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Abstract* . It is empirically known that most
incremental learning systems are order dependent, i.e.
provide results that depend on the particular order of the
data presentation. This paper aims at uncovering the
reasons behind this, and at specifying the conditions
that would guarantee order independence. It is shown that
both an optimality and a storage criteria are sufficient for
ensuring order independence. Given that these
correspond to very strong requirements however, it i s
interesting to study necessary, hopefully less stringent,
conditions. The results obtained prove that these
necessary conditions are equally difficult to meet in
practice.
Besides its main outcome, this paper provides an
interesting method to transform an history dependent
bias into an history independent one.

1 Introduction

Ordering effects in Incremental Learning have been widely
mentioned in the literature without, however, being the
subject of much specific study except for some rare
pioneering works [1,4,9, and, incidentally, in 2]1. In
short, ordering effects are observed when, given a
collection of data (e.g. examples in inductive concept
learning), different ordered sequences of these data lead to
different learning results. In this respect, ordering of data
                                    
* This paper appeared in the Proc. of the E u r o p e a n
Conference on Machine Learning (ECML-93), Vienna, April,
5-8, 1993.
1 See also the AAAI Technical Report corresponding to the
recent AAAI Spring Symposium (March 23-25, 1993,
Stanford University) devoted to "Training Issues in
Incremental Learning".

therefore seems to be equivalent to a preference bias that
makes a choice among all the models or hypotheses that
the learning system could reach given the collection of
data (that is the models that would be obtained had the
collection of data been presented in every possible orders).
Hence, ordering undoubtedly amounts to some additional
knowledge supplied to the system. This is why teachers
have some value: by selecting suitable pedagogical
presentations of the material to be learned they provide
further knowledge that hopefully helps the learning
process.
Learning without some bias that allows the reduction of
the search space for the target concept or model is
impossible except in the crudest form of rote learning.
When looking more closely, it is usual to distinguish
between :

- representation bias : where the search space is
constrained because all partitions of the example space
can not be expressed in the hypothesis space considered
by the system (this is the basis for inductive
generalization and is the main topic of current Machine
Learning theory [12]), and
- preference bias : which dictates which subspace
should be preferred in the search space (e.g. prefer
simple hypotheses over more complex ones) (this type
of bias has been much less studied because it touches
on procedural aspects instead of declarative ones only).

Because ordering of inputs allows one to favor some
models over some others, it seems to amount to a
preference bias that chooses between competing
hypotheses. In spite of this resemblance however, there is
a deep difference with the biases generally discussed in
Machine Learning. Indeed, with ordering effects, one
observes the preference but cannot pinpoint directly where



in the learning system it lies and how it works. This is in
contrast with what is considered classically as a bias,
where one can identify operational constraints _e.g. isolate
representation constraints or procedures for choice between
hypotheses. Thus we use the term    global       preference       bias   
to denote preference among models due to ordering effects
after a sequence of inputs has been observed, and the term
local       preference       bias    to denote the local choice strategy
followed by the system when at each learning step it must
choose to follow some paths and discard others.
Two questions then immediately come up :

1- What is the relationship between a global
preference bias and a local one ?

2- What is the relationship between a global
preference bias that is observed or aimed at and a
corresponding teaching strategy that specifies
the order of inputs ? In other words, how to
design a teaching strategy so as to get a certain
global preference bias ?

The second question is related to the recently introduced
concept of teachability [5,8,15,16,17] and the not so
recent concern for good training sequences [19,20].
However, it differs in a fundamental point in that, in the
former the problem is essentially the determination of
good examples to speed up learning, whereas in our
setting we assume that the collection of instances is given
a priori and our only degree of freedom lies in the choice
of a good ordering. Additionally, researchers in the
teachability concept have not been interested with the idea
of guiding the learner toward some preferred model and
away from others, they seek to characterize the learnability
of concept classes irrelevant of particular preferences
within the classes. Keeping in mind these differences, the
emphasis on providing additional knowledge to the learner
through an educational strategy is the same.
In order to answer these questions, and particularly the
first one, it is necessary to determine the causes of the
ordering effects.

2 Causes of ordering effects

It is instructive to look at incremental learners that are
NOT order dependent, like the candidate elimination (CE)

algorithm in Version Space [10,11], ID5R [18], or
systems that are not usually considered as learning
systems but could be, such as TMS [3] or some versions
of the Bayesian Inference nets of Pearl [13]. They all have
in common that they do not forget any information
present in the input data. Thus, even when they make a
choice between alternative hypotheses, like ID5 or TMS
and unlike the CE algorithm, they keep enough
information to be able to compare all potential competing
models so as to select the best one at any moment, and
change their mind if needed. They are therefore equivalent
to non-incremental learning systems that get all the data at
once and focus on the best hypothesis given the
information supplied.
To sum up, order independent incremental learners (i) are
able to focus on a optimal hypothesis when they have to
choose among the current potential ones; and (ii) they do
keep enough informations so as to not forget any
potential hypothesis. If one or both of these properties is
lacking, then incremental learning is prone to be order
dependent. A closer look at each of these property in turn
will help to see why.

(i) Optimality vs. non optimality.
Since the influential thesis and papers of Mitchell [10,11],
is has become commonplace to consider learning as a
search process in a concept or solution space. Whatever
the form (generalization, explanation,...) and the
constraints on the hypothesis space (e.g. representation
language bias), the learner is searching the best solution
in this space given the data at hand. In order to compare
the solutions in the search space, it is possible to imagine
that the learner evaluates and grades each one of them and
then chooses the top one. Of course, the grade and
therefore the rank of these solutions can be modified if the
data are changed.
Because incremental learners usually function by adapting
a current solution (or a small solution set) to cope with
new informations, they proceed typically in a hill-
climbing fashion (see figure 1) open to the draw-back of
missing the global optimum solution in favor of local
ones.



State of the system 
at time n-1

Direction of the gradient 
at time n

Fig. 1. At time n-1, the system is in a state corresponding to a given hypothesis. At time n, with a new arriving piece of data, the
value of each hypothesis is re-evaluated and the system follows the direction of greatest gradient to reach a new state.

As underlined above, one must realize that in contrast to
the common optimization problems where the optimums
and the whole topology of the search space are set once
and for all before the search starts, in incremental learning
the topology is changed with each new input and the
solutions in the hypothesis space are therefore open to re-
evaluation, new optimums replacing old ones. Because of
this, incremental learning wandering from one local and
temporary optimum to the next can be order dependent
unless it reaches the global current optimum at each step
that is with each arriving data2. In that case of course, at
the end of the training period and given that all the
training data have been observed, the system would reach
the global optimum for this set of data regardless of its
ordering during learning.
In fact, it is easy to see that there is a second caveat in
addition to the requirement of finding the global optimum
at each time.

(ii) To forget or not to forget.
Finding the optimal solution at each step is operating
only to the extent that the set of all possible solutions is
brought to consideration; if only part of it is available
then the whole optimization process is bound to be sub-
optimal. Now, beside adapting the current solution to new
constraints expressed under the form of new data,

                                    
2 Finding the global optimum at each step requires either to
keep in memory all possible hypotheses, re-evaluate them
and take the best one, or, short to this memory intensive
method, to be able to re-construct any possible hypothesis
with enough accuracy and keep track to the best one so far.
This latter method is closed in spirit to Simulated Annealing
or to Genetic Algorithms. In mathematics, this corresponds
to ergodic systems.

incremental learners because they entertain only some
preferred hypothesis or model, can also discard in the
process part of the information present in the past inputs.
If this forgetting is dependent upon the current state of the
system, then it follows that it may also be dependent
upon the ordering of the inputs. Therefore the resulting
learning may be order dependent.

It is important to note that these two reasons if often tied
(this is because one keeps only a current solution for
adaptation that one is tempted to forget informations
about other possibilities) are nonetheless independent in
principle and can be observed and studied separately. For
reasons that will be exposed shortly, we will concentrate
on the forgetting aspect of incremental learning and will
accordingly assume, by way of an adequate framework,
that the best alternatives among the available ones can
always be chosen by the learner.
Forgetting of information lies therefore at the heart of
order dependence in incremental learning. But forgetting
can take two faces. In the first one, information present in
the input data is lost, meaning that the current hypothesis
space considered by the learner is    underconstrained   . In the
second one, by contrast, what is lost are potential
alternatives to the current preferred hypotheses, which
amounts to    overconstraining    the space of possibilities.
This last form of forgetting is equivalent to a local
preference bias which chooses among competing
hypotheses which ones to pursue.
This raises then a more specific question than the
aforementioned ones, but which contributes to the same
overall goal :



3. In which case an incremental learner can be
order independent ? Or, in other words, which
information can be safely forgotten without
altering the result of learning whatever is the
ordering of inputs ?

It is this last question that this paper focuses on. It must
be kept in mind that it is equivalent to the question : what
local preference bias leads to a null global preference bias
(i.e. to order independence) ?
In the following of the paper, we will restrict
ourselves to a simple concept learning model
in which the learner attempts to infer an unknown target
concept f, chosen from a known concept class F  of {0,1}-
valued functions over an instance space X. This
framework allows us, in the next section, to define a
measure of the information gained by the learning system
and of the effect of a local bias on this information. This
measure naturally suggests an equivalence relation
between local preference bias and additional instances,
which is detailed in section 4. Then, in section 5, it
becomes a relatively simple matter to answer question 3
above. The conclusion compares the framework adopted
here with the emerging one of teachability and discusses
the results obtained.

3 Information measure and local 
preference bias

In this section, we are interested in formalizing and
quantifying the effect of a local preference bias on what is
learned by the system. For this, we first define a
characterization of the information maintained by a
learner.
Let F  be a concept class over the instance space X, and
fŒF  be a target concept. The teacher has a collection of
examples EX={xi,f(xi)} at his disposal, and makes a
sequence x=x1,x2,...,xm,xm+1,... with xm  Œ EX for all
m. The learner receives information about f incrementally
via the label sequence f(x1),...,f(xm),f(xm+1),... For any
m≥1, we define (with respect to x ,f) the mth version
space :

Fm(x,f) = {f̂   ŒF  : f̂ (x1)  = f(x1),...,f̂ (xm)  = f(xm)}

The version space at time m  is simply the class of all
concepts in F consistent with the first m  labels of f (with
respect to x). Fm(x,f) will serve as a characterization

of what is known to the learner at time m
about the target concept f.
We know from Mitchell [10] that the version space can be
economically represented and stored using the boundary
sets S-set (set of the most general hypotheses that are
more specific than the concepts in the version space), and
G-set (set of the most specific hypotheses that are more
general than the concepts in the version space)3. Each
new example (xm,f(xm)) provides new information if it
allows to reduce the version space by modifying, through
the CE algorithm, either one of the boundary sets.
Generally, the S-set and the G-set contain many elements,
and in worst cases, they can grow exponentially over
some sequences of examples [6].
A local preference bias is a choice strategy which,
at any time m, discards parts of the current version space,
generally in order to keep the boundary sets manageable.
In this way, it reduces the version space and acts as if
there had been some additional information that had
allowed to constrain the space of hypotheses. The next
section gives a closer look at this equivalence.

4 Bias and additional instances

We assume that the incremental learner maintains a
version space of potential concepts by keeping the
boundary sets. We assume further that the local preference
bias, if any, acts by removing elements of the S-set and/or
of the G-set, thus reducing the version space. Indeed, in so
doing, it removes from the version space all concepts or
hypotheses that are no longer more general than some
element of the S-set and more specific than some element
of the G-set. Besides, the resulting version space keeps its
consistency since, in this operation, no element of the
resulting S-set become more general than other elements
of the S-set or of the G-set, and vice-versa, no element of
the G-set can become more specific than other elements of
the G-set or of the S-set.

                                    
3 To be exact, a subset of the concept space can be
represented by its S-set and G-set if and only if it is closed
under the partial order of generality of the description
language and bounded. This is the case for most learning
tasks and concept representations and particularly when
the description language consists in the set of all
conjunctive expressions over a finite set of boolean
features. See [7] for more details.



To sum up, we now have a learning system that forgets
pieces of information during learning by discarding
potential hypotheses, but at the same time is optimal
since, in principle, by keeping the set of all the remaining
hypotheses, it could select the best among them. In that
way, we isolate the effect of forgetting without
intermingling with non optimality effects.

We are interested in studying the action of a local
preference bias (which has been shown to be equivalent to
the forgetting of potential hypotheses) along all possible
sequences of data. More specifically, we want to find what
type of local bias (or forgetting strategy) leads to no
ordering effects, that is for which all training sequences
conduct to the same resulting state.

Initial state

State after 
learning

n! sequences

Fig. 2. For n instances, there are n! possible training sequences. We look for conditions under which all sequences would result in
the same state.

What makes this problem difficult is that the action of the
local preference bias depends on which state the system is
in, and therefore depends on the training sequence
followed. This implies in turn that all training sequences
should be compared in order to find conditions on the local
bias.
A very simple but very important idea will allow to
circumvent this obstacle. It has three parts :

(i) forgetting hypotheses amounts to overconstrain
the search space
(ii) extra instances to an order independent learning
algorithm would result in constraining the search
space
(iii) if an incremental learner using a local bias b1
(leading to forgetting of hypotheses) could be made

equivalent to an order independent incremental
learner using bias b2, (leading to the consideration
of extra instances) then, finding conditions on the
local bias b1  would be the same as finding
conditions on the bias b2 , only this time irrelevant
of the training sequence (since b2 is used by an
order independent learner).  

(i) and (ii) allow to realize (iii) if it can be shown that the
effect of the local bias b1  is the same as the effect of
additional instances given by an oracle or bias b2  to an
order independent learner. In other words, if it can be
proved that any forgetting of hypothesis is equivalent to
observing extra instances, then, conditions on b1 will
amount to conditions on the addition of fictitious
instances to an order independent learning algorithm.
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Fig. 3. The equivalence needed to allow the study of conditions on the local bias. The effect of the local bias (forgetting of some
element of the S-set or G-set) is the same as the effect of additional instances made available to an order independent algorithm such
as the CE algorithm.

Of this powerful idea, we will make a theorem.
Theorem 1 : With each choice it makes, the local
preference bias acts as if additional examples had been
known to an order independent learner.

Proof    : (i) Case of the reduction of the S-set. For each
element gi of the S-set it is possible to find additional
fictitious examples which, if considered by the CE
algorithm, would lead to its elimination of the S-set. It
suffices to take the    positive       instances       covered        by    (or
more specific than)    all       g      j             such       that    (gj Œ S-set and j≠i)
and       not       covered       by       g      i             or       excluded       by       the        G-set   . As a
result, the CE algorithm would not have to modify the
G-set nor the gj such that (gj Œ  S-set and j≠i) and it
would generalize gi just enough to cover the new
instances. But since {gj / (gj Œ S-set and j≠i)}  is the S-
set of all past instances plus the new fictitious ones, gi
can only become more general than one or several gj,
and hence will be eliminated from the new S-set.
(ii) Case of the reduction of the G-set. In the same way,
in order to eliminate an element gi of the G-set through
the CE algorithm, it suffices to provide    the        negative
instances       covered       by       g      i             but       not       covered       by        the        other
elements       of       the        G-set       and       by       the        S-set   . As for (i) above,
the CE algorithm would then specialize gi just enough
to exclude the negative instances, and this would result
in an element of the G-set that would be more specific
than others, hence eliminated. PP

E1

E2 E3

E4

g1

g2

g3

Fig. 4. In this figure, {g1,g2,g3} are assumed to be the S-set
of the positive instances (E1,E2,E3). If E4 is observed, then
neither g1 nor g2 need to be modified. In fact {g1,g2} is the
S-set of all positive instances that belong to the gray area. g3
will need to be generalized just enough to cover E4, and this
will make it more general than g1 and g2, hence it will be
eliminated from the S-set.

The following example will help to understand this.
Let us assume that we present positive and negative
instances of scenes made of several objects each one
described by a conjunction of attribute-values, and that we
use three families of attributes, each one organized as a
tree with increasing order of generality toward the root.
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In the following, we show how an element of the S-set could be removed by observing more instances.
Let us suppose that we observe the following sequence of positive instances :

- E1: + {(large red square) & (small white lozenge)}

∅     S-set-1     = {(large red square) & (small white lozenge)}

- E2: + {(large red parallelogram) & (small blue equilateral)}

∅     S-set-2     = {(large red parallelogram) & (small col.-base polygon),

   (? R-Y-B polygon) & (? col.-base parallelogram)}

- E3: + {(large yellow right) & (small blue rectangle)}

∅     S-set-3     = {(large R-Y-B polygon) & (small col.-base polygon), ®  g 1

  (? R-Y-B parallelogram) & (? col.-base polygon), ®  g 2

  (? R-Y-B polygon) & (? col.-base parallelogram)} ®  g 3



Let us assume that at this point the local bias for some reasons decides to discard g3 from the S-set. This would result in
    S-set-4     = {(large R-Y-B polygon) & (small col.-base polygon),

   (? R-Y-B parallelogram) & (? col.-base polygon)}.

The very same S-set would be obtained if the learning algorithm was the CE algorithm that after E1, E2 and E3 observed a
new instance covered by g1 and by g2 and not by g3 such as :

- E4: + {(large yellow parallelogram) & (small black pentagon)}

5 Bias and order
independence

What we have seen so far is that a local preference bias
(forgetting hypotheses) can be made equivalent to another
bias that would throw in chosen extra instances for the
learner to observe. Thanks to this we can now tackle the
main topic of this paper, namely what kind of local
preference bias a learner can implement so as to stay order
independent. Indeed, instead of studying a strategy of
forgetting of hypotheses that depend on the current version
space, and therefore on the past history, we now study
addition of extra fictitious instances to the CE algorithm
that is order independent. In other words, we are now in a
position to specify conditions on the local preference bias
by stating to which extra instances it should amount to.
We assume that the teacher has a set of n examples EX,
and draws a sequence x   of these according to her
requirements.
Furthermore, we assume order independence, i.e. :

(1)   "x, Fn
LB(x,f)  = VSwb ,     where

VSwb is constant.

(We use the notation Fn
LB  to differentiate a learner

implementing a local bias (LB) from one that does not and
only implements the CE algorithm noted Fn(x ,f) in
section 3. VSwb means the version space obtained with
bias).
Theorem 2 : An incremental learner implementing a
local preference bias is order independent for a collection
EX of instances if the action of this bias is equivalent for
all possible sequences x of elements of EX to the supply
of the same set of additional instances.

Proof    : It follows immediately from theorem 1. PP

Now, we want to enlarge theorem 2, and give conditions
upon the set of fictitious examples that the local bias
acting as an oracle can provide to the learner so that the
learner be order independent and reach VSwb possibly
different fromVSnb.

The CE algorithm without bias would reach the state
VSnb (Version Space with no bias). If VSwb ≠ VSnb,
then it follows that extra instances should be provided to
the CE algorithm so that it reaches VSwb. Theorem 3
states which ones.

Initial state

State after 
learning
with bias

State after 
learning 

without bias

n! sequences
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S-set with bias : Swb

G

nb

wb

++ + ++

+

-- -- -

nb wb

Fig. 5. Which fictitious instances should the oracle corresponding to the local bias provide to the CE algorithm so that it get to the
version space VSwb ? Answering this question amounts to give conditions on the local bias that would conduct a learner using it to
VSwb irrespective of the training sequence followed. The answer is that fictitious positive instances should be drawn from the gray

array, whereas fictitious negative instances should be drawn from the stripped array. The '+' and '-' figure the real instances that
conduct the CE algorithm to the VSnb version space.

Let Snb and Gnb be respectively the S-set and the G-set
that the CE algorithm would obtain from the collection of
instances EX, and let Swb and Gwb be respectively  the
S-set and the G-set of VSwb in (1) (the version space
obtained on any sequence x  of EX by the learner
implementing the local preference bias).
Theorem 3 : For an incremental learner implementing a
local preference bias to be order independent for EX
leading to the version space C, it is necessary that the
action of this bias be equivalent to the supply of :
- a    set        of        fictitious        positive        instances    such that they
together with the real positive instances are covered and
bounded by Swb, and,

- a    set        of        fictitious        negative        instances     such that they
together with the real negative ones are excluded and
bounded by Gwb.

Proof    : Self-evident. PP

The next theorem is the application of theorem 3 to the
case where VSwb = Fn(EX,f) = VSnb, that is the case
where the local preference bias leads to the null global
preference bias, i.e. has no effect. Such a local bias can be
seen as eliminating options judiciously since the result
obtained after any sequence x of EX is the same as what
the CE algorithm would get on EX. In this case Snb and
Swb are one and the same as are Gnb and Gwb.

Theorem 4 : For an incremental learner implementing a
local preference bias leading to the same result as an
incremental learner without a local bias, it is necessary
that the action of this bias be equivalent to the supply of :
- a set of positive instances such that each one is covered
by elements of Snb, and ,

- a set of negative instances such that each one is covering
all elements of Gnb.

It is as if this local preference bias knew "in advance" the
collection EX of instances, and eliminated elements of the
S-set and of the G-set judiciously. This leads to the final
theorem.
Theorem 5 : It is not possible for a local deterministic
preference bias to lead to a null global preference bias for
any arbitrary collection EX of examples.

Proof    : Indeed, at each step, the action of the local bias
can only depend on the past training instances and the
current state. In order to lead to order independence it
would have to be equivalent to an oracle that provides
instances drawn from an array of the instance space that
can be defined only with respect to all the training
instances. This would mean that the learner, through its
preference bias, was always perfectly informed in
advance on the collection EX of examples held by the
teacher. PP



6 Conclusion

In this research, we are interested in the following
general question : given a collection of examples (or
data in general), how can a teacher, a priori, best put them
in sequence so that the learner, a deterministic incremental
learning system that does not ask questions during
learning, can acquire some target concept (or knowledge)?
This question, that corresponds to situations where the
teacher does not have the choice of the examples and can
not interpret the progress made by the student until the
end of the learning period, leads to the study of
incremental learning per se, independently of any
particular system. The solution to this general
interrogation could be of some use to several realistic
settings where a teacher has an incremental learning
system and a collection of data, or when data arrive
sequentially but time allows to keep them in small buffers
that can be ordered before being processed.
This framework is to be compared with the recent
surge of interest for "teaching strategies" that allow to
optimally teach a concept to a learner, thus providing
lower bounds on learnability complexity [5,17]. The
difference with the former framework is that in one case
the teacher can only play on the order of the sequence of
inputs, whether in the other case, the teacher chooses the
most informative ideal examples but does not look for the
best order (there are some exceptions such as [13]).
This paper has outlined some first results concerning order
sensitivity in supervised conceptual incremental learning.
The most important ones are :
(i) that order dependence is due non-optimality and/or to

forgetting of possibilities corresponding to a local
preference bias that heuristically selects the most
promising hypotheses,

(ii) that this bias can be seen as the result of additional
instances given to the learner (i.e. prior knowledge
built into the system),

(iii) that (ii) allows to replace the difficult problem of
determining the action of the local bias along different
sequences of instances by a problem of addition (which
is commutative, i.e. order independent) of instances to
an order independent learner, which leads to

(iv) that there are strong contingencies for an incremental
learner to be order independent on some collections of

instances (either the corresponding prior knowledge is
well-tailored to the future potential collections of
inputs, or there is no prior knowledge, thus no
reduction of storage and computational complexity).

In this study, we have given sufficient conditions only on
the fictitious examples that should be provided by an
oracle equivalent to a local preference bias. It would be
nice to obtain necessary conditions that state which
instances should necessarily be given by the oracle to get
order independence. We are currently working on this
question.
It should be clear that the problem of noisy data is of no
concern to us here. We characterize through the version
space what is known to the learner irrespective of the
quality of the data. Noise would become an important
issue if it was dependent on the ordering of the data (e.g. a
sensor equipment that would degrade with time).
Issues for future research include : are these results
extensible to more general learning situations (e.g.
unsupervised) ? given a local preference bias, how to
determine a good sequence ordering so as to best guide the
system towards the target knowledge ?
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