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***Université Paris 13, LIPN UMR CNRS 7030, 99 av. JB Clément, 93430 Villetaneuse, France,
younes.bennani@lipn.univ-paris13.fr

Abstract

In this article we show some applications of a MRF-
based segmentation algorithm applied to real data ex-
tracted from a very high resolution image. This algo-
rithm has specific features that enable the extraction
of semantic information on the clusters in the form
of affinity and geographic position properties. The re-
sults of the experiments conducted on this data set are
interesting both in terms of clustering quality when us-
ing common unsupervised learning quality indexes, but
also when compared to a ground-truth based on expert
maps.

1 Introduction

With the booming number of available satellite im-
ages and data, the automatic interpretation of re-
motely sensed images has become an increasingly ac-
tive domain. With sensors now capable of getting im-
ages with a very high resolution (VHR) on a large spec-
tral resolution, it has become increasingly difficult to
design algorithms and methods capable of efficiently
processing such data in a reasonable amount of time.

The segmentation of such images can be achieved by
using a Markov Random Fields based representation of
the images’ data [1]. Markov Random Fields (MRF)
rely on the notion of neighborhood to represent the de-
pendencies between two neighbor pixels or superpixels.
In the pixel model, the goal of MRF-based segmenta-
tion is to determine the cluster to which each pixel
belongs. In the super-pixel model, the image is pre-
processed and pixels are regrouped by patches based
on nearly flat gradient areas. It is then these groups of
pixels, called superpixels, that are to be assigned to a
cluster.

Nowadays, the pixel model is less and less common
as single pixels have no signification in VHR images.
Thus, superpixel approaches, also known as Object
Based Image Analysis (OBIA) [2] methods are pre-
ferred.

There are several algorithms capable of achieving the
segmentation of images represented as a MRF network
: The Graph-Cut Algorithm [3], the Integer Projected
Fixed Point method [4], the Graduated Non-Convexity

and Concavity Procedure [5], and the Iterated Condi-
tional Modes (ICM) [6].

While it is true that the Iterated Conditional Modes
is often considered to be the less effective of these
MRF-based segmentation algorithms, it is also the
fastest one. In addition to that, in the case of very
high resolution satellite pictures using the superpixel
model, the data have already been pre-processed and
are much less noisy than in the pixel-based model, thus
making the ICM algorithm fine enough. Furthermore,
the speed of this algorithm is a considerable asset when
dealing with huge images with a lot of superpixels to
be segmented, especially when these superpixels may
have more than the 3 traditional Red, Green and Blue
attributes and might have potentially more than four
neighbors if their shapes are irregular. Algorithms such
as the Integer Projected Fixed Point method, the per-
formances of which are far superior to those of the
ICM, are for example way too slow to tackle such data.

It is also worth mentioning that the ICM algorithms
has had several improvements since its original version
by J. Besag in 1986 :

• It has been adapted to the Gaussian Mixture Mod-
els and is now widely used in combination with the
EM Algorithm [7].

• Its energy model has been modified to enhance its
performances [8]. As a positive side effect of this
work, previously unavailable semantic information
can now be retrieved during the clustering process.

In this article, we use the latest version of the ICM
algorithm and apply it to the segmentation of a data
set extracted from a very high resolution image, and
we explain how we used the specificity of this algorithm
to extract information about the clusters affinities and
geographical relations that are not available with other
algorithms.

The rest of this article is structured as follows:
In section 2, we present our version of the ICM al-
gorithm and its application for semantic information
extraction. In section 3, we introduce our data set and
the expert ground-truth that we used to validate our



results. In section 4, we show the results of our ex-
periments. Finally, in section 5 we will give a brief
conclusion and some future perspectives to this work.

2 Semantic Rich ICM algorithm

We now consider a set of random variables S =
{s1, ..., sN}, si ∈ 1..K that are linked to each other
by neighborhood dependencies. These variables rep-
resent the unknown states of the superpixels. And we
suppose that these superpixels are described by observ-
ables data X = {x1, ..., xN} where the xi ∈ Rd are the
vectors containing their attributes. The goal is then to
determine the optimal configuration for S. Doing so
requires to infer the si ∈ 1..K, which is often achieved
by using the maximum a posteriori criterion (MAP) to
determine S such as:

S = arg max
S

(P (X|S,Θ)P (S)) (1)

P (X|S,Θ)P (S) =
∏
t

P (xt|st, θst)P (st) (2)

We consider that P (xt|st, θst) follows a Gaussian dis-
tribution of parameters θs = (µs,Σs), where µs is the
mean vector of cluster s, and Σs its covariance matrix.

Approaching a solution for this equation requires
to locally optimize an energy function deriving from
the logarithm of P (x|s, θ)P (s). This energy function
features a local energy term deriving from P (x|s, θ),
and a neighborhood energy term deriving from P (s)
that evaluates the probability of a state considering the
neighboring superpixels. In the semantic rich version
of the ICM algorithm (SR-ICM), this energy function
is as follows:

U(s, x) =
1

2
(x− µs)

T Σ−1s (x− µs)

+ log(
√
|Σs|(2π)d)−

∑
v∈Vx

τx,v × log(asv,s) (3)

In the previous Equation, Vx is a vector with all the
neighbors of the currently observed superpixel. τx,v is
the percentage of border occupied by neighbor v re-
garding to the observed superpixel x. A = {ai,j}K×K
is a neighborhood compatibility matrix, where each
ai,j is the probability of having a neighbor in state
j for a superpixel labeled in state i. Here, we note sv
the current state of neighbor v.

In this algorithm A is computed a posteriori after
each iteration of the SR-ICM algorithm.

Algorithm 1: Semantic Rich ICM Algorithm

Initialize S and Θ with the EM algorithm
Initialize A
while Tr(A) is increasing do

for each x ∈ X do
Minimize U(s, x)

end
Update A from the new distribution S

end
return S

This version of the ICM algorithm is said to be ”se-
mantic rich” because of the information that can be
extracted from the neighborhood matrix A. The di-
agonal terms give information on which clusters are
compacts or not. Non diagonal terms can be extracted
and translated into rules such as: ”Elements of cluster
B are almost never in contact with elements of cluster
C”, or ”Elements of cluster B are often surrounded by
elements of cluster D”.

3 VHR Strasbourg Data Set

3.1 Data

In this article we use a data set made from a very
high resolution image of the French city of Strasbourg,
1px = (50cm)2, an extract of which is shown in Figure
1.

Figure 1. Extract of the original source image
(approximately 1/20 of the full image), Pleiades
c©CNES2012, Distribution Astrium Services /
Spot Image S.A., France, All rights reserved.

This image has been preprocessed into a data set
made of 187058 superpixels, each of them described by
27 attributes either geometrical or radiometrical [9].
These attributes include the geographic position of the
superpixel, the surface of the area covered by the super-
pixel, the mean RGB values, the constrast compared
to neighbor pixels and superpixels, the brightness, and
the standard deviations, among others.

In addition to this information, this data set pro-
vides the neighborhood dependencies between the su-
perpixels: number of neighbors, id number of neighbor
superpixels, and relative percentage of shared border.

The superpixels in this data set have highly irregular
shapes (cf. Figure 2), and consequently the neighbor-
hoods themselves are also irregular. Unlike in the pixel
model where 1st order neighborhood usually include 4
or 8 neighbors, in this data set each superpixel can have
1 to 15 neighbors depending on its shape and position.

3.2 Ground truth

In order to validate our results, we had to find a
ground truth. It was however too tedious a task to
manually label the 187058 superpixels. Therefore we
decided to rely on maps of the area made by expert
geographers (cf. Figure 3(a)). These maps were pro-
duced by a hybrid methodology, mixing data from to-
pographic databases for roads and buildings, a super-
vised classification for different types of water and veg-



Figure 2. Exemple of superpixel segmentation in
the central area of Strasbourg.

etation, as well as further manual refinement in order
to reduce classification errors.

(a) Original ground truth. (b) Modified ground truth.

(c) Zoomed boundary rep-
resentation of the original
ground truth maps.

(d) Zoomed boundary rep-
resentation of the modified
ground truth.

Figure 3. Extract of the original and improved
ground-truth images

A closer inspection of the provided ground truth
shows that the segments boundaries do not align well
with the superpixels boundaries in the image data (cf.
Figure 3(c)). Thus, the original ground truth data set
was not suitable to assess the results of our method
which considerably relies on radiometrical attributes.
Consequently, we decided to improve the ground truth
by projecting the superpixel segmentation onto the
original maps and using a majority vote approach to
determine which expert label should be chosen depend-
ing on the covering surface of the superpixel.

It is important to mention that some of the labels
provided by the expert geographers are very unlikely
to be mapped to a single cluster by an unsupervised
algorithm. Such labels include various types of vege-
tation and forest areas based on their density and the
total size they cover, 2 types of water bodies, and dif-
ferent types of buildings, some of them being difficult
to distinguish from the sky.

As one can see in figures 3(b) and 3(d) the modified

ground truth data corresponds more accurately to the
image data. Although, there are still a few errors due
to the superpixel segmentation which is not optimal.
We are working towards ways of evaluating the ground
truth quality in order to better assess the quality of
our own results.

The expert geographers provided 15 different classes,
this number could be reduced to 7 to 9 classes by re-
grouping those that are very similar or technically im-
possible to distinguish for an unsupervised algorithm.

4 Experimental results

In this section, we show our MRF-based segmenta-
tion results on the VHR Strasbourg data set. To eval-
uate the quality of our results, we have been using two
different quality measures :

• The Davies-Bouldin Index [10] : An unsupervised
quality measure that evaluates the quality of the
clusters based on their internal variance and the
distance between the prototypes of the different
clusters. For this index a lower value is better.

• The Rand Index [11] : This index compares how
close two segmentations are. In the context of
these experiments we compared our results with
our ground-truth made from from expert maps.
For the Rand Index, a value close to 1 means a
100% similarity.

In Table (1), we give the results of 3 different seg-
mentations searching for 7, 8 and 9 clusters. As one
can see, the Rand Index results compared with the
ground truth are quite good (around 80% of similar-
ity), with the 7-cluster segmentation being the closest
one to the ground-truth according to the Rand Index,
quickly followed by the 9-cluster segmentation which
is the best one from a clustering point of view (lowest
Davies-Bouldin Index).

These results are surprisingly good given the fact
that the ICM is unsupervised, and thus it tends to
prove the effectiveness of the semantic rich version of
this algorithm to process this type of satellite images.
Four extracts of the 9-cluster segmentation are shown
in Figure 4.

Table 1. DB Index and Rand Index results for
different number of clusters (100 simulations)

SR-ICM DB Index Rand Index
7 clusters 2.756± 0.31 0.8264± 0.040
8 clusters 3.329± 0.24 0.7959± 0.017
9 clusters 3.112± 0.27 0.8168± 0.025

It is however important to emphasize that all 3 seg-
mentations suffer from problems that are very common
in image segmentation. Regardless of the 27 attributes,
it seems that the original colors still are the most im-
portant factor. For instance water bodies, shadow ar-
eas and dark roofs are often grouped in a single clus-
ter. With our current knowledge of this data set, it is
difficult to say whether this problem comes from the
segmentation algorithm, from the data preprocess that
created superpixels from these shadow areas, or a bit
of both. These segmentation defaults are quite easy to
spot on full scale color versions of the image extracts
shown in Figures 4(a) and 4(c).



On the semantic side, after linking each cluster to
the corresponding expert label from the visual results,
the following properties were found :

• There is a strong neighborhood connection be-
tween the tree areas and grass areas (dark green
and light green respectively), with a transition
probability of ≈ 0.65 from a tree superpixel to
a grass superpixel. This interesting property from
the neighborhood matrix A could be translated as
”Trees are often surrounded by grass”.

• There is a double side low transition probability
(< 0.02) from modern urban buildings superpixels
(in yellow) to water superpixels. It matches with
the fact that modern buildings are rarely built di-
rectly adjacent to a river, nor in the middle of it.

• The water cluster has an average transition prob-
ability to itself (≈ 0.47) . This is consistent with
the river and water bodies of the city of Strasbourg
being rather linear and small.

While these results may seem obvious, considering
that they are coming from an unsupervised algorithm
that has no external knowledge on the true nature of
each cluster, they are still quite impressive.

(a) European Parliament (b) A Sport complex

(c) Strasbourg residential
area

(d) A graveyard

Figure 4. Extracts of the 9-cluster segmentation

Table 2. Computation times for different number
of clusters

Cluster Number Computation time
SR-ICM 7 clusters 27630ms
SR-ICM 8 clusters 31495ms
SR-ICM 9 clusters 34438ms

Finally, in Table (2), we give the computation times
associated with the previous experiments for 10 iter-
ations of the EM algorithm followed by the SR-ICM
algorithm iterating until convergence. These compu-
tation times were acquired using an i5-3210M 2.5GHz

processor. The data set processed by the algorithms
weighted around 60MB and included : the 187058 su-
perpixels’ 27 attributes and their neighborhood graph.

As one can see, the computation times are quite low
given the size and complexity of the data set as well as
the quality of the results.

5 Conclusion

In this article, we have shown an application of a
semantic rich Iterated Conditional Modes algorithm
tuned to perform the segmentation of a very high res-
olution satellite image. The results of our experiments
have shown this algorithm to be suited and fast enough
to process such images. Furthermore the quality of
the semantic approach in the context of unsupervised
learning has also been validated.

In our future works we plan to improve and extend
this algorithm to apply it on other images.

Acknowledgments

This work has been supported by the ANR Project
COCLICO, ANR-12-MONU-0001.

References

[1] S. Roth, and M. J. Black.: “Fields of experts” Markov
Random Fields for Vision and Image Processing, MIT
Press, pp.297–310, 2011.

[2] T. Blaschke.: “Object based image analysis for remote
sensing” {ISPRS} Journal of Photogrammetry and Re-
mote Sensing, pp.2–16, 2010.

[3] Y. Boykov, et al.: “Fast approximate energy minimiza-
tion via graph cuts” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(11), pp.1222–
1239, 2001.

[4] M. Leordeanu, et al.: “An integer projected fixed point
method for graph matching and map inference” NIPS,
2009.

[5] Z. Y. Liu, et al.: “MAP Inference with MRF by Grad-
uated Non-Convexity and Concavity Procedure”
ICONIP 2014, Part II, Lecture Notes in Computer
Science, volume 8835, pp.404–412, 2014.

[6] J. Besag: “On the Statistical Analysis of Dirty Pic-
tures” Journal of the Royal Statistical Society, Series
B (Methodological) 48(3), pp.259-302, 1986.

[7] Y. Zhang, et al. : “Segmentation of brain mr images
through a hidden markov random Field model and the
expectation maximization algorithm” IEEE Transac-
tion on Medical Imaging, volume 20, pp.45–57, 2001.

[8] J. Sublime, et al.: “A new energy model for the hidden
markov random Fields” ICONIP 2014, Part II, Lec-
ture Notes in Computer Science, volume 8835, pp.60–
67, 2014.

[9] S. Rougier, and A. Puissant: “Improvements of urban
vegetation segmentation and classification using multi-
temporal Pleiades images” 5th International Confer-
ence on Geographic Object-Based Image Analysis, p.6,
2014.

[10] D. L. Davies and D. W. Bouldin: “A cluster separation
measure” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Volume 1(2), pp.224–227, 1979.

[11] W. Rand.: “Objective criteria for the evaluation of
clustering methods” Journal of the American Statisti-
cal Association, pp.846–850, 1971.


