
Anticipative and Dynamic Adaptation
to Concept Changes

Ghazal Jaber1,2,3, Antoine Cornuéjols1,2, and Philippe Tarroux3

1 AgroParisTech, UMR 518 MIA, F-75005 Paris, France
2 INRA, UMR 518 MIA, F-75005 Paris, France

3 Université de Paris-Sud, LIMSI, Bâtiment 508, F-91405 Orsay Cedex, France

Abstract. Learning from data streams is emerging as an important application
area. When the environment changes, as is increasingly the case when consid-
ering unending streams and long-life learning, it is necessary to rely on on-line
learning with the capability to adapt to changing conditions a.k.a. concept drifts.
Previous works have focused on means to detect changes and to adapt to them.
Ensemble methods relying on committees of base learners have been among the
most successful approaches.
In this paper, we go one step further by introducing a second-order learning mech-
anism that is able to detect relevant states of the environment, to recognize recur-
ring contexts and to anticipate likely concepts changes. Results of an empirical
comparison with adaptive methods show that, for a very slight price in memory
and computation load, the proposed algorithm always improves on, or at worst
equals, the prediction performance of a mere adaptive approach.

1 Introduction

Recent years have witnessed the emergence of a whole new set of applications involving
data streams made of pairs (xt, yt), where the “answer” or true label yt is revealed
(sometimes long) after the input xt. For instance, a set of customers can be submitted
to adds or offers arriving on sequence, to which they answer with buying actions or not.
The task for a forecaster is to predict the answer to each new incoming incentive xt,
possibly in order to regulate the stocks, even before the outcome yt is known. Because
of varying economic conditions, or because of changes in the season or in the weather,
the customers may modify their buying behavior. Sometimes it can even occur abruptly
like when a big amendment in the economic policy is announced.

Learning from streams [9] is usually treated using online machine learning tech-
niques which differ from classical batch learning methods in three major points. First,
streaming data are not stored or reprocessed, due to memory constraints. Secondly, the
prediction model should give answers in an any time fashion, while updating itself with
each received information from the stream. Finally, online learning does not presuppose
that the training data be independent and identically distributed. It is ready to adapt to
changing conditions. This is why, even though most works in recent years have dealt
with the computational issues raised by the demand for a small constant learning time
and near constant memory resources, a stream of research has also focused on evolving



concepts in case of non-stationary environments, specially on how to detect concept
changes and how to best adapt to them.

In this context, passive adaptation to concept changes may not be the best learning
strategy. Indeed, a learner may profit from the information possibly conveyed by the
very sequence of data. For instance, one can gain precious time and avoid costly in-
correct predictions by being able to recognize a recurring situation or to anticipate the
likely evolution to come along. This kind of second order learning is the object of the ap-
proach presented in this paper. The ADACC (Anticipative Dynamic Adaptation to Con-
cept Change) method that we present deals both with the challenge of optimizing the
stability-plasticity dilemma (keeping as much data as possible while at the same time
recognizing when data points become obsolete and potentially misleading) and with
the anticipation and recognition of incoming concepts. This is accomplished through
an ensemble method that controls a pool of incremental learners. The use of a pool of
learners enables the system to naturally adapt to the dynamics of the concept changes
with few parameters to set. At the same time, a second order learning mechanism that
observes and control the changes in the pool provides means for the anticipation of, and
the quick adaptation to, the underlying modification of the context.

The rest of the paper is organized as follows. In Section 2, we discuss existing
works on online learning in the context of concept changes. Section 3 presents our
contribution, which is followed by the report of empirical results in Section 4. The last
section presents conclusions and possible avenues for future work.

2 Relevant Works

Aside from the question of the severe constraints posed on the computational load of
online learning (see [8] for a pioneering study and [11] for more references), the main
issue in online learning is connected with the problem of learning in the presence of a
changing environment. These changes can come in two guises according to which of
the input distribution p(x) or the conditional distribution p(y|x), is affected. If only
p(x) changes, it is said that a virtual drift or covariate shift occurs. If the changes in
the environment concern the concept itself p(y|x), a concept drift occurs, which can be
gradual or abrupt. In an abrupt drift, the target concept gives suddenly way to a new one
(see Figure 1). In a gradual drift, however, the new target concept takes over the old one
over a period τdrift. The most general type of changing environments involves changes
both in p(x) and in p(y|x). When the environment varies, it is important to be able to
detect the changes and to modify the prediction model accordingly in order to maintain
as best as possible the prediction performance.

Usually, the detection of change is done by monitoring either the variations in the
distribution of the incoming data, or the variations in the prediction’s performance of
the system. In both cases, it is necessary to set an alarm threshold and to decide upon an
adequate duration of observation in order to trigger justified alarms only. This requires
some knowledge of the dynamic of the environment.

Likewise, adaptation to changes meets a dilemma regarding the adequate length of
the subsequence of the data stream that must be trusted for providing relevant informa-
tion about the current target concept. The earliest techniques used sliding widows over



the data stream [19]. The length of the window can be set beforehand, but more sophisti-
cated approaches rely on some dynamic control of this length depending of the stability
of the prediction performance. A second strategy uses a weighting scheme over past
instances which is deemed to reflect the relevance of the data to the current context.
Both these techniques, windowing and weighting, imply some a priori choices about
threshold, decay factors and so on [12]. A third strategy tries to avoid these choices by
relying instead on an ensemble-based learning technique, akin to bagging or boosting.
The idea is to let a committee of base learners incrementally learn over the stream of
data, and to replace the worst ones at certain times [16]. Thus, the hope is that the com-
mittee automatically eliminates the no longer relevant base learners while keeping and
improving the most promising ones. In addition, for each incoming instance, the pre-
diction to be made can result from a combined vote from the base learners, hopefully
leading to more accurate answers, as in classical ensemble learning methods.

The committee based strategy still entails some choices regarding the base learners,
the size of the ensemble or committee, the deletion mechanism, the introduction and
initialization of new learners in the ensemble, and the decision voting process. Recent
years have seen several proposals among these lines showing promising results on a
variety of online learning tasks [1, 18, 4]. A limit of these algorithms, however, is that
they passively wait for the changes to occur and then try to follow them as best as
possible rather than proactively predict what is likely to happen.

Very few works have confronted the anticipation of concept changes. Among them,
the PreDet [5] algorithm uses decision trees as classifiers and anticipates future trees by
predicting for each decision node the evaluation measure of each attribute, this value
being used to determine which attribute will split the node. In the case of a leaf node, it
predicts its class label distribution. Future changes are predicted using a linear regres-
sion model trained on a fixed size history. Another prediction system, RePro [21], stores
the observed concepts in a Markov chain. In order to compute the transition matrices,
RePro assumes that concepts repeat over time. Thus, when a change is detected, the
Markov chain is used to predict the most likely concept to come.

The method we present below aims at benefiting from the knowledge of the past to
predict future concept changes. However, contrary to other systems, it can be used with
any base learner that produced parameterized hypotheses (e.g. neural networks) and is
not limited to decision trees. Furthermore, unlike Markov chains, it does not necessitate
that target concepts repeat over time in order to make anticipation.

3 Concept Changes: Adaptive and Anticipative

In online learning, the learning protocol is as follows. At each time step t, an input xt
is received, the learning algorithm is asked to make a prediction ŷt over its label, and
then only is revealed the true label yt. The algorithm can then adapt its current view of
the world, noted here Ht, and be ready for the next input xt+1 to come.

The overall goal is to minimize the loss over time : 1
T

∑T
t=1 `(Ht(xt, yt)) with

T → ∞. Usually, the loss function is simply the 0 1 loss function which counts the
number of mistakes.



Time

Time

Ta
rg

et
 c

on
ce

pt
Time

Ta
rg

et
 c

on
ce

pt

Time

Ta
rg

et
 c

on
ce

pt
Ta

rg
et

 c
on

ce
pt

Abrupt	  Concept	  Change

Incremental	  Concept	  Change

Gradual	  Concept	  Change

Recurring	  Concept	  Change

Fig. 1. Four different types of concept changes.

In the most general case, the target concept, which decides the label for the next in-
put xt, can change arbitrarily over time, and even be manipulated by an adversary. Then,
the only existing theory is the online learning theory which characterizes the regret that
can be achieved by a learning algorithm with respect to the best available “expert” in
a given pool of experts [7]. If, however, more benign assumptions can be made about
the dynamics of the environment, such as it evolves gradually or incrementally or it
evolves with sudden changes but interspersed with stationary states (see Figure 1), then
it becomes legitimate to try to assess the future performance of a classifier on the base
of (a partial view of) its past history.

In this paper, we work on ways to anticipate future concepts when a transformation
rule can be identified, and on the recognition of recurring concepts, whether the change
between consecutive concepts happens gradually or suddenly.

In the following, we first introduce the adaptive architecture of the learning system
we take as our basis (Section 3.1). Then, we present the core of this paper which is the
anticipating mechanism that builds upon it (Section 3.2).

3.1 Adapting to Concept Changes

Being able to recognize changes in the environment and to anticipate them requires
some kind of second-order or meta learning. The learning system needs to be able to
analyze and reflect upon its past experiences and to decide what is the best course of
action or decision given the past. For this meta-learning to take place, the adaptive
strategies based on ensemble of base classifiers are well suited because they naturally
manage a set of potential models of the changing environment.



x1

x2

C1

x1

x2

C1
C1

C1

Fig. 2. Left, a concept represented by a circle. The examples are classified into one of two classes:
inside, outside the circle. Right, the circle moving with time, creating concept drifts.

At any time, the current ensemble of base classifiers represents a kind of memory
of the past, and offers the opportunity for second order learning. Furthermore, these
ensemble methods generally adapt gracefully to a variety of changing conditions in the
environment and do not require fine tuning of their few parameters.

The main idea is to maintain a pool of base learners {hit}1≤i≤N , each of them
adapting to the new input data, and to administer this pool or ensemble thanks to a
deleting strategy and an insertion one. The main principles of these ensemble methods
are the following:

– Each base learner in the pool continuously adapts with new incoming data until it
is removed from the pool.

– Every τ time steps, the base learners are evaluated on a window of size τeval.
– Based on the results of this evaluation, the deletion procedure chooses a base learner

to be removed.
– A new based learner is created and inserted in the pool. It is protected from possible

deletion for a duration τmat.
– For each new incoming instance xt, the prediction H(xt) results from a combina-

tion of the prediction of the individual based learners ht(xt).

Individual variations around this general framework lead to specific algorithms (for
instance [17] [13]). In our studies, and after extensive testings, we converged on the
following settings. The base learners can be any supervised predictors (in the reported
experiments, they are (multi-layer) perceptrons or decision trees). The evaluation pro-
cedure simply counts the number of erroneous predictions on the last τeval time steps.
The deletion strategy randomly select one base learner from the worst half of the pool
evaluated as above. The global prediction merely uses the prediction from the current
best base learner (randomly chosen in case of ties).

This simple method offers a good trade-off on the plasticity-stability dilemma and
leads to fast adaptation when the underlying concept changes.

3.2 Anticipating Concept Changes

In an evolving environment, two aspects should be considered when anticipating fu-
ture concept changes: recurrence and predictability. Recurrence means that the same



concepts (or close approximations) might reappear with time, either in a cyclic manner
(e.g. seasonal variations) or in an irregular manner (e.g. inflation rate, market mood).
Predictability means that the concept evolves in a predictable manner, but without nec-
essarily repeating over time. Here, “predictable” refers to an underlying prediction sys-
tem, that is a learning system that, taking as input information about the past history
of the concept evolution, is able to predict its (near) future. This, of course, implies
that the past history be captured and represented. We explain below how a system can
determine relevant states (called snapshots) of the evolution.

As an illustration, consider a concept defined in a 2-dimensional input space cor-
responding to a circle with a given radius. At any given time, the instances are labeled
into two classes depending on whether they lie inside or outside the circle (see Figure
2). A concept drift would occur if the circle’s center moves, yielding a change in the
labels of the examples “swept” by the moving concept. If the concept changes in some
regular manner, say in a straight line with a constant speed, an appropriate learning sys-
tem might be able to learn from a sequence of concept changes and predicts the likely
future concepts. For instance, an Ellman’s neural network [20] could be trained on such
a sequence in order to output predictions about the future changes. This is an instance
where Markov chains would be ineffective since there would be no repetitions of past
concepts.

In the following, we first describe a mechanism for the recognition of the relevant
states of the world before presenting the second-order learning mechanism that works
on these states in order to predict future models. Algorithm 1 offers a formal view of
the steps and methods described below.

Recognition of significant models of the world
In this step, we aim at recognizing the significant concepts encountered during the

data streaming. Our goal is to take a snapshot (copy) of any recognized stable concept
via the learned models or hypotheses in the adaptive ensemble. Note that we suppose
therefore that the concept drift operates via a sequence of stable concepts in a gradual,
abrupt or recurring manner (see Figure 1). A main challenge here is to decide when to
take a snapshot. Given our reliance on an ensemble method, this is equivalent to decide
when the ensemble reflects the existence of an underlying relevant concept.

One approach has been proposed in the ADWIN system [3]. It supposes a priori that
m training instances are necessary for the system to stabilize after an abrupt concept
change. Consequently, in this approach, a snapshot is taken m time steps after a change
is detected. This method however presents limitations. First, it has difficulties detecting
gradual concept changes resulting in snapshots that have often low relevance. Second,
the choice of the value for the parameter m is difficult if one does not know in advance
the properties of the incoming concept changes.

In this work, rather than making prior assumptions about the dynamics of the world,
we aimed at finding an implicit way to identify periods of stability using the adaptive
ensemble as a detector.

The method is as follows. When the environment has been in a stable state for a
sufficient time, the best hypotheses in the pool of base learners should converge to-
ward the same, and near optimal, predictive performance. Therefore, their diversity,
measured as below, should be low, while their error rate should decrease toward the



best achievable performance or close to it. This suggests to take into account both the
diversity of the best hypotheses in the pool and their error rate as an index of the sta-
bility of the environment. In our study, we use the kappa statistics K [6] in order to
compute the diversity. This statistics measure evaluates the degree of agreement be-
tween the classification of a set of items by two classifiers 4. In case of complete agree-
ment, K = 1. If there is no agreement other than what would be expected by chance,
K = 0. The stability index at time t is computed over the last τs received examples:
Istability = agreement − performance where agreement and performance are
computed over the best half of the current hypotheses in the pool, and are defined as:

agreement =

∑τs−1
j=0

∑N/2
i,j=1
i6=j

Khi,hj
(xt−j)

τs ∗ N2 ∗ (
N
2 − 1)

(1)

and:

performance =

∑τs−1
j=0

∑N/2
i=1 err(hi,xt−j , yt−j)

τs ∗ N2
(2)

where N is the size of the pool.
Each point in the stability index curve, over some predefined threshold θI , is sug-

gestive of a stable environment and is therefore a privileged moment to take a snapshot
(copy) of the current best hypothesis in the pool of base learners, the one that seems to
best represent the current state of the world.

One must however be careful not to store consecutive hypotheses that correspond
to the same underlying state of the environment. Here again, the agreement statistics, in
our case the kappa statistics, can be used to measure the agreement between a candidate
snapshot h∗t and the preceding one h∗tk . For this purpose, a set of n unlabeled data U ={
xi
}n
i=1

is generated at random using a uniform distribution over the input spaceX , and
the predictions of h∗t are then compared with the predictions of the last stored snapshot
h∗tk .If the estimated agreement is less than some predefined threshold θd, the current
candidate snapshot h∗t is considered different enough from h∗tk and is therefore added
to the listMLT of snapshots representing past stationary states of the environment.

The long term memory and second order learning
The list of past snapshots MLT = {C1, C2, . . . , Ck}, ordered according to the

snapshots’ time appearance, is the basis of the second order learning mechanism. It
serves two purposes. First, it provides a sequence of successive models of the environ-
ment that can be used by a learning algorithm in order to predict the most likely future
state in the series. Second, it stores a memory of past successful models of the world,
models that should be repeatedly tested against current data in case a recurring concept
can be recognized.

In our experiments, we used Elman’s recurrent neural networks as predictors be-
cause of their generality and the good performances reported for learning tasks similar
to our’s [20]. Accordingly, a network is trained on the pairs of consecutive concepts in

4 Other agreement statistics should do as well.



Algorithm 1: Selection of snapshots by ADACC.
begin

E0 ← ∅; /* Ensemble of experts */
MLT ← ∅; /* List of snapshots */
k ← 1;
for t = 1 to∞ do

/* ---------------------------- */
/* Adaptation */
/* ---------------------------- */
(xt, yt) is the current training instance;
[Et, ỹt]← AdaptationEnsemble(Et−1,xt, yt);
/* ---------------------------- */
/* Anticipation */
/* ---------------------------- */

H =
{
hi
}N
i=1

/2 is the best half of experts in Et;

agr =
1

τs ∗ N2 ∗ (
N
2
− 1)

τs−1∑
j=0

N/2∑
i,j=1
i6=j

Khi,hj (xt−j);

perf =
1

τs ∗ N2

τs−1∑
j=0

N/2∑
i=1

err(hi,xt−j , yt−j);

Istability = agr − perf ;
/* Detect Stable Concept */
if Istability ≥ θI then

h∗
t = snapshot(Et);
/* Detect New Concept */
if isEmpty(MLT ) then

Ck = h∗
t ;

MLT = add(MLT , Ck);

else if KCk,h
∗
t
≤ θd then

k = k + 1;
Ck = h∗

t ;
MLT = replace(MLT , C̃k, Ck);
C̃k+1 = predictNextConcept(MLT );
MLT = add(MLT , C̃k+1);

end

MLT : {(C1, C2), (C2, C3), . . . , (Ck−1, Ck)} in order to predict the next likely snap-
shot C̃k+1. To simplify the discussion, a snapshot C is represented as a vector of pa-
rameters of dimension n.

C = [c1, c2, ..., cn] (3)

For instance, if the current concept is learnt by a base learner that is a neural network,
the snapshot could be represented as the vector of the network’s weight values. A pair
consisting of two consecutive snapshots δi = (Ci, Ci+1) is called a change sample.



After recognizing k stable concepts, the k − 1 change samples
(
δ1, ..., δk−1

)
form the

set of training examples inputed to the Elman’s network in order to predict the next
snapshot C̃k+1. The predicted snapshot is then temporally added to the list of snapshots
MLT . It is replaced by the next snapshot Ck+1 when this one is acquired.

Therefore, the listMLT contains snapshots that represent past stationary states of
the environment (useful for the recognition of recurring concepts), plus a predicted
future state (useful for anticipation).

Each snapshot in the list is then treated on an equal footing with the base learners
in the pool of the adaptive ensemble method. The snapshots are therefore evaluated
according to the evaluation strategy used by the adaptive ensemble to evaluate the base
learners in the pool. A snapshot is used for prediction if its evaluation record is the best
among all candidate hypotheses from both the pool of base learners andMLT .

While the pool of candidate base learners is managed according to the policy out-
lined in Section 3.1 and is therefore of a finite constant size, the listMLT of snapshots
may a priori increase forever if new hypotheses are continually retained as worthy of
storage. Fortunately, it is possible to keep this size under control by recognizing that the
two roles of MLT : anticipation and memory for recurring concepts, ask for two dif-
ferent memory management systems. Indeed, since Elman’s networks are incremental
learners, they do not need to keep the past history of snapshots at all. Regarding the
memory for recurring concepts, it can be kept constant using various heuristics. One
is to delete the oldest or the least recuring snapshots from the memory. Another one,
more sophisticated, would be to store prototype snapshots instead of the original ones,
using a hierarchical clustering technique. In our experiments, we did not rely on such
memory management schemes since there was no need for them.

4 Empirical Results

The aim of the experiments was threefold. First, to test the performance of the snapshot
mechanism and specially its ability to detect both abrupt and gradual concept changes
and store the relevant target concepts with no, or limited, redundancy. Second, to exam-
ine the gain, if any, brought by the anticipation scheme compared to the mere adaptation
mechanism. Obviously, this depends on the ability to anticipate the next state of the en-
vironment, and therefore on the underlying structure (if any) of the sequence of changes
[2]. Thirdly, to test the mechanism for the recognition of recurring concepts and the gain
it can bring.

In the worst case, where it is not possible to anticipate the next concept and when
no recurring concept arises, the prediction performance of the system should fall back
to the performance of its adaptation mechanism. Indeed in these cases, no snapshot in
MLT does outperform the best base learners and the resulting behavior is the one of
the adaptive system alone.

4.1 Experiments and Datasets

We conducted experiments on artificial and real data sets. The artificial sets were used to
simulate recurrent and predictable concept changes while controlling the timing of the



2 4 6 8 10 12

−1.5

−1

−0.5

0

0.5

1

concept index

w
e

ig
h

t 
v
a

lu
e

Fig. 3. A typical evolution in the weight values of the hyperplane used in the artificial datasets.

change, its speed (abrupt, or more or less gradual) and its severity (amount of change)
[14]. The real data set comes from video sequences taken with a mobile robot wandering
in and out of rooms in a laboratory, creating recurring contexts.

In the artificial data sets, the input space X is d-dimensional and the target concept
is associated with a linear decision boundary (a hyperplane) described by the relation
y(x) = sign(

∑d
i=1 wixi + w0). The experiments were carried out on streams with

7,150 time steps and hence data points.
In each stream, 12 concept changes were simulated by changing the weights {wi}di=0

of the target hyperplane. The first 7 concepts evolved through the successive addition or
substraction of constant values (differing according to the experiments) to the weights.
The idea was to look at the capacity of the anticipative mechanism to identify this regu-
larity and therefore to predict likely future concepts. The last 6 concepts were recurring
concepts, that is concepts already encountered in the past data stream (see Figure 3).

Three artificial data streams were generated, each involved a different level of sever-
ity in its concept changes: low or medium or high respectively involving changes in 1,
5 and 9 parameters out of the 11 that define the target concept, with respectively ap-
proximately 3%, 60% and 84% of the input space changing class between successive
concepts. In each stream, the changes happened either suddenly or gradually, in a linear
manner, between successive target concepts.

The transition between consecutive concepts took from 0 to 200 time steps and
changes would start happening every 400 to 700 time steps. We did not observe any
effect of the dimension up to more than one hundred and therefore only report results for
the 10-dimensional case. The base learners in the adaptation ensemble were perceptrons
with 10 input units and one output unit, involving 11 weights (10 + 1 for the bias). The
Elman’s networks took as input the 11 weights of a snapshot and gave as output the 11
weights of the next predicted snapshot.

The real data set was issued from the COLD database of the Saarbrücken laboratory
[15], a benchmark for vision-based localization systems. It contains sequences of im-
ages recorded by a mobile robot under different variations of illumination and weather:
sunny, cloudy and night. We worked on the dataset captured in sunny conditions. The



images were labeled into one of four classes: corridor, one-person office, printer area
and classroom, and the total length of the data sequence was 753. The robot visited the
rooms in the following order: corridor, bathroom, corridor, one-person office, corridor,
printer and corridor. It stayed in the same room between 45 and 284 time steps. Im-
ages were first pre-processed into a 128-dimensional space using the Self-Organizing
Map described in [10]. In the experiments, we used decision trees (as implemented in
Matlab) as base learners in the adaptation ensemble.

One important goal of the experiments was to compare the performances achieved
with the combined anticipative and adaptive mechanism, with the ones of a purely adap-
tive mechanism.

The anticipative meta-learning system itself involves three parameters that all per-
tain to the detection of relevant snapshots. They are the stability threshold θi, the deci-
sion threshold θd and the duration for the evaluation of candidate snapshots τs. They
were set respectively to θi = 0.9 and θd = 0.8 while τs = 100 was chosen for artificial
data streams and τs = 25 for robotics in order to cope with a faster dynamics. In the
base version with no sophisticated management of the snapshot listMLT , there are no
additional parameters.

The remaining parameters concern the adaptive mechanism, and we tried to opti-
mize these in order to not unfairly attribute gains to the anticipative process. The param-
eters for the ensemble method for adaptive online learning include the size of the pool
N , the maturity age τmat and the evaluation size τeval. After extensive experiments,
they were set as follows.

The pool comprised N = 20 base learners for the artificial data sets (N = 15 for
the robotics data). In order to be compared, base learners were evaluated on the most
recent τeval = 20 data points (time steps) (τeval = 15 for the robot). The duration for
maturity τmat was equally set to 20 time steps (τmat = 10 for the robot).

4.2 Evaluation Measures and Methodology

In the experiments, we evaluated the snapshots stored by the system with respect to
the known target concepts. Ideally, there would be one snapshot exactly for each en-
countered state during the data stream. For instance, in the top of Figure 4, candidate
snapshots are indicated with small squares and the retained ones appear as red (or black)
squares.

We also evaluated the gain in prediction errors resulting from the use of the antici-
pation mechanism over the use of the adaptation scheme alone. Likewise, we measured
the gain (if any) due to the recognition of a recurring concept. The gain is simply the
number of errors of prediction that were avoided with respect to the use of the adaptive
strategy only (see Table 1 below).

Finally, the graphs (see Figure 4, the bottom three graphs) report at each time step
the current online predictive performance, i.e. the mean number of instances correctly
classified so far. In order to better visualize the gain after each concept change, the
performances of the adaptation mechanism and of the adaptation + anticipation mecha-
nisms were reset to 0.5 (the chance prediction rate). One can then observe, for instance,
that the gains due to the anticipation mechanism start only to show after the fourth
concept change, which is unsurprising.



time step

 

 

0 1000 2000 3000 4000 5000 6000 70000.4

0.6

0.8

1
Stability Index Stable Concepts Concept Snapshots Drift Drift Period

time step

on
lin

e 
pe

rfo
rm

an
ce

 

 

0 1000 2000 3000 4000 5000 6000 70000.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift Drift Period

time step

on
lin

e 
pe

rfo
rm

an
ce

 

 

0 1000 2000 3000 4000 5000 6000 70000.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift Drift Period

time step

on
lin

e 
pe

rfo
rm

an
ce

 

 

0 1000 2000 3000 4000 5000 6000 70000.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift Drift Period

Fig. 4. Curves for 10-dimensional artificial data streams. The top plot shows the evolution of
the stability index in case of the medium severity concept changes. Small squares indicate the
time steps where candidate snapshots are considered, and (red (or black) squares) when they are
retained. Each concept change gives rise to exactly one snapshot. The three other plots (high
severity concept change at the top, medium severity in the middle and low severity at the bot-
tom) show the online predictive performance of the adaptive learning strategy (continuous (blue)
line) and with the second order learning taking place. They are averaged over 10 repeated exper-
iments. The beginning/end of concept changes are indicated as vertical dotted lines. In case of
gradual concept changes, the transition period between consecutive concepts is colored in gray.
The online predictive performance is reset every time a transition is complete.



4.3 Results

Stream Adaptation Anticipation Total gain Due to Due to
predict. recurrence

name size base learner mean err. std-dev predictor mean std-dev mean mean

10-D Low 7,150 perceptron 107.2 7.7 Elman net 1.9 1.7 0.0 1.9
10-D Med. 7,150 perceptron 803.8 43.1 Elman net 296.2 23.9 63.3 232.9
10-D High 7,150 perceptron 912.1 46.5 Elman net 345.9 38.9 101.4 244.5

Robot 753 decis. tree 43.0 2.6 - 9.0 1.9 - 9.0

Table 1. Summary of the experiments and the measured gains in prediction errors wrt. an adaptive
only strategy.

Table 1 sums up the experimental results, averaged over 10 experiments. The table
shows the mean predictive error of the adaptive learning strategy, and the gain of using
the anticipation mechanism, in both predictability and recurrence. The gain is measured
as the difference between the number of prediction errors made by the adaptive ensem-
ble and the number of prediction errors made by the anticipation mechanism. In the
artificial data streams, we highlight the gain brought by the predictability of the first 7
concept changes, and the gain brought by the last 6 recurring concepts.

Figure 4 illustrates the mechanism for the selection of snapshots on one data stream
and it shows the evolutions of the prediction performance over 10 repeated experiments
according to the severity of the concept changes.

Detection of concept changes and selection of snapshots
As can be seen in Figure 4, the value of the stability index closely mirrors the

concept changes. As soon as the appearance of a new concept is detected by the system
and the corresponding candidate snapshot sufficiently differs from the previously stored
ones, it is stored away inMLT . That policy enables the fast detection of novel target
concept. In our experiments, 100 % of all new concepts (2,600 altogether) that were
introduced in the data streams triggered the storage of a new snapshot. There was no
redundancy (no more than one snapshot per concept) in the artificial data streams. Some
redundancy appeared for the robotic data because of the variation within each concept
(e.g. office).

Second order learning
For concept changes of low severity (Figure 4, bottom), the adaptive strategy is

able to follow the variation of the environment as soon as enough candidate hypotheses
are good enough, which happens at the end of the first concept (circa 400 time steps).
Therefore, the anticipation strategy does not bring an advantage there. The situation is
significantly altered, however, when the concept changes are of medium or high severity.

In our experiments, even though the concept changes occur at varying dates and
with varying speed, the anticipation mechanism is able to predict relevant foreseeable
target concepts that, in turn, are quickly recognized as the best for labeling the incoming



examples. This brings significant gains in the online performance starting already after
the 4th change of concept, and the gain increases thereafter with each new concept
change.

Table 1 shows that the gain in the number or labeling errors attains more than
296/803 = 36% for concept changes of medium severity, and approximately 38% in
the case of high severity. These gains are impressive in face of a difficult learning task.
It is unlikely that they could be obtained without a second order learning mechanism
working over the adaptive one.

Table 1 distinguishes furthermore between the gain due to the predictability and the
gain due to the fast recognition of a recurring concept. Predictability brings significant
gain in the medium and high severity settings for the artificial data sets. In the case of
the robotics data, the gain is totally due to the fast recognition of recurring concepts
which outperforms the anticipation mechanism.

As expected, there is never a negative gain. As noted earlier, because the ensemble
methods is based on a continual competition between base learners from the adaptive
mechanism and base learners from the anticipative one, second order learning can never
be detrimental to the overall prediction performance as compared to the adaptive only
policy.

5 Conclusions and Future Work

The ability to make predictions when data arrives continuously in stream, possibly from
a non stationary environment, is becoming increasingly important. Significant research
works in recent years have brought new techniques to cope with these learning condi-
tions. In this paper, we presented a general framework to endow adaptive online learning
systems based on an ensemble approach with second order learning capacity.

Our method provides means (i) to identify significant stationary states of the world,
(ii) to make anticipation about likely future states, and (iii) to recognize recurring
concepts if they ever arise. Few parameters are involved in the second-order learning
scheme and they appear to not need to be finely tuned.

The empirical evaluation explored various conditions for evolving data streams. It
showed that as soon as the concept changes are significant (medium or high severity),
second order learning yields substantial gains in prediction performance over a mere
adaptation policy. Furthermore, second order learning can only improve and never de-
teriorate the prediction performance, at a small cost in memory and computation.

Our future plans include to carry out experiments with very long streams of data
(∼ 105 time steps) in order to test possible strategies for the management of the memory
of snapshots.

Acknowledgments

Two Grants from the French National Research Agency (ANR): “Holyrisk” (ANR
“Blanc-2009” NT09 439612) and “Coclico” (ANR ”MN-2012”) supported in part this
work.



References

1. M. Baena-Garcı́a, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà, and R. Morales-
Bueno. Early drift detection method. Fourth International Workshop on Knowledge Discov-
ery from Data Streams, 2006.

2. P. Bartlett, S. Ben-David, and S. Kulkarni. Learning changing concepts by exploiting the
structure of change. Machine Learning, 41(2):153–174, 2000.

3. A. Bifet and R. Gavalda. Learning from time-changing data with adaptive windowing. In
SIAM International Conference on Data Mining, pages 443–448, 2007.

4. A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensemble methods for
evolving data streams. 2009.

5. M. Bottcher, M. Spott, and R. Kruse. Predicting future decision trees from evolving data. In
Data Mining ICDM’08. Eighth IEEE International Conference on, pages 33–42, 2008.

6. J. Carletta. Assessing agreement on classification tasks: the kappa statistic. Computational
linguistics, 22(2):249–254, 1996.

7. N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

8. P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
71–80. ACM, 2000.

9. J. Gama. Knowledge discovery from data streams. Citeseer, 2010.
10. H. Guillaume, M. Dubois, P. Tarroux, and E. Frenoux. Temporal bag-of-words: A gener-

ative model for visual place recognition using temporal integration. In Proceedings of the
International Conference on Computer Vision Theory and Applications, 2011.

11. R. Kirkby. Improving hoeffding trees. PhD thesis, The University of Waikato, 2007.
12. R. Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. In-

telligent Data Analysis, 8(3):281–300, 2004.
13. J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: An ensemble method for drifting

concepts. The Journal of Machine Learning Research, 8:2755–2790, 2007.
14. L. Minku, A. White, and X. Yao. The impact of diversity on online ensemble learning in

the presence of concept drift. Knowledge and Data Engineering, IEEE Transactions on,
22(5):730–742, 2010.

15. A. Pronobis and B. Caputo. Cold: Cosy localization database. In The International Journal
of Robotics Research, 28(5), 2009.

16. K. Stanley. Learning concept drift with a committee of decision trees. Informe técnico:
UT-AI-TR-03-302, Department of Computer Sciences, University of Texas at Austin, USA,
2003.

17. K. O. Stanley. Learning concept drift with a committee of decision trees. UT-AI-TR-03-302,
Department of Computer Sciences, University of Texas at Austin, USA, 2003.

18. A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen. Dynamic integration of
classifiers for handling concept drift. Information Fusion, 9(1):56–68, 2008.

19. G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts.
Machine learning, 23(1):69–101, 1996.

20. W. Wilson. A comparison of alternatives for recurrent networks. In Proceedings of the sixth
Australian conference on Neural Networks (ACNN’93), pages 189–192, 1993.

21. Y. Yang, X. Wu, and X. Zhu. Mining in anticipation for concept change: Proactive-reactive
prediction in data streams. Data mining and knowledge discovery, 13(3):261–289, 2006.


