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Abstract. Many problems, like feature selection, involve evaluating ob-
jects while ignoring the relevant underlying properties that determine
their true value. Generally, an heuristic evaluating device (e.g. filter,
wrapper, etc) is then used with no guarantee on the result. We show
in this paper how a set of experts (evaluation function of the objects),
not even necessarily weakly positively correlated with the unknown ideal
expert, can be used to dramatically improve the accuracy of the selec-
tion of positive objects, or of the resulting ranking. Experimental results
obtained on both synthetic and real data confirm the validity of the
approach. General lessons and possible extensions are discussed.
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1 Introduction

Imagine you are asked to identify students who have taken a course in some
subject. All you have is a set of handouts from a collection of students, some of
whom have followed the course of interest. Because you do not know the specifics
of the target course, you do not know how to evaluate the handouts in order to
single out the students you are looking for. However, you can use the services
of a set of colleagues who do not know either, a priori, how to recognize the
“positive” students, but have the ability to grade the copies using their own set
of evaluation criteria. These can be quite diverse. For instance, a grader might
be sensitive to the color of the paper, the margins, the thickness of the paper
and the number of pages. Another could count the number of underlinings and
use the length of the name and the color of the ink to evaluate the student’s
handouts. And a third one could measure the number of dates cited in the copy,
the average length of the sentences, and the average space between lines.

Would that help you in identifying the students who have taken a course,
unknown to you? And by combining in some way the various evaluations and
rankings of your “experts”, could you somehow increase your confidence in de-
tecting the right students?

While grading students using a bunch of unknowledgeable and weak experts
might certainly interest many of us, the problem outlined above is just one
illustration of a much larger set of applications.
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Actually our research on this subject started when, some years ago, a biologist
came to us for asking our help in discovering the genes that were involved in the
response of cells to weak radioactivity level. The organism studied was the yeast
Saccharomyces cerevisiae and its 6,135 genes. Thanks to microarray technology,
their activity level in conditions where low radiation doses were present and
conditions where no such radioactivity existed was measured. All together, 23
microarrays were obtained. In a way, our students here were the genes and
their handouts were their profile of responses to the 23 conditions. We did not
know what kind of profile was relevant to identify the genes that interested the
biologist, but we had some techniques, like SAM [1], ANOVA [2, 3], RELIEF [4,
5] and others, that could be used to rank the genes according to some statistical
patterns or regularities found in the profiles of the genes.

This paper shows how, in the absence of supervised information, can we
still attain a high precision level in finding the “positive” instances in a large
collection, given that we can make use of a varied set of “weak” experts and
generate samples according to some null hypothesis.

Our paper is organized as follows. Section 2 provides a more formal definition
of the problem and discusses why existing approaches using ensemble techniques,
like Rankboost [6] and other similar methods, are inadequate. The bases of our
new approach and the algorithm for a single iteration are presented in Section
3. Experimental results, on synthetic data as well as real data, are then reported
in Section 4, while Section 5 describes the extension of the method to multiple
iterations. Finally, lessons and perspectives are discussed in Section 6.

2 The problem and related works

2.1 Definition of the problem

We can define the problem we are interested in as follows.

– A sample S of objects (e.g. students, genes, features) of which it is strongly
suggested that some are “positive” objects, while the others are to be con-
sidered as “negative” ones (e.g. students who did not take the target course,
genes not sensitive to radioactivity, irrelevant attributes).

– A set E of “experts”, also called graders, who, given an object, return a value
according to their own set of criteria.

Note that nothing is known beforehand about the alignment of our “experts”
with the ideal grader. As far as we know, some experts may tend to rank objects
similarly as the target expert, but other may well rank them in a somewhat
reverse order, while still others may be completely orthogonal to the target
regularities (e.g. it might be expected that the number of letters of the name of
the students do not provide any information about the courses they have taken).

In this truly unsupervised setting, is it then possible to use such a set of
experts, or a subset thereof, in order to rank the objects in the sample S with
some guarantee about the proximity with the target ranking (one that would
put all the positive objects before the negative ones)?
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2.2 Related works

In the ranking problem, the goal is to learn an ordering or ranking over a set
of objects. One typical application arises in Information Retrieval where one is
to prioritize answers or documents to a given query. This can be approached in
several ways. The first one is to learn a utility or scoring function that evaluates
objects relative to the query, and can therefore be used to induce an ordering.
This can be seen as a kind of ordinal regression task (see [9]). A second approach
consists in learning a preference function defined over pairs of objects. Based on
this preference function, or partial ordering, one can then try to infer a complete
ordering that verify all the known local constraints between pairs of objects.

Both of these approaches need training data which, generally, takes the form
of pairs of instances labeled by the relation � (must precede or be at the same
rank) or � (must follow). In the case of the bipartite ranking problem, there
are only two classes of objects, labeled as positive or negative, and the goal is to
learn a scoring function that ranks positive instances higher than negative ones
[8]. Ensemble methods developed for supervised classification have thus been
adapted to this learning problem using a training sample of ordered pairs of
instances. Rankboost [6] is a prominent example of these methods.

Another perspective on the ranking problem assumes that orderings on the
set of objects, albeit imperfect and/or incomplete, are available. The goal is then
to complete, merge or reconcile these rankings in the hope of getting a better
combined one. This is in particular at the core of Collaborative Filtering where
training data is composed of partial orderings on the set of objects provided by
users. Using similarity measures between objects and between users, the learning
task amounts then to completing the matrix under some optimization criterion.

In [7], another approach was taken where, starting from rankings supposedly
independent and identically corrupted from an ideal ranking, the latter could
be approximated with increasing precision by taking the average rank of each
object in an increasing number of rankings. However, the underlying assumptions
of independence and of corruption centered on the true target ranking were
disputable and the experimental results somewhat disappointing.

Above all, all these methods rely on supervised training data, either in the
form of labelled pairs of instances, or in the form of partial rankings. In the latter
case, these rankings are supposed to be mild alterations of the target ranking.

In this paper, the problem we tackle does not presuppose any learning data.
Furthermore, the evaluation functions or “experts” that are considered are not
supposed to be positively correlated with the target evaluation function.

3 A new method

3.1 The principle

Let us return to the situation outlined in the introduction where the task is
to distinguish the students in a university who have taken a course in some
discipline of which you do not know the characteristics. Given our ignorance on
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both the expert’s expertise for the question at hand, and on the target concept,
the situation might seem hopeless. However, the key observation is that the
sample at hand is not a random sample: the sample of students very likely
includes positive instances (students) to some significant extent (e.g. more than
could be due to accidental fluctuations in the background of students). This
provides us with a lever.

We consider now pairs of experts, and measure their correlation both a priori,
by averaging on all possible ranking problems, and on the target problem. If the
two experts are sensitive to the “signal” in the sample, then their correlation on
this sample will differ from their a priori one.

This observation is at the basis of the ensemble method we propose. Instead
of relying on a combination of separate experts, it uses pairs of experts both
to detect experts that are relevant and to assign them a weight. The utterly
unsupervised, and seemingly hopeless, task is tamed thanks to the measurements
of correlations of higher orders between experts.

3.2 Formal development

Let d be the number of objects in the target sample S (e.g. the students) and
suppose two graders or experts rank the elements of S.

In case the experts were random rankers, the top n elements of each ranking
would be equivalent to a random drawing of n elements. Therefore the size k of
their intersection would obey the hypergeometric law :

H(d, n, k) =

(
n
k

)
·
(
d−n
n−k

)(
d
n

) (1)

where H(d, n, k) denotes the probability of observing an intersection of size k
when drawing at random two subsets of n elements from a set of size d.

For instance, in the case of the intersection of two subsets of 500 elements
randomly drawn from a set of 6,135 elements, the most likely intersection size is
41. It can be noticed that k/n = n/d (e.g. 41/500 ≈ 500/6,135).

In other words, if two totally uncorrelated graders were asked to grade 6,135
copies, and if one looked at the intersection of their 500 top ranked students,
one would likely find an intersection of 41. However, two graders using exactly
the same evaluation criteria would completely agree on their ranking no matter
what. Then the intersection size k would be equal to n for all values of n. The
opposite case of two anti-correlated graders would yield two opposite rankings
for any sample. The intersection size would therefore be zero up to n = d/2 and
then grow up as 2(n− d/2)/n.

There is therefore a whole spectrum of possible correlation degrees between
pairs of experts, from ‘totally correlated’, to ‘maximally anti-correlated’, going
through ‘uncorrelated’ (case of the hypergeometric law) as shown on Figure 1.

As an illustration, Figure 2 shows the curve obtained for the pair of “ex-
perts” ANOVA and RELIEF when they ranked samples of possible genes. It
appears that the two methods are positively correlated. The curve stands above
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Fig. 1. Illustration of the classes of possible correlation curves between pairs of experts.
The x-axis stands for n, the size of the top n ranked elements considered in each
ranking. The y-axis represents the size of the intersection k(n). Any curve between the
“totally correlated” one and the “anti-correlated” one are possible.

the diagonal) at approximatively two standard deviations above, except for the
tail of the curves. This “over-correlation” starts sharply when the intersection
is computed on the top few hundreds genes in both rankings, and then it lev-
els off, running approximatively parallel to the a priori correlation curve. This
suggests that this is in the top of both rankings that the genes present patterns
that significantly differ from the patterns that can be observed in the general
population of instances. Actually, the fact that the relative difference between
the curves is maximal for n ≈ 180 and n ≈ 540 would imply that it is best to
consider the top180 or the top540 ranked genes by ANOVA on one hand and by
Relief on the other hand because they should contain the largest number of
genes corresponding to information that is specific to the data.

3.3 Estimating the number of positive instances

Following the computation of the hypergeometric law, one can compute the
number of combinations to obtain an intersection of size k when one compares
the top n elements of both rankings.

Let us call kcorr the number of elements that the two experts tend to take
in common in their top n ranked elements, and k+corr the number of positive
elements within this set. Then the probability of observing a combination as
described on Figure 3 is:

H”(k, k−corr, k
+
corr, p1, p2, n, d) =

a︷ ︸︸ ︷(
n− p1
k−corr

) b︷ ︸︸ ︷(
d− p− (n− p1)

n− p2 − k−corr

) c︷ ︸︸ ︷(
p1

k+ − k+corr

) d︷ ︸︸ ︷(
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)
(d
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Fig. 2. The x-axis stands for the number n of top-ranked features (e.g. genes) consid-
ered. The y-axis stands for the ratio of the intersection size to n. Left: (Top curve) the
intersection size for the true data. (Center curve): the mean intersection size due to
the a priori correlation between ANOVA and Relief (with some standard deviation
bars). (Lower curve): the intersection size explainable by randomness alone. Right:
Curve of the relative difference, with respect to n, of the observed intersection size k
and the intersection size kcorr due to a priori correlation between ANOVA and Relief.
The curve focuses on the beginning of the curve, for n < 2, 000, since this is the more
interesting part.

where the overbraces refer to the sets indicated in Figure 3.
In this equation, k, kcorr, n and d are known. And since kcorr is independent

on the classes of the objects, one can estimate that k+corr/kcorr = p/d. The
unknown are therefore: k+, p1 and p2. When there is no a priori reason to believe
otherwise, one can suppose that the two experts are equally correlated to the
ideal expert, which translates into p1 = p2, and there remains two unknowns
only, p1 and k+. Using any optimization software, one can then look for the
values of p1 and k+ which yield the maximum of Equation 2.

In the case of the low radiation doses data, the maximum likelihood principle,
applied with d = 6, 135, n = 500, kcorr = 180 and k = 280 yields p = 420 ±
20 and p1 = 340 ± 20 as the most likely numbers of total relevant genes and
of the relevant genes among the top500 ranked by both methods. From these
estimations, a biological interpretation of the tissues of the cell affected by low
radioactivity was proposed [10].

3.4 Experimental results on synthetic data

In these experiments, d = 1, 000 genes, or features, were considered, whose value
were probabilistically function of the condition. For each feature, 10 values were
measured in condition 1 and 10 values in condition 2. The relevant features were
such that condition 1 and condition 2 were associated with two distinct gaussian
distributions. The difference δ between the means µ1 and µ2 could be varied,
as well as the variance. The values of the irrelevant features were drawn from a
unique gaussian distribution with a given variance. In the experiments reported
here, the number p of relevant features was varied in the range [50, 400], the
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Fig. 3. The sets involved in the generative model of the intersection size k when the
correlation a priori is taken into account (see Equation 2).
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Fig. 4. The values of artificial genes. For each relevant genes, 10 values are drawn from
distribution 1, and 10 from distribution 2, while the 20 values for the irrelevant genes
are drawn from a unique distribution.

difference δ ∈ [0.1, 5] and σ ∈ [1, 5]. The smaller δ and the larger σ, the more
difficult it is to distinguish the relevant features from the irrelevant ones.

Figure 5 shows the results for p ∈ {50, 200, 400}, δ = 1 and σ = 1 (left), and
for δ = 2 (right). Predictively, the curves are much more peaked in the case of a
larger signal/noise ratio. Indeed, on the right curves, the value of p can be guessed
directly. However, even in the less favorable case (Figure 1, left), the value of p
can be retrieved quite accurately using equation 2 and the maximum likelihood
principle. After computation, the values p = 50, 200, 400 emerge rightly as the
more likely ones.

These results obtained in this controlled experiments and others not reported
here show the value of considering pairs of experts in this strongly unsupervised
context. But is it possible to use more than one pair of experts?
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Fig. 5. The correlation curves obtained for various values of p, in a difficult setting
(left), and a milder one (right).

4 Towards higher order combinations of experts and
rankings

A combination of experts must be weighted according to the value of each expert.
But how to proceed when no information is a priori available on the value of
the various experts for the task at hand?

Measuring the difference in the correlation of pairs of experts on average and
on the sample S as described in Section 3 allows one to make such a distinction.
On one hand, experts that are blind to the target regularities won’t show any
over or under correlation with any other expert on the sample S since they do
not distinguish in any way the positive instances. On the other hand, experts
that are not blind and tend either to promote positive instances towards the top
(resp. the bottom) of the ranking will show over-correlation on S with experts
that do the same, and under-correlation with experts that do the opposite. Two
classes of experts will thus appear, the ones positively correlated with the target
ranking and the ones negatively correlated. If, in addition, we assume that the
positive instances are a minority in S, it is easy to discriminate the “positive”
class form the “negative” one. Because we measure correlation by comparing
the top n ranked elements of the experts, the correlation curve rises much more
sharply for the positive experts, that put the positive instances towards the top,
than for the negative ones that put the rest of the instances towards the top.

Knowing the sign of the weight of each expert is however too crude an infor-
mation in order to obtain a good combined ranking. We are currently working
on a scheme to compute the value of the weight that each expert should be given
in order to reflect its alignment with the unknown target evaluation function.

5 Lessons and perspectives

This paper has presented a new totally unsupervised approach for ranking data
from experts diversely correlated with the target regularities. One key idea is to
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measure and exploit the possible difference between a priori correlation existing
in pairs of experts and their correlation on the actual data to be ranked. We
have shown how to measure these correlations and how to estimate from them
relevant parameters through a maximum a posteriori principle.

The use of pairs of experts in order to overcome the lack of supervised in-
formation is, to our knowledge, new. The experimental results obtained so far
confirm the practical and theoretical interest of the method. We have also sug-
gested ways to use multiple pairs of experts in a boosting like process. Future
work will be devoted to the precise design of such an algorithm and to extensive
experimentations. They will include comparisons with other co-learning methods
specially designed for unsupervised learning (see for instance [11]).
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