Phase transition in grammatical inference
Following the methodology introduced in [Giordana & Saitta, 2000], the phase tran-
sition phenomenon is investigated along so-called order parameters chosen in accor-
dance with the parameters used in the Abbaddingo challenge [Lang et al., 1998]:

• The number Q of states in the DFA.

• The number B of output edges on each state.

• The number L of letters on each edge.

• The fraction a of accepting states, taken in [0,1].

• The size |Σ| of the alphabet considered.

• The length ` of the test examples. Also the maximal length ` of the learning
examples in S+ (as explained below).

The study first focuses on the intrinsic properties of the search space (section 4)
with no regard to the learning algorithms. Using a set of order parameters, the average
coverage of automata is studied analytically and empirically.

In a second step (section 4.2), we test the coverage of deterministic and non-
deterministic Finite-State Automata in the subspace actually investigated by grammat-
ical inference algorithms. Indeed, the vast majority of these algorithms first construct
a least general generalization of the positive examples, or Prefix Tree Acceptor (PTA),
and restrict the search to the generalizations of the PTA, or generalization cone2.

In section 5, we examine the capacity of the studied learning algorithms to approx-
imate a target automaton, based on positive and negative sampling.

4.1 Phase Transition in the whole FSA space
The sampling mechanism on the whole deterministic FSA space (DFA) is defined as
follows. Given the order parameter values (Q,B,L, a, |Σ|):

2 More precisely, the Prefix Tree Acceptor is obtained by merging the states that share the same pre-
fix in the Maximal Canonical Automaton (MCA), which represents the whole positive learning set as an
automaton. A PTA is therefore a DFA with a tree-like structure.

6

• for every state q, (i) B output edges (q, q′) are created, where q′ is uniformly
selected with no replacement among the Q states; (ii) L × B distinct letters are
uniformly selected in Σ; and (iii) these letters are evenly distributed among the
B edges above.

• every state q is turned into an accepting state with probability a.

The sampling mechanism for NFA differs from the above in a single respect: two edges
with same origin state are not required to carry distinct letters.

For each setting of the order parameters, 100 independent problem instances are
constructed. For each considered FSA (the sampling mechanisms are detailed below),
the coverage rate is measured as the percentage of covered examples among 1,000
examples (strings of length `) uniformly sampled.

Fig. 1 shows the average coverage in the (a,B) plane, for |Σ| = 2, L = 1 and
` = 10, where the accepting rate a varies in [0, 1] and the branching factor B varies in
{1,2}. Each point reports the average coverage of a sample string s by a FSA (averaged
over 100 FSA drawn with accepting rate a and branching factor B, tested on 1, 000
strings s of length `).

These empirical results are analytically explained from the simple equations below,
giving the probability that a string of length ` be accepted by a FSA defined on an
alphabet of size |Σ|, with a branching factor B and L letters on each edge, in the DFA
and NFA cases (the number of states Q is irrelevant here).

P (accept) =

{
a · (B·L

|Σ|)` for a DFA

a · [1− (1− L
|Σ|)

B]` for a NFA
(1)

The coverage of the FSA decreases as a and B decrease. The slope is more abrupt
in the DFA case than in the NFA case; still, there is clearly no phase transition here.

Figure 1: Coverage landscapes for Deterministic and Non-Deterministic FSA, for
|Σ|=2, L=1 and `=10. The density of accepting states a and the branching factor B
respectively vary in [0, 1] and {1, 2}.

7

4.2 Phase Transition in the Generalization Cone
The coverage landscape displayed in Fig. 1 might suggest that grammatical inference
takes place in a well-behaved search space. However, grammatical inference algo-
rithms do not explore the whole FSA space. Rather, as stated in section 4, the search is
restricted to the generalization cone, the set of generalizations of the PTA formed from
the set S+ of the positive examples. The next step is thus to consider the search space
actually explored by GI algorithms.

A new sampling mechanism is defined to explore the DFA generalization cone:

1. |S+| (= 200 in the experiments) examples of length ` are uniformly and inde-
pendently sampled within the space of all strings of length < `, and the corre-
sponding PTA is constructed;

2. N (= 50 in the experiments) PTAs are constructed in that way.

3. K (= 20 in the experiments) generalization paths, leading from each PTA to the
most general FSA or Universal Acceptor (UA), are constructed;
In each generalization path (A0 = PTA,A1, . . . , At = UA), the i-th FSA Ai

is constructed from Ai−1 by merging two uniformly selected states in Ai−1, and
subsequently applying the determinisation operator.

4. The generalization cone sample is made of all the FSAs in all generalization
paths (circa 270,000 FSAs in the experiments).

The sampling mechanism on the non-deterministic generalization cone differs from
the above in a single respect: the determinisation operator is never applied.

Fig. 2 (left) shows the behaviour of the coverage in the DFA generalization cone
for |Σ| = 4 and ` = 8. Each DFA A is depicted as a point with coordinates (Q, c),
where Q is the number of states of A and c is its coverage (measured as in section
4). The coverage rate for each FSA in the sample is evaluated from the coverage rate
on 1000 test strings of length `. Typical of all experimental results in the range of
observation (|Σ| = 2, 4, 8, 16, and ` = 2, 4, 6, 8, 16, 17), the figure shows a clear-cut
phase transition. Specifically, here, the coverage abruptly jumps from circa 13% to
54%; and this jump coincides with a gap in the number of states of the DFAs in the
generalization cone: no DFA with a number of states in [180, 420] was found. The gap
is even more dramatic as the length of the training and test sequences ` is increased.

Fig. 2 (right) similarly shows the behaviour of the coverage in the NFA generali-
sation cone, with |Σ| = 4 and ` = 16. Interestingly, a much smoother picture appears.
Although the coverage rapidly increases when the number of states decreases from 300
to 200, no gap can be seen, neither in the number of states nor in the coverage rate
itself3.

In the following, we focus on the induction of DFAs.

3 The difference with the DFA case is due to the determinisation process that forces further states merging
when needed. A diffusion like analytical model was devised, that predicts the observed start of the gap with
15% precision.

8

Number of states

C
o
ve

ra
g
e

ra
te

Figure 2: (Left) Coverage landscape in the DFA generalization cone (|Σ| = 4, ` = 8).
At the far right stand the 50 PTA sampled, with circa 1150 states each. The general-
ization cone of each PTA includes 1,000 generalization paths, leading from the PTA
to the Universal Acceptor. Each point reports the coverage of a DFA, evaluated over a
sample of 1,000 strings. This graph shows the existence of a large gap regarding both
the number of states and the coverage of the DFAs that can be reached by general-
ization. (Right) Coverage landscape in the NFA generalization cone, with same order
parameters as in fig. 2 (left).

5 Phase transition and search trajectories
The coverage landscape, for the DFAs, shows a hole in the generalization cone, with
a density of hypotheses of coverage in between a large interval (typically between less
than 20% to approximately 60%) falling abruptly. Therefore, a random exploration of
the generalization cone would face severe difficulties in finding a hypothesis in this
region and would likely return hypotheses of poor performance if the target concept
had a coverage rate in this “no man’s land” interval.

It is consequently of utmost importance to examine the search heuristics that are
used in the classical grammatical inference systems. First, are they able to thwart the
a priori very low density of hypotheses in the gap? Second, are they able to guide the
search toward hypotheses of appropriate coverage rate, specially if this coverage falls
in the gap?

The study next focuses on two standard algorithms in grammatical inference, namely
[Oncina & Garcia, 1992, Lang et al., 1998] the RPNI and the RED-BLUE (aka. EDSM)
algorithms.

5.1 Experimental setting
Previous experiments considered training sets made of positive randomly drawn strings
sequences only. However, in order to assess the performance of learning algorithms, the
hypothesis learned must now be compared to the target automaton. Therefore, another
experimental setting is used in this section, with the sampling of target automata, and

9

the construction of training and test sets. These data sets include positive and negative
examples as most GI algorithms (and specifically RPNI and RED-BLUE) use negative
examples in order to stop the generalization process.

In our first experiments, we tested whether heuristically guided inference algo-
rithms can find good approximations of the target automata considering target automata
with approximately (i) 50% coverage rate (as considered in the influential Abbadingo
challenge, and in the middle of the “gap”), and (ii) 5% coverage rate.

For each target coverage rate, we used the same experimental setting as described
in [Lang et al., 1998] in order to retain a certain number of target automata with a mean
size of Q states (Q = 50, in our experiments). For each automaton then, we generated
N (=20) training sets of size |S| (= 100) labeled according to the target automaton,
with an equal number of positive and negative instances (|S+| = |S−| = 50) of length
` = 14. The coverage rate was computed as before on 1000 uniformly drawn strings
(with no intersection with the training set).

In a second set of experiments, we analyzed the learning performances of the algo-
rithms with respect to test errors, both false positive and false negative.

In these experiments, we chose the type of target automata by setting the number
of states Q and some predetermined structural properties4.

5.2 The heuristically guided search space
Due to space limitation, only the graph obtained for the RPNI algorithm is reported (see
figure 3), with three typical learning trajectories. Similar results were obtained with the
RED-BLUE algorithm.

One immediate result is that both the RPNI and the EDSM heuristics manage to
densely probe the “gap”. This can explain why the gap phenomenon was not discovered
before, and why the RED-BLUE algorithm for instance could solve some cases of the
Abbadingo challenge where the target concepts have a coverage rate of approximately
50%. However, where RPNI tends to overspecialize the target automaton, RED-BLUE
tends to overgeneralize it by 5% to 10%.

In order to test the capacity of the algorithms to return automata with a coverage
rate close to the target coverage, we repeated these experiments with target automata of
coverage rate of approximately 3%. The results (figure 3) shows that, in this case, RPNI
ends up with automata of coverage 4 to 6 times greater than the target coverage. The
effect is even more pronounced with RED-BLUE which returns automata of average
coverage rate around 30%!

5.3 Generalization error
Table 1, obtained for different sizes of the target automata and for training sets of
structural completeness above 40%, confirms that both RPNI and RED-BLUE return
overgeneralized hypotheses. On one hand, their average coverage is vastly greater than
the coverage of the target automata, on the other hand, they tend to cover only part
of the positive test instances, while they cover a large proportion of the negative test

4 The datasets and more detail are available at http://www.lri.fr/∼antoine/www/pt-gi/

10

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

C
ov

er
ag

e
R

at
e

Number of States

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450

C
ov

er
ag

e
R

at
e

Number of States

Figure 3: (Left) Three RPNI learning trajectories for a target concept of coverage=56%.
Their extremity is outlined in the oval on the left. The doted horizontal line corresponds
to the coverage of the target concept. The cloud of points corresponds to random
trajectories. (Right) Same as in figure 3, except for the coverage of the target concept,
here 3%.

instances. This shows that the heuristics used in both RPNI and RED-BLUE may be
inadequate for target concepts of low coverage.

Algo. Qc ucovc Qf ucovf pcovf ncovf

RB 15 5.97 10.38 33.81 60.93 34.69
RB 25 4.88 12.77 40.35 62.68 37.87
RB 50 4.2 14.23 45.38 66.14 42.23
RB 100 3.39 13.13 30.35 42.81 28.69
RPNI 15 5.95 5.14 22.9 57.51 26.99
RPNI 25 4.7 7.56 23.07 56.38 25.98
RPNI 50 3.87 14.08 23.45 51.89 24.42
RPNI 100 3.12 26.41 23.151 50.12 24.40

Table 1: Performances of RED-BLUE (RB) and RPNI for target DFA of sizes Q = 15,
25, 50 and 100 states. Qf , ucovf , pcovf and ncovf respectively denote the average
size of the learned automata, their average coverage, the true positive and the false
positive rates.

6 Conclusion
This paper is a step toward a better understanding of grammar induction. Its first con-
tribution is to bring a new kind of analysis that emphasizes the importance of the prop-
erties of the coverage landscape in determining the feasibility of learning. Specifically,
it was shown that if the landscape seems well-behaved when the whole space of finite

11

state automata is considered, the picture is completely different when the space actu-
ally searched by existing learning algorithms is taken into account. These algorithms
that are all based upon state merging operators are threatened to be unable to probe a
wide range of candidate automata.

In fact, an analysis of the phase transitions found in the DFA case points to two
causes. First, equation 1 for the DFA shows that when the size ` of the strings is higher
than 10 say, a very small change in the branching factor B or the number of letters
per edge L can dramatically modify P (accept). Second, DFA induction implies that
state merging operations take place from time to time in order to restore determinism
in the induced automaton. But, our study, and a computer model that we developed,
demonstrate that these operations tend to occur in chain reaction like processes when
the choice of merging operation is random during induction. This phenomenon, com-
pounded with the first observation, predicts very well the gap observed in the experi-
ments.

This explains why sophisticated search biases are needed for grammatical infer-
ence algorithms in the problem range corresponding with the hole in the generalization
cone. Regrettably, a second finding of this research concerns the limitations of the
search operators in the standard algorithms RPNI and RED-BLUE, especially outside
the region of intermediate coverage target concepts. Experiments with artificial learn-
ing problems built from target concepts with coverage less than 10% reveal that RPNI
and RED-BLUE alike tend to learn overly general hypotheses; with respect to both the
size (estimated by the number of states) and the coverage of the hypotheses, often larger
by an order of magnitude than that of the target concept. What is even more worrying
is that this overgeneralization does not imply that the found hypotheses are complete:
on the contrary, the coverage of the positive examples remains below 65%, in all but
one setting. Unfortunately, many real-world applications involve target concepts of low
coverage (e.g. molecules that are active against a specific biological target). There are
therefore reasons for concern.

But this analysis also opens several perspectives for further research. First, it sug-
gests that, unlike in existing algorithms, the learning search, and especially the stop-
ping criterion, could be controlled using a hyper-parameter: the coverage rate of the
target concept (possibly supplied by the expert, or estimated e.g. by cross-validation).
Secondly, more conservative generalisation operators can be used. Preliminary exper-
iments done with e.g. reverted generalisation (same operator as in RPNI, applied on
the reverted example strings) show that such operators can delay the determinisation
cascade, and offer a finer control of the final coverage rate of the hypotheses.

To sum up, the analysis based on the study of the coverage landscape offers fun-
damental clues about the interaction, in induction, of the hypothesis space and the
example space. The generic properties of a family of learning algorithms can be stud-
ied, leading to better understanding of their limits but also providing indications about
possible ways to alleviate these.

12

Acknowledgments
The authors are partially supported by the PASCAL Network of Excellence IST-2002-
506 778. They gratefully acknowledge the help of Nicolas Pernot for the work done at
the beginning of this project.

References
[Angluin, 1987] Angluin, D. (1987). Information and Computation, 75 (2), 87–106.

[Botta et al., 2003] Botta, M., Giordana, A., Saitta, L., & Sebag, M. (2003). Journal
of Machine Learning Research, 4, 431–463.

[Cheeseman et al., 1991] Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). In:
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence,
IJCAI-91, Sidney, Australia pp. 331–337,.

[Denis et al., 1996] Denis, F., D’Halluin, C., & Gilleron, R. (1996). In: 13th Annual
Symposium on Theoretical Aspects of Computer Science volume LNCS-1046 pp.
231–242, Grenoble, France: Springer.

[Dupont et al., 1994] Dupont, P., Miclet, L., & Vidal, E. (1994). In: Proceedings of
the Second International Colloquium on Grammatical Inference and Applications,
ICGI-94 pp. 25–37,.

[Giordana & Saitta, 2000] Giordana, A. & Saitta, L. (2000). Machine Learning, 41,
217–251.

[Gold, 1978] Gold, E. M. (1978). Information and Control, 37, 302–320.

[Hogg et al., 1996] Hogg, T., Hubberman, B., & Williams, C. (1996). Artificial Intel-
ligence, 81, 1–15.

[Lang et al., 1998] Lang, K., Pearlmutter, B., & Price, R. (1998). In: Fourth Inter-
national Colloquium on Grammatical Inference (ICGI-98) volume LNCS-1433 pp.
1–12, Springer Verlag.

[Muggleton & Raedt, 1994] Muggleton, S. & Raedt, L. D. (1994). Journal of Logic
Programming, 19/20, 629–679.

[Oncina & Garcia, 1992] Oncina, J. & Garcia, P. (1992). Pattern Recognition and
Image Analysis, , 49–61.

[Parekh & Hanovar, 1997] Parekh, R. & Hanovar, V. (1997). In: Workshop on Algo-
rithmic Learning Theory (ALT-97), (Li, M. & Maruoka, A., eds) volume LNAI-1316
pp. 116–131, Berlin, Germany: Springer.

[Pitt, 1989] Pitt, L. (1989). In: Proceedings of the Workshop on Analogical and In-
ductive Inference (AII-89) volume LNCS-397 pp. 18–44, Springer Verlag.

13

[Sakakibara, 1997] Sakakibara, Y. (1997). Theoretical Computer Science, 185, 15–
45.

[Sakakibara et al., 1994] Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjlander,
K., Underwood, R. C., & Haussler, D. (1994). Nucleic Acids Research (NAR), 22,
5112–5120.

[Vapnik, 1995] Vapnik, V. (1995). The Nature of Statistical Learning. : Springer.

14

