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Abstract : 

 
Techniques for the estimation of the motion vector field from image sequences may be 

subdivided into two main different approaches. Either the motion field is calculated from tracking 
shape or feature correspondences between images, or it is estimated using the optical flow vector 
field method and its variations.  

The latter approach is very alluring because it doesn't require the previous identification of 
remarkable points in the images, but so far it has stumbled over the complexity of interpreting, i.e. 
solving, the gigantic set of interdependent constraints generated. Furthermore, it has proven 
difficult to introduce and express in such a framework the notion of model of what is looked for in 
the images. 

We treat both of these problems in this paper. First, we identify the interpretation of an optical 
flow vector field, obtained from a first order Taylor approximation of the    spatial variation of the 
gray gradient [ Schunk85 ], to a complex optimization problem. And we  give it a form which make 
it amenable to new techniques based on energy minimization   recently introduced  [Kirk83, 
Carn85]. Second we introduce the notion of models of what is of interest in the images. 
Particularly, it was found interesting to focus on three particular types of motion: uniform motion, 
rotation and contraction/ dilatation. Together with a definition of the types of shapes to be looked 
for, this provides a parametric model of the patterns that are to be detected or extracted in the 
vector field.  

We then are able to run a simulated annealing process which tends to minimize the difference 
between the energy asssociated with the "observed" vector field , and the energy associated with 
a vector field that would result from the parametric model. At the final equilibrium stage, this 
yields the optimal parameters of the model that would produce the noisy image sequence 
observed, and therefore provides the user with a high level description of the image sequence in 
terms of the phenomena he/she is looking for. 

We illustrate this method with the detection of objects in uniform motion in a sequence of 
images. 

Problems of performances of this scheme and perspectives for further improvements are also 
addressed in the course of this paper. 

 
1. The problem of identifying moving objects. 
 
The problem we study in this paper is, very classically, the identification of objects in motion through an 

image sequence. It implies both the description of the objects and the characterization of their motion. This 
is not a trivial task because in general there are infinitely many two-dimensional velocity fields that are 
consistent with the changing image, and additional constraints, based on assumptions about the physical 
world, must be made. 

We chose to take as a constraint that the image sequence resulted from a parametric model involving 
solids in translation, rotation or compression/dilatation. And, considering it as an optimization problem, we 
solved it with a recently developped technique: Simulated Annealing. 

 



 

 

2. The classical approaches and previous works. 
 
The analysis of image sequences to detect moving objects in dynamical scenes is full of applications, for 

instance in robotics, medicine, transports, or meteorology, and has been an active on-going research axis for 
a long time. Several approaches have been tried. 

Leaving aside the so-called global approaches [Nagel,1986] that postulate that the differences between 
two frames in a image sequence can be described by a function depending only on a few parameters, the 
most widely used techniques are local. They emphasize the study of differences at the level of the pixels 
between two images. Among them one approach consists in the determination and extraction of "change 
regions" by establishing first a parameterized description of structural gray value perceptions and then 
applying statistical tests to isolate the significant regions of variations. This approach meets some 
difficulties in exploiting the resulting map and in disentangling the factors that may have contributed to the 
detected changes without calling for highly application-specific knowledge. There remains two main 
approaches.   

One is to analyse separately the images of the sequence using classical segmentation techniques in order 
to isolate the elementary patterns. Then one tries to track localisable features through the images and to 
measure their displacement. This method works well for 2D images of rigid objects but is prone to failure in 
case of 3D scenes of plastic patterns. 

The other attempts to directly evaluate the displacement vector u  from the spatio-temporal gray values 
I(x,y,t) available from at least two images. Actually, only the optical flow, which denotes the image plane 
shift of the gray structure between the images, can be derived from this information. This approach has been 
investigated by many authors and is more thoroughly described in the following. It is promising because it 
is in essence independant of any application-specific information and may soon justify the implementation 
of special purpose processing architectures. Its use requires however some additional assumptions which 
are the basis of the differences between the authors. We ourselves emphasize certain hypotheses that seem 
natural, and, above all, demonstrate the use of a new computational  procedure to solve the corresponding 
problem. Besides, it is noteworthy that this computational tool may be applied almost as well to other 
optical flow models. 

 
3. Statistical filtering of motion field. 
 
Section 2 gave an overview of the different possible paths to the estimation of motion in an image 

sequence, mainly tracking feature correspondences, or interpreting the optical flow vector field. The 
approach taken in this work belongs to the second category. We consider that it is more easy and natural to 
extract the information concerning movement from the low-level and local data corresponding to spatial 
and time gradients in the image sequence, rather than by involving high level expectations about the scene 
and complex non-local computations. But our own approach doesn't preclude the possibility of providing 
the vision system with a model of what is looked for in an image. This is actually, as we shall see, the basis 
of the novelty of our own approach compared to the one of [Horn & Schunk,1981]. However the model lays 
on domain-independent constraints and the computations remain completely local giving rise to interesting 
possibilities for rapid processing. 

A brief account of the optical flow concept is first given in order to make this paper self-contained and 
to explain the [Horn & Schunk,1981] assumptions and method. Then the simulated annealing technique is 
described together with our implementation for the analysis of image sequences. And finally the results 
obtained using this method, and plans for future improvements are given. 

 
3.1 The optical flow concept. 
 
The idea of optical flow rests on the constatation that a real time vision system, such as biological ones, 

observes images that vary essentially continuously in their characteristics. This leads to an interesting 
method of motion perception based on local comparison of brightness. 

Let characterize each point (x,y) at time t by its brightness I(x,y,t). If during the period dt, the point has 
moved in the direction (dx,dy) then we get: 

 
I(x,y,t) = I(x+dx, y+dy, t+dt) 

 
 Then, expanding the right hand side of this equation using a first order Taylor expansion: 



 

 

I(x,y,t) = I(x,y,t) + ---------
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which yields:  
 
-It = Ixvx + Iyvy               (3.1-1) 
 
That means that the time rate of change in intensity of the image is the product of the spatial rate of 

change of the brightness region by the velocity of that region. 
The equation (3.1-1) constrains the velocity (vx,vy) to lie on the line it expresses. 

 
Fig. 3.1-1: Constraints on the velocity of the point (x,y) 
 
As [Horn & Schunk,1981] note, "optical flow cannot be computed locally since only one independent 

measurement is available from the image sequence at a point, while the flow velocity has two components. 
A second constraint is needed." [Horn & Schunk,1981] postulate that the spatial variation of the optical 
flow components should be as small as compatible with the system of Euler-Lagrange partial differential 
equations associated with the optimization problem specified by the equation: 
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They then employ the iterative Gauss-Siedel method to obtain an approximation to the system expressed 

above. 
With our technique, we are able to get rid of the smoothness hypothesis and to replace it with a natural 

spatial constraint: pixels which are part of the same object should have the same velocity. We then give a 
very general model of neighbourhood that can cover and segment the image into objects of different 
velocities. The segmentation process and the corresponding determination of the velocity characteristics are 
obtained very simply using a technique derived from statistical physics, and recently applied to several 
optimization problems: simulated annealing. 

 
3.2 Simulated annealing and image sequences. 
 
The method of simulated annealing is a technique that has recently attracted significant attention as 

suitable for optimization problems of very large scale. Its underlying principle rests on the observation of 
Nature's strategy to reach states of minimum energy for slowly cooled systems. Thus, liquid metal 
sufficiently slowly cooled reach a quasi crystalline structure corresponding to their minimum energy state. 
To do so Nature employs a minimization algorithm based on the so-called Boltzmann probability 
distribution, 

 
Prob(E) ~ e(-E/kT)  
 
This equation expresses the idea that a system in thermal equilibrium at temperature T has its energy 

probabilistically distributed among all different energy states E. In other words a system described by its 
degrees of freedom xi has all of its possible configurations {xi} weighted by their respective probability 

factor, e(-E({xi})/kT), where E({xi}) is the energy of the configuration. The "miracle" is that at low 



 

 

temperatures, the otherwise extremely rare ground state configurations among all the possible 
configurations, are the ones that dominate the Boltzmann distribution. However low temperature is not a 
sufficient condition for finding ground states of a system, if it imposed too rapidly, before the system can in 
a way make a rough exploration of the phase space, the system is likely to get trapped in a local minimum 
configuration. In practical contexts, a careful annealing is required. 

In 1953, Metropolis et al. [Metropolis,1951] first incorporated this kind of process into numerical 
calculations. The idea is that, accordingly to thermodynamics, a system sometimes goes uphill as well as 
downhill; but the lower the temperature, the less likely is any significant uphill excursion. At each step of 
the calculation the system can make a choice between several options, if, say, it considers an option that 
leads to a change DE in the energy, it will actually take it and change the state of the system with a 
probability p=e(-DE/kT). Notice that if DE<0, i.e. this option leads to a decrease in energy, the probability is 
greater than unity, in such cases the change is arbitrarily assigned a probabilty p=1, that is the system 
always takes such an option. This general scheme, of always taking a downhill step while sometimes taking 
an uphill step, is known as the Metropolis algorithm. By repeating this step many times with a given 
temperature T, one simulates the thermal motion of atoms in contact with a heat bath at temperature T. The 
whole optimization process involves lowering the temperature by slow stages until the system "freezes" and 
no further changes occur. 

Provided with this wonderful "natural" mechanism the art of the researcher is to provide the energy 
function describing the system together with the options opened to the system, its possible configurations 
and the control parameter T. 

In this research we applied simulated annealing to the optimization problem related to the finding of 
motion field from the optical flow obtained from image sequences. In this scheme, the states of low energy 
correspond to the "ideal" optical flow stemming from some typical movements of objects in the scene. For 
instance, we first tried to identify objects in uniform motion. Given this model of what is of interest, it is 
possible to derive a corresponding energy function that is minimum when the state of the system segments 
the scene into regions of uniform speed. In that way, starting from any initial state (segmentation with 
attached speeds), and given noisy data, the algorithm will converge toward the ideal scene that would have 
produced such data. 

The constraints that allow us then to extract the necessary information from the optical flow are a spatial 
constraint: for instance, the pixels of an object are adjacent and have the same velocity; and a constraint on 
the type of velocity field that are looked for: for instance, uniform motion, rotation, contraction/dilatation 
with respect to a fixed point. This guides the determination of an appropriate energy function. 

As an example we give here an illustration of the simulated annealing process applied to the 
determination of objects in uniform motion from two images. 

The images are square ones. They are multi-leveled gray (256 levels in our images). And there is no 
assumption on the scene observed other than the objects are connected (this can also be changed easily), 
and their respective motions are uniform. There can be a large amount of noise, and that was actually the 
case in the images we analyzed. 

The first point is to see what that means for a collection of points to be in uniform motion (or for that 
matter in any other type of motion as soon as it is well identified). The optical flow hypothesis allows us, as 
we saw in section 2, to draw the line on which the velocity (ui,vi) of a point i must lie. In the ideal case, 
then, a collection of points animated with the same uniform speed, should have their respective lines 
intersecting at a unique place in the (u,v) plane corresponding to their speed (given that all these lines are 
not a single one which is highly unlikely). Finding this place or speed is equivalent to finding the 
parameters u and v that minimize the following systems of equations, (3.2-1) corresponding to a L1 norm, 
and (3.2-2) to a L2 norm. 
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A possible configuration of the system consists therefore in a segmentation of the image at time t, for 

which the corresponding global energy is the sum of the energies of each segment calculated with the 
formula (3.2-1) or (3.2-2). For instance, applying the equation (3.2-1) to look for the velocity (us,vs) 
minimizing the energy of the segment s, we find that the global energy is given by (3.2-3): 
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At each step of the algorithm, the system can either (1): split an existing segment or region into two 

pieces, that therefore can have different values (u,v) minimizing their respective energy, or (2): replace a 
segment by the union of itself and one of its neighbour, yielding a new value (u,v) for all the points of this 
new region. Each time the system consider an option, SPLIT or MERGE, it computes the attached change 
in energy DE and acts accordingly to the decision of an oracle computing the expression e (-DE/kT). Of 
course, if the energy was exactly the one given by expression (3.2-3), the option SPLIT would never be 
rejected, because even in the worst case where the two new regions were in fact part of the same object and 
having therefore the same velocity, the corresponding DE would simply be 0. It is thus necessary to add a 
coefficient to (3.2-3) penalizing great numbers of segments in the scene. That way a split would be 
profitable to the system only if it brings effectively a better segmentation of the image. Accordingly one 
obtains a  definition of E which is the sum of the energy given in (3.2-3) and of the term: κns, where ns 
denotes the number of segments or objects in the scene. 

 
 
4. Conclusion. 
 
We have cast the classical problem of motion identification into an optimization framework well suited 

for the method of Simulated Annealing. Accordingly the expression of an energy function was given, which 
minimum corresponds to the ideal parametric model associated with the image sequence observed. 

This new technique, in addition to solve elegantly the problem, allows one to "play" with variations on 
the formulation of the model, for instance the type of energy function to minimize or the kind of possible 
spatial re-arrangements giving a segmentation of the image. But above all, one of the main advantages of 
this approach is to allow the user to define and then obtain high-level descriptions of the phenomenon under 
study, e.g. in terms of polygons or whirlpools. 

It was experimented with success on uniform motion cases using an "augmented" PC-AT with 
FORTRAN programs. More experiments are planned to determine the efficiency of this method on complex 
scenes. Its robustness to noise is inherently very large. Schemes to improve the computing speed are 
projected. 
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