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1 Introduction
Many data analysis tasks, such as Quantitative
Structure-Activity Relationship (QSAR) or mi-
croarray analysis require to deal with a great num-
ber of features, among which few are relevant for
the considered classification problem. Both for eas-
ing the classification task and because features (e.g.
gene activity) might be costly to measure, it is of
paramount importance to be able to select as early
and best as possible the relevant features.

Numerous methods have been proposed in recent
years for feature selection (see [1, 3, 5, 7, 8]). They
usually rely on measures of the correlation between
the feature value and the class of the objects at
hand (e.g. class of a microarray) to assess the rel-
evance of each feature, and on educated guesses to
set a threshold separating the good candidate fea-
tures from the others. However, in general, the poor
quality of the data together with their scarcity ren-
der the whole process quite unreliable.

In this paper, following [2], we study how to
combine several such unreliable feature evaluation
methods. Indeed, because most feature estimation
methods measure the same kind of regularities in
the data to determine the relevant features, the
rankings they return are more correlated for the
relevant features than for the “random” ones. We
propose to translate this property through a gener-
ative (parametric) model for the correlation of two
rankings in order to determine the most likely rel-
evant features.

2 A model of the correlation
In the following, d denotes the number of features,
of which p, the unknown to be determined, are sup-
posed to be relevant. Applying two classical feature
evaluation methods (e.g. ANOVA [4] and RELIEF
[6]) on the available data produces two rankings of
the d features from the most promising ones to the
less promising. If the two methods were perfectly
informed, both would put the p relevant features
on top of their ranking followed by the d − p ir-
relevant ones in no special order. In this case, ex-
amining the intersection of the two rankings would

immediately give away the relevant features. Let
indeed topn(M) denote the n features top-ranked
by method M , and M1 and M2 be the two meth-
ods used to rank the features. We would then get
|topp(M1)

⋂
topp(M2)| = p since the topp-ranked

features from the two ranking would contain all p
relevant features.

Meanwhile, were the two methods M1 and M2 be
uncorrelated (except from their perfect information
on the relevance of the feature), the size of the in-
tersection of their topn ranked features when n ≤ p
would follow an hypergeometric law characterizing
the size of the intersection of two subsets randomly
drawn from p features4, whereas, for n > p, the in-
tersection size would be equal to p plus the value
of an hypergeometrical law describing the intersec-
tion size of two subsets of size n−p randomly taken
from a set of d− p elements.

In practice, however, the methods are too crude
to rank all p relevant features at the top, and, in
addition, they may be correlated in the way they
rank the features. The generative model predict-
ing the (expected) size k of |topn(M1)

⋂
topn(M2)|

must therefore take into account both the estimated
quality of the methods and their correlation.

Ignoring for an instant the correlation between
the methods, and assuming that both methods are
equally good at selecting the relevant features (that
is they both find m ≤ n relevant features among
their topn), the expected intersection size k would
follow the following law:
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4 The hypergeometric law gives the probability that
the intersection size of two randomly drawn subsets
of size n in a set of size d be k:
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This expression computes the number of ways
one can get an intersection size of k given d, p, n,m
divided by the total number of ways one can get
two drawings of n features among d. k+ stands for
the part of the intersection size k that correspond
to relevant features. (See Figure 1).

Figure 1. The sets involved in the generative model of
the intersection size k between two uncorrelated meth-
ods.

It remains to account for the a priori correlation
between the methods. This can certainly be done
in many ways. We have chosen a method where the
a priori correlation is expressed by the fact that
both methods must select their features in a set of
size called dcorr(n), with n ≤ dcorr(n) ≤ d. The
lowest is dcorr(n), the more tighten is the a priori
correlation between the methods.

Figure 2. The model for correlated methods.

Taking into account the a priori correlation be-
tween the methods, the probability of having an
intersection of size k for their Topn is :

P (k|d, n, p,m) =
k∑

k+=0

H(dcorr(p,m),m, k+)·

H(dcorr(d− p, n−m), n−m, k − k+)

3 Experiments

In order to test the model, artificial data were gen-
erated as follows. The learning set contained 20 ex-
amples (10 + and 10 -). For each example, the each
feature (in a set of d = 1000 features) follows a
gaussian law of variance σ and of mean 0 if it is a
non-relevant feature, or of mean ±δ (depending of
the classof the example) if it is one of the p relevant
features.

Figure 3. comparaison between mesured and predicted
intersection sizes for 1000 artificial data with p = 200,
δ = 1.5, σ = 1

Figure 3 shows that even if the model is not good
for small values of n, it can predict the intersection
size for other values. In fact, the model predicts
well when the value of m is closed to p. As in this
case the intersection between relevant features is
fixed (we take two time ≈ p elements in a set of p
elements so the intersection size will be ≈ p) this
means that the model correctly predicts the interac-
tions between non-relevant features but not as well
those between relevant features. Corrections to the
model are under way to put this right.
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