
Comparing and combining feature estimation methods for the
analysis of microarray data
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Abstract: Microarray data are expected to provide important clues about the role of the genome in the
cell organization and behavior. However, the parameters of interest are difficult to reliably estimate with
only a small number of array samples and poor sample distributions of gene expression levels. A number
of statistical and hypothesis testing methods have been adapted in recent years and brought to bear on
this problem, but the determination of which and how many genes are involved in a particular biological
process remains a stumbling block.
In this paper, we propose a kind of meta-approach that makes use of several methods for gene selection. We
show how to evaluate their independence and how to combine their results in order both to determine the
most likely number of relevant genes and to select them.
We illustrate this approach on a microarray data set devoted to the biological detection of low radiation
doses, and show how it greatly improves on previously reported results.
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1 Introduction

One essential issue commonly encountered in the analysis of microarray data is to decide which and how many
genes should be selected for further study because they are likely to be involved in the tested biological phe-
nomenon. In this setting, each reported gene expression level can be seen as a feature describing an experiment.
By measuring expression levels associated with two kinds of tissue (e.g. tumor or non-tumor) or two kinds of
condition (e.g. irradiated or not irradiated), one obtains labeled data sets that can be used to build diagnostic
classifiers, or more generally to help understand the underlying genetic processes at play. Unfortunately, the
number of replicates in these experiments is usually severely limited, in the order of a few tens as compared to
several thousands of genes. In this state of affairs, it is illusory to directly use automatic classification systems
to identify the relevant genes. Too many spurious regularities may put forward features that look like perfect
predictors of the class on the data set but are really uncorrelated with it. This is why one relies instead on feature
selection methods in order to detect the likely informative genes.

Numerous methods have been proposed in recent years for gene selection (see [3,6,9,11,14,16,17]). Most
of them assume that each gene expression level is in some way directly correlated to the class, and that the
expression level obeys simple statistical models (e.g. normal distribution). Equipped with these simplifying



assumptions, these methods are used to evaluate the relevance of each gene. In addition, one often relies on
hypothesis testing methods to set a threshold that separates the good candidate genes from the other ones.

However, the poor quality of the data together with their scarcity, render the estimation of the diverse
parameters of the model quite unreliable. There is therefore a recurrent concern about the minimum sample
size of the data set that would allow one to have confidence in the results (see [5,10]) and the question about
which genes and how many should be selected is still a daily burning issue in biology labs. Additionally, one
is confronted with the choice of a feature selection method among the many that exist. Why one should prefer
one method over another is often a difficult question, especially when the data do not completely satisfy the
requirements of orthodox statistics.

While nothing can replace the knowledge of the true nature of the data and, therefore, of the matching best
feature selection method, in the absence of such information, an alternative might be to combine the use of
several methods in the hope of benefiting from the qualities of each one. This is, however, more easily said than
done because, in contrast to supervised learning, one cannot evaluate directly the worth of a feature selection
method from the training set. In this paper, we show first how it is possible to estimate the information recovered
by a feature selection method, second, how to measure the correlation between two feature selection methods,
and third, how to combine the use of two methods to obtain more precise information about the number of
relevant genes and about their identity. Notice that the approach demonstrated here for pairs of methods can be
generalized to more than two methods.

Section 2 of the paper provides an overview of feature selection methods and presents in more details three
among them: SAM [16], ANOVA and RELIEF [7,15]. Section 3 shows how the determination of the relevant
genes and of their number is usually done. This is illustrated on a microarrray data set pertaining to the detection
of biological effects of low doses of radiation [12]. Next, the section 4 starts by a discussion about the notion of
correlation of different selection techniques and how it can be measured. A method for combining two methods
using a maximum likelihood approach is then presented in section 5, together with its application to the data
set introduced in section 3. Finally, section 6 sums up the main lines of the approach and describes vista offered
by this research.

2 Approaches and methods for feature selection

Feature selection methods aim at identifying features that are useful for classification purposes. Each pattern
is described by a set of d features (e.g. genes) and belongs to a class (generally, in bio-informatics, one of
two conditions, e.g. tumor or non-tumor). The training set provides examples of patterns together with their,
supposedly, true class. The problem is to identify the features that are the more informative with respect to the
classification of known, and, more importantly, yet to be observed, patterns. In addition, one can be interested
in a minimal set of features that allow the prediction of the class, or in discovering all the features involved,
even if they are redundant. The latter case is more representative of the concerns in microarray data analysis.

It is important to notice that features can be informative about the class independently of each other
(called linear correlation), or in combination (higher order correlation). Evidently, higher order correlations
are more difficult to discover than linear ones, and usually require more data. Feature selection methods in
bio-informatics are thus generally targeted at linear correlations between the attributes and the class.

Three broad classes of approaches exist for feature selection: the embedded, wrapper and filter methods
[2,4,8]. The first one consists in directly using the learning system on the training data in the hope that the
features useful for classification will naturally be selected or highlighted in some way by the system. For
instance, a decision tree classifier automatically provides these features in the decision nodes of the induced
tree. Unfortunately, such an approach is bound to report false discoveries in the case of very few data points



(also called patterns or samples) compared to the number of features. The so-called embedded methods are
therefore not feasible in microarray data analysis.

The wrapper methods assess subsets of variables according to their usefulness to a given predictor. Given a
classifier (e.g. a neural network) and a set of features F , a wrapper method searches the space of subsets of F ,
using cross-validation to compare the performance of the trained classifier on each subset. Intuitively, wrapper
methods have the advantage to select feature subsets that are well-tailored to maximize the final classifier
system performance, which is the overall goal. However, while the over-optimistic character of this approach
has recently been put into question [1,17], its main disadvantage is the huge computation time required to
effectively explore the set of subsets of F .

For this reason, one usually resorts to the filter methods. These are often considered as a preprocessing step,
independent of the choice of the predictor. Usually, they consider each feature independently and evaluate their
correlation with the class of the sample, or, in other words, their ability to discriminate between the classes.
Under certain independence and orthogonality assumptions, the variables thus detected as informative may be
optimal with respect to a given predictor. But, feature ranking is not necessarily used to build predictors. In
microarray data analysis, it is commonly used as a way to evaluate the degree to which each gene is involved
in the biological process under study. One significant advantage of this approach is its computational efficiency
since it only requires the calculation of d scores, and then a sorting operation.

In the rest of this paper, we focus on filter methods as methods for ranking genes.

2.1 Filter methods

We note l the number of patterns {xk, yk} defined on a space of d dimensions or features (e.g. the genes) xk,i

(i = 1, ..., d) and its class yk. Filter methods use an evaluation function, or scoring function, S(i) computed
from the values xk,i and yk, k = 1, ..., l to rank the features.

In the context of microarray data analysis, two families of methods in particular have been used: methods
based on statistical hypothesis testing and methods based on class separability measures.

The statistical hypothesis testing framework examines each feature separately and investigate whether the
value it take for the different classes differ significantly. This is expressed as deciding between two options:

H1 : The values of the feature differ significantly depending on the class
H0 : The values of the feature do not differ significantly

H0 is known as the null hypothesis and H1 as the alternative hypothesis. In order to make a decision,
one has to make statistical assumptions about the process generating the data. The most common assumption
associated with the null hypothesis is that the data distribution follows a normal law defined by a mean µ and
a standard deviation σ. The test can then be rephrased as deciding between the hypotheses:

H1 : E[xi] 6= µ(i)
H0 : E[xi] = µ(i)

To this end, the following test statistics is defined: q(i) = x̄(i)−µ(i)

σ(i)/
√

l
where x̄(i) is the observed mean of the

xk,i (k = 1, ..., l) values for feature i, and µ(i) is its supposed mean under hypothesis H0.

When the standard deviation σ(i) is supposed to be known, q(i) approximately follows a N (0, 1) probabil-
ity distribution, otherwise, if the standard deviation is unknown, q(i) is defined in terms of an estimate σ̂(i), and



it follows a t-distribution with l− 1 degrees of freedom4. In both cases, using tabulated confidence intervals, it
is easy to decide between H0 (q(i) falls in the acceptance interval) and H1 (it does not).

More generally, one can use the value of q(i) to evaluate the relevance of a feature i. The more q(i) is
remote from 0, the more the feature is unlikely to be ruled by the null hypothesis, and, therefore, the more it is
likely to be relevant.

A second scoring technique involves a measure of the class separability given each feature. Again, there
are methods relying on statistical assumption about the data distribution. This is the case, for instance, of
divergence measures like the Kullback-Leibler distance. The non-parametric methods, on the other hand, do
not use statistical assumptions. The RELIEF feature selection algorithm is an example of these methods.

In the following, we describe three methods commonly used in microarray data analysis: SAM [16] and
ANOVA which are parametric, and the BioRELIEF algorithm which is non-parametric.

2.2 ANOVA

Analysis of variance (ANOVA) can be used to evaluate the correlation of each feature to the class. Its principle
relies on a comparison of the variances of the values of each feature when the class of the data points is taken
into account, and when it is not. If these variances are significantly different, this indicates that the feature is
informative about the class. ANOVA is a parametric procedure that relies on the assumption that the feature
values are normally distributed. The F -test is used in evaluating the relevance of each attribute separately.

2.3 SAM

Significance Analysis of Microarrays (SAM) has been introduced by [16] as a statistical method adapted spe-
cifically for microarrays. Like ANOVA, it belongs to the family of statistical parametric tests and it relies on
the t-distribution and the t-test mentioned earlier in section 2. The score function is defined as:

S(i) =
x̄C1(i)− x̄C2(i)

σ(i) + s0

where i stands for a given gene, C1, and C2 for the two classes, x̄C1(i) and x̄C1(i) for the average levels
of expression for gene i in class C1 and C2, respectively. σ(i) is the standard deviation of the expression
measurements on the data. s0 is a normalization factor that tends to penalize genes which have a high S(i)
thanks to a low variance. It is also used as an implicit threshold for the false decovery rate (FDR).

2.4 Bio-RELIEF

BioRELIEF, developed by the authors for bio-informatics purposes5, is a variant of the RELIEF system [7,15]. It
is a feature estimation method that evaluates the features according to their apparent correlation with the class
to be predicted. The score of a feature is a function of the variation of its value within each class compared to
the variation between classes. However, it does not rely on statistical assumptions about the data distribution.
In addition, while the score is evaluated for each feature independently, the score function uses the distance

4 With a slight modification when the available number of samples in each class is not the same. One must then make a
test involving the F -distribution.

5 Available at: http://www.lri.fr/ chris/bioinfo/BioRelief



between patterns in the whole feature space, and that tends to highlight the correlated features. BioRELIEF is
thus well-fitted to microarrray data analysis, whereas, it is less suitable for the discovery of non redundant sets
of features. More details about the BioRELIEF algorithm can be found in [11].

2.5 Three questions in genes selection

The study of microarray data, characterized by very few replicates compared to the number of genes and a low
signal to noise ratio, induces three challenges. First, is there any useful information in the data? Second, given
a feature estimation method, how to determine a threshold for deciding which genes are likely to be relevant
and deserve further examination. This decision is often rather arbitrary or is based on informed guess that
comes from information that is foreign to data analysis standards. Unfortunately, the selected genes generally
incorporate false positives. The third question, then, relates to the determination of the most likely ratio of true
positives to the selected genes.

We illustrate these three questions on a microarray data analysis task related to the biological detection of
low radiation. We show how these questions were answered in a previous study. Sections 4 and 5 will then
presents a new technique to solve them.

3 A case study: biological detection of low radiation

In a work reported in [11,12], the microarray technology was used to measure the effects of low doses of
radiation. To analyze these effects, the expression level of most of the yeast genes (S. cerevisia) in cells grown
with (I) and without (NI) low doses of irradiation was monitored after an exposition of 20 hours. The relative
expression level of each gene was estimated with glass slide microarrays spotted with 6135 denatured DNA
sequences corresponding to all of the open reading frames (ORFs) of S. cerevisiae. These measured intensities
were then normalized to suppress the many experimental biases. The training data thus obtained consisted of
12 non treated cultures (class NI) and 6 treated ones (class I). Two feature selection methods were used to study
the microarray data: ANOVA and BioRELIEF.

The first step was to assess the reality of an effect of low radiation doses on the genomes of the cultures.
This was done by comparing the scores obtained for each gene on the training data with the scores that would be
obtained if there was no effect (null hypothesis). This null hypothesis was implemented by computing the mean
score of each gene (and its variance) when the class of the cultures were randomly permuted (2000 permutations
of the 12 NI and the 6 I labels were used to compute these averages). Figure 1 shows the two curves thus
obtained using BioRELIEF, one for the null hypothesis, surrounded by the 95% confidence intervals, and the
curve of the scores for the real labels. It is clear that the null hypothesis is very unlikely, and that, therefore,
there is an effect of low radiation exposure on the genomes of S. cerevisiae.

The second question concerns the number of genes one must retain. This is generally related to a tradeoff
between the number of false positives one is ready to accommodate and the number of true positives that one
risks to miss. One solution is to chose a priori a number n of genes to retain, using an educated guess. The
second approach is to chose a threshold based on confidence intervals. For instance one can choose to select
all genes that have less than a 5% probability to be ruled by the null hypothesis. A third solution consists in
controlling in some way the tradeoff.

In this manner, using the curve on figure 1, on can choose several thresholds yielding different ratio of true
positives to false positives in the selected pool of genes. For instance, if one selects the score 0.5 as a threshold,
it is observed that 35 genes have a higher score with the true labeled data, whereas none on average reach that



Figure 1. Left: these curves show the number of genes (on the y-axis) that have a score above the value indicated on the
x-axis (scores computed with BioRELIEF). The higher the score, the less genes have a score greater than or equal to it. The
null hypothesis curve is significantly lower than the curve obtained for the true labeled data. Right: Curve of the ratio of
the scores with the true labeled data and the mean score under the null hypothesis.

score under the null hypothesis, that is on the average of random permutations of the labels. The 35 genes thus
selected are therefore likely to be true positives. But there exists another interesting quantity that may help set
the tradeoff.

Figure 1 on the right shows the ratio between the score values obtained for the true labeled data, and the
values obtained under the null hypothesis. In a way, this is akin to a signal to noise ratio. This curve presents
a sharp increase for score values starting around 0.1. For a threshold of 0.3, the ratio is approximately equals
to 9, and the number of selected genes is 171. This means that one can expect approximately 171/9, or 19,
selected genes that are false positives out of the 171 selected ones.

One problem with these approaches is that they try to optimize, under some preference criterion, the tradeoff
between the number of false positives and the number of true positives, but they do not give the likely total
number of true positives, a quantity of central interest for the biologists. We next describe a way to compute
that number.

4 Measuring the correlation of feature selection methods

Confronted with uncertain results from one method, it is tempting to try to check them with results from another
method. In the case of the study on low doses of radiation, this was done by comparing the outputs of the SAM,
ANOVA and BioRELIEF methods. The idea was to take the top-ranked n (topn) genes from each method and
to measure the size of their intersection.

The intersection of the top500 from SAM and ANOVA is equal to 409, and much higher that the intersection
obtained with ANOVA and BioRELIEF, which is equal to 281. Which conclusions should be drawn from these
figures? Do they mean that, since SAM and ANOVA do seem to agree better than ANOVA and BioRELIEF,
they should be trusted more? How to interpret these intersection sizes?

The intersection can result from three causes:

– Randomness. Any two subsets randomly drawn from a given finite set of elements may have a non empty
intersection. In fact, the distribution probability over the size of this intersection can be computed from the



hypergeometric law:

H(d, n, k) =

(
n
k

)
·
(

d−n
n−k

)(
d
n

) (1)

where d is the total number of elements (genes), n the number of elements in each subset (the n genes
top-ranked by each method), and k the size of the observed intersection (the number of genes found in both
topn).
For instance, in the case of the intersection of two subsets of 500 elements randomly drawn from a set of
6135 elements, the most likely intersection size is 40 (H(6135, 500, 40) = 0.069), while the probability
for the case k ≥ 281 is less than 5.16 × 10−199. In other words, the intersection size of 281 observed for
ANOVA and BioRELIEF is extremely unlikely to have happen by chance alone.

– A priori correlation between the methods. If someone used two times the very same feature selection
method, he/she should not be surprised to get an intersection size of n for two topn rankings. This could
be entirely explained by the fact that, no matter the data, the “two” methods will always completely agree
on their rankings. There is certainly a full spectrum of a priori correlation between methods, and part of
the obtained intersection size must be attributable to this.

– The information (regularities) in the data that both methods are able to extract and agree on, beside their
a priori alignment, is the quantity of interest. This is that part of the intersection, these informative genes,
that we would like to identify.

As was mentioned, it is easy to compute the intersection size that can be expected from randomness alone.
The application to the low radiation microarray data was reported in [11,12]. We now show how to evaluate the
a priori correlation between two feature selection methods.

One way to measure the correlation of two ranking methods M1 and M2 is to compute the expected size of
the intersection of their topn if the data were random.

〈M1,M2〉 = ED(|topn(M1) ∩ topn(M2)|) (2)

where |.| is used to denote the cardinality of a set, and topn(M) denotes the n genes top-ranked by method M .
The expectation is defined over a distribution D of the data.

To ensure that the bias introduced by the data distribution is the same for random data sets and for the true
data set, a simple solution is to take the expectation over the original data set with random permutation of the
labels. Short of being able to analytically compute this distribution, it is possible to get an empirical estimate
of it from the measured intersection size on a number of random data sets obtained in that way.

Table 1 reports the results obtained for various values of n for the ANOVA and the BioRELIEF methods,
both for random data sets (mean value and standard-deviation), and for the true low radiation microarray data
set.

n 100 200 300 400 500 600 700 800 900 1000
µH0 21.2 54.2 93.2 135.4 180.3 226.9 276.3 326.2 378.9 432.5
σH0 8.0 16.9 24.5 32.3 41.8 50.3 57.7 64.1 71.3 78.0
k 37 93 149 210 281 339 406 470 535 605

Table 1. Intersection of two topn from ANOVA and BioRELIEF for various values of n, under the null hypothesis (µH0

and σH0 ) and observed for the true data set (k).



In figure 2, the curves corresponding to the observed intersection, the a priori correlation and the random
intersection are shown. The x-axis stands for the size n of the topn, while the y-axis stands for the ratio of the
intersection sizes to n (e.g. for n = 500, the observed intersection size is equal to 281, or .562 × 500, hence
the value .562).

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000

0.14

0.16

0.18

0.2

Figure 2. The x-axis stands for the number n of top-ranked features (e.g. genes) considered. The y-axis stands for the ratio
of the intersection size to n. Left: (Top curve) the intersection size for the true data. (Center curve): the mean intersection
size due to the a priori correlation between ANOVA and BioRELIEF (with some standard deviation bars). (Lower curve):
the intersection size explainable by randomness alone. Right: Curve of the relative difference, with respect to n, of the
observed intersection size k and the intersection size σH0 due to a priori correlation between ANOVA and BioRELIEF. The
curve focuses on the beginning of the curve, for n < 2000, since it is the more interesting part.

Equally instructive is the curve of figure 2 (right) showing the difference between the observed intersection
size k for the true data and the expected intersection size µH0 .

Two conclusions are warranted from these figures. First, there is indeed some specific information in the
true data, since the observed intersection size, k, is much higher than the expected value µH0 (in fact, k is
generally more than two standard-deviation away from the expected mean value). Second, it is possible to
determine the best n value, the one for which the measured intersection size on the true data exceeds the most
the expected mean value. Indeed, their relative difference is maximal for n ≈ 180 and n ≈ 540. This suggests
that it is best to consider the top180 or the top540 ranked genes by ANOVA on one hand and by BioRELIEF on
the other hand because they should contain the largest number of genes corresponding to information that is
specific to the data, and not explainable by randomness or by a priori correlation between the methods.

The next section shows how one could draw more information about the biological phenomenon under
study from the observed intersection size and the measured a priori correlation.

5 Combining feature selection methods

It is possible to propose a parametric generative model governing the intersection size distribution k observed
on the true data.

Let us suppose that d is the total number of features or genes, p is the number of (biologically) relevant
features (the ones that we wish to identify or, at least, that we would like to count), and n the number of top-



ranked features by both feature selection methods. Additionally, let us assume that both methods are equally
able to draw m relevant features from the existing p6. Figure 3 depicts the corresponding situation.

Figure 3. The sets involved in the generative model of the intersection size k.

The probability distribution of the intersection size k can then be computed from the following formula:

p(∩ = k|d, p, n,m, µH0) =
( p

m)( d−p
n−m) Pm

k+=2m−p ( m
k+)( p−m

m−k+)( n−m

k−k+)( d−n−(p−m)
n−m−(k−k+))

(d
n)·(d

n)

/
C(µH0) (3)

This seemingly complicated expression computes the number of ways one can get an intersection size of
k given d, p, n,m and the a priori correlation size µH0 divided by the total number of ways one can get two
drawings of n features among d. The denominator C(µH0) stands for a normalization factor associated with
the a priori correlation of the methods and is computed in the same way as the numerator. k+ stands for the part
of the intersection size k that correspond to relevant features. In the ideal case, every feature in the intersection
would be a relevant one.

From empirical measurements on the available data using two different feature selection methods, one can
get values for d, n, k and µH0 . It is then possible, using a maximum likelihood principle to compute the most
likely values for the quantities p and m. In this way, one can estimate the likely total number p of relevant
features among the d features, and to estimate as well the likely number of relevant features identified by the
methods among the n features they top-rank.

For instance, in the case of the low radiation doses data, the maximum likelihood principle, applied with
d = 6135, n = 500, µH0 = 181, plugged in the formula yields p = 420 ± 20 and m = 340 ± 20 as the most
likely numbers of total relevant genes and of the relevant genes among the top500 ranked by both methods.

Notice however that, while these values seem reasonable, they result from the simplifying assumption that
ANOVA and BioRELIEF were equally good on these data, i.e. that both returned the same number of relevant
genes in their n top-ranked genes. Furthermore, even if a combination of methods can provide more precise
information about the data than a single one, it cannot make up for their scarcity. Consequently, there remains a
rather large uncertainty about the estimated values. Nevertheless, there is now a firmer and less arbitrary basis
for the determination of the number of relevant genes as well as for assessing the number of relevant genes that
are recalled in the n top-ranked genes from each method.

6 It is straightforward to generalize our discussion to two methods drawing different numbers of features n1 and n2 and
identifying different numbers of relevant features m1 and m2. For lack of space, we provide the simplest formula in this
paper, the one corresponding to two supposedly equally powerful methods.



6 Conclusion

The recurrent questions in microarray data analysis include (i) whether there exists a measurable effect of the
experiment on the genome, (ii) the determination of the total number of genes involved if any, and (iii) their
identity. The usual approach is to use one feature selection technique and to rely on risky statistical assumptions
or on educated guesses to set a False Discovery Rate threshold.

Yang et al. in [18] recently presented a method that allows one to take into account two (or, potentially,
more) different genes evaluation methods. For this, they propose to represent each gene as a point in space
where each dimension stands for the evaluation by one method. They then compare each point (gene) with
an extreme point corresponding to a (possibly virtual) gene that would have the highest evaluation by each
method. This extreme point thus defines an axis in space that represents the correlation trend of the data points.
From the observation of the points that markedly differ from this axis, they are thus able to lower the rank of
the genes with discordant measurements. This work represents a step toward the combination and synthesis
of information coming from different evaluation methods. However, it is more aimed at pointing out genes
that do not exhibit the same overall correlation between measurements as the group all together, rather than
aimed at extracting more information from the data by combining the different view points of ranking methods.
In addition, their approach does not allow to measure the correlation between the methods in terms of the
information they extract from the data.

In this paper, we proposed instead a method that takes advantage of the information provided by a com-
bination of feature selection techniques to sharpen our estimates about the number of relevant genes and about
their identity.

By focusing on the intersection of the top-ranked genes by several techniques, we have developed a new
method to assess the degree of correlation between feature selection techniques. This permits to evaluate the
significance of the intersection size. A high intersection size is significant only up to the point that the feature
selection techniques used are reasonably a priori uncorrelated.

We have also shown how, from the observed intersection size, and the one expected from a priori correlation,
it is possible to get more accurate estimates of the total number of relevant genes, and of the ratio of true
positives returned by each method in their topn ranked genes. A further analysis, not reported here for lack of
space, is able to estimate the number of true positives within the intersection of two topn sets of genes.

We think that this study points to a very promising new approach where one can benefit from the com-
bination of several techniques. Our work is currently directed at (i) evaluating the approach on other sets of
microarray data, (ii) using other feature selection techniques beside ANOVA and BioRELIEF, and (iii) at in-
vestigating the mathematical properties of our proposed correlation measure between ranking methods. We
strongly believe that the approach presented here could be applied in other problems as well where elements
are ranked and where different ranking methods exist.
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