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Abstract 
We inductively devised two ontologies to describe scientific uncertainty in food safety 
risk assessments. We ask three questions.  1. Can we use Machine Learning to assist with 
coding complex documents such as food safety risk assessments?  2. Can we assess the 
quality of the ontologies we devised using ML? 3. And, finally, does the quality of our 
ontologies depend on social factors? We found that Machine Learning can do 
surprisingly well identifying complex meanings and probably can be helpful making 
suggestions to human coders. Our ML experiments show that our ontologies do enable 
a fairly consistent practice of coding. And finally, we found some evidence that 
institutional factors do influence how well predictable our ontology of uncertainty is.  

1. Introduction 
“When you have got the clear support of the scientists that 
deal with these matters […] there is no need to be worried, 
and I can say perfectly honestly, that I shall go on eating 
beef as my children will go on eating beef, because there is 
no need to worry.”  John Grummer 

 
 

On May 16, 1990, John Gummer, British Minister of Agriculture invited the media to a food 

fare during mounting public concern about a mysterious disease attacking cattle. There was little 

doubt, that bovine spongiform encephalopathy (BSE), also known as mad cow disease, was 

devastating cattle in the British countryside, but whether it was a threat to other livestock and 

humans, was less clear.  In 1988, the government appointed a working group of scientists, to answer 

this question. The Southwood Working Party rendered its confident conclusions in February 1989, 

that BSE poses no threat to other species (Millstone and van Zwanenberg 2001). More than a year 

later, to put all doubts to rest, Gummer, stood in front of a food tent with his daughter. He handed 

a freshly prepared hamburger to her to prove British beef was harmless. The little girl found the 

burger too hot, and thus to make his point, Gummer had to devour the beef patty in the bun 

himself. 

The “clear support of the scientists that deal with these matters,” however, was less than 

unanimous. Many scientists voiced doubt about Southwood’s conclusion and pointed to already 

existing evidence and theory suggesting BSE could easily jump species. The author of one such 

theory, postulating that cellular protein can fold into infectious prions a mechanism common to 
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BSE and its human variant, the Creuzfeldt-Jacob Disease, Stanley Prusiner, got the Nobel prize for 

medicine in 1997.  

While the subsequent parliamentary inquiry and scrutiny by independent scholars did not find 

clear cases of falsifying or distorting evidence, they did find that Southwood did not acknowledge 

uncertainties in existing research and presented a much more self-confident conclusion than was 

warranted (Phillips et al 2000). It was also clear that the Working Party was responding to political 

fears that British meat production may sustain extensive damage if British beef is pronounced 

unsafe. By not hiding uncertainties in the data and not articulating them properly, the Working Party 

was able to bend its findings to suit the political ends of the government. 1 

In the wake of the BSE debacle, various international agencies began to emphasize the 

importance of expressing scientific uncertainty in food safety risk assessment documents. Some, like 

WHO, EFSA, US EPA, US OMB, issued guidelines working towards a system that both identifies 

the type of uncertainty scientist perceive and the extent to which our knowledge is uncertain in a 

particular respect. These agencies recognized that their decision makers have to understand the 

nature of the weakness in the evidence that the experts present, and must have a clear sense of how 

much confidence they can place in various scientific findings in order to take the best decision. 

Scholars studying science itself also took up the issue of scientific uncertainty and formulated 

various normative frameworks to guide experts in future risk assessment reports. So far, none of 

these frameworks was adopted systematically by scientific panels.  

Our approach to scientific uncertainty is not normative, but empirical and comparative. We want 

to describe and understand how scientists express uncertainty in scientific reports assessing food 

risk. In our larger project, we look at English language risk assessment documents produced for 

food safety regulators in the United States and the European Union between 2000 and 2010. We 

investigate two main, distinct areas of food hazards in the food risk field: contaminants and 

biohazards.2 As the two fields draw on different subdisciplines, they differ in the way they make use 

                                                 
1  In an ironic twist, in 2003, the French government wanted to its scientists at AFSSA, to 
conclude that British beef was more dangerous than French beef, and it was dismayed when AFSSA 
concluded that there was too much uncertainty to compare the two. (van Zwanenberg and Millstone 
2005, p.271). 
2  Contaminants are any substance, such as arsenic, cadmium or lead, not intentionally added 
to food which is present as a result of the production, manufacture, or other steps while holding 
food or as a result of environmental contamination. Biological hazards include pathogenic viruses, 
bacteria and prions that cause BSE.   
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of various scientific methodologies (experiments, observational studies, statistical analyses, analytic 

modeling etc.) and thus may have different understandings of scientific uncertainties.   

We coded the documents by human experts, then tested these ontologies using machine 

learning. Our main objective was to answer three questions.  1. Can we use Machine Learning to 

assist with coding complex documents such as food safety risk assessments? Is ML doing a 

reasonable job overall in coding sentences? 2. Can we assess the quality of the ontologies we devised 

using ML? If ML is doing a reasonable job coding sentences, can we test various logical and 

semantic properties of our ontologies? 3. And, finally, does the quality of our ontologies depend on 

social factors? Is performance of our ontologies related to external, social forces, such as learning, 

institutions and culture? 

In the rest of the paper, we first describe the two ontologies, and our data. Then we explain the 

use of machine learning and the choices we made to conduct our experiments. We pose the three 

sets of questions, propose hypotheses and discuss the empirical results.  

2. The Two Ontologies 

To map scientific uncertainty, we developed two complementary ontologies, in an inductive and 

iterative process. Ontology is “an explicit specification of a conceptualization” (Gruber 1993:199). 

In full-fledged ontologies, concepts and their relationships are organized in a system that is an 

abstract representation of a world with a certain purpose and at a specific level of granularity. 

Ontologies are powerful, because they can clarify and – to some degree – automate various cognitive 

processes that manipulate meaning. We set out to develop a conceptualization of uncertainty in 

scientific documents, to identify textual expressions of uncertainty and then to sort and analyze 

documents according to the amount and type of uncertainty they voice.  

We developed two systems of classification or simple ontologies. The first, a simpler ontology is 

designed to capture the nature of the judgment the scientists make about the uncertainty of their 

conclusion. This ontology is a typology, a multidimensional way of classifying the expert’s judgment 

of the evidence. The second, a hierarchical system gauges the content of uncertainty. The categories 

identify the problems that give rise to uncertainty about our current state of knowledge as perceived 

by the authors. It is a taxonomy, because the categories are arranged in a genealogical hierarchy, 

where “ancestry” can be seen as successive levels of generality.  

For both ontologies, our smallest coded unit is the sentence (our data point). Categories can be 

attached to one or more consecutive sentences. One sentence can contain multiple expressions of 
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uncertainty and can be sorted into multiple categories. 3  We also refer to categories as “variables” 

because their values vary from sentence to sentence.4 Consequently, we talk about judgment 

variables (JVs) and uncertainty variables (UVs) when we talk about categories of the first and the 

second ontology. 

As we were interested in the final verdict of the experts, just as policy makers are, we coded only 

summaries and conclusions of each document to capture the uncertainties that the experts thought 

remained after they reviewed the available research on the topic. 

Judgment typology 

Our first ontology was designed to capture various aspects of the judgment of the experts in 

their conclusions. It describes how the panel judges the weight of the evidence and it follows more 

closely the language they use to do so. This ontology consists of five categories. They are 

conceptually distinct. Three of them express uncertainty (hedging precaution and disagreement), two 

(confidence and expert assumption) communicate the opposite. 

 
Figure 1. The structure of the ontology of uncertainty based on judgment 

 

 
 
Hedging is a way of indicating that experts have doubt about or a lack of total commitment to a 

proposition they present. There is a large literature on hedging. Hedging, a way of making things 

                                                 
3  When a sentence contains multiple expressions of uncertainty, each is represented by 
different phrases or clauses. Therefore, in principle, we could break up those sentences and pick out 
the words relevant to each.   
4  Apart from the presence or absence of the expression of a category in a sentence, we also 
coded the nature and intensity of the expression, data we will analyze later. 

Judgment	  
Variables	  

Hedging	   Confidence	   Expert	  
assump9on	  

Precau9on	   Disagreement	  
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fuzzier (Lakoff 1972),5 expresses a “lack of complete commitment to the truth value of an 

accompanying proposition” (Hyland 1998:1). It suggests that the speaker is not committed entirely 

to a proposition because he or she is uncertain about the truth of its content. The hedge signals this 

uncertainty without laying out its causes in detail there in the sentence, albeit the causes may be 

explained elsewhere in the text.6 Hedging ill serves risk managers because it makes the topic of 

interest less clear. To identify hedging we ask the question: “Can the proposition be restated in such 

a way that it is not changed but that the author’s commitment to it is greater than at present? If yes, 

then the proposition is hedged.” (Crompton 1997: 281). For instance, dropping “likely to be” in the 

sentence: “The … panel concluded that … the risk is likely to be conservative…” would make it 

more definite. 

Our second category is confidence. Here we wanted to capture the opposite of uncertainty, an 

emphatic commitment to a proposition. Often referred to as boosters, expressions of certainty, 

assurance and conviction expressions of confidence provide a crucial clue for risk managers (Myers 

1989, Vazquez and Giner 2009) and play an important role in persuasion in risk assessments. They 

stress finality and absence of doubt. While there are many words that are commonly used as 

boosters (e.g., undoubtedly, clearly, well-known, demonstrate, proven) whether they express 

confidence in the relevant scientific knowledge can be judged only from the wider context. Experts, 

for instance, can be confident that no good data are available on a topic or report that it was 

demonstrated that the statistical models cannot answer the crucial question. In such cases, there is 

uncertainty and confidence is to emphasize that it is there.  

Our third category is expert assumption. This is another form of confidence. The expert is aware 

that studies or models make certain assumptions about the world. These assumptions are not 

directly supported by evidence, but according to the expert, this does not pose any problem. These 

are the best assumptions an expert can make or, at least, these are not assumptions that the report 

questions.  

                                                 
5  Lakoff’s original article that set off research on hedges makes the claim that making 
propositions fuzzier is actually making them more accurate, because the world is fuzzy and truth is a 
matter of degree. Hedges allow us to move beyond the stark and misconceived binary distinction 
between truth and untruth.   
6  The literature attempts to classify hedges depending on how it deals with uncertainty, 
whether it serves to protect the author, or whether it just indicates that information is incomplete or 
that the validity or reliability of the proposition is not fully accepted. We did not make these 
distinctions.   
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We coded precaution as our fourth variable. Precaution is a way of dealing with uncertainty. 

Making conservative assumptions or building conclusions around “worst case scenarios” is a way of 

creating certainty where data and models fail to provide it. There is a large literature on the 

precautionary principle in food safety and the presumed differences in precaution between the EU 

and the US that developed mostly in the context of genetically modified organisms (Lynch and 

Vogel 2001, Hammitt et al. 2005).  

Our final category is disagreement. Disagreement is a staple of science, but here we are interested 

in only disagreements that the report treats as unresolved. This happens either when experts on the 

panel find unanimously that contradicting evidence on the topic is equally strong, or when the panel 

splits, and some members disagree with others and voice dissent. 

Uncertainty taxonomy: An ontology based on the source  o f  uncer tainty 

To build our second ontology focusing on content, we began with the general literature on 

scientific uncertainty (Morgan and Henrion 1990, Hattis and Burmaster 1994, Pate-Cornell 1996, 

van Asslet and Rotmans 2002, van der Sluijs et al. 2005, Walker et al. 2003) and papers addressing 

uncertainties in the different disciplines involved in the food risk assessment process, such as 

epidemiology, microbiology, toxicology and exposure assessment, (Grandjean & Budz Jorgensen 

2007, Kang & Kodell et al. 2000, Nautta 2000, Dorne and Renwick 2005, and Kroes et al. 2002). 

Beside this literature, we drew upon two main institutional documents: the opinion of the Scientific 

Committee of EFSA entitled Uncertainties in Dietary Exposure Assessment (EFSA 2006) and the 

WHO Draft guidance document on Characterizing and Communicating Uncertainty in Exposure 

Assessment (WHO 2007). We simplified and adapted the basic structure of these classification 

systems through a series of test coding of European, US and international food safety risk 

assessments arriving at a 28 item hierarchical ontology defined by a decision tree. As one moves 

down the tree one gets to more specific content. The coder had to code at the most specific (lowest) 

level possible. 
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Table 1. Decision Tree for Uncertainty Taxonomy Coding 
 

Ontic Uncertainty/Variablity 
Arbitrary assumptions of model 

Combination effects Model 
Is it due to arbitrary 
model assumptions?  

OR 
Is it due to some 
problem in our 

causal understanding 
i.e. what generates 

the hazard? 

Causal inference 
Is uncertainty due to ignoring synergism 

(combination effects)?  
OR 

Is it due to the inability to separate the effects 
of related causes?  

Correlated causal 
factors 

Missing factor 
Comparability of data 

Reporting 
Flawed measure 

Measurement 
Data from different 

sources are incomparable 
and they point in 

different directions. 
OR 

We don’t know enough 
about how it was 

measured to trust the 
data. 
OR  

Is it due to how it is 
measured?  

Measure 
Was the 

measurement 
poorly done? 

OR 
Does the 

methodology used 
in measuring have 

inevitable 
limitations? 

Limited analytic 
method 

Small sample size 
/few samples 

Sampling 
Was the sample 

too small 
OR 

Was it selected 
improperly 

Non-representative 
sample 

Surrogate hazard 
Inference in time 

Scenario inference  
Range inter- or 

extrapolation 

Surrogate 
context 

Are the data from  
the wrong context? Inference from in 

vitro to in vivo 
Inference from 

animal to human 

 
Is it uncertainty 

that is 
irreducible? 

OR 
Is it that new 

information can 
resolve 

Epistemic  
Uncertainty 

 
Is it due to the 
absence of good 
data about the 

hazard?  
OR 

Is it due to the 
way the model is 

built? 

Data 
Is it due to the 

complete absence of 
data 
OR 

Is it due to the lack 
of the exact kind of  

data we need and the 
fact that we have to 

use proxies 
(surrogates)?  

OR 
If we have the right 
kind of data, does 
some quality of the 

data create 
uncertainty ?   

Surrogate Data 
Is it a sampling 

problem?  
OR 

Is there a discrepancy 
between the hazard we 
have data for and the 
hazard of interest? 

OR 
Is there a discrepancy 

due to context? 
OR  

Is there a discrepancy 
between the population 

of interest and the 
population we have 

information on?  
 

Surrogate 
Population 

Are the data from 
the wrong 
population 

Inference from 
general to sensitive 

population 

 
The tree was a decision tool to aid our coders. Sentences coded at branches, rather than leafs or 

terminal nodes (at the right column in Table 1 or the light blue label in Figure 2), were either 
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unspecified at a lower level or were specified but the specification was so rare that it did not deserve 

a separate category at the next level.  

Figure 2. The structure of the ontology of uncertainty based on content 

 
 
 
Coding sentences for content that can be quite complex raises the problem of context much 

more so than the categories of our first ontology. The meaning of sentences is often influenced by 

text that is not adjacent. Comprehending the source of a particular uncertainty often required 

following a long exposition in the body of the report that the coder read but did not code. In fact, 

while we annotated sentences, here it would be more accurate to say that we were classifying the 

entire document and flagged the sentences that provided the best clue.  

Our ontology begins with the common distinction between Epistemic and Ontic Uncertainty 

(also known as Natural Variability). Epistemic uncertainty is the kind that points to missing or 

incomplete information. Ontic uncertainty is the inherent, random variation among cases that no 

further research can reduce. Epistemic uncertainty then is divided into problems that relate to Data 

and those that relate to the Model that we use to understand data. Each, in turn, is subdivided into 

lower level, more specific categories.  

Data problem can be that some specific data (factors/variables) are simply missing. This is, 

however, rarely where the report stops. In the absence of good data, it reaches for surrogate data 
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that are not exactly what we want but with some inference are useful, or data we want but measured 

imperfectly. Surrogate data can be inadequate because we have the wrong population, the wrong 

context, the wrong hazard or an imperfect sample. Measurement can be faulty because the 

measurement was taken incorrectly, it was not properly reported, or reported in a way that creates 

problems of comparison.  

For models, we distinguish between causal and other, formalized models. Causal inference 

problems are further specified. 

This ontology is built as a hierarchy from the most general down to the more specific. But 

another way of thinking of this tree structure is that the categories are organized in groups of similar 

content, whereby “children” of the same “parent” show more family resemblance than “children” of 

different “parents” or “grandparents.” 

3. The documents 
The text corpora of text we coded were 115 official risk assessment documents produced by the 

European Food Safety Administration (EFSA) in Europe, and the three U.S. federal agencies 

primarily responsible for food safety across the Atlantic, the Food and Drug Administration (FDA), 

the U.S. Department of Agriculture (USDA) and the Environmental Protection Agency (EPA) 

between 2000 and 2010.  

The documents range from one to over 600 pages with average of around 70 pages. They are 

written at the official request of the authorities responsible for managing the risk, by a panel of 

scientists. 7 

 

4. Using Machine Learning 
One straightforward strategy for the construction of an automated coding system for these 

documents is to use supervised learning techniques. Supervised learning aims at finding rules starting 

from a set of training instances. In our case, the training instances are the sentences (or small set of 

sentences) and their associated labels given by human coders. The goal is to extract rules that would 

allow a system to automatically label new sentences (or set of sentences) drawn from documents 

                                                 
7  Because a risk assessment document often covers several hazards, each with its own 
scientific research and uncertainties, our record was the document of a specific hazard, and reports 
covering more than one hazard were coded as if they were separate documents. Therefore, our 
actual unit is the hazard-document. 
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similar to the one used by the human coders. For instance, the system should be able to code a text 

input as ‘coded’ vs. ‘non coded’ and, if ‘coded’, as one of the categories present in the ontologies. 

Furthermore, if the learning system is trained from instances drawn from different contexts, 

differences in the learned rules could be enlightening about differences between these contexts. For 

instance, it could appear that the rules learned from American documents differ somewhat from the 

rules learned with documents from the European Union. Or that the rules change over time. 

In the estimation, we used naïve Bayesian classifier, Support Vector Machines (SVM), k Nearest 

Neighbor and Decision Tree algorithms (see Flach 2012). The best overall learners were Naïve Bayes 

and SVM.  

We started with the bag-of-words approach. We broke the sentences up into words. We 

eliminated “stop words,” i.e. words that were too common to be helpful such as “the,” “a,” “is” etc. 

Then we stemmed the words thus erasing the difference between, for instance, learning, learned, 

learns etc. In our experiments, we removed 146 stop-words and used the Porter stemmer (see Perkins 

2010, Porter 1980), yielding a final vocabulary of size 2,530.   

At this point, one can adopt one of several existing coding strategies. For instance, in the bag-of-

words approach, each word present in a sentence can be associated with a 1 in the input vector and all 

the other, absent, words with a 0. Or one can count the number of times this word is present. E.g. the 

sentence “In addition to the limitations al-ready listed, there are also limitations introduced by the methods used to 

analyze data inputs to the risk assessment.” would become “addit limit alreadi list limit introduc method analyz data 

input risk assess” after  stop-words have been removed and after stemming. Then, it can be coded either 

with a 1 for the feature ‘limit’ or with a 2 since this stem appears twice in this sentence. Other coding 

techniques involve the computation of relative frequencies (e.g. tfidf for “Term Frequency/Inverse 

Document Frequency”). Here, we report experiments with the 0/1 coding method.  

Some algorithmic learners are, at the core, designed to separate two classes. If one wants then to 

learn multi-class classification, for instance, separating the three class ‘missing variables’, ‘surrogate context’ 

and ‘sampling’, some scheme must be devised to turn two-class classification rules into multi-class ones. 

In our experiments, we used the all-versus-all technique (see Aly 2005).  

One problem when learning to separate data from different categories is that their frequency can be 

significantly dissimilar (e.g. 1 sentence falls under the ‘Measure’ category, while 71 fall under the ‘Missing 

factors / variable category). If, for instance, one category is ten times more highly represented than another 

one, a simple majority rule will yield a 90% successful prediction rate without any learning taking place. 

In order to circumvent this opportunistic but uninformative behavior, one method is to balance class 

sizes. When data are plentiful, it is sufficient to sample the overrepresented classes in order to reduce 
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their size to that of the least represented one. In our experiments, however, data are already rather scarce 

and another technique must be used. For each underrepresented class, we chose to generate artificial 

data points (sentences) by mixing the characteristics of existing data points from this class. Specifically, 

we randomly drew two actual data points and made up an artificial data point by retaining for each 

feature either the one encountered in both actuals if they agreed, or by randomly choosing a value of one 

actual if they disagreed on this feature.  

The data then was split into two halves. One half was the “training set,” where the algorithm 

calculated the best fitting model, then it tested on the other half, the test set, to see how well it can 

reproduce human coding. In order to measure the prediction performance, we used a five-fold cross-

validation technique (see Japkowicz et al. 2011). 

In this paper, we will use recall, precision and overall predictive power to describe our results. 

Recall is the percentage of the observations (sentences) in category k predicted as k  by ML. These 

are the correct predictions as percentage of cases actually in that category. Precision is the 

percentage of cases predicted as being in k actually being in k. These are the correct predictions as a 

percentage of predicting that category. The overall predictive power is the correct predictions as a 

percentage of all the cases. Later we will also introduce a simple index to measure pairwise 

confusion. 

5. Discussion 

In this section we will pose three questions, present some hypothesis and discuss our results. 

Can we use Machine Learning (ML) to ass is t  with coding complex documents?  

Is ML doing a reasonable job overall in coding sentences? What features of the text do we need 

to consider to maximize predictions? How are false positives (sentences that are incorrectly put in a 

category) and false negatives (sentences that are incorrectly left out of a category) distributed?    

If ML is able to recognize and classify sentences with little error, it can be useful to aid 

human coders.  Coding risk assessment documents is, in certain ways, an easier task than coding 

other types of texts such as blogs, novels or electronic mail.  Scientific texts use a more standardized 

vocabulary than most other documents, and they put a premium on clarity and explicit expression. 

Risk assessments often follow a common format: introduction, hazard identification, dose-response 

assessment, exposure assessment and risk characterization, conclusion and there is also often a 
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summary in front. Scientists learn how to write risk assessments, what each element should include 

etc.  

Yet, coding expressions of uncertainty involves finding a set of meanings that are quite 

complex. A single sentence or a set of contiguous sentences may not carry the entire meaning, but 

the uncertainty is signaled by reference to earlier parts of the text. Context can modify the meanings 

of entire statements.  

Hypothesis 
H1.1: The task involves complex meanings. The more the method can incorporate 
complexities, the better the tool is going to be. Adding hypernyms, considerations for 
context should improve our predictions over using just “bag-of-words.” 

Cross checking 

Before we evaluated the performance of ML, we looked at the errors ML made, and went 

back to each case to see if it was the algorithm that erred or the human coder.  One of the ways ML 

can help with coding is by calling attention to human errors. Thus, ML learns from human coders, 

and human coders can learn from ML. 

There were 178 mismatched sentences where ML disagreed with human coders. Upon 

individual inspection, we found that the human coders were correct in 87% and ML was correct in 

6% of the cases. For another 5% of the cases both were wrong and for rest the sentence did not 

express uncertainty (essentially, human error). There were also three cases where the same sentence 

had more than one code. In 2 of those cases, the machine correctly attached one of the codes. 

We corrected the human mistakes and the final results were obtained on the corrected set. 

Results	  

 Is ML doing a reasonable job overall? We looked at this in two steps. The first step was to 

find if a sentence was an expression of uncertainty or judgment of ANY kind.  Here, we care more 

about recall than precision, as it is better for the coders to get false positives (wrong suggestions for 

coding) which the coders can simply override by looking at a small set of ML suggestions, than false 

negatives (no suggestion where there should be one) which force coders to scrutinize the entire 

document if they are to correct them. The second step was to find the sentence’s code in an 

ontology, given that it was an uncertainty expression. 

 Step 1.  We began with the simplest approach, bag-of-words, using just the stems of words 

in each sentence to predict the whether the sentence is coded or not. For judgment variables, 
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Support Vector Machine (SVM) estimation gave the best results. Eighty-four percent of the 

sentences were correctly identified as being coded for one of the five categories (Table 2.) Recall was 

80.6 percent, ML failed to recognize one fifth of the coded sentences. 

 

Table 2. The success of finding sentences that are coded with the judgment ontology 

SVM Predicted   

  Coded as 
Judgment 

Not 
Coded 

Recall Nb 
elmnts 

Coded as 
Judgment 

378 91 80.60% 469  

Actual 
Not 
Coded 

70 474 87.13% 544 

Precision 84.38% 83.89%   

 Total 1013 

 

Overall 84.11%  

 

 

For the uncertainty variables, ML was able to correctly identify 79.85% of the sentences 

(Table 3).   Here too, a fifth of the coded sentences went unrecognized.  

 

Table 3. The success of finding sentences that are coded with the uncertainty ontology 

SVM Predicted   

  Coded as 
Uncertainty 

Non 
Coded 

Recall Nb 
elmnts 

Coded as 
Uncertainty 

447 108 80.54% 555  

Actual 
Non Coded 109 413 79.12% 522 

Precision 80.40% 79.27%   

 Total 1077 

 

Overall 79.85%  

 

 While ML is far from perfect, the results using the most primitive method are surprisingly 

good. To further improve predictions, we tried to add more complexity.  
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One idea was to recognize that what matters for assigning a sentence to a category is not so 

much the words in the sentence but the meaning of the word which can be expressed by synonyms 

that should be treated as the same word, even though they “look” different. We tried to use 

WordNet,8 a large lexical database that groups nouns, verbs, adjectives and adverbs into sets of 

cognitive synonyms (synsets). Using hypernyms, more general words covering a set of more specific 

words (like using the word “fish” for “tuna,” “sardine” or “swordfish”), we could not improve our 

prediction. In fact, the proportion of correctly predicted uncertainty variables fell by about 15 

percent.  

We also tried word sets assuming that the joint presence of certain words may make a 

difference and we modeled context by looking at the position of a sentence in the conclusion. 

Neither of these improved our predictions.  So far, we have not seen any improvement by adding 

complexity, but we are not ready to reject our first hypothesis. We will try other methods.  

Step 2. How well was the ontology reproduced by ML once we knew the sentence expressed 

uncertainty?  For JVs the best overall accuracy was 84.1% (Table4).  For UVs, it was 78.82% (Table 

5). 9   

Table 4 

	   	   Predicted	   	  

	  
	   Confidence	   Disagreement	   Expert	  

assumption	  
Hedged	  
language	   Precaution	   Recall	  

Confidence	   92	   0	   1	   11	   1	   0.88	  
Disagreement	   0	   6	   0	   0	   0	   1.00	  
Expert	  
assumption	   3	   0	   89	   10	   7	  

0.82	  
Hedged	  
language	   26	   0	   12	   273	   20	  

0.82	  

Actual	  

Precaution	   0	   0	   1	   4	   48	   0.91	  
	   	   	   	   	   	   	  	   	  

	   	   	   	   	   Total	   604	   	  
	   Overall:	   84.10%	   	   	   	   	   	  

 

                                                 
8  http://wordnet.princeton.edu/ 
9  We dropped 3 variables from the analysis because we did not have enough observations for 
model fitting and testing. Those are Model, Sampling and Measure.  
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Can we assess  the qual i ty  o f  the onto logy we devised using ML? 

 Can we say something about the quality and properties of our ontologies using ML? If ML is 

doing a reasonable job coding sentences, can we test various logical and semantic properties of our 

ontologies? Where does ML work better and where does it work worse inside the ontologies? 

 Ontologies should be applicable in a consistent and reproducible manner. Algorithms take 

consistency and reproducibility to a mechanical extreme. Algorithms can spot human inconsistency. 

This inconsistency can be some systematic weakness in the ontology that guides coders. By looking 

at the patterns of errors of classification, what is called “confusion matrices,” we can learn about the 

weaknesses of our ontologies and understand the cognitive process behind coding. 10  

Judgment	  Variables	  

Our ontology of the Judgment variables is simple. As we did not elaborate the logical 

connections, we have only semantic relationships among the five variables.  Confusion, therefore, 

will be driven by the compatibility of the connotations of the variables. 

Hypotheses  

H2.1: Categories that have opposite connotations will be less likely to be confused. Therefore, 
hedging will be less likely to be confused with confidence that with disagreement. Categories that have 
similar connotations will be more likely to be confused. Therefore, on the one hand, hedging with 
disagreement, and on the other, confidence with expert assumptions and precaution will be more likely to 
be confused.  
Some of these confusions will arise from the fact that the same sentence is often coded by more 
than one of variables with similar connotations. 

Results	  

We use pairwise confusion to measure the likelihood that category A and B are confused with 

one another. Confusion is a symmetric measure that is 0 when there is no confusion between a pair 

of categories and 1 when all cases are misclassified as belonging to the other category.11  

Pairwise Confusion= (fij+fji)/(fij+fji+fii+fjj)   where fij is the number of cases in category i 

predicted as being in category j. 

                                                 
10  The errors assume that we correctly decided whether to code a sentence and the calculations 
are based on sentences correctly identified as uncertainty expressions.  
11  When there are only two categories, the overall fit=1-Confusion. 
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Table 6. Confusion among judgment variables 

	   	   Predicted	  

	  
	   Confidence	   Disagreement	   Expert	  

assumption	  
Hedged	  
language	   Precaution	  

Confidence	   	  	   0.000	   0.022	   0.092	   0.007	  

Disagreement	   	  	   	  	   0.000	   0.000	   0.000	  

Expert	  
assumption	   	  	   	  	   	  	   0.057	   0.055	  

Hedged	  
language	   	  	   	  	   	  	   	  	   0.070	  

Actual	  

Precaution	   	  	   	  	   	  	   	  	   	  	  
 

Table 6 reveals that our hypothesis is wrong. The most confused variables are hedging and 

confidence.  This is clearly unexpected. It turns out, that the source of the confusion is that we often 

find both in the same sentence. Hedging clears the sentence for a following confident statement or 

modulates confident pronouncements later.12 

Hedging is also confused with precaution and expert assumptions for the same reason: hedging 

balances certitude.  (Disagreement is too rare to analyze.)   

Uncertainty	  Variables	  
 For a hierarchical ontology such as the one we created for uncertainty, we can compare 

errors in relationship with the distance among concepts in the ontology. We can define distance 

between two concepts as the number of steps it takes to reach from one concept to another 

following links in the hierarchy.  

Hypotheses  

H2.2a: In an ontology, confusions increase with closeness.   Variables that we find closer in the 
ontology (separated by fewer splits in the tree/decisions) are more likely to be confused. 
Semantically close variables have more similar meanings and thus are easier to confuse. 
  
H2.2b: However, we may find the opposite: confusions increase with distance. Variables that we 
find farther in the ontology are more likely to be confused. This could happen because small 
differences require more explicit demarcations that hinge on a single (or very few) trait(s).  E.g., 
once we agree that this is a sampling problem, we can more easily decide if it is the size or the 
representativeness that is the problem (or both).  What is harder to agree on is whether it is 

                                                 
12  Mushin calls these “uncertainty sandwiches.” (Mushin 2001) 
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primarily a sampling problem or a case of a variable missing or causal problem. Larger distances 
hinge on multiple traits which involve multiple and often contradictory differences and 
similarities.  
 
An ontology works better, if confusions increase with closeness, when big, more general analytic 

distinctions are more clear and reliable. 

 

Results	  

As shown in Table 5, we found variation in recall among the UVs. The worst fit is missing 

factor/variables and limits of analytic methods, followed by scenario inference, arbitrary assumptions. It is also 

interesting, that one would expect some types of uncertainties to be more common and ritualized, 

and thus better predicted. Inference from animal to human (interspecies variation) or ontic uncertainty are 

both common and often expressed in a common form.13   

What can we say about which UVs are the easiest to confuse? Table 7 shows pairs with pairwise 

confusion larger than .05. Pairwise confusion rates are fairly low. Of the top 13 pairs, missing 

factors/variables, is part of six. This seems to be the weakest part of our ontology. Because its root is 

epistemic uncertainty, defined as “uncertainty that can be reduced by additional information,” it is easy 

to see why missing factors/variables is easy to confuse with anything in this branch. This is also the 

most common type of uncertainty. It is followed by limits of analytical methods, the inadequacy of 

scientific methods to reach a strong conclusion, and comparability of data, both are one side of four 

pairs.  

The highest level of confusion is between the pairs of missing factors/variables and limits of analytic 

methods, inference from one scenario to another and non-random /non-representative sample.  

 

                                                 
13  We would expect both to be better predicted and they are not. When we look at the most 

frequent words the words that one would expect to be most strongly associated with those two UVs 

(animal, human, inter, species and intra, species, variability) are on the list but they are not the most 

frequent ones.   
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Table 7. The pairs most confused 

Pair Distance Confusion 
Missing factors/variables Limits of analytical methods 4 0.122 
Missing factors/variables Inference from one scenario to another 4 0.081 
Non-random / non-representative sample Missing factors/variables 4 0.079 
Limits of analytical methods Comparability of data 3 0.075 
Ontic uncertainty / Variability Limits of analytical methods 6 0.075 
Inference from one scenario to an another Arbitrary assumptions of values used in the model 6 0.071 

Missing factors/variables Data 1 0.063 
Limits of analytical methods Epistemic uncertainty 4 0.061 
Missing factors/variables Arbitrary assumptions of values used in the model 4 0.058 

Non-random / non-representative sample Comparability of data 5 0.058 
Ontic uncertainty / Variability Comparability of data 5 0.057 
Ontic uncertainty / Variability Epistemic uncertainty 2 0.057 
Missing factors/variables Comparability of data 3 0.056 

 

To assess the correlation between distance and confusion, we first weighted our data by the 

numbers of observations and eliminated pairs where one of the variables had fewer than 5 

observations, or neither had more than 10.14  The result shows that confusion is weakly but 

negatively correlated with distance: the closer two variables are, the more likely they are to be 

confused.  

We also ran a multiple regression of confusion on distance. We controlled for the number of 

sentences observations each variable in the pair had. We found the same, even stronger result:  

closeness increases confusion. Thus we found some evidence for H2.2a.  

Does the value o f  our onto log ies  depend on soc ia l  fac tors? 

Can ML say anything about the circumstances that influence the performance of our ontologies? 

Is the predictability of the categories a function of social forces? As documents are social constructs, 

the success of classification may not depend only on the powers of ML to find the best algorithm, 

nor just on the cognitive and logical properties of the ontology, but also on the social process that 

generated the documents.  

                                                 
14  More common variables tend to have higher recall error and higher pairwise confusion rates.  
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We tested three such factors: time, institutions and scientific cultures. Thus we compared earlier 

and later documents to see how learning and increased awareness of the problem may had an effect. 

We also compared the EU and the US documents to search for larger institutional differences. And, 

finally, we also contrasted documents discussing contaminants and biohazards to see if different 

scientific fields may articulate uncertainty differently. We concentrated here only the uncertainty 

ontology. 

Hypotheses:	  
H3.1: The more recent documents are better predicted overall by ML. This is a learning theory. 
Because panels that write risk assessments today are more aware of the importance of explicitly 
expressing uncertainties then those that wrote them a decade ago, and because panels developed 
a more standardized way of talking about uncertainty, we expect predictions improve over time.  
 
H3.2: The EU documents will be better predicted overall by ML than those from the US. This is 
an institutional theory. Because in the EU risk assessment in food safety is more centralized than 
in the US and the RAs are more standardized, Eurpoean RAs will be easier to machine code. In 
the EU, the vast majority of food safety risk assessments are written by panels of one agency, 
EFSA, at the request of the European Commission, that then decides on what, if any action to 
take. In the US, there are three principal agencies in charge of this topic (FDA, USDA, EPA) 
and each can choose to use its own staff and in-house experts to generate risk assessments or 
they can outsource it to outside experts or institutions. The relationship between food safety 
agencies and the food industry also varies across the Atlantic. The US agencies see their role 
more as balancing between the interests of consumers and producers. In EFSA’s role this 
balancing is less explicit, and not answerable to any national industry of government, it sees itself 
more as a neutral scientific enterprise. 
 
H3.3: There will be a pattern of prediction that will be different in the world of contaminants 
and biohazards. This is a theory about different scientific cultures driven by their subject matters 
and histories. We do see that the relative frequency of various uncertainties differ across the two 
worlds. E.g., contaminant research use experiments more frequently (animal experiments on 
biohazards are generally less useful), while biohazard research relies more on epidemiological 
evidence.  As a result, Inference from animal to human is a bigger concern for contaminants, while 
comparability of data and causal inference are more common concern for biohazards. We also found 
that contaminant RAs tend to be more specific about uncertainty than biohazards that tend to 
report more epistemic uncertainty and missing variables/factors. Contaminant research is more likely to 
point to ontic uncertainty and synergistic combination effect.  

H3.3a: Overall contaminants will be better predicted because contam RAs are more specific 
and explicit about uncertainties. This is probably due to historical reasons. Contaminant 
research can draw on older science (especially since many of the biohazards are novel, 
zoonooses, such as BSE, avian flu or new strains of older viruses or bacteria).  
H3.3b: Each field will be better predicted on issues that are more central to that field, 
because frequent concerns are expressed in a more ritualized form.  
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Results	  
  

The overall fit for earlier RAs is not different than for later RAs.  As is seen in Figure 3, 

there is no learning.15 The three periods are virtually identical. This rejects H3.1. 

 
 

The overall fit for the EU is better than for the US (Figure 4). The difference is not large, 
but it supports H3.2. 
 

 
 The overall fit for contaminants is less than 1 percent better than for biohazards (Figure 5). 
This is small and not enough to lend support for H3.3a.  

                                                 
15  In Figure 3,4,5 the left axis starts at 50%. 

79,88%	   80,95%	   80,00%	  

2000-‐2005	   2006-‐2008	   2009-‐2010	  

Figure	  3.	  Predic9ve	  power	  of	  the	  hierachical	  ontology	  
over	  9me	  	  

81,61%	  

75,94%	  

EU	   US	  

Figure	  4.	  Predic9ve	  power	  of	  the	  hierachical	  ontology	  in	  
the	  EU	  and	  the	  US	  
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 There are some clear differences in the pattern of fit for the two fields of food safety.  There 

are a few uncertainty variables where the difference in recall is substantial and there is sufficient 

number of cases for both fields. In the biohazard field, epistemic uncertainty, missing factors/variables, 

limited analytic method, arbitrary assumptions of values used in the model, and reporting are better predicted. 

The first two have to do with the fact, that biohazard deploys these general expression more often.   

 In the contaminant field causal inference, comparability of data and combination effect are predicted 

better. Combination effect, that two health hazards act in concert one amplifying the effect of the other, 

is a common concern for contaminants, but it is almost absent for biohazards. Therefore, while we 

see differences between the fields, our H3.3b is not supported.  

 

 

 
 
 

79,78%	   80,46%	  

BIO	   CONTAM	  

Figure	  5.	  Predic9ve	  power	  of	  the	  hierachical	  ontology	  for	  
biohazards	  and	  contaminants	  overall	  
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6. Conclusion 
 

Explicit articulation of uncertainty in science, especially in science involved in public policy, 

improves science, because it clarifies what future research is necessary, helps policy makers to 

evaluate scientific reports, and reminds the public about the limitations of current scientific 

knowledge. 

We have built two complementary ontologies to measure the scientific uncertainty expressed in 

food safety documents. We have enlisted Machine Learning to help with three tasks. First, we want 

help with coding the thousands of risk assessments in the US and the EU. Our ontologies were 

developed for food risk, but it has already been applied to environmental risk and could easily be 

adopted in other areas. To make document coding easier is a practical matter. In this paper, we 

showed that even with relatively simple methods, Machine Learning can do surprisingly well 

identifying complex meanings and thus can be helpful making suggestions to human coders. 

Second, ML can aid us to evaluate our coding practices and our ontologies. We found that our 

ontologies enable a fairly consistent practice of coding. Evaluating our ontology of judgment, we 

learned that elements of judgment are often communicated in relationship to one another. In our 

future work, we will try to exploit these relationships to identify judgment variables. Assessing our 

ontology of uncertainty, we found out that the deductive decision making process, that aids human 

coders, and that is reflected in the hierarchical structure of our ontology, makes the first large cuts 

fairly well and confusions tend to emerge between variables that our system defines as being closer.  

Third, we wanted to use ML to get insights into the causal processes of making uncertainty 

explicit. We found some evidence that institutional factors may influence the consistency with which 

uncertainty is expressed. We also found some indication that scientific cultures by encountering 

forms of uncertainties with different frequencies articulate uncertainties differently. 
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