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Abstract. Early classification approaches deal with the problem of re-
liably labeling incomplete time series as soon as possible given a level of
confidence. While developing new approaches for this problem has been
getting increasing attention recently, their evaluation are still not thor-
oughly considered. In this article, we propose a new evaluation protocol
for early classifiers. This protocol is generic and does not depend on the
criteria used to evaluate the classifiers. We experimented this protocol
over multiple data sets.
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1 Introduction

In recent years, the interest in adapting supervised and unsupervised machine
learning (ML) approaches to time series analysis has considerably increased. A
part of these studies focuses on applying these approaches on incomplete time
series, when they are progressively recorded. This article focuses on the partic-
ular context of early classification of time series. Early classification techniques
are useful for many time-critical applications. For example, in medicine, earliest
diagnosis based on first signal outputs may help to remedy some diseases [1]. In
air, road or marine traffic it is important to anticipate the risks of collision or
crash before receiving all signals [2]. These approaches allow one to make early
and reliable predictions based on incomplete time series.

The conventional time series classification problem consists in predicting the
labels of complete time series. In this case, the classifier is learned on a training
set composed by complete time series. Then the classifier can be applied on new
complete time series. By contrast, an early classifier can be applied on incom-
plete time series after being learned on complete time series. In this case, the
objective is to predict the labels as soon as possible given a level of confi-
dence. Early classification can be considered as a multi-objective problem. On
the one hand, the objective of quality consists in reliably predicting the labels
in order to make an appropriate action. On the other hand, the objective of
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earliness aims to make this action as soon as possible, before a deadline. At
last, the early classification problem involves two conflicting objectives.

The evaluation of conventional classifiers has been well studied in the litera-
ture. The comparison of two classifiers over multiple data sets requires the use
of a statistical test, in order to objectively and reliably decide if one classi-
fier is better than the other. In [3] the authors recommend to use the Wilcoxon
signed-rank test. The comparison of several early classifiers is a special case
since it considers both quality and earliness objectives. Therefore, an approach
could be better than another on specific objective and worse on the other. In
the literature, the methods that optimize several objectives are mainly exploited
for learning purposes. For instance, the scalarized multi-objective learning ap-
proach which aggregates two objectives into a single scalar objective function
allows one to optimize the two objectives by setting a regularization parameter.
Multi-Objective Evolutionary Algorithms are used to design classifiers in diverse
problems with more than one objective [4]. The majority of these approaches
involve one or more regularization parameters which are adjusted by a learning
algorithm. These approaches are not suitable for the evaluation.

In this article, we propose a new evaluation protocol for early classifiers. This
protocol is based on the Wilcoxon signed-rank test and the Pareto optimum.
The proposed protocol is parameter-free and generic since it does not involve an
evaluation criterion that ”mixes” the two conflicting objectives. The remainder
of this article is structured as follows: in Sect.2, we present a brief review of
early classification of time series. In Sect.3 we propose a new evaluation protocol
for early classifiers. The fourth section presents our choices for evaluating the
quality and the earliness of the classifiers. The experimental results are discussed
in Sect.5. Section 6 concludes this article and highlights the future works.

2 Early Classification

We define a time series x = {(t1, x1), (t2, x2), ..., (tL, xL)} of length L as a se-
quence of real values {xj∈[1,L]} associated with the timestamps {tj∈[1,L]}. The

input data set is a collection of N pairs {(xi, yi)|i ∈ [1, N ]} where xi is the ith

time series, yi ∈ Y is its class value. Y is a finite set of class labels. By contrast
with the conventional classification, the early classification consists in predicting
the labels before the time series are completed. In the conventional case, the
single objective is to maximize the quality of the prediction without considering
the time constraint. In the case of early classification, there are two conflicting
objectives to optimize: i) predict the labels of incomplete time series as soon as
possible; ii) maximize the quality of the classifier. In practice, the predictions
are triggered once a given level of confidence is reached.

Let x̃i be an incomplete time series, H(.) is a prediction function which
predicts the class label of x̃i (see Eq.1) and C(.) is a function which measures
the confidence of this prediction (see Eq.2).
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H(x̃i) −→ ŷ (1) CH(x̃i) −→ σ (2) t̃i : CH(x̃i) ≥ τ (3)

The earliness of a classifier is evaluated based on the instants t̃i when the
predictions are triggered. More formally, t̃i is the earliest timestamp such that
the class label of x̃i is predicted with a confidence level exceeding a threshold τ
(see Eq.3).

In the literature, the existing early classification approaches may be distin-
guished by the manner of setting the confidence. The confidence measures can
be decomposed in two categories according to the type of the classifier:

1. The generative classifiers provide conditional probabilities of the class values
on which are based the confidence measures. The simplest approach consists
in triggering the predictions once the probability of ŷ exceeds a fixed thresh-
old [5][6][7]. This approach is improved in [8] by introducing the concept of
the reliability. The key idea is to model the missing values of the time se-
ries as a random variable, conditionally to the observed data points. For a
given x̃i, the distribution of the possible ways to complete the time series is
estimated. The confidence is then evaluated by the part of this distribution
leading to the predicted class value.

2. The discriminative classifiers provide a class label based on a decision bound-
ary. In this case, the confidence measures are defined using the distance from
the decision boundaries [9].

Methods such as [10] implicitly introduce the notion of the confidence by re-
specting two properties: the consistency and the stability of the predictions. The
Minimum Prediction Length (MPL) is proposed in order to determine the earli-
est instant from which the prediction will be the same as if the full-length time
series is used. An extended 1-Nearest Neighbor (1NN) approach is proposed.

3 Evaluation over multiple data sets

The rest of this article focuses on the evaluation of early classifiers. In this section,
we first discuss existing research work on comparing conventional classifiers.
Thereafter, we propose a new protocol to compare early classifiers.

3.1 Comparison of two classifiers

The evaluation of conventional classifiers are thoroughly considered in the lit-
erature. Numerous evaluation criteria such as the accuracy, the Balanced error
Rate (BER) or the Area Under the ROC Curve (AUC) allow one to evaluate the
classifiers on a specific data set. According to J. Demšar [3], a reliable evaluation
of several classifiers should be done over multiple data sets, in order to reflect
the general quality and not the quality on a specific data set. If the output
value (denoted by z) is smaller than −1.96, the quality of both classifiers are
significantly different.
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3.2 A new evaluation protocol for early classification

Our objective is to reliably compare two early classifiers. In this section, we
propose a generic evaluation protocol which does not depend on the criteria
used to evaluate the quality and the earliness of the classifiers.

Step 1 - Prediction of the labels over multiple data sets :
Let D be an ensemble of K data sets denoted by D = {D1, D2, . . . , DK}. Each
data set is divided into two disjoint training set and test set. Let H(A) and H(B)

be the prediction functions associated with two early classifiers denoted by A
and B. Both classifiers are trained over the same training sets of complete time
series. For each test set, two pairs of scores [Q(.), T (.)] are computed for the
classifiers A and B. The criterion Q(.) evaluates the quality of the predictions
and T (.) corresponds to the earliness. Q(.) and T (.) are two global criteria which
are computed by processing all the time series of a given test set. Thus, these
time series are processed one by one at each instant. A confidence measure
denoted by CH(.) is compared with a fixed threshold τ in order to trigger the
predictions. If CH(.) does not exceed τ before the end of the time series, the
prediction is triggered at the last timestamp. As shown in Fig.1, the instants
of the predictions vary for each time series. During this process, the following
pieces of information are retained for each time series x̃i: yi the true label, ŷi the
predicted class value, t̃i the instant of the prediction and P̂i(yi, x̃i) the predicted
probabilities of the class values. These pieces of information, denoted by I, are
used to compute the values of Q(.) and T (.) over the entire test set.

Fig. 1. Illustration of the labels predictions triggering.

Step 2 - Independent comparison under each objective :
The criteria Q(.) and T (.) are computed for each data set and for each classifier.
Then, the Wilcoxon signed-rank test is independently performed for the both
objectives: the quality and the earliness. Based on the statistic z values, we
can make conclusions about which classifier is the best either under the quality
objective or under the earliness objective.

Step 3 - Global comparison by using Pareto optimum :
In order to compare two early classifiers, we drawn inspiration from the Pareto
optimum: a classifier is considered as better than an other if it improves at least
one of the two objectives without degrading the other. Based on the values of the
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statistic z independently computed for the quality and the earliness objectives,
there are three possible cases: i) A is better than B, ii) B is better than A and
iii) A and B are indiscernible since there is no significant differences under the
two objectives.

4 Evaluation criteria for early classifiers

This section presents a possible implementation for the quality, the earliness and
the confidence measures.

4.1 A measure for prediction quality

The evaluation of the quality of the classifiers can be measured by diverse criteria.
We choose to exploit the Multi-class Area Under the ROC Curve (AUC) criterion
[11]. For a given class label yj , the area under the ROC curve AUCyj relatively
to yj is computed based on the triggered predictions (see Fig.1):

Q(.) = EJ
j=1[AUCyj

] =

J∑
j=1

Pk(yj)AUCyj
(4)

4.2 A measure for earliness

The earliness measure that we propose allows us to quantify the earliness of an
early classifier over all the time series in the test set. This measure is computed
by exploiting the set of information I (see Sect.3.2). We define:

1. the time dimension: t = t̃i
L as the proportion of the total length L (with

L is the length of a complete time series).

2. the earliness: Pr(t) = nt

N as the proportion of the triggered predictions at
instant t (with nt is the number of the triggered predictions at the instant t,
and N is the size of the test set).

We denote Pr(t) (with t ∈ [0, 1]) as the Earliness Curve of the classifier over
the time dimension. The global earliness of the classifier (denoted by T (.)) is
measured by the Area Under the Earliness Curve (AUEC), with T (.) ∈ [0, 1]
since t ∈ [0, 1] and Pr(t) ∈ [0, 1]. When the area T (.) is equal to 1.0, that would
mean that all the predictions are triggered at the first instant. In this case the
classifier performs a perfect earliness. A T (.) of 0.0 reports that the classifier is
not early. In this case, the classifier is too conservative and prefers to wait until
the last instant to make the predictions. At last, a T (.) equal to 0.5 means that
the average number of triggered predictions at each instant is equals to N

L .
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4.3 A measure for confidence

In this section, we propose a possible way to fix the confidence level. The pre-
diction of the label of the time series x̃i is triggered once the probability of the
predicted class (denoted by max1(P̂ (y|x̃i)) exceeds k times the probability of the
second most probable class (denoted by max2(P̂ (y|x̃i)):

t̃i : max1(P̂ (y|x̃i)) ≥ k ∗max2(P̂ (y|x̃i)) (5)

5 Experiments

The objective of our experiments is to compare two early classifiers. In this
section, we exploit the generic evaluation protocol proposed in Sect.3.2.

Implementation of the early classifiers:
In this article, early classification is implemented based on a collection of clas-
sifiers trained in parallel [12]. Each classifier corresponds to one instant of the
time series. These classifiers do not exploit the same explicative variables. The
progressive arrival of the time series is simulated by hiding the forthcoming data
points: the input of the current classifier is only composed by the previous data
points up to the current instant. Fig.2 illustrates this implementation.

Fig. 2. Implementation of early classification over a collection of classifiers.

In order to use the proposed evaluation protocol, we implement two different
classifiers based on the above described implementation: i) a Selective Naive
Bayes (SNB) using a the regularized approach MODL [13] which shows a capac-
ity for a good discrimination between classes and ii) a Naive Bayes (NB) with
10 EqualFrequency as a baseline for comparison.

Data sets description:
Our experiments were performed over 23 data sets selected from the UCR Time
Series Classification and Clustering repository [14]. We randomly and disjoint-
edly re-sampled each data set into a set of 70% of examples for the training set
and the remainder for the test set.

Results:
In this paragraph, we evaluate our generic protocol by experimenting the classi-
fiers under several data sets. We first run the SNB and the NB classifiers over all
the data sets in order to compute the quality and the earliness measures. Then,
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we applied the Wilcoxon test for the two classifiers independently under the
quality and the earliness objectives. The results are listed in Tab.1. The quality
of the predictions Q(.) and the earliness T (.) results of each classifier over each
data set are depicted with a varying value of k (see Eq.5). In our experiments,
we varied k from 2 to 12 with a step equal to 1. But for simplicity, Tab.1 shows
only the results for k ranging from 2 to 10 with a step equal to 4 (the omitted
results do not affect the drawn conclusions). The last line in the table represents
the values of the statistic z for overall predictions quality and earliness results.
Significant values are reported in bold font.

Table 1. Empirical results of the SNB and NB early classifiers.

Prediction quality Earliness
k 2 6 10 2 6 10
Data Set QSNB QNB QSNB QNB QSNB QNB TSNB TNB TSNB TNB TSNB TNB

50words 0.505 0.527 0.520 0.530 0.519 0.527 0.766 0.687 0.679 0.564 0.642 0.513
CBF 0.807 0.840 0.866 0.875 0.877 0.890 0.803 0.814 0.717 0.739 0.697 0.722
ChlorineC 0.5 0.549 0.764 0.648 0.799 0.655 0.993 0.988 0.6104 0.667 0.455 0.595
CinC 0.777 0.669 0.8007 0.677 0.854 0.699 0.758 0.988 0.706 0.977 0.622 0.971
CricketX 0.468 0.488 0.475 0.481 0.478 0.482 0.856 0.992 0.807 0.990 0.799 0.990
CricketY 0.523 0.478 0.515 0.470 0.496 0.470 0.985 0.927 0.956 0.920 0.933 0.920
CricketZ 0.483 0.514 0.491 0.511 0.489 0.510 0.95 0.376 0.922 0.339 0.903 0.339
ECG5Days 0.955 0.793 0.992 0.824 0.994 0.839 0.318 0.614 0.209 0.580 0.200 0.568
FaceAll 0.483 0.476 0.489 0.467 0.482 0.475 0.940 0.878 0.809 0.738 0.748 0.687
FaceUCR 0.503 0.536 0.496 0.524 0.497 0.533 0.969 0.989 0.959 0.969 0.938 0.941
Mallat 0.910 0.928 0.913 0.930 0.916 0.931 0.886 0.718 0.845 0.709 0.833 0.709
MedicalImg 0.603 0.529 0.587 0.520 0.589 0.519 0.733 0.560 0.324 0.475 0.180 0.424
MoteStain 0.994 0.962 0.994 0.962 0.994 0.962 0.006 0.085 0.006 0.084 0.006 0.084
StarLight 0.742 0.920 0.738 0.919 0.734 0.919 0.988 0.715 0.996 0.683 0.996 0.716
SwedishLeaf 0.539 0.484 0.527 0.482 0.530 0.480 0.942 0.742 0.919 0.721 0.903 0.720
Symbols 0.958 0.934 0.958 0.935 0.958 0.940 0.610 0.815 0.609 0.811 0.609 0.818
TwoLECG 0.983 0.921 0.986 0.936 0.987 0.945 0.3539 0.464 0.341 0.424 0.336 0.393
uWaveX 0.719 0.702 0.724 0.701 0.734 0.692 0.966 0.993 0.965 0.993 0.930 0.991
uWaveY 0.748 0.787 0.749 0.796 0.749 0.796 0.992 0.386 0.988 0.390 0.987 0.390
uWaveZ 0.775 0.727 0.780 0.726 0.781 0.723 0.751 0.799 0.728 0.797 0.726 0.795
wafer 0.958 0.925 0.981 0.924 0.98 0.940 0.923 0.909 0.889 0.840 0.883 0.824
WordsSyn 0.54 0.518 0.541 0.509 0.545 0.509 0.928 0.786 0.654 0.647 0.630 0.647
yoga 0.764 0.658 0.889 0.640 0.907 0.693 0.700 0.795 0.407 0.761 0.308 0.748
StatisticZ -1.3686729 -2.28112149 -3.10232523 -0.36497944 -0.36497944 -0.69954392

Based on the values of the statistic z and the Pareto optimum, we can con-
clude that SNB is better than NB under the two objectives. In fact, by varying
k we only observe two cases: 1) SNB and NB are indiscernible and 2) SNB is
better than NB. For example for k = 2, the two classifiers are indiscernible. For
k = 6, 10, SNB is always better than NB under the quality objective and SNB
and NB are always indiscernible under the earliness objective. At the end, the
following results show that the proposed protocol performs as expected: the SNB
classifier outperforms the NB baseline classifier.

6 Conclusion

In this article, we proposed a new evaluation protocol to compare two early
classifiers under two conflicting objectives: the quality and the earliness. The
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protocol is generic and does not depend on the implementation choices made
for computing the two objectives. Overall, the results suggest that this protocol
could represent a useful evaluation technique to objectively and reliably com-
pare early classifiers. Further, a limitation that we identified indicates that the
Wilcoxon test does not ensure the concomitance of the results for all the data
sets under the two objectives. It is possible that our protocol suggests that a
classifier is better than another under both objectives without this may be true
for the same data set. This is due to the fact that the Wilcoxon test is based on
the differences over the two evaluation criteria. Thus, we only guarantee that the
largest differences over the two criteria are observed for the same classifier. As
future work, we intend to build a benchmark of early classification approaches
in the literature based on our proposed protocol.
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