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Abstract. In on-line machine learning, predicting changes is not a triv-
ial task. In this paper, a novel prediction approach is presented, that
relies on a committee of experts. Each expert is trained on a specific
history of changes and tries to predict future changes. The experts are
constantly modified based on their performance and the committee as
a whole is thus dynamic and can adapt to a large variety of changes.
Experimental results based on synthetic data show three advantages: (a)
it can adapt to different types of changes, (b) it can use different types of
prediction models and (c) the committee outperforms predictors trained
on a priori fixed size history of changes.
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1 Introduction

Different types of concept changes exist in the litterature. Concept drifts [9]
refer to the change of the statistical properties of the concept’s target value.
For example, the behavior of customers in shopping might evolve with time
and thus the concept capturing this behavior evolves as well. The speed of the
change can be gradual or sudden. A sudden drift is sometimes referred to as a
concept shift [7, 8]. Another type of change, known as virtual concept drift [6],
pseudo-concept drift [4], covariate shift [1] or sample selection bias [3] occurs
when the distribution of the training data changes with time. In this context,
several problems should be adressed:

– What is the optimal size of the memory in order to predict well the future
trends? A long history may allow for more precise predictions, but it can
also be misleading in case of sudden change of regime. This is the basis of
the well-known stability-plasticity dilemma.

– What is the nature of the change ruling the evolving environment? Do we
consider change as a stable function or can the change itself vary with time?

Most current approaches assume that the change is a temporal function that
can be learnt using standard temporal series methods, for instance using linear
regression [2] or a hidden markov model [8]. Therefore, they consider the change
as a stable function that can be predicted using time information only.
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In this paper, we suggest a general approach to anticipate how a concept
changes with time. We solve the stability-plasticity dilemma by using a com-
mittee of experts where each expert is a predictor trained on its own history
size. Our method is inspired by [5] where a dynamic committee of experts is
used to learn under concept drift. By analogy, we use a committee of experts
to learn under concept change drift. Therefore, we look at the bigger picture by
considering the change itself as a dynamic function that can vary with time.

The rest of this paper is organized as follows. Section 2 discusses related
works. We present our approach in Section 3. In Section 4, we test our approach
on two scenarios: the first is designed to show how our committee allows a fast
adaptation to sudden changes while preserving a good prediction accuracy on
gradual changes, the second mixes different types of predictors: neural networks
and polynomial regression models. Finally, Section 5 summarizes our results.

2 Related Work

In learning under concept drift, some approaches aim at removing the effect
of change [4] while others suggest techniques to detect change and adapt their
model accordingly [5]. The PreDet [2] algorithm is one of the few works directly
related to ours. It anticipates future decision trees by predicting for each node
the evaluation measure of each attribute, this value being used to determine
which attribute will split the node. The system uses linear regression models
trained on a fixed size history to predict future changes. The size of the history
requires a priori knowledge on the speed of change. Another prediction system,
RePro [8], stores the observed concepts as a markov chain. Once a change is
detected, it uses the markov chain to predict the future concept. It assumes that
concepts repeat over time.

3 Prediction Algorithm

The prediction scenario works as follows. The training examples are received in
data sets or batches of fixed size. A training example is represented by a pair
(x, y), where x ∈ Rp is a vector in a p-dimensional feature space and y is the
desired output or target.

For each batch Si a concept Ci is learnt. The concept Ci can be a classification
rule, a decision tree or any other model that learns the model of the training
data in Si. By analyzing the sequence of concepts

(
C1, ..., Ci

)
, the future concept

Ci+1 is predicted. The main parts of the prediction algorithm are presented next.
The pseudo-code is shown in Algorithm 1.

To simplify the discussion, we represent a concept C as a vector of parameters
of dimension n: C = [c1, c2, ..., cn]. If the concept is a neural network for example,
it can be represented as a vector of the network weight values.

After each batch Si is received, a concept Ci is learnt. A change sample δt
corresponds to a change between two consecutive concepts: δt = (Ct, Ct+1). At
timestep t+ 1, the total history of changes is the sequence

(
δ1, ..., δt

)
.
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3.1 Building the Committee

In our approach, a committee of predictors is learned, each of which trained on
a different history size.

The algorithm starts by defining a set of predictors with possibly different
structures. For instance, the predictors can be neural networks with different
numbers of hidden neurons and activation functions, or they can be decision
trees, linear regression models, Bayes rules, SVMs etc. The set of predictors will
be referred to as the “base of predictors” and has size n base.

The committee P is initially empty. When the first change sample δ1 is ob-
served, a base of predictors b1 trained on δ1 is added to the committee. When
the second change sample δ2 is observed, each predictor in the base b1 adds
δ2 to its history and is retrained. In addition, a new base of predictors b2,
trained on δ2 only, is added to the committee. This process continues until a
maximum number of base of predictors max base in the committee is reached.
At this point, the base of predictors {b1, b2, ..., bmax base} have history sizes:
{max base,max base−1, ..., 1} respectively. In subsequent steps, the committee
P is updated. At each timestep t, a small but significant number of predictors
(e.g. 25%) is selected and their history size is increased; the history size of the
remaining predictors remains unchanged. The worst n base predictors are re-
moved from the committee and replaced with a new base of predictors trained
on the last seen change δt−1 only.

3.2 Prediction

At timestep t, each committee member p ∈ P give its prediction of the next
concept C̃p

t+1.

C̃p
t+1 = [c̃p(t+1,1), ..., c̃

p
(t+1,n)] (1)

where c̃p(t+1,i) is the i-th parameter of the concept Ct+1, predicted by the p-th

predictor for timestep t+ 1.
Each predictor in the committee predicts all the parameters of the next

concept. However, the final prediction of the committee is formed by selecting
the best prediction for each parameter c(t+1,i) of the concept independently.

This is motivated by the fact that selecting the whole predictions C̃p
t+1 =

[c̃p(t+1,1), ..., c̃
p
(t+1,n)] of a predictor p assumes that all the parameters c(t+1,i)

evolve at the same speed, which may not be the case. The final prediction of the
committee is: C̃t+1 = [c̃(t+1,1), ..., c̃(t+1,n)], where ∀i ∈ {1, .., n}

c̃(t+1,i) = arg min
p∈P

‖ c(t+1,i) − c̃p(t+1,i) ‖ (2)

We choose the best predictions by defining an evaluation function eval(p, i)
that measures the performance of a predictor p in predicting the parameter

i of the concept C. Equation 2 then becomes: c̃(t+1,i) = c̃p
∗

(t+1,i), where p∗ =

arg maxp∈P
(
eval(p, i)

)
.
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Algorithm 1 The Concept Change Prediction Algorithm

P ← φ, t← 2, maxsize P = n base ∗max base
C1 ← train(C1,S1)

while batches are received do
Ct ← train(Ct,St)
δt−1 = (Ct−1, Ct) {the last sample change}

{Remove the lowest performing predictors}
if size(P) >= maxsize P then

for k = 1→ n base do
{p ∈ P has the lowest prediction performance}
P ← P \ p

end for
end if

{Update remaining predictors}
for k = 1→ size(P) do
pk ∈ P is the kth predictor
histk is the history size of pk
r ← rand[0, 1]
if r >= 0.75 then
histk ← histk + 1

end if
Retrain pk on the last histk sample changes

end for

{Add new predictors}
bt is a base of predictors trained on δt
P ← P ∪ bt

{Predict next concept change}
H ← φ is the set of predictions
for k = 1→ size(P ) do
pk ∈ P is the kth predictor
H ← H ∪ C̃pk

t+1

end for

C̃t ← φ is the final prediction
if H 6= φ then

for i = 1→ size(n) do
p∗ = arg maxp∈P

(
eval(p, i)

)
c̃(t,i) = c̃p

∗

(t,i)

end for
end if

end while
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4 Experiments

The first experiment in Section 4.1 is designed to show how the prediction com-
mittee adapts to different types of change. In the second experiment, in Section
4.2, we show that by mixing different types of predictors in our committee (neu-
ral networks, polynomial regression models), we take advantage of each type of
predictor and get better prediction results. Finally, we show that our predictors,
whose history size change dynamically with time, outperform predictors trained
on a fixed size window.

4.1 Experiment 1

We simulate a concept drift by continuously moving the hyperplane correspond-
ing to a decision function (the target concept) in a d-dimensional space. A hy-

perplane is described by the equation
∑d−1

i=1 wixi = w0.

Sequence of concepts. For each slowly modified hyperplane, we generate a
batch of 1000 training examples (x, y), where x ∈ [0, 1]d is a randomly generated

vector of dimention d and y = sign(
∑d

i=1 wixi − w0). The value of w0 is set to

1/2
∑d

i=1 wi so that nearly half of the y’s are positive and the other are negative.
In this experiment, d = 6 and the hyperplane weights wi are initially set to
random values, that are gradually incremented, not necessarily with the same
increment for each weight, until time step 101, then decreased until they reach
their initial values. We learn a sequence of perceptrons each of which trained on
the corresponding batch of training examples.

Prediction. In order to predict the perceptron changes, we use feed-forward
neural networks that anticipate the new values of the perceptron weights given
the current ones. The maximum size of the committee is set to 10 predictors.

At timestep t, each predictor in the committee gives its prediction of the
next hyperplane weights. For each weight wi, we define the best predictor as
the committee member that predicted wi with the least mean error on previous
timesteps t−1, t−2 and t−33. At timestep t, we also compute for each predictor
its mean square error on all the weights to predict. The worst predictor on
previous timesteps t− 3, t− 2 and t− 1 is removed.

Results and Discussion. The prediction results for the perceptron weight w1

is presented in Figure 4.1. The same behavior is observed for the other weights.
The committee predicts well when the weight value increases. When the values
start suddenly to decrease at time step 101, it corrects its prediction error rapidly

3 In all our experiments, we evaluate the predictors’ performance on a window size
of 3. The window size is set to a small value to adapt to the recent predictors’
performance
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Fig. 1. The prediction results of the perceptron weight w1 in the time interval [85, 115],
during which the weight suddenly starts decreasing. The line with asterisks represents
the real value of w1 whereas the line with circles represents the predicted value.

and regains its former prediction performance afterwards. This ability to adapt
to rapid changes is due to the dynamic committee of predictors whose members
are trained on different history sizes. We show in Figure 2 the evolution in the
history size of three of the committee members.

The predictor A is added to the committee at timestep 2. Its history keeps
growing until timestep 105 where it is replaced by a new predictor, trained on a
history of size 1. Indeed, the sudden change in the weight value deteriorates the
predictor’s performance, causing its elimination from the committee. Predictor
B is added at timestep 8, and is also removed soon after the sudden change.
Predictor C, added to the committee at timestep 5, is replaced before the sud-
den change because it is the lowest performing committee member. It is also
common for a newly added predictor to be replaced soon after it is added to the
committee, as we see for predictor C during time interval [90, 130]. This occurs
when the change is gradual and thus the performance of a newly added predictor
will be bad compared to the other committee members.

4.2 Experiment 2

In this section, the hyperplane in a six-dimensional space undergoes more com-
plex changes in the weight values than in experiment 4.1 (see Figure 3). A se-
quence of 250 different hyperplanes (H1,H2, ...,H250) is generated, where each
hyperplane Hi = [wi,1, wi,2, ..., wi,6] is represented by its weight vector.

Neural Networks vs Polynomial Regression In this first set of experiments,
we tested our prediction approach using different types of predictors. We were
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Fig. 2. The evolution in the history size of three of the committee predictors.

Fig. 3. The evolution of the six weights of the hyperplane described in experiment 4.2.

specially interested in comparing neural networks and polynomial regression
models as predictors.

In each experiment, we compared feed-forward neural predictors to simple
predictors which consider the next hyperplane equals to the current one. The
prediction results are reported in exp. 1,2 and 3 of Table 1. Our prediction
approach beats the simple prediction approach in nearly 85.6% of the time.

In the second set of experiments, we tested our prediction approach using
polynomial regression models instead of neural networks as predictors. We re-
peated the previous tests using a base of predictors that consists of 3 polynomial
predictors with degree 1,2 and 3 respectively. The results are reported in exp. 4,
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Exp. Base of Pred. Max. Base of S b O Per. (%) S b O MSE ratio S O MSE ratio
Pred.

1 1 FF 8 85.94 3.61 2.05

2 1 FF 13 85.94 4.03 0.26

3 1 FF 20 85.14 5.02 0.77

4 3 PR 8 89.95 2.11 1.68

5 3 PR 13 91.16 2.19 1.76

6 3 PR 20 89.55 2.27 1.77

7 1 FF, 3 PR 8 87.95 3.18 1.30

8 1 FF, 3 PR 13 89.95 3.38 1.77

9 1 FF, 3 PR 20 85.94 3.64 1.88

Table 1. The prediction results with different predictor types and committee
sizes, using our prediction approach. Exp is the index of the experience. Base of
Pred. is the base of predictors; 1 FF stands for one feed forward neural network and 3
PR stands for three polynomial regression models with degree 1,2 and 3 respectively.
Max. Base of Pred. is the maximum number of base of predictors in the committee.
During the experiments, we predict the weights of 250 hyperplanes. For each prediction,
we compute the prediction MSE: the mean square error between the predicted values
and the real values. The S b O MSE is the percentage of time our prediction MSE is
smaller than the simple prediction MSE. The S b O MSE ratio is the ratio between the
simple prediction MSE and our prediction MSE, when our prediction MSE is smaller
than the simple prediction MSE. The S O MSE ratio is the ratio between the simple
prediction MSE and our prediction MSE.

5 and 6 of Table 1. Globally, neural networks beat polynomial regression mod-
els by having a smaller prediction error when they are better than the simple
prediction scenario. On the other hand, polynomial regression models beat the
neural networks by having a smaller prediction error on average.

In the third set of experiments, we mixed both type of predictors: the base of
predictors contains a feed forward neural network and 3 polynomial regression
models with degree 1, 2 and 3 respectively. The prediction results are reported in
exp. 7, 8 and 9 of Table 1. By mixing neural networks with polynomial regression
models, we take advantage of both types of predictors: the S O MSE ratio and
the S b O MSE Per. increase compared to when we only used neural networks
while the S b O MSE ratio increases compared to when we only used polynomial
regression models.

Dynamic History Size vs Fixed History Size. Prediction performances are
compared with our committee and with predictors using a fixed history size. Five
experiments were conducted. In the first four experiments, the history size was
set to 2, 4, 8 and 15 respectively. In the fifth experiment, the history size of the
predictor grows with time. The results are reported in Table 2. It appears that
using fixed window size predictors requires a priori knowledge of the suitable
window size for the prediction task. Choosing the wrong window size might give
catastrophic results.
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Exp Predictor History Size S b O Per. (%) S b O MSE ratio S O MSE ratio

1 1 FF 3 82.32% 4.4 0.21

2 1 FF 5 87.95% 3.9 1.7

3 1 FF 9 70.28% 2.44 1.07

4 1 FF 15 17.67% 1.4 0.29

5 1 FF growing 4.47% 1.2 0.0108

Table 2. The prediction results using predictors with a fixed size history. Exp
is the index of the experience. Predictor is the type of predictor used in the experience;
1 FF stands for one feed forward neural network. History Size is the fixed history size
of the predictor. The last three columns are explained in Table 1.

5 Conclusion

We have presented an approach to predict future concept changes using a dy-
namic and diverse committee of experts. Each expert in the committee is a
predictor that anticipates the future changes of an evolving concept, taking into
account the observed history of changes. The committee can be comprised of dif-
ferent types of experts (neural networks, polynomial regression models, SVMs
etc...) with different history sizes. It is also dynamic by constantly updating its
members. The experiments show that the diversity in the history size allows
us to adapt to different types of changes while using multiple types of experts
improves the prediction results.
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