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Abstract 

The relationship between scientific knowledge and uncertainty in science has been a central question in risk 
analysis. There have been several conceptualizations of uncertainty but most have been normative efforts to 
construct an ontology on the basis of theoretical considerations and there have been few empirical attempts 
to build such an ontology through textual analysis. Studies investigating how such ontologies work are equally 
scarce.   

We developed an ontology to investigate uncertainty in risk assessment in food safety comparing the EU and 
the US, and the two main domains of food safety: biohazards and contaminants. The ontology gauges ex-
pressions of uncertainty in two ways: one looks for stylistic clues of judgment, the other registers the content 
of the uncertainty expressed in the documents. We have built a large data base where English language risk 
assessment documents by the European Food Safety Agency and the three US agencies primarily responsible 
for food safety in the US are coded according to our ontology. We are also in the process of creating soft-
ware that uses machine-learning algorithm to code risk assessment documents in our database.  

In our paper, we lay out our approach to scientific uncertainty, then describe the ontologies we developed to 
assess expressions of scientific uncertainty in risk assessment documents in food safety. We then discuss the 
results from supervised Machine Learning and the implications for both the method of machine coding and 
the insights we gained for human coding.  Finally, we discuss some findings using the ontology testing three 
sets of hypotheses. The first one looks at differences in national styles in applied scientific research, the sec-
ond differences in epistemic cultures between scientific subfields in food safety and the third about the effect 
of research and new knowledge on uncertainty. 

 

1. Introduction: Mapping Scientific Uncertainty 
Since the landmark report by the National Research Council (NRC) that codified the basic para-

digm of risk analysis (NRC 1983), science has become an integral part of policy making. By separating 
risk assessment, a predominantly scientific review of the existing relevant knowledge on an issue of 
interest that is to embody the “scientific findings and judgments” of expert scientists, and risk man-
agement, that is to reflect “political, economic and technological considerations,” the paradigm sought 
to establish the autonomy of science in the process. This separation was designed to allow science to 
make an independent contribution following its own methods and logic, yet it also created a disjunc-
tion. Science and policy making work in different epistemological cultures. Scientific knowledge is al-
ways provisional, open to skepticism and further inquiry, while policy requires knowledge that is final, 
certain and permits making decisions that are timely and often irreversible, and this difference is often 
not easy to bridge.  
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This epistemological mismatch became painfully obvious in recent years, and traumatic events like 
the mad cow disease or the L’Aquila earthquake, highlighted the need for scientists to communicate 
clearly not just what they believe to be the most likely truth on a topic, but to also express the limits of 
their knowledge. Since the mid-1990s, pressure began to mount on the scientific community to report 
not just what they know but also to clarify what they think they do not know, calling attention to un-
certainties in the current corpus of the pertinent scientific knowledge.  

In the area of food safety, our focus of interest, various international agencies began to emphasize 
the importance of expressing scientific uncertainty in risk assessment documents, analytic surveys of 
the scientific literature on a particular food hazard. Some, like WHO, EFSA, US EPA, US OMB,  is-
sued guidelines working towards a system that both identifies the type of uncertainty scientist perceive 
and the extent to which our knowledge is uncertain in a particular respect. These agencies recognized 
that their decision makers must have a clear sense of how much confidence they can place in various 
scientific findings in order to take the best decision. They also have to understand the nature of the 
weakness in the evidence experts present. Scholars studying science itself also took up the issue of sci-
entific uncertainty and formulated various normative frameworks to guide experts in future risk as-
sessment reports.  

Our approach to scientific uncertainty is not normative, but empirical and comparative. We want 
to describe and understand how scientists express uncertainty in scientific reports assessing food risk. 
In our larger project, we look at English language risk assessment documents produced for food safety 
regulators in the United States and the European Union between 2000 and 2010. We investigate two 
main, distinct areas of food hazards in the food risk field: contaminants and biohazards. 1 As the two 
fields draw on different subdisciplines, they differ in the way they make use of various scientific meth-
odologies (experiments, observational studies, statistical analyses, analytic modeling etc.) and thus may 
have different understandings of scientific uncertainties. Our ultimate interest is the relationship be-
tween uncertainty and accumulation of knowledge, as well as the effect of scientific uncertainty on pol-
icy outcomes.  

To answer this we developed inductively two complementary ontologies: the first one is built with 
a linguistic approach, and the second one reflects the content or source of uncertainty. Both are im-
plemented in a database containing coded risk assessment and management documents.  Because the 
quality and the accuracy of the ontology are crucial, we developed a learning algorithm in order to 
evaluate the reproducibility of the coding. As risk assessments are numerous and documents can be 
quite long (up to 500 pages), this software may help coders in the future. The software can also im-
prove our ontology, pointing out inconsistencies and imprecisions. In this paper, we present our first 
results from our analysis of our ontology with Machine Learning algorithms.  

In the rest of the paper we lay out our approach to scientific uncertainty, then describe the on-
tologies we developed to assess expressions of scientific uncertainty in risk assessment documents in 
food safety. We then discuss the results from supervised Machine Learning and the implications for 
both the method of machine coding and the insights we gained for human coding.  Finally, we discuss 
some findings using the ontology testing three sets of hypotheses. The first one looks at differences in 
national styles in applied scientific research, the second differences in epistemic cultures between scien-
tific subfields in food safety and the third about the effect of research and new knowledge on uncer-
tainty. 

                                                
1  Contaminants are any substance, such as arsenic, cadmium or lead, not intentionally added to food which is present 
as a result of the production, manufacture, or other steps while holding food or as a result of environmental contamination. 
Biological hazards include pathogenic viruses and bacteria. 
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2. Uncertainty in Science 
Uncertainty is an indispensable part of science. Positivist approaches depict science a progressive 

conquest of uncertainty, whereby science with each step reduces the realm of unknowns. These ap-
proaches see knowledge and uncertainty as a zero sum game. As research moves successfully forward, 
knowledge expands and uncertainty contracts. From a positivist perspective, measurement of the ex-
tent of uncertainty is possible. Since uncertainty is the objectively existing entities still not known, their 
quantification is a difficult but meaningful exercise.  

By contrast, the cognitivist conception of science posits uncertainty not as the opposite but as a 
product of knowledge (Popper 1976). Uncertainty, after all, assumes that we know we don’t know 
something, thus uncertainty presupposes some knowledge. Consequently, increase in knowledge not 
only does not make uncertainties shrink, to the contrary, it adds to it. As uncertainty is always framed 
by existing knowledge, with new knowledge not only does it grow but also its nature shifts. What 
counts as uncertainty, therefore, depends on the context of what we believe is certain which changes as 
we learn more. As we cannot predict knowledge we not yet have, we also cannot foresee what 
uncertainties we face in the future.  Measuring uncertainty can accomplish much less, at best it can 
account for our ignorance at a particular point in time as shaped by a very carefully specified scientific 
puzzle. Because uncertainty reflects existing knowledge, different fields with different methodologies 
will have different standards for uncertainty as well.  

Finally, social constructivists believe that what is considered knowledge and uncertainty both built 
in social processes, where scientists are interested parties in a wider social context (Conway and 
Oreskes, 2010, Shackley and Wynne, 1996, Proctor and Schiebinger 2008). Uncertainty, they claim, is 
manufactured (or at least emphasized or de-emphasized) on purpose. They point to such debates as the 
health effects of tobacco, evolution or the human causes of climate change where uncertainty has been 
deliberately created. In those cases, uncertainty has been strategically produced by interested parties. As 
the institutional environment plays a key role, uncertainty will be perceived and identified differently in 
the US and EU.  

Our ontology is compatible with all three theories, which means that we can later compare their 
empirical predictions. The typologies we offer assume, as all three theories do, that science is a dis-
course with its own rules of expression, and even climate change deniers or creationists must comply 
with them if they want to participate in this type of a discussion. Because our job is not to point to or 
evaluate claims of uncertainty, but only to describe those claims, our ontology need not take a prior 
position on these theories, but it can test their implications. 

3. Ontology of Uncertainty in Food Risk Analysis 
Ontology is “an explicit specification of a conceptualization” (Gruber 1993:199). In full-fledged 

ontologies, concepts and their relationships are organized in a system that is an abstract representation 
of a world with a certain purpose and at a specific level of granularity. Ontologies are powerful, be-
cause they can clarify and – to some degree – automate various cognitive processes that manipulate 
meaning.  We set out to develop a conceptualization of uncertainty in scientific documents, to identify 
textual expressions of uncertainty and then to sort and analyze documents according to the amount 
and type of uncertainty they voice.   

We developed two systems of classification or simple ontologies. The first, a simpler ontology is 
designed to capture the nature of the judgment the scientists make about the uncertainty of their con-
clusion. This ontology is a typology, a multidimensional way of classifying the expert’s judgment of the 
evidence. The second, a hierarchical system gauges the content of uncertainty. The categories identify 
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the problems that give rise to uncertainty about our current state of knowledge as perceived by the 
authors. It is taxonomy, because the categories are arranged in a genealogical hierarchy, where “ances-
try” can be seen as successive levels of generality. For both ontologies, our smallest coded unit is the 
sentence (our data point). Categories can be attached to one or more consecutive sentences. One sen-
tence can contain multiple expressions of uncertainty and can be sorted into multiple categories.2 Be-
cause we were interested in the final verdict of the experts, just as policy makers are, we coded only 
summaries and conclusions of each document to capture the uncertainties that the experts thought 
remained after their reviewed the available research on the topic.3  

 

A. Judgment typology :  A l inguis t i c  approach based onto logy  

Our first ontology was designed to capture various aspects of the judgment of the experts in their 
conclusions. It describes how the panel judges the weight of the evidence and it follows more closely 
the language they use to do so.  This ontology consists of five categories. They are conceptually dis-
tinct. Three of them express uncertainty, two (confidence and expert assumption) communicate the 
opposite. 

Figure 1. The structure of the ontology of uncertainty based on judgment 

 

Hedging is a way of indicating that experts have doubt about or a lack of total commitment to a 
proposition they present.  There is a large literature on hedging. Hedging, a way of making things fuzz-
ier (Lakoff 1972),4 expresses a “lack of complete commitment to the truth value of an accompanying 
proposition” (Hyland 1998:1). It suggests that the speaker is not committed entirely to a proposition 
because he or she is uncertain about the truth of its content. The hedge signals this uncertainty without 
laying out its causes in detail there in the sentence, albeit the causes may be explained elsewhere in the 
text.5 Hedging ill serves risk managers because it makes the topic of interest less clear. To identify 

                                                
2  When a sentence contains multiple expressions of uncertainty, each is represented by different phrases or clauses. 
Therefore, in principle, we could break up those sentences and pick out the words relevant to each. 
3  If the experts were left with uncertainty after one study reviewed in their report, but were then satisfied that an-
other study presented resolved the issue, uncertainty would be reported for the first one, yet that uncertainty would not 
mater anymore. 
4  Lakoff’s original article that set off research on hedges makes the claim that making propositions fuzzier is actually 
making them more accurate, because the world is fuzzy and truth is a matter of degree. Hedges allow us to move beyond 
the stark and misconceived binary distinction between truth and untruth.  

5  The literature attempts to classify hedges depending on how it deals with uncertainty, whether it serves to protect 
the author, or whether it just indicates that information is incomplete or that the validity or reliability of the proposition is 
not fully accepted. We did not make these distinctions. 
 

Judgment	
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Hedging	
   Con4idence	
   Expert	
  
assumption	
  

Precaution	
   Disagreement	
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hedging we ask the question: “Can the proposition be restated in such a way that it is not changed but 
that the author’s commitment to it is greater than at present? If yes, then the proposition is hedged.” 
(Crompton, 1997: 281).  For instance, dropping “likely to be” in the sentence: “The … panel con-
cluded that … the risk is likely to be conservative…” would make it more definite. 

Our second category is confidence.  Here we wanted to capture the opposite of uncertainty, an em-
phatic commitment to a proposition. Often referred to as boosters, expressions of certainty, assurance 
and conviction provide a crucial clue for risk managers (Myers 1989, Vazquez and Giner 2009). Boost-
ers play an important role in persuasion in risk assessments. They stress finality and absence of doubt. 
While there are many words that are commonly used as boosters (e.g., undoubtedly, clearly, well-
known, demonstrate, proven) whether they express confidence in the relevant scientific knowledge can 
be judged only from the wider context. Experts, for instance, can be confident that no good data are 
available on a topic or report that it was demonstrated that the statistical models cannot answer the 
crucial question. In such cases, there is uncertainty and confidence is to emphasize that it is there.   

Our third category is expert assumption. This is another form of confidence. The expert is aware that 
studies or models make certain assumptions about the world. These assumptions are not directly sup-
ported by evidence, but according to the expert, this is not a problem. These are the best assumptions 
an expert can make or, at least, these are not assumptions that the report questions.  

We coded precaution as our fourth variable. Precaution is a way of dealing with uncertainty. Making 
conservative assumptions or building conclusions around “worst case scenarios” is a way of creating 
certainty where data and models fail to provide it.  There is a large literature on the precautionary prin-
ciple in food safety and the presumed differences in precaution between the EU and the US that de-
veloped mostly in the context of genetically modified organisms (Lynch and Vogel 2001, Hammitt et al 
2005).  

Our final category is disagreement. Disagreement is a staple of science, but here were interested in 
only disagreements that the report treats as unresolved. This happens either when experts on the panel 
find unanimously that contradicting evidence on the topic is equally strong, or when the panel splits, 
and some members disagree with others and voice their dissent  

B. Uncertainty taxonomy: An ontology based on the source  o f  uncer tainty 

To build our second ontology focusing on content, we began with the general literature on scien-
tific uncertainty (Morgan and Henrion 1990, Hattis and Burmaster 1994, Pate-Cornell 1996, van Asslet 
and Rotmans 2002, van der Sluijs et al. 2005, Walker et al. 2003)  and papers addressing uncertainties in 
the different disciplines involved in the  food risk assessment process, such as epidemiology, microbi-
ology, toxicology and exposure assessment,  (Grandjean & Budz Jorgensen 2007, Kang & Kodell  et al. 
2000, Nautta 2000, Dorne & Renwick 2005 and Kroes & Muller  et al. 2002). Beside this literature, we 
drew upon two main institutional documents: the opinion of the Scientific Committee of EFSA enti-
tled Uncertainties in Dietary Exposure Assessment (EFSA, 2006) and the WHO Draft guidance 
document on Characterizing and Communicating Uncertainty in Exposure Assessment (WHO, 2007). 
We simplified and adapted the basic structure of these classification systems through a series of test 
coding of European, US and international food safety risk assessments arriving at a 28 item hierarchical 
ontology defined by a decision tree. As one moves down the tree one gets to more specific content. 
The coder had to code at the most specific (lowest) level possible. 
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Table 1. Decision Tree for Uncertainty Taxonomy Coding 

Ontic Uncertainty/Variability 
Arbitrary assumptions of model 

Combination effects Model 
Is it due to arbitrary 
model assumptions?  

OR 
Is it due to some 
problem in our 

causal understanding 
i.e. what generates 

the hazard? 

Causal inference 
Is uncertainty due to ignoring synergism (com-

bination effects)?  
OR 

Is it due to the inability to separate the effects 
of related causes?  

Correlated causal 
factors 

Missing factor 
Comparability of data 

Reporting 
Flawed measure 

Measurement 
Data from different 

sources are incomparable 
and they point in differ-

ent directions. 
OR 

We don’t know enough 
about how it was meas-
ured to trust the data. 

OR  
Is it due to how it is 

measured?  

Measure 
Was the meas-
urement poorly 

done? 
OR 

Does the method-
ology used in 

measuring have 
inevitable 

limitations? 

Limited analytic 
method 

Small sample size 
/few samples 

Sampling 
Was the sample 

too small? 
OR 

Was it selected 
improperly? 

Non-representative 
sample 

Surrogate hazard 
Inference in time 

Scenario inference  
Range inter- or ex-

trapolation 

Surrogate con-
text 

Are the data from  
the wrong context? Inference from in 

vitro to in vivo 
Inference from ani-

mal to human 

 
Is it uncertainty 
that is irreduci-

ble? 
OR 

Is it that new 
information can 

resolve 

Epistemic  
Uncertainty 

 
Is it due to the 
absence of good 
data about the 

hazard?  
OR 

Is it due to the 
way the model is 

built? 

Data 
Is it due to the 

complete absence of 
data 
OR 

Is it due to the lack 
of the exact kind of  

data we need and the 
fact that we have to 
use proxies (surro-

gates)?  
OR 

If we have the right 
kind of data, does 
some quality of the 
data create uncer-

tainty ?   

Surrogate Data 
Is it a sampling prob-

lem?  
OR 

Is there a discrepancy 
between the hazard we 
have data for and the 
hazard of interest? 

OR 
Is there a discrepancy 

due to context? 
OR  

Is there a discrepancy 
between the population 

of interest and the 
population we have 

information on?  
 

Surrogate 
Population 

Are the data from 
the wrong popula-

tion 

Inference from gen-
eral to sensitive 

population 
 

The tree was a decision tool to aid our coders. Sentences coded at branches, rather than leafs or 
terminal nodes (at the right column in Table 1 or the light blue label in Figure 2) were either unspeci-
fied at a lower level or were specified but the specification was so rare that it did not deserve a separate 
category at the next level. 

Coding sentences for content that can be quite complex raises the problem of context much more 
so than the categories of our first ontology. The meaning of sentences is often influenced by text that 
is not adjacent. Comprehending the source of a particular uncertainty often required following a long 
exposition in the body of the report that the coder read but did not code. In fact, while we annotated 
sentences, here it would be more accurate to say that we were classifying the entire document and 
flagged the sentences that provided the best clue.  

Our ontology begins with the common distinction between Epistemic and Ontic Uncertainty (also 
known as Natural Variability). Epistemic uncertainty is the kind that points to missing or incomplete 
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information. Ontic uncertainty is the inherent, random variation among cases that no further research 
can reduce. Epistemic uncertainty then is divided into problems that relate to Data and those that re-
late to the Model that we use to understand data. Each, in turn, except for one, is subdivided into 
lower level, more specific categories.  

Data problem can be that the data (factors/variables) are simply missing. This is, however, rarely 
where the report stops. In the absence of good data, it reaches for surrogate data that are not exactly 
what we want and require some inference, or data we want but the measurement is somehow imper-
fect. Surrogate data can be imperfect because we have the wrong population, the wrong context, the 
wrong hazard or an imperfect sample. Measurement can be faulty because it was measured incorrectly, 
it was not properly reported or reported in a way that creates problems of comparison.  

For models, we distinguish between causal and other, formalized models. Causal inference prob-
lems are further specified.  

Figure 2. The structure of the ontology of uncertainty based on content 

 
This ontology is, thus hierarchical by specificity. But another way of thinking of this tree structure 

is that the categories are organized in groups of similar content, whereby “children” of the same “par-
ent” show more family resemblance than “children” of different “parents” or “grandparents.” 

 

4. Analyzing Our Empirical Ontology with Machine Learning 
To examine the two ontologies, developed from data inductively, we tested them with Machine 

Learning. Two questions, in particular, arise prominently. First, do the nodes in a given ontology, la-
beled by some concept name (e.g. “ontic uncertainty”), truly correspond to some “natural category”, or 
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are they in fact artificial distinctions imposed by the ontology maker with no or weak ground? Second, 
are the links between the nodes, making the structure of the ontology, associated with the right seman-
tic relationships? For instance, do the child nodes of a parent node correspond to sub-categories of the 
category associated with the parent node? And are the child nodes associated with mutually exclusive 
categories?  

Machine Learning is a systematic method to assess the validity of the proposed ontology with 
measurable results. The idea is to measure the performance of a learning algorithm when the data are 
organized along the lines of the evaluated ontology. If the learning algorithm is highly successful in 
predicting the node to which each sentence belongs, then the ontology is, at least, internally consistent. 
Poor fit can reveal problems. It can be the sign that the distinctions imposed by the ontology on the 
data are contrived and divide the domain poorly. It can point to categories that are not sufficiently dis-
tinct and have a semantic overlap, or that are improperly located in the taxonomy.  

Because we were interested in the relationships among the categories of the ontologies, we did not 
include in our analysis sentences that did not contain expressions of uncertainty.6  

A. A methodology for  us ing Machine Learning to assess  the val idi ty  o f  an onto logy  

The general approach that we chose to assess the value of a given ontology was to measure how 
well decision rules could be learned by a learning algorithm in order to separate the data points, here 
sentences, between the categories imposed by the ontology. The protocol is the one of supervised 
learning. A set of sentences (796 in all) representing 112 risk assessment reports requested by official 
food safety agencies in the US and the EU, have been coded by experts, using the categories of the 
ontologies, thus providing a learning sample with pairs (part of text, associated label) a.k.a. examples. A 
subset of this learning sample was extracted to form a training set that would be used by the learning 
algorithm to produce decision rules, while the remaining learning examples formed the test set. The 
value of the learned decision rules was measured by how well they predicted the labels of the test ex-
amples. Usually the performance criterion was the error rate.  

Several choices had to be made in order to realize the experiments: 

1- Choice of the learning algorithm and of the kind of learning rule that can be learned. We fo-
cused on classical and state of the art supervised learning techniques, namely: naïve Bayes classi-
fier, SVM (Support Vector Machines), Decision Trees and k-Nearest-Neighbors (see 
[Flach,2012]).   

2- Choice of the coding of the sentences. Most learning techniques cannot take raw sentences as 
input. These must first be coded as vector of attribute-value pairs. Several techniques exist that 
aim at reducing the dimension of the input space which, otherwise, could easily attain 104 up to 
105 features without pre-processing. These techniques include the removal of stop-words, i.e., 
words such as ‘the’, ‘a’, ‘are’, ‘is’, ‘to’, ‘by’ etc.,  that are supposed not to carry information about 
the label of the sentence. Stemming is a way to further reduce the vocabulary by retaining only 
the stems of the words (e.g. ‘artificially’ -> ‘artificial’). One can also use information about syn-
onymy, then retaining one word for each category of words. In our experiments, we removed 
146 stop-words and used the Porter stemmer (see [Perkins,2010], [Porter,1980]), yielding a final 
vocabulary of size 2,530. This is still a very large space, but the results shown below suggest that 
this was already a good choice. At this point, one can adopt one out of several existing coding 
strategies. For instance, in the “bag of words” approach, each word present in a sentence will 
be associated with a 1 in the input vector and the other, absent, words with a 0. Or one can 
count the number of times this word is present. E.g. the sentence “In addition to the limitations al-
ready listed, there are also limitations introduced by the methods used to analyze data inputs to the risk assess-

                                                
6  This is our next step. We are obviously interested in finding expressions of uncertainty in the text, not just finding 
out what kind of uncertainty it is once we identified an uncertainty statement. 
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ment.” would become “addit limit alreadi list limit introduc method analyz data input risk assess” after 
stop-words have been removed and after stemming. Then, it can be coded either with a 1 for 
the feature ‘limit’ or with a 2 since this stem appears twice in this sentence. Other coding tech-
niques involve the computation of relative frequencies (e.g. tfidf for “Term Frequency/Inverse 
Document Frequency”). Here, we report experiments with the 0/1 coding method. 

3- Choice of a prediction strategy. Some algorithmic learners are, at the core, designed to separate 
two classes. If one wants then to learn multi-class classification, for instance, separating the 
three class ‘missing variables’, ‘surrogate context’ and ‘sampling’, some scheme must be devised to turn 
two-class classification rules into multi-class ones. In our experiments, we used the all-versus-all 
technique (see [Aly,2005]). The best overall learners were Naïve Bayes and SVM. Below, we re-
port the results obtained with the naïve Bayes classifier since they are easy to use and intrinsi-
cally adapted to multi-class classification. 

4- One problem when learning to separate data from different classes is that their frequency can 
be significantly dissimilar. If, for instance, one class is ten times more highly represented than 
another one, a simple majority rule will yield a 90% successful prediction rate without any learn-
ing taking place. In order to circumvent this opportunistic but uninformative behavior, one 
method is to balance class sizes. When data are plentiful, it is sufficient to sample the over-
represented classes in order to reduce their size to that of the least represented one. In our ex-
periments, however, data are already rather scarce and another technique must be used (e.g. 1 
sentence falls under the ‘Measure’ node, while 71 fall under the ‘Missing factors / variable  node). 
For each under-represented class, we chose to generate artificial data points (sentences) by mix-
ing the characteristics of existing data points from this class. Specifically, we randomly drew two 
actual data points and made up an artificial data point by retaining for each feature either the 
one encountered in both actuals if they agreed, or by randomly choosing a value of one actual if 
they disagreed on this feature.  

5- In order to measure the prediction performance, we used a five-fold cross-validation technique 
(see [Japkowicz et al.,2011]).  

It is important to recall our premises viz. that a good predictive performance suggests that the on-
tology correspond to ‘natural categories’ and that therefore it has some merits. However, a poor pre-
dictive performance would not by itself suffice to reject an ontology. Indeed, several reasons could 
explain such poor performances. The experts could have mislabeled a significant proportion of the 
sentences used for training and/or for testing. The learning algorithm and/or the coding strategies 
could be inappropriate for the task at hand. Finally, the classes could be badly represented by the learn-
ing examples. For instance, some classes in the uncertainty variable ontology have a very small number 
of training instances associated with them, e.g. ‘inference from general to sensitive population’ has only 6 train-
ing instances. Even if they are good representatives, this can be insufficient to learn a good decision 
rule. Furthermore, a significant number of instances rightly belong to several categories. This renders 
the computation of a fair prediction rate more involved, while at the same time implying that decision 
rules associated with different nodes can in fact appear as closely related, and therefore difficult to dis-
tinguish. 

B. Experimental  resul ts 

We tested both ontologies: the ontology on judgment variables with its single level and five nodes, and 
the ontology on the uncertainty variables with its depth of five levels and its 28 nodes. In the latter case, we 
tested first the distinction between all nodes that can be used by human coders to label the fragments 
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of texts. This allowed us, in particular, to compare the distinction between siblings (children of the 
same node) and between nodes not belonging to the same branch.  Then, we studied further the quality 
of the ontology by looking more closely at the recognition rate of each internal node when subnodes 
are aggregated up in the tree. For instance, ‘sampling’ was first considered as a node by itself, independ-
ently of its child nodes, and then as category when the instances of its child nodes were aggregated 
under its flag. Finally, we measured also the prediction rate when for each category (internal node) only 
its child nodes were taken into account. The motivation was to see if the internal nodes, that corre-
spond to categories obtained by merging subcategories, were truly homogeneous and distinct, rather 
than resulting from somewhat arbitrary aggregation of the subcategories.  

Below, we report the prediction performance in confusion matrices. Each row corresponds to a 
“true category”, that is to the category to which an example was ascribed by the expert, and each col-
umn corresponds to the category predicted by the learning algorithm. The final column sums up the 
predictive performance. For instance, in Table 3, the category ‘arbitrary assumption’ contains 53 instances 
of which 37 are well predicted (corresponding to a prediction rate of 69.81%). The other 16 instances 
are predicted as belonging to one of the remaining 17 categories (of which only 7 are presented in Ta-
ble 3).  

Results for the judgment variables 
The experiments on the judgment variables show that a Naïve Bayes classifier achieves a 93% suc-

cessful prediction rate on average on the 5 classes (measured by a 5-fold cross-validation)7. A further 
study measures the contrast between pairs of classes, resulting in the confusion matrix of Table 2. The 
labels ‘Confidence’ and ‘Expert assumption’ appear to be the most likely to be mislabeled.  

Table 2 Confusion matrix of successful predictions distinguishing pairs of judgment variables 

 
Confidence Disagreement Expert assumption Hedged language Precaution 

Confidence   100,00 77,52 90,94 91,43 

Disagreement     100,00 100,00 95,24 

Expert assumption       94,56 88,11 

Hegded language         96,23 

Precaution           

 This is not surprising. Both ‘Confidence’ and ‘Expert assumption’ reflect a certainty about findings 
and thus there could be some semantic overlap.  

 

Results for the uncertainty variables 
Table 3 reports the confusion matrix for a subset of 8 of the terminal nodes8. The overall predic-

tion rate measured is 75.57%, but there are variations between the categories. For instance, ‘Limits of 
analytic methods’ and ‘Poor data quality / flawed measurement’ are siblings, both children of the ‘Measure’ 
node. However, one, ‘Poor data quality…’ is perfectly predicted with 100% (with only 7 instances), while 
‘Limits of …’ is more poorly predicted with a rate of ~58% (with 58 actual instances). Conversely, the 

                                                
7 By comparison, SVM reaches 92% and k-NN 89%. Decision trees only reach 76% of good prediction which might be 
explained by the high dimension of the description space and by the sparseness of the data, each sentence being described 
by less that a few tens of attributes out of 2,530. 
8 For lack of space, we did not include here the whole confusion matrix with its 18 rows and columns. There are 18 termi-
nal nodes. 
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latter seems to have a porous boundary with the ‘Missing factors / variables’ node since there are 5 + 8 
misclassified instances between the two nodes (out of 129 actual instances).  

Table 3 Confusion matrix of successful predictions distinguishing pairs of 8 uncertainty variables 

 

Arbitrary 
assumptions 
of… 

Combination 
effects 

Correlated 
causal 
factors 

Limits of 
analytical 
methods 

Missing 
factors … 

Non-
random  
… 

Ontic 
uncer-
tainty… 

Poor data 
quality… 

Prediction 

Arbitrary 
assump-
tions of … 

37 1 0 2 3 0 2 0 69.81 

Combina-
tion effects 

0 19 0 0 0 0 0 0 100.00 

Correlated 
causal 
factors 

0 0 15 0 0 0 0 0 100.00 

Limits of 
analytical 
methods 

3 1 0 34 5 2 3 0 58.62 

Missing 
factors … 

5 1 2 8 40 5 0 0 56.34 

Non-
random … 

0 0 0 2 1 38 1 0 80.85 

Ontic 
uncertainty  
… 

2 0 0 2 0 1 23 0 74.19 

Poor data 
quality … 

0 0 0 0 0 0 0 7 100.00 

          

overa l l  75.57         

 

Overall, it appears that the distinction between siblings (children of the same parent node) is often 
not higher than with nodes of distant branches in the ontology. In part, this may reflect the fact that 
the same instances can be ascribed to more than one category in the ontology, and even though we 
were careful to eliminate from the learning set instances that were classified in several categories, it 
remains that some categories can be associated with decision rules that accommodate the same sub-
populations of examples, and are therefore prone to prediction “errors”. (Figure 3 shows the difference 
in prediction rate when multiple classification is taken into account and when it is not).  

 

The second set of experiments on the recognition rate of categories, the one corresponding to in-
ternal nodes, shows that, overall, recognition improves when subcategories are aggregated to form 
categories (see Figure 4). This suggests that the categories that were decided upon are rather homoge-
neous, and are not aggregating things that do not belong together. So, even though there are nodes 
belonging to different branches (categories) that exhibit a high rate of confusion, this is no longer the 
case when the categories themselves are compared. 
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Figure 3. Difference in prediction rate with and without multiclass classification. 

 

Figure 4. Evolution of the recognition rate of some categories when aggregating subcategories level by 
level. The x  axis corresponds to the depth in the ontology. Going left corresponds to the aggregation 

up the levels towards the root of the ontology. 
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Inversely, while the distinction between sibling nodes can sometime be hazardous when they are 
considered among all nodes, it is generally much easier to distinguish them when they are taken  in 
isolation. For instance, Figure 5 shows that the recall of the class ‘Limits of analytical methods’ goes from 
approximately 63% when all classes are considered to 98% when only the children of ‘Measure’: ‘Poor 
data quality …’ and ‘Limits of analytical methods’ are to be distinguished. In general, the average prediction 
rate significantly increases if only the children of a category are considered as possible classes (one ex-
ception is the ‘Causal inference’ class). This points to two consequences. First, this reinforces the view 
that the hierarchical organization of categories encoded in the ontology is not arbitrary. Second, this 
may suggest that coders should adopt a top-down coding process, by first deciding upon high level 
categories and then going down in the classification tree rather than trying to identify directly the class 
of a new piece of text.   

 

 

Figure 5. Difference of prediction rate with a direct labeling process and using a top-down labeling 
strategy 
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5. Conclusion 
The experiments reported here with Machine Learning techniques offer a first glimpse at what can 

be gained by testing ontologies in the making with these methods. In the context of this study, the ex-
perimental results seem to vindicate the soundness of both ontologies: one on the judgment variables 
and the other on the uncertainty variables. There is no doubt, however, that further experiments are 
needed in order to better assess the merits of ontologies, possibly leading to improved ones. Future 
developments will include the choice of a richer representation than the “bag of words” one, as well as 
experiments geared towards the optimization of the structure of the hierarchical ontology. 

We will also compare the performance of Machine Learning techniques for the US and EU 
documents, as well as for contaminants and biohazards. Because in the US, risk assessments are gener-
ated by multiple agencies and by multiple expert panels, while in the EU a single bureaucratic structure 
is responsible for the reports, we expect more standardization and better prediction in the EU. As for 
the two types of hazards, while we expect them to have different types of uncertainties, we do not ex-
pect differences in the performance of Machine Learning: the logical structure of the ontologies should 
apply equally well.  

Our ultimate goal is to devise a process, whereby coders are aided by Machine Learning and Ma-
chine Learning improves with new coding by humans. For that we will include uncoded sentences as a 
special category. The goodness of the prediction of the uncoded vs. coded distinction should reflect 
how explicit expert panels are about uncertainty. We expect predictions to improve over time.  
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