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Abstract

Understanding what are the characteristics of protein-
protein interfaces is at the core of numerous applications.
This paper introduces a method in which the proteins are
described with surfacic geometrical elements. Starting from
a database of known interfaces, the method produces the el-
ements and combinations thereof that are characteristic of
the interfaces. This is done thanks to a frequent item set
technique and the use of statistical tests to ensure a marked
difference with a null hypothesis. This approach allows one
to easily interpret the results, as compared to techniques
that operate as “black-boxes”. Furthermore, it is natu-
rally adapted to discover disjunctive concepts, i.e. differ-
ent underlying processes. The results obtained on a set of
459 protein-protein interfaces from the PDB database con-
firm that the findings are consistent with current knowledge
about protein-protein interfaces.

1 Introduction

Understanding how proteins function, and, particularly
protein-protein interactions, is of paramount importance for
biology and medicine and is a coveted prize for many re-
search efforts [13]. Being able to predict interactions would
permit searching a database of proteins and retrieve all pro-
teins that can interact with a given molecular structure, e.g.
another protein [4, 11]. This entails two sub-questions: how
to predict that two proteins may interact (i.e. bind) and, if
so, what are the most likely docking sites (i.e. the ones asso-
ciated with the minimal energy of the compound structure)?

Several directions have been explored to solve these
problems. The first one is to start from fundamental pre-
misses, meaning here the sequences of amino-acids that
make up the proteins, and knowledge of their physico-
chemical properties and how these translate in terms of

energy. In principle, a sufficiently detailed model should
allow one to compute with enough accuracy the energy
of each configuration of interest and therefore predict the
likely protein-protein complexes and their probable bind-
ing sites. This line of attack is however precluded, at least
at the present time, by the sheer magnitude of the size of
the search space and by the complexity of the energy com-
putations. Another route is to try to learn by automatic
means to discriminate native-like protein-protein complexes
from decoys. Many questions then arise. One concerns
the choice of the parameters used to represent proteins and
protein-protein complexes that are input to the learning al-
gorithm. Another question is the determination of nega-
tive instances of complexes, or decoys. As, usually, the
databases only contain positive instances of protein-protein
complexes, negative instances have to be generated. Most
often, this consists in generating other, random, conforma-
tions and orientations of the proteins, assuming that these
correspond to bad or impossible pairings. However, the
quality of these negative instances may be disputed and can
profoundly affect the performance of the learning methods.

This is why another approach is proposed in this re-
search work. In our work, interfaces of known protein-
protein complexes are described by collections of small sub-
graphs taken in a dictionary of elementary patterns, much as
transactions in a database of purchases in a supermarket are
made of collections of items in a given set of products. This
analogy suggests to use techniques of data mining in order
to detect characteristic regularities in known protein-protein
interfaces. This approach presents three advantages over
the use of standard supervised machine learning techniques.
First, there is no need for building questionable negative in-
stances of protein-protein complexes. Second, the results
can be analyzed and may lead to a better understanding of
the formation of complexes. And, third, it is easy to convert
the regularities discovered into a prediction tool that scores
the potential pairings of proteins.



The paper starts with the representation used for the de-
scription of the protein structure. Section 3 describes in a
generic way the new proposed method to analyze whether
the interfaces of protein-protein complexes have special
properties, and, if yes, which ones. The results obtained
using the Protein Data Bank [3] and data extracted from
the Dockground database [9] are described in section 4. Fi-
nally, section 5 discusses the results obtained in light of the
overall protein docking problem and opens directions for
extensions of this work.

2 Representing the geometry of proteins

In order to understand how two proteins can form a com-
plex, we need both to know what defines their surfaces, and
more precisisely their interface, and which atoms or amino
acids participate in this interface [2, 12]. In this work,
we rely on a weigthed alpha complex model which, under
some constraints, can be considered as a dual of the Voronoı̈
model [8].

Let us consider the set of balls B = Bi(pi, wi), where pi

represents the center of ball i and wi the square of its radius.
Then, the weighted alpha shape is the domain of these balls
and the weigthed alpha complex is the corresponding skele-
ton, with alpha controlling the desired level of precision [7].

It contains geometrical patterns (strictly speaking sim-
plexes, later to be called items) that are: the points of B, the
edges defined by the centers of pairs of balls that have a non
empty intersection, the triangle and the tetrahedron defined
analogously. The figure 1 shows an example of this repre-
sentation in two dimensions, with 14 spheres or balls, with a
null alpha (a) and with a non null alpha (b). Alpha controls
the level of detail by varying the radius of balls (

√
wi + α)

and, hence, the nature of the geometrical representation. For
more details, see [10].

Equating amino acids with balls (with a radius depend-
ing on their physico-chemical properties), the interface of a
protein-protein complex is defined as the set of edges, tri-
angles and tetrahedra of which at least one point belong to
each of the paired proteins.

Additional information about the nature of the amino
acids involved is needed. However, because there are
twenty different amino acids, the number of possible el-
ementary geometrical items (edges, triangles and tetrahe-
dra) is too large (≈ 10600) compared to the number of
available examples (here 459 selected complexes). Hence,
we have decided to group the amino acids with respect
to their physico-chemical properties [6]. Considering five
groups defined according to broad biochemical properties:
hydrophobic, polar, positively charged, negatively charged
and small (resp. noted H , P , +, − and S), thus brings down
the repertoire to 120 distinct descriptive items.

Using this representation, one typical interface between

Figure 1. (a) the alpha shape in 2D with al-
pha=0, and (b) with alpha 6= 0.

proteins involves between 15 to 50 items, some of them pos-
sibly repeated.

3 Analysis by frequent item sets and statisti-
cal hypothesis testing

Thanks to the method described in the previous sec-
tion, 459 protein-protein complexes from the Protein Data
Bank [3] have been represented as well as their interfaces1.
Each one of these interfaces is characterized by a collection
of descriptors taken out from 120 elementary geometrical
items. For instance, a given interface could be described as:
〈(S1 ! +2), (S1H1−1 ! +2)〉, where the subscripts
are used to indicate which protein (either protein 1 or pro-
tein 2) is providing the amino-acid. In this example, the in-
terface involves two elementary geometrical items: an edge
made of a small amino-acid S coming from protein 1 and a
positively charged amino-acid + coming from protein 2, to-
gether with a tetrahedron of which the triplet (SH−) is pro-
vided by protein 1 and the amino-acid + comes from pro-
tein 2. On average, the interfaces are composed of approx-
imately 22 geometrical items, which amounts to approxi-
mately 10,000 items for the whole set of 459 interfaces.

The central question is: do the interfaces of the known
protein-protein complexes present special regularities?

Given the relatively small numbers of known interface
components (≈ 10, 000) as compared to the number of
descriptors (120), the regularities that can be reasonably
looked for are, per force, of limited complexity. One first
question relates to the composition of the interfaces in terms
of items. Is this composition special in some ways?

1 This was done using the CGAL librairy [1].



3.1 Analysis of the frequencies of items

Suppose we observe that a given item, say (SHP ), oc-
curs 150 times in all (over the 10,000 items taken alto-
gether) and is present in 50 out of the 459 interfaces. What
should we think? Is this feature normal? Mildly surprising?
Quite astonishing? One that could be used as a “signature”
of a likely interface between proteins?

To answer this question necessitates that expectation un-
der “normal circumstances” be defined (a.k.a. as a “null hy-
pothesis”) and that deviations from it can give rise to proba-
bility assessments. The question is akin to ask what should
be the number of each item given the surface composition
of the proteins making the compound. In the following, the
term semi-interface (possibly associated with a subscript)
denotes the half belonging to a protein in an interface.

In order to compute the probability associated with each
item A (e.g. (S + +)), one can measure the probability
that it would appear as the result of the combination of half-
items AiAj (e.g. (S + +) could result from (S ! ++)
or from (+ ! S+). In general, given that an event A can
result from pairs of sub-events AiAj , its expected number
nA under the binomial assumption2 is:

E[nA] =
∑
i,j

aij · p(Ai) · p(Aj) ·N (1)

where p(X) is the probability of the item X as measured in
the interfaces, N is the total number of events and aij = 1
if Ai = Aj or aij = 2 if Ai <> Aj . And the variance is
given by:

V ar[nA] =
(∑

i,j

aij ·p(Ai)·p(Aj)
)(

1−
∑
i,j

aij ·p(Ai)·p(Aj)
)
N

(2)
For instance, suppose again that one is interested in the

(S + +) item. One would measure the probability of hav-
ing the semi-item (S), (+), (++) and (S+) in order to get:
E[n(S++)] = 2

(
p(S) · p(++) + p(+) · p(S+)

)
N , where

p(x) would be the observed frequency of the semi-item x
in all semi-interfaces, and N be the number of items in all
459 interfaces, that is 10,000 (the factor 2 comes from the
fact that

(∑
i,j p(Ai) · p(Aj)

)
=

(∑
i,i p(Ai) · p(Ai)

)
+

2
(∑

i,j,i<j p(Ai) · p(Aj)
)

which reflects the fact that the
same item can be obtained with an Ai coming from either
semi-interface).

One important caveat in our case is that no combination
of semi-items should be considered that lead to items with
more than 4 elements (tetrahedra). This must be taken care
of in the computation of formula 1 and 2.

2 I.e. independent and identical trials.

3.2 Analysis of the combinations of items

It can be expected that what determines the strong cou-
pling between the complex structures of proteins are com-
binations of elementary geometrical items. It is therefore
interesting to look for combinations that would be very dif-
ferently represented than what should be expected under a
null hypothesis where the items would be independent.

In general, the expected number of a m-combination A
of m items Ai,Aj , . . . ,Ak︸ ︷︷ ︸

m

is:

E[nA] = Πl=i,j,...,k ai,...,k · p(Al) N

and the variance:

V ar[nA] =
(
Πl=i,j,,k ai,,k·p(Al)

)(
1−Πl=i,j,,k ai,,k·p(Al)

)
N

with N the number of observed items of size m and ai,...,k

the number of permutations of Ai, . . . , Ak.

3.3 Combing the items and combinations

Underrepresented items, while of possible predictive
value (their absence in an candidate interface could be con-
sidered as a telltale sign of a possible interface), are not to be
retained if the goal is to discover elements that are respon-
sible for the binding of protein-protein complexes. We keep
therefore the items (or the combinations of items) of which
the observed number in the known interfaces exceeds its ex-
pected number by more than twice the standard deviation:
nobs

X ≥ E[nX ] + 2
√

V ar[nX ]. Under the normal distri-
bution assumption, the probability of observing nobs

X events
or more is then less that 2.5% 3. This rather conservative
threshold contributes to yield few false positive elements. 4.

In the same spirit, we would rather identify elements that
seem well correlated to as large as possible a fraction of all
known interfaces. This means both that they are signifi-
cantly over represented (as detected by the above statistical
criterion) and that they intervene in a sufficiently large num-
ber of interfaces. The number of interfaces in which a given
element X takes part is called the coverage of the element
and is noted cov(X). A single threshold on the minimal
coverage of elements of interest will select the elements that
play a role in at least that many interfaces or fraction of the
interfaces. For instance, in our study, we chose a 5% thresh-
old for the minimal coverage of elements to be considered
for further analysis.

3 Strictly speaking, the probability of measuring nobs
X outside the range

[E[nX ] ± 1.96
p

V ar[nX ]] is less than 5%. For symmetry reasons,
p

`
nobs

X ≥ E[nX ] + 1.96
p

V ar[nX ]
´

< 2.5%. This is also known
as the p-value.

4 For instance, if one keeps all items with nobs
X ≥ E[nX ] +p

V ar[nX ], then there is a 16% chance that this happened under the null
hypothesis.



3.4 Measuring the spread of the elements
and its atypical character

It is also informative to know if a given element (an item
or a combination of items) tends to occur in a widespread
fashion among the interfaces or, on the contrary, in a con-
centrated way. In the former case, this might indicate a
necessary ingredient in at least one type of bonds between
proteins. In the latter case, this could be interpreted as the
sign of a kind of autocatalytic reaction that favors the co-
occurrence of a same element inside interfaces. Either way,
one must be able to measure to which degree an element is
more widespread or more concentrated than normal.

To do this, we propose to compare the measured cover-
age of elements with their expected coverage.

The coverage of an element is easily computed from the
database of known instances. The computation of its ex-
pected coverage, on the other hand, requires some caution.
Suppose that a given element has been observed to occur
n times. The idea is to calculate the number of different
interfaces among I (e.g. 459) that can receive at least one
element when n elements of the same type are drawn inde-
pendently within N elements.

Suppose that the average number of elements in each in-
terface is K = N/I , and let k be the number of a given
element in a given interface. Then k is the size of the in-
tersection between a set of n elements drawn independently
from N and a set of K elements also drawn from N . The
hypergeometrical equation gives:

p(k) =

(
n
k

)(
N−n
K−k

)(
N
K

)
In particular, the probability of having a void interface

(w.r.t. the element of interest) is:

p(0) =

(
n
0

)(
N−n
K−0

)(
N
K

) =

(
N−n

K

)(
N
K

)
And the expected number of non void interfaces is:

I · p(0) = I ·
(

1−
(
N−n

K

)(
N
K

) )
Several cases can occur that deserve to be considered:

1. The number of observed elements is greater than the
number of expected elements AND the observed cov-
erage is larger than the expected one. This means that
the element is over-represented and is overspread in
the known instances. It might therefore be thought of
as playing a key role in the binding of proteins.

2. The number of observed elements is greater than the
number of expected elements AND the observed cov-
erage is less than the expected one. This means that the

element is over-represented and concentrated on some
interfaces. This may suggest a kind of autocatalytic
process involving the element.

3. The number of observed elements is less than the num-
ber of expected elements AND the observed coverage
is larger than the expected one. The element is under-
represented and is overspread in the known instances.
It might be accidentally associated with the interfaces.

4. The number of observed elements is less than the num-
ber of expected elements AND the observed coverage
is less than the expected one. The element is under-
represented and concentrated on some interfaces.

4 Results on the protein-protein interfaces

4.1 Item selection

459 protein-protein complexes have been extracted from
the PDB database, and have been described using weighted
alpha shapes (with alpha=0), corresponding to approxi-
mately 10,600 items (edges, triangles and tetrahedra). In
this description, each interface has been found to involve
between 15 to 50 items. There are 120 different items when
the amino acids are clustered into five groups. For each
one of these items, the total number of occurrences and the
coverage have been measured, while the expected number
of occurrences (with standard deviation) and the expected
coverage have been computed (see the bar chart in figure 2).

We then automatically extracted the items that satisfied
a combination of the three criteria:

• Overrepresentation.
When nobs

X ≥ E[nX ] + C
√

V ar[nX ], with C = 2
when selecting items, and C = 1 or C = 2 when
selecting patterns.

• Minimum coverage.
A threshold of 5% or 7% was used for the selection of
patterns. None was used when selecting items.

• Difference with expected coverage.
When cov(X) > E[cov(X)].

The list of selected items is then:
{+-, SSP, SHP, SPP, SP−, S+-,HHH, HHP, HH+,
HP+,H+-, PP+, P+-,++-}.

It is noteworthy that items known as poor candidates
such as: −−, ++, −−−, +++ have been rejected. On the
other hand, items corresponding to mildly hydrophobic or
strongly hydrophobic elements have been retained, such as
HHH , HHP , HH+, as well as electrically charged ele-
ments such as +−, S+−, H+−, P+−, ++−. All of these
items are indeed expected to play a role in protein-protein
interfaces since they tend to favor stable conformations.



Figure 2. Bar charts for the items. For each item, the columns are as follows. First: Observed coverage.
Second: Expected coverage. Third: Observed number of occurrences. Fourth: Expected number of occurrences
with a standard deviation bar. The ellipses point to instances corresponding to the classes of inter-
esting cases described in section 3.4.

Doublets
{SSP/SSP, SSP/SP P, SP-/SP-, S+-/S+-, S+-/++-, HHH/HHH, HHH/HHP, HHH/HH+,
HHH/H+-, HHP/HHP, HHP/HP+, HH+/HH+, HP+/HP+, H+-/H+-, H+-/++-,
+-/+-,+-/++-, SHP/SHP, S+-/P+-, HHP/HH+, HH+/HP+, HH+/P+-, HH+/++-}

Triplets
{S+-/S+-/S+-, ++-/H+-/S+-, HH+/HHH/HHH, HH+/HH+/HHH, H+-/H+-/H+-
{+-/+-/+-,+-/HH+/HH+,+-/H+-/H+-, SHP/SPP/SSP, SHP/SHP/SHP, H+-/H+-/S+-,
HH+/HHH/HHP, H+-/HHH/HHP, H+-/HH+/HHH, H+-/H+-/HH+, H+-/H+-/HP+, H+-/HH+/HH+}

Quadruplets
{H+-/HH+/HHH/HHH , +-/HH+/HHH/HHH, SHP/SPP/SSP/SSP, SHP/SHP/SHP/SHP,
++-/H+-/S+-/S+-, H+-/HH+/HH+/HHH, HHP/SHP/SHP/SHP, HH+/HHH/HHP/HHP,
H+-/HHH/HHP/HHP}

Table 1. Items that are over-represented (C=2, results in bold, and C=1) and cover at least 5% of the
interfaces. Results for C=1 are a superset of the results for C=2.

4.2 Pattern selection

The same analysis was carried over for the combinations
of items, including doublets, triplets, and quadruplets (no
quintuplet were found to satisfy the selection criteria). In
order to test the robustness of the results, another selection
was also carried out using C = 1 for the overrepresentation
criterion and a minimal coverage threshold of 5%.

Regarding the doublets and the triplets, one can notice
a slight overrepresentation of the groups with amino acids

belonging to the hydrophobic group H . In general, how-
ever, the items are paired according to global properties.
Two groups of patterns emerge. One with a high propor-
tion of hydrophobic amino acids H , the other with opposite
charges + and -. Only in one instance, these properties are
found together: HH+/++-.

As for the quadruplets, it is noticeable that hydrophobic
amino acids are predominant. The electric charges + and -
equilibrate each other, and there is a positive charge + left.
The groups with hydrophobic amino acids takes over.



Calculations were also carried out imposing a minimal
coverage threshold of 7%, but with the less stringent con-
dition C = 1. The results show a large agreement with the
ones obtained for C = 2, except for the triplets. A finer
analysis is under way to look whether this discrepancy is
profound or not.
Doublets:
{+-/+-, SSP/SSP, SHP/SHP, S+-/S+-,
HHH/HHH, HHH/HHP, HHH/HH+, HHH/H+-,
HHP/HH+, HHP/HP+, HH+/HH+, HH+/HP+,
H+-/H+-, H+-/++-}
Triplets:
{+-/H+-/H+-, SHP/SHP/SHP, H+-/H+-/S+-,
H+-/HH+/HHH, H+-/H+-/HH+}
Quadruplets: {H+-/HH+/HHH/HHH}

5. Discussion and future work

Protein docking introduces very challenging problems.
In this work, we relied on a low-resolution geometrical de-
scription of protein-protein interfaces. By contrast with the
usual scoring functions that rely on aggregations of mul-
tiple factors, the method we propose searches for (geo-
metrical) patterns that emerge as strongly correlated with
protein-protein interfaces. One important advantage of this
approach is that it naturally adapts to the discovery of dis-
junctive concepts. While ordinary methods may be severely
hampered in their performance by the fact that the phe-
nomenon at hand might in fact result from several different
processes, our method is geared to bring to light such com-
pound models (for instance, antibody, enzymes, cytokine,
and other interaction classes). Another advantage is that
there is no need for constructing artificial decoys (e.g. [5]).
On the other hand, null hypotheses have to be devised in
order to test the significance of the number of occurrences
of each pattern and of their coverage.

This discovery method can be applied in every context
where the representation of the instances involves counts of
patterns taken in a dictionary of patterns that is not too large
as compared to the number of instances.

It is not difficult to turn the discovered patterns into a
predictive tool. It suffices to retain the combinations of pat-
terns that are the most statistically significantly associated
with the phenomenon and that together cover most or all of
the positive known instances. Each combination can then be
used as a predictor of potential interfaces in protein-protein
complexes.

We applied our method to the data set of 459 protein-
protein complexes taken from the Dockground database.
The items and the combinations thereof that were selected
point out to the importance of the hydrophobic amino acids
and the association of amino acids of opposite charges.
The findings are aligned with what is known about protein-
protein complexes.

We tested the robustness of the results against variations
in the grouping of the amino acids into five groups (S, P, H,
+ and -) and in the threshold for selecting significant pat-
terns. The results stayed qualitatively the same, with more
patterns selected when the selection threshold was made
less severe. The value of the alpha parameter for the alpha-
shapes should, however, play a much more important role in
the kind of patterns discovered by the method. This remains
to be systematically studied.
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