Reacting to Concept Changes using a Committee of Experts

Ghazal Jaber* **, Antoine Cornuéjols*
Philippe Tarroux**

*AgroParisTech, département MMIP et INRA UMR-518
16 rue Claude Bernard
F-75231 Paris Cedex 5, France
ghazal.jaber, antoine.cornuejols @agroparistech.ft,
http://www.agroparistech.fr/mia/equipes:membres:page:ghazal
**Université de Paris-Sud, LIMSI, Batiment 508,
F-91405 Orsay Cedex, France
ghazal jaber, philippe.tarroux @limsi.fr

Abstract. We present a general framework to deal with concept changes in on-
line machine learning. Our approach relies on a committee of experts where
each expert is trained on a different history size. The experts change constantly
based on their performance which creates a dynamic committee that can adapt
to a large variety of concept changes. The experiments, based on synthetic data,
simulate abrupt and global concept changes. We test different methods to weight
the experts and to combine their predictions. The experimental results show that
our ensemble algorithm learns a concept change better than when a single expert
learns each concept separately. Different types of experts as neural networks,
SVMs and others may coexist in the committee in order to increase the diversity
and improve the overall performance. We show how our algorithm is robust to
the existence of potentially “bad” types of experts in the committee.

1 Introduction

Classical machine learning algorithms suppose that the training data are independent and
identically distributed and that the concept they aim to learn is stationary i.e. does not change
with time. These conditions are not met in general in online learning where the training data
is received in a stream generated by a system with potentially evolving states. This system,
sometimes referred to as a hidden context (Widmer and Kubat (1996)), may introduce changes
in the training data, producing a “concept change”.

Different types of concept changes exist in the litterature: A concept drift (Zliobaite (2009))
refers to the change of the statistical properties of the concept’s target value (Cornuéjols
(2010)). For example, the behavior of customers in shopping might evolve with time and
thus the concept capturing this behavior evolves as well. The speed of the change can be grad-
ual or sudden. A sudden drift is sometimes referred to as a concept shift (Widmer and Kubat
(1996), Yang et al. (2006)). Another type of change, known as virtual concept drift (Syed et al.
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(1999)), pseudo-concept drift (Ruping (2001)), covariate shift (Bickel et al. (2009)) or sample
selection bias (Fan et al. (2005)) occurs when the distribution of the training data in the feature
space changes with time. Even if the underlying concept remains the same, the model should
be updated in order to cope with the current distribution. In Minku et al. (2010), any kind of
concept change is a concept drift. Thus, the same denomination might not necessarly mean to
the same thing in the community. However, according to Stanley (2003), it is not important
from a practical point of view to categorize concept changes based on the source of change
(change in the feature space distribution, the target values or both) since the model should
be revisited anyway. Minku et al. (2010) divides changes into different types, according to
different criteria (severity, speed, frequency, recurrence and predictability) creating mutually-
exclusive and non-heterogeneous categories.

A main issue when dealing with concept drift is to find the optimal history size to learn the
concept. When the concept is stable, a long history of training data may allow for more precise
predictions. However, a long history can also be misleading if the concept is changing since it
will contain old and expired data. In such case, a small history allows for a fast adaptation to
the change. This is the basis of the well-known stability-plasticity dilemma.

Time sliding windows on the training data have been suggested to deal with concept drift.
The window size can be fixed or adaptative. When the window size is fixed, selecting a “good”
window size requires an apriori knowledge about the change in order to deal with the stability-
plasticity dilemma. An algorithm that fixes the window size also assumes that the environment
behaves the same way all the time, a condition that is not met in the real world. Adaptative
window sizes were a solution to this problem. In Widmer and Kubat (1996), the window keeps
growing when the concept is stable. When a change is detected, the window size is shrinked ac-
cordingly. Example weighting and selecting techniques have also been suggested. The training
instances can be weighted depending on the instance age or performance regarding the current
concept.

Several online ensembles methods have been proposed for tackling changing concepts. En-
semble methods have the advantage of holding diverse experts in the ensemble. According to
Minku et al. (2010), diversity helps reduce the initial drop in accuracy that happens just after
the change. When the concept is stable, however, low diversity in the ensemble gives more
accurate results. In many ensemble approaches, experts are removed from the ensemble when
their performance drops under a threshold and are then replaced by new experts with a small
window size. Expulsing an expert from the ensemble can be the result of a concept change
which makes its training window unadapted to the current situation. Thus, we don’t need to
explicitly detect a change and adapt the expert’s window size: this can be done implicitly with
a committee of experts.

In this paper, we suggest an online ensemble method that deals with concept changes. We
solve the stability-plasticity dilemma by using a committee of experts where each expert is
trained on a different history size. The committee members change constantly based on their
prediction performance: the lowest performing members are removed from the committee
and replaced with new members with a small history size. The history size of the remaining
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members is incremented. Thus, we create a committee of experts whose history size evolves
dynamically, which allows the adaptation to different types of changes.

The rest of this paper is organized as follows. In Section 2, we discuss related work on
ensemble methods and introduce our online ensemble algorithm that deals with concept drift.
The algorithm is explained in detail in Section 3. We conducted several experiments on artifi-
cial data sets to describe the behavior of the algorithm in practice. The results are reported in
Section 4. Finally, in Section 5, we summarize and suggest future research directions.

2 State of the Art

Many ensemble algorithms have been proposed to deal with concept drift. The ensemble
methods can be grouped as follows:

Data receipt: The data is either received and processed one instance at a time or in sequential
batches. A main problem when learning on sequential batches is that a drift might occur inside
a batch. An expert trained on this batch will learn misleading and sometimes contradicting
information. Choosing the batch size might also be a problem when we have no apriori knowl-
edge of the training data '

Data pre-processing: The data is either used as is or it can be pre-processed by changing
the data distribution using sampling and/or weighting methods.

Experts’ learning extent: In most cases, when the data is received in batches, an expert learns
on a block of data and its learning stops at this point. In other scenarios, however, experts don’t
stop learning: they constantly update their knowledge with newly observed training data.

Experts deletion: In some approaches, an expert is deleted from the ensemble when its per-
formance drops under a predefined threshold. In some other approaches, whenever the experts
in the ensemble are evaluated, the worst expert is removed. In such case, and if the data is
processed one instance at a time, good experts might be removed if the expert didn’t get the
chance to observe enough training data or if the data is noisy. To avoid random and unmean-
ingful deletion operations, approaches may set a maturity age that prohibits the deletion of an
expert if the expert is not mature 2. Other approaches set a frequency parameter for evaluation,
creation & deletion of experts. This deletion problem is not encountered when the data is pro-
cessed one block at a time since the block size is normally large enough to learn a stable expert.

Ensemble’s final prediction: The ensemble classifies a test instance using the experts’ predic-
tions and weights. In case of unweighted ensembles, the weights are set to the same value for
all the experts. In case of weighted ensembles, each expert is assigned a weight that reflects its
predictive performance. Different methods have been proposed for weights computing: most

1. If, for instance, we know that what we learn depends on the season of the year then we may set the batch size
such that it covers each season separately.

2. The maturity age corresponds to the minimum number of training examples that the expert should learn in order
to be considered as a mature expert.
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methods evaluate an expert based on its classification performance on recently observed data.
Other methods use local accuracy to weight an expert: the expert’s classification performance
is evaluated on the neighborhood of the test instance and the weight is set accordingly. The
experts predictions are then integrated to give the ensemble’s final prediction. Classical inte-
gration methods include: majority voting, weighted majority voting, selecting the prediction of
the expert with the highest weight, using a roulette-wheel selection on the experts weights etc...

Next, we present five online ensemble approaches that have been proposed to deal with
concept drift:

The KBS-stream algorithm (Scholz and Klinkenberg (2005)) is a boosting-like method that
trains a classifier ensemble from data streams. In Scholz and Klinkenberg (2005), the data are
received in batches. With each received batch, either a new classifier is added or the latest
added classifier is updated. Before learning, the data distribution in the recent batch is changed
using sample weighting and sampling strategy: the data is passed through the existing classi-
fiers and the distribution is modified such that the last classifier learns something different than
the remaining ones in the ensemble. The data is assumed to be independent and identically
distributed in each batch and a drift is allowed to occur between two consecutive batches but
never inside a batch. These conditions are not met in many real-world online problems.

The ASHT-bagging algorithm (Bifet et al. (2009)) is a variant of bagging designed to
tackle with non-stationary concepts. The approach builds an ensemble of Hoeffding Trees
(Domingos and Hulten (2000)) with different tree sizes: small trees to adapt more quickly to
changes and large trees which are better for stationary concepts. In this approach, the data is
received one instance at a time. A tree in the ensemble is updated with each newly observed
training data. When a tree reaches its maximum size, it is pruned, even for stationary concepts.
The diversity of the ensemble improves bagging and allows the adaptation to concept drifts.

The DWM (Dynamic Weighted Majority) algorithm (Kolter and Maloof (2007)) re-
ceives and processes the data one instance at a time. Each classifier in the ensemble is initially
assigned a weight of one. The weight is decreased if the classifier misclassifies an instance.
This ensemble method copes with concept drift by dynamically adding and removing classi-
fiers: a new classifier is added if the ensemble misclassifies a test sample and a classifier is
removed if its weight is lower than a predefined threshold. This strategy makes the ensemble
size variable. As for the ensemble final prediction, it corresponds to the class label with the
highest accumulated weight.

In the dynamic integration of classifiers, Tsymbal et al. (2008) proposes an ensemble in-
tegration technique to handle concept drift. In this approach, the data is received as a sequence
of fixed-size batches. The data is then divided into overlapping or non-overlapping blocks.
With each data block, a new expert is trained and added to the ensemble. When the ensemble
size reaches its maximum size, the replace the loser pruning strategy is used: the worst expert
in the ensemble is removed and replaced by the new one, trained on the most recent data block.
In dynamic integration of classifiers, each classifier is given a weight proportionnal to its local
accuracy with regard to the instance tested and the best classifier is selected or the classifiers
are integrated using weighted voting. They show that dynamic integration gives better accu-
racy than the most commonly used integration techniques, specially in the case of local drifts.



G. Jaber et al.

The committee of decision trees in Stanley (2003) generates a weighted committee of de-
cision trees that votes on the current classification. Each expert votes for a newly received test
instance then it modifies its knowledge when the instance’s label becomes available. The vot-
ing performance of each expert is evaluated. If some experts see their voting performance drop
under a predefined threshold, the worst classifier is removed and replaced by a new classifier
trained on the last observed training instance *. This strategy allows the experts to affine their
knowledge when the concept is stable. When the concept changes, experts that learnt on old
and misleading data will encounter a drop in their performance and will be replaced.

Our algorithm is inspired by the work of Stanley (2003). The main difference is that instead
of adding one expert at a time, we add a set of different experts. This allows the increase of the
diversity in the committee by using different types of experts. Thus, we can add several models
as decision trees, SVMs, neural networks and others and we can also use different structures of
the same model as neural networks with different activation functions or layers, decision trees
with different sizes, etc... In addition, in our approach, we don’t set a predefined threshold
for expert deletion. The worst and mature experts are deleted all the time. We show in the
experiments that this deletion strategy doesn’t affect the committee’s predictive performance
even when the concept is stable. We test different ways of evaluating and weighting the experts;
we also explore different ways of integrating their predictions. When a training instance is to
be processed, the experts are evaluated twice: first before learning, when asked to classify the
instance, the experts are evaluated for the committee’s final prediction, and secondly after the
true label of the instance is revealed, the experts are re-evaluated and their weights are used
this time to delete the worsts among them. The weighting strategy for both evaluation steps
can be different.

3 The Proposed Algorithm

In an online learning scenario, the training data is received in a stream and a training
instance is processed once, on arrival. A training example is represented by a pair (X, y),
where x € RP is a vector in a p-dimensional feature space and y is the desired output or
target. In a classification problem, y is a discrete value whereas in a regression problem y is a
real value. The desired output y can also be represented as a d-dimensional vector, in a more
general formulation. A concept represents the distribution of the problem p(x,y) (Minku et al.
(2010)). This distribution might evolve with time creating a concept change.

The concept can be a decision tree, a neural network, an SVM or any other model that
can capture p(x,y). In this paper, the concept is an ensemble of classifiers that predict an
instance’s target or label. The ensemble is required to adapt rapidly to a concept change and to
predict the target y of a test sample x at anytime. The main parts of the ensemble method are
presented next. The pseudo-code is shown in Algorithm 1.

The pool of predictors. In our algorithm a pool of predictors is a set of experts with pos-
sibly different prediction models (ex: SVM, neural networks, decision trees), different model
structures (ex: different activation functions or number of layers in a neural network) and/or

3. The approach uses incremental learning where the training data is learnt in a sequence i.e. one instance at a
time.
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different training algorithms. The pool of predictors has a size of n,,,;. The predictors can be
used for regression (Jaber et al. (2011)) or classification purposes. In this paper, a predictor
predicts the label of an example in a classification task.

The committee of predictors. Our committee consists of pools of predictors. Instead of
adding one predictor to the committee at a time, we add a pool of predictors, which allows the
existence of various types of prediction models and structures in the committee. We define the
maximum number of pools of predictors in the committee as MaT pool-

The committee before reaching its maximum size. The committee is initially empty. At
each time step, a new training data e = (X, y) is received where x is the example and y the cor-
responding label. A new pool of predictor trained on e = (x, y) is added to the committee. The
predictors that are already in the committee are also trained incrementally on the new training
data e = (x,y). For instance, at time step 1, when the first example e; is received, a pool b,
trained only on {e; } is added to the committee. At time step 2, a new pool b, is added to the
committee, trained on {e3} and the old pool by is trained on {ez} also. Thus, by is trained on
{e1, e2} and by is trained on {ez} only. This operation is repeated until the committee reaches
its maximum size. At time step ¢, the pool b; is trained on {e;, ..., ; }, where j € [1, mazpooi]
and j <=t.

The committee after reaching its maximum size. The committee reaches its maximum size
at time step ¢ = Max,e0;. From this time on, the committee is updated by removing the worst
predictors and adding new ones. The updating operation however cannot be executed unless
all the predictors in the committee are mature i.e. they all have been trained on a minimum
number of training data. When a deletion operation is to be executed, each predictor is evalu-
ated and a weight is assigned accordindly. The larger the weight, the better the predictor. The
predictors with the lowest weights are removed and replaced by a new pool trained on the last
observed example. In order to keep the committee size fixed, the worst pool;.. predictors
are removed from the committee. In this paper, we don’t set a specific function to compute
the weights; we leave it as a general function. We will explore several methods for weights
computing in the experiments section. These weights, used to remove the worst predictors,
will be refered to as “deletion weights” in the remainder of this paper.

The committee’s final prediction. The committee predicts the label ¢ of an incoming ex-
ample x. The label of x is first unknown to the committee. It is just after the comittee predicts
its label y that the real label y is revealed. Since each predictor gives its own prediction of
the label, how does the committee constructs a final prediction y? The “selection weights”
are computed to evaluated each predictor in the committee. Then, according to the selection
weights, the predictions are combined using an integration function (ex: voting, weighted vot-
ing, the prediction of the best predictor etc...). The result of the integration function gives the
committee’s final prediction. It is important to notice that an unmature predictor is not taken
into account in the final prediction, unless all the predictors in the committee are still unmature.
In such case, all the predictors share the same weight.



G. Jaber et al.

Algorithm 1 The Concept Change Adaptation Algorithm

Require: x is an incoming example with no corresponding label received yet; 1,00 is the size
of the pool of predictors; max o is the maximum number of pools in the committee; P is
the committee and max p is the committee’s maximum size: MaxTp = Npool * MATpool -

Ensure: g is the committee’s prediction of x’s label

{PREDICTION}

H < ¢ is the set of predictions

for k = 1 — size(P) do
pr € P is the k*" predictor
Up,, 18 the prediction of p;, on x’s label
H < HUy,,

end for

WSEL < ¢ are the selection weights

for kK = 1 — size(P) do
pr € P is the k" predictor
wsely, = evals_fct(py) is p’s selection weight
WSEL < WSEL U wsel,,

end for

7 = integ_fct(WSEL, H) is the committee’s final prediction
Read the real label y of x

{LEARNING}

WDEL < ¢ are the deletion weights

for £k = 1 — size(P) do
pr € P is the k" predictor
wdel,, = evald_fct(py) is pi’s deletion weight
WDEL < WDEL U wdel,,

end for

if size(P) >= maxp and
for all p € P, p’s age>= maturity_age then
for k =1 — n_pool do
p € P is the predictor with the lowest deletion weight
P+ P\p
end for
end if

if size(P) < max p then
b is the pool of predictors; the age of each p € bis equal to 0
P+ PUb

end if

for £k = 1 — size(P) do
pr € P is the k" predictor
train py on (X, y)
increment py’s age

end for
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4 Experiments

We conducted several experiments to examine the behavior of the algorithm. In Section
4.1, we check if the algorithm gives more importance to plasticity over stability i.e. if it was
designed to react well on changing concepts only or if it can perform well on stable concepts
also. In Section 4.2, we observe the effect of “bad predictors” in the pool of committee on the
predictive performance. Finally, in Section 4.3, we compare different ways of weighting the
experts and integrating their predictions.

4.1 Experiment 1: the stability-plasticity dilemma

In this set of experiments, we examine the behavior of the committee when the concept is
stable and when a sudden and severe drift occurs i.e. when the old concept is directly replaced
by a completely new one. The deletion strategy should allow a fast adaptation to a concept
change but we should ensure that deleting experts constantly doesn’t affect the committee’s
predictive performance when the concept is stable. We also show that our committee learns a
concept drift better than a single expert learns each concept individually.

Experimental Setup In the experiments, the target concept C'is a hyperplane. A hyperplane
in a d-dimensional space is represented by the equation:

a-1
Zwﬂi = wp (D
i1

We simulate one drift event and thus we create two different concepts C; and Cy: The first
concept C is learnt from a data stream of 200 training examples (x, y;) where x € [0,1]¢is a
randomly generated vector of dimension d and y is set as follows:

_ )1 if Z?z_ll wix; —wo > 0 ?)
y 0 otherwise

The value of wy is set to:
d—1
wo =1/2) " w; (3)
i=1

so that nearly half of the y’s are positive and the other half is negative and d = 2. At time step
201, C1 is replaced by another concept Cs, represented by another sequence of 200 training
examples (X, y2) where x is the same as in C and y is the opposite class of y;. Thus, we
flip the classes from C; to Cs. Since all the input space is affected by the drift, this is called a
severe drift (Minku et al. (2010)) or a global drift (Tsymbal et al. (2008)). The second concept
replaces completely the first one at time step 201 causing what is called a sudden drift (Minku
et al. (2010)).

In order to evaluate the predictive performance, we compute the online error which is cal-
culated as follows: at time step ¢, the label of a training instance x; is predicted before the
instance is learnt. The prediction error is calculated and the average prediction error from time
step 1 to t is updated. The average error is known as the online error (Minku et al. (2010)).
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FIG. 1 — The online predictive performance with the four experiments described in Section
4.1; nf and pf refer to “no forgetting” and “perfect forgetting”, repectively

This procedure is also called the progressive evaluation (Tsymbal et al. (2008)) or the inter-
leaved test-then-train approach (Bifet et al. (2009)). In our experiments, the prediction error
is the absolute value between the predicted value and the real value. The online predictive
performance or accuracy (acc) and the online error (err) are related by the following equation:
acc=1—err.

We compared the predictive performance using four approaches:

a

Committee: The evolving committee described in Section 3. The pool of predictors contains
a single perceptron and the maximum number of pools is set to 20 (npoor = 1, MaTpoor =
20). Both deletion & selection weights are computed as the inverse of the online error on the
recent data®. The expert with the largest selection weight is chosen for the final prediction
and the expert with the lowest deletion weight is removed 3. The maturity age is set to 20 °.

Committee-nf: The committee is the same as the previous one. However, we don’t remove
any classifier: all the committee members increase their history size as new training data is
observed.

Single Perceptron-pf: A single perceptron that learns the current concept. It erases its
memory -by resetting its weights to 0- when the drift occurs”’. This simulates a perfect
forgetting of the old concept C'; when it is replaced by the new concept Cs.

Single Perceptron-nf: A single perceptron that learns the current concept without erasing
its memory. It keeps learning as new training data becomes available.

4. We compute the error on the last 20 predictions.

5. Since we have one expert in the pool, only one expert is removed at deletion time.

6. The value 20 has been chosen randomly.

7. The perceptrons’ initial weights are fixed to O in all the experiments for comparison purposes.
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Results & Analysis The results are shown in figure 1. We notice that:

— When the concept is stable from time step 1 to 200, our committee is either compa-
rable or better than the other approaches (), (¢) and (d). Thus, the deletion strategy
doesn’t affect the committee’s predictive performance when the concept is stable. In
general, when the concept is stable, the committee keeps the predictors with a large
history size and expulses the predictor(s) with the smallest history size since they will
perform poorly. The expulsed predictors will be replaced by new ones, trained on a
small history size which will cause their expulse again from the committee and so on.
Meanwhile, the remaing predictors increase their history size which allows learning the
stable concept.

— In experiment (b), the online learning algorithm of the perceptron makes the percep-
tron able to forget C; when enough training data of C5 has been observed. We see
however, that the committee adapts faster to the change in experiment (a) than in (b).
This suggests that the fast adaptation in experiment (a) is related to the approach forget-
ting strategy -realized by removing bad experts- and not to the perceptron’s forgetting
strategy embedded in its learning algorithm. The advantage of the deletion strategy is
emphasized when using a lossless learning algorithm which keeps the memory of all
previously learnt data. Lossless online algorithms are available for decision trees, Naive
Bayes models and others (Oza and Russell (2001), Utgoff et al. (1997)).

— The committees of experts in experiments (a) & (b) outperform the single classifiers in
experiments (¢) & (d). By comparing the results of experiments (a) & (c), we also no-
tice that our committee learns a concept drift better than the single perceptron learns each
concept individually. Erasing the memory of the perceptron (experiment (c)), when the
drift occurs, gives better predictive results than keeping the memory of the previously
learnt concept (experiment (d)) since it takes time for the perceptron to forget its ac-
quired knowledge.

4.2 Experiment 2: the pool of predictors

The pool of predictors allows the use of different training models, algorithms and struc-
tures in the committee. While this has the advantage of adding diversity, it might hurt the
committee performance when badly chosen experts have been added to the pool. In this set of
experiments, we observe the behavior of the committee when “bad” experts exist in the pool of
predictors. We show how our approach increases the percentage of the “good” experts in the
committee while decreasing the percentage of the “bad” experts. The predictive performance
is not affected during this process.

Experimental Setup The same settings described in Section 4.1 were used (training data,
maturity age, selection and deletion weights). However, we varied the pool of predictors in the
following two experiments:

a The pool of predictors contains a single perceptron and the maximum number of pools
is set to 20. Thus, the committee maximum size is equal t0 20 (Npoor = 1, MATpoor =
20, maxp = 20).

b The pool of predictors contains two perceptrons: The first one will be normally trained on
its training data. We will refer to this perceptron as a “normal perceptron”. The second
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FIG. 2 — The percentage of normal and random perceptrons in the committee as described in
experiment (b) of Section 4.2.

one represents a randomly generated hyperplane which classifies randomly half of the ex-
amples as positive and the other half as negative. This perceptron -referred to as a “random
perceptron”- stays as is in the committee until it is removed.

The maximum number of pools is also set to 20. Thus, the committee maximum size is
equal t0 40 (npeo; = 2, MaTpoer = 20, maxp = 40).

Results & Analysis We show in figure 2 the percentage of normal and random perceptrons
in the committee for experiment (b). We notice the following:

— During time steps 1 to 20, there are 50% of each type of perceptrons in the committee.
Since the committee has not reached its maximum size yet, pools are still added during
this period.

— At time step 20, the lastly added pool requires 20 time steps to be mature. Thus, from
time step 21 to 40, no deletion is performed on the committee members which keeps the
percentage of each type of perceptrons fixed.

— The percentage of normal perceptrons increases with time while the percentage of ran-
dom perceptrons decreases. This is explained by the fact that the number of random
perceptrons deleted from the committee is higher than the added ones. For instance, in
each of 15 deletion operations, the worst two experts -deleted from the committee- were
random perceptrons and were replaced by a pool which contains one normal perceptron
and one random perceptron. Thus, after these 15 deletion operations, 30 random percep-
trons were deleted and 15 random perceptrons were added.

After deleting members from the committee and adding a new pool, 20 steps are required for
the lastly added pool to be mature. Since deleting an expert cannot be performed unless all the
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FIG. 3 — The online predictive performance with the two experiments described in Section 4.2

experts in the committee are mature, 20 steps are required between two consecutive deletion
operations. This causes the step effect in figure 2.

In figure 3, we compare the predictive performance with experiments (a) and (b). We can
see that adding random predictors didn’t decrease the online error even when the committee
contained a large number of random predictors (50%). In fact, the accuracy is improved. This
is explained by the fact that the committee in experiment (b) is twice as big as the one in (a).
The existence of clearly “bad predictors” in experiment (b) will cause their removal from the
committee. However with only “good predictors” as in experiment (a), the relatively least
performing predictors are removed even if they are globally good.

The results of the experiments suggest that if some predictors in the pool were badly selected
(ex: unadapted model or structure to the current learning problem), there is not need to worry
about a drop in the predictive performance ®. The algorithm will manage to remove the worst
predictors and keep the better ones. Even if bad experts remain in the committee, they won’t
be selected for the committee’s final prediction. It is also important to note that if a “bad”
model in the pool becomes “good” at a specific time, it will get a second chance to populate
the committee since it is always included in each newly added pool.

4.3 Experiment 3: the combination of experts’ prediction

In this set of experiments, we test two different ways of computing the selection weights
and different ways of combining them for the final prediction.

8. Of course, if all the experts are badly selected in the pool, the approach won’t solve the problem.
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Selection Weights The selection weights are computed as follows:

— Recent Window method (RW): As in the previous experiments, the weight of the expert
is computed as the inverse of its online error on the recent training data. The weight value
ranges from 0 to oo.

— Neighborhood Window method (NW): As suggested in Tsymbal et al. (2008), the
weight of the expert is computed by evaluating its prediction performance on the neigh-
borhood of the test data. The weight value ranges from -1 (when the expert misclassifies
all the examples in the neighborhood) to +1 (when the expert correctly classifies all the
examples in the neighborhood). The selection weight wsel,,, (x) of expert py given a
test sample x is computed as follows:

k k
wsely, Z o(x,x3).mrp, (x;) /ZO’ X, Xj) )

j=1 j=1

L if gj pr — Yj
mr, = e 5
P { -1 i gy, #y; ©)
1

= 6
76 = ©

In the above equations, k is the size of the neighborhood, x; is the j-th nearest neighbour
from x, y; is x;’s real label and ¢, ,,, is x;’s label as predicted by the expert py.

It is important to note that we are testing the selection weights which are used to evaluate the
experts for the final prediction. Not to be confused with the deletion weights which are used to
remove the worst experts (see Algorithm 1). The deletion weights are computed the same way
in all the experiments using the RW method °.

Combination Rules After computing the weights, we tested different ways of combining
the experts prediction:
— V:simple vote
— WYV: weighted vote
— WVD: weighted vote after suppressing the predictions of the worst experts i.e. the
experts with the performances that fall into the lower half of the performance interval.
— S: the prediction of the best expert is selected i.e. the expert with the largest weight.

Experimental Setup We conducted three experiments using the same training data as in
Section 4.1 and 4.2. The experiments have the following settings:

a The selection weights are computed using the NW method: the size of the neighborhood &
is set to 5 and the nearest neighbours are taken from the last 20 training samples. The pool
of predictors contains one perceptron and the maximum number of pools is set to 20 i.e.
Npool = 1, MaZpoor = 20, maxp = 20. The perceptrons’ weights are initialized to 0.

9. Using the same deletion weights allows one to evaluate the committee predictive performance based on the
selection weights only.
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FIG. 4 — From left to right: the online predictive error with the experiments (a),(b) and (c)
described in Section 4.3, respectively. In each figure, we plot the online predictive performance
with several selection & combination methods. The items in the legend are read as: weight
computation method-combination method.

b The selection weights are computed using the RW method: the online error is computed on
the last 20 training data. The pool of predictors and the other settings are the same as in
experiment (a).

¢ The selection weights are computed using the NW method with the same settings as in
experiment (a). However, we use a different pool of predictors which contains two types
of perceptrons: a normal perceptron and a random perceptron. The maximum number of
pools is set to 10 i.e. npoor = 1, MATpeor = 20, maxp = 20. The perceptrons’ weights are
initialized randomly and their bias wg is computed as in equation 3.

Results & Analysis The results of the experiments are shown in figure 4. We notice the
following:

— When comparing the combination methods in terms of prediction accuracy in the exper-

iments (a) and (b), we notice that the simple voting (V) gives the highest online error.

This is expected since it doesn’t take into account the goodness/badness of the predictor.

WYVD always gives the best results while WV shows a different behavior when used with

RW and NW weights. With the RW weights, we can see that shortly after the drift, the

WYV accuracy falls. This is explained by the fact that when a committee contains a rela-

tively large number of bad experts, their weights will sum up and will be high enough to

win the vote. This effect is not observed when WV is used with the NW weights because
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bad experts have negative weights which will decrease the influence of their vote. Since
WYV dimishes the influence of the bad experts and WVD suppressed the votes of the bad
experts, WVD and WV give very close results when used with the NW weights.

— When comparing NW and RW in experiment (a) and (b), we notice that NW gives a
better prediction accuracy than RW when learning a stable concept. It also reacts and
recovers faster from the concept drift. However, NW requires more computational time
since, for each test instance x, NW computes the predictive performance of each expert
in the neighborhood of x.

— Inexperiment (c), we added random predictors to emphasize the differences between the
combination methods. We notice the unstable behavior of the S combination method:
the gap increases between S and the best combination methods when random predictors
exist in the committee. By comparing the results of experiment (c¢) with (a), we see an
improved accuracy when learning the first concept C; in experiment (c). Initializing the
perceptrons with different initial weights adds diversity to the committee which increases

the overall predictive performance '°.

5 Conclusion

In this paper, we presented an approach that is able to deal with concept changes, using a
dynamic and diverse committee of experts where each expert predicts the label of an incoming
test sample. The diversity has an impact on the predictive performance of the committee: it
improves the classification accuracy when the concept is stable and lowers the test error when
the concept change happens (Minku et al. (2010)). In our approach, the committee is diverse
since it can hold various types of experts in the committee. The experts can be different predic-
tion models (neural networks, SVMs ...) with potentially different structures (number of layers
in a neural network, the maximum size of a decision tree ...) and are also trained on different
training data. Initializing the experts differently also increases the diversity in the committee.
The committee is also dynamic since it constantly updates itself by removing the lowest per-
forming experts and adding new experts with a small history size. As for the remaining experts
which were not expelled from the committee, their history size is increased. This strategy
avoids finding explicitly an appropriate window size in order to solve the stability-plasticity
dilemma. Since the approach processes one instance at a time, there is no need for storage
or reprocessing (unless NW method is used to weight the classifiers which requires to keep a
small window of recent data for local accuracy evaluation).

The experimental results showed that our ensemble algorithm learns a concept change
better than when a single expert learns each concept separately. Thus, our algorithm gives
importance to plasticity by adapting rapidly to a concept change and it also gives importance
to stability by learning a stable concept as a single online expert would do. In the experiments,
we show how the algorithm is robust to the existence of potentially “bad” types of experts in
the committee: the algorithm manages to remove the “bad” experts and increases the number
of “good” experts in the committee without hurting the overall predictive performance during
the process. Finally, we tested different methods to weight and combine experts. We noticed

10. In the experiments (a) and (b), the diversity comes from predictors trained on different training samples.
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that even in a global drift scenario, evaluating an expert based on its local accuracy reflects
better the expert’s predictive performance on a test sample, than with its global accuracy.

For future work, we plan to test our algorithm on different types of changes and compare
the results with already existing ensemble methods that deal with concept change. We also
find it interesting to study the advantages of combining a pro-active approach which predicts
how a concept will change in the near future, with a reactive approach which adapts passively
to the current situation.
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Résumé

Nous présentons une méthode d’ensemble capable de s’adapter aux changements d’un
concept dans le cadre de I’apprentissage artificiel en ligne. Notre approche s’appuie sur un
comité d’experts ol chaque expert est formé sur des données différentes. Les experts évo-
luent constamment en fonction de leur performance ce qui crée un comité dynamique capable
de s’adapter a une grande variété de changements de concept. Les expériences, basées sur des
données artificielles, simulent un changement brusque de concept. Nous testons différentes mé-
thodes pour évaluer les experts et combiner leurs prédictions. Les résultats montrent que notre
méthode d’ensemble apprend un changement de concept mieux que quand un seul expert ap-
prend chaque concept séparément. Différents types d’experts comme les réseaux de neurones,
les arbres de décision et d’autres peuvent coexister au sein du comité afin d’augmenter la diver-
sité et d’améliorer la performance globale. L’algorithme reste toutefois robuste a 1’existence
potentielle de “mauvais” types d’experts dans le comité.



