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Abstract : This paper is concerned with Relational Support Vector Machines,
at the intersection of Support Vector Machines (SVM) and Inductive Logic Pro-
gramming or Relational Learning. The so-called phase transition framework, pri-
marily developed for constraint satisfaction problems (CSP), has been extended
to relational learning, providing relevant insights into the limitations and difficul-
ties thereof. The goal of this paper is to examine relational SVMs and specifi-
cally Multiple Instance Kernels along the phase transition framework; a specific
CSP formalization for multiple instance problems, inspired by chemometry ap-
plications, is proposed. Ample empirical evidence based on a set of order pa-
rameters shows the existence of an unsatisfiability region for standard MIP-SVM
approaches. A statistical analysis for these findings is proposed, establishing a
lower bound of the generalization error depending on the satisfiability probabil-
ity.
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1 Introduction

This paper is concerned with Relational Support Vector Machines, at the intersection of
Support Vector Machines (SVM) (Vapnik, 1998) and Relational Learning (Muggleton
& De Raedt, 1994). After the so-called kernel trick, the extension of SVMs to rela-
tional representations relies on the design of specific kernels (see (Cuturi & Vert, 2004;
Girtner et al., 2006) among many others). Relational kernels thus achieve a particular
type of propositionalization (Kramer et al., 2001), mapping every relational example
in the problem domain onto a propositional space defined after the training examples.

However, relational representations intrinsically embed combinatorial issues. For in-
stance the covering test checking whether a relational hypothesis covers an example and
usually set to Plotkin’s f-subsumption can be cast as a constraint satisfaction problem
(CSP) (Botta et al., 2003). The fact that relational learning involves the resolution of
CSPs as a core routine has far-fetched consequences besides exponential (worst-case)
complexity.

Indeed in some domains the worst-case complexity is a poor measure of difficulty;
this was shown for CSPs since the early 90s (Cheeseman et al., 1991; Hogg et al.,
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1996). A more accurate perspective, referred to as Phase Transition paradigm, is pro-
vided by the statistical computational complexity (more on this in section 2.2). One
main result based on the extension of the Phase Transition paradigm to relational learn-
ing (Giordana & Saitta, 2000) is to show and explain the failure of existing relational
learners in some regions of the PT landscape (Botta et al., 2003).

The question investigated in this paper is whether relational SVMs avoid the limita-
tions of relational learners related to the PT region. This question is examined wrt a
particular relational setting, known as the multiple instance problem (MIP) (Dietterich
et al., 1997) and considered as an intermediate setting between pure relational and
pure propositional formalisms. While MIP-SVM approaches have been applied e.g. for
chemometry (Mahé et al., 2006) applications, it is unclear whether they improve over
standard relational algorithms on these applications. A related question is how, if MIP-
SVMs ever meet difficulties related to the phase transition region, these difficulties can
be amplified or alleviated within the propositionalization step.

This paper presents three contributions. Firstly, a set of order parameters is proposed
to describe the critical factors of difficulty for multiple instance learning. Secondly,
extensive and principled experiments designed after these parameters suggest that MIP-
SVMs suffer from the high bias of the hypothesis search space in some regions of the
MIP order parameter space. Thirdly, a statistical analysis of these findings is proposed,
relating the satisfiability of the multiple instance problem formalized as a CSP, to the
generalization error.

The paper is organized as follows. For the sake of self-containedness, the phase
transition framework is briefly introduced in Section 2 together with Inductive Logic
Programming and Relational Kernels. Section 3 describes the MIP setting and the goal
of the MIP-PT study. Section 4 reports on the experimental evidence gathered and the
paper ends with some perspective for further research.

2 State of the Art

After a brief discussion about the strengths, weaknesses and evolution of relational
learning, this section presents the Phase Transition framework. Multiple Instance prob-
lems are finally introduced.

2.1 Relational Learning and Inductive Logic Programming

The last few years have witnessed an increasing demand for machine learning in struc-
tured domains where the examples and the sought target concepts can hardly be ex-
pressed in a propositional representation. Typical examples of such domains are bio-
informatics, chemistry, or natural language processing.

The standard dilemma in relational learning is one of expressiveness and intelligi-
bility versus efficiency (Muggleton & De Raedt, 1994). Although Inductive Logic
Programming, at the crossroad of Machine Learning and Logic Programming, offers a
principled and elegant framework for seamlessly learning, checking and running the hy-
potheses learned, ILP algorithms hardly scale up with respect to the size of the dataset
and their defects such as noise. While these limitations prompted the development
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of hybrid logical-probabilistic inductive and deductive frameworks (Kersting & Raedt,
2001) an alternative was offered by the development of relational kernels, as will be
seen in section 2.3.

2.2 The Phase Transition Framework

A new combinatoric paradigm has been studied in the Constraint Satisfaction commu-
nity since the early 90s, motivated by computational complexity concerns: Where are
the really hard problems (Cheeseman et al., 1991) ? As noted in the introduction,
worst case complexity analysis poorly accounts for the fact that the empirical complex-
ity is low for most CSP instances (in spite of their exponential worst-case complexity).
These remarks led to developing the so-called phase transition framework (PT) (Hogg
et al., 1996), which considers the satisfiability and the resolution complexity of CSP
instances as random variables depending on order parameters of the problem instance
(e.g. constraint density and tightness).

The phase transition paradigm has been transported to relational machine learning
and inductive logic programming (ILP) by (Giordana & Saitta, 2000), motivated by the
fact that the covering test most used in ILP (Muggleton & De Raedt, 1994) is equivalent
to a CSP. This paradigm was instrumental in identifying and analyzing some limitations
of relational learning (Botta et al., 2003) or grammatical inference (Pernot et al., 2005)
algorithms.

The PT paradigm is deeply rooted in statistical physics: on one hand the average be-
havior of elements (particles or CSP instances) is governed by order parameters (e.g.
temperature or tightness); on the other hand, this average behavior presents abrupt tran-
sitions for some particular values of the order parameters (from ice to liquid, from
satisfiable to unsatisfiable). Particularly relevant to ML is the fact that in the landscape
defined after the order parameters, one can empirically identify the typical regimes
or behaviors of the algorithms, providing insights for the theoretical analysis thereof,
and/or for the design of new algorithms (Riickert et al., 2003).

2.3 Multiple Instance Learning and Relational Kernels

First introduced by Dietterich et al (Dietterich et al., 1997), Multiple Instance Learning
is viewed as the missing link between relational and propositional learning.

In this setting, each example is a bag of instances and the label of the example is
positive iff (at least) one of its instances satisfies the target concept.

The prototypical application illustrating the MIP setting is the musk problem where
examples are molecules. A molecule is described as a bag of instances, where each
instance corresponds to a different 3D conformation of the molecule (described as a d-
dimensional vector). The label of the molecule is positive iff there exists (at least) one
conformation in the bag responsible for the musky smell. It is negative iff none of its
instances satisfies the target concept; each instance in a negative bag can thus be turned
into a negative example (made of a single instance).

Finally, an example or bag of instances can be viewed as a set of literals built on a
single predicate symbol (conformation); equivalently, an example is a set of rows in a
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matrix where the columns are the arguments of the predicate. Let us assume in the rest
of this section that the instance space is R Formally, each example x; is a set of IV;
instances noted X; 1, ..., X; n, and every X; ; is a vector in R

Early MIP algorithms intensively relied on the so-called linearity bias assumption,
i.e. the fact that one conformation alone can explain the target. Under this assumption,
the extra complexity of MIP problems compared to pure propositional problems can
be viewed as: finding the one instance, in every positive bag, responsible for the label.
One possible approach, proposed in (Dietterich et al., 1997), is to search for a hyper-
rectangle containing at least one instance of every positive bag, and no instance of the
negative bags.

More recently, specific kernels were designed for MIP problems (Girtner et al., 2006;
Cuturi & Vert, 2004; Mahé et al., 2006; Kwok & Cheung, 2007). The basic idea is to
define the kernel K of two bags of instances as the average of the kernels k between

their instances:
N; Nj

11
K(xi %)) = 77 D D k(g Xj0) 1)

J k=1¢=1

Note that such kernels do not involve the linearity bias in any way. Indeed, the similarity
between two examples does not depend on whether both examples have at least an
instance in the target concept; rather, K (x;, x;) reflects the average similarity between
the instances in both bags. The implications of this remark are examined in the next
section.

3 Overview

This section describes the position of the problem considered in the paper; after for-
malizing the relationship between multiple instance learning and constraint satisfaction
problems, we propose a set of order parameters in order to support the analytical and
empirical study conducted in section 4.

3.1 Position of the problem

Considering the application domain of chemometry (Mahé et al., 2006), let the problem
be to predict whether a molecule is bio-active or bio-inactive. After the MIP formalism,
every molecule is represented as a set of patterns, e.g. a set of pharmacophore triangles.
Every triangle is described from its type (the type of its atoms, represented as a symbol
in some alphabet XJ) and a d-dimensional vector in R? (e.g. describing the electrical
and chemical properties of the triangle).

In all generality, the activity of a molecule might result from one among several
causes, i.e. the target concept is disjunctive. This aspect will be discarded in the rest of
the paper and left for further study. Assuming that there is a single cause for bio-activity,
nevertheless the activity of a molecule might result from the fact that it simultaneously
blocks several accepting sites in the biological environment, through different pharma-
cophore triangles. In such a case, the linearity bias does not hold: in order for the
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molecule to satisfy the target concept, it needs several instances with different types or
properties.

A toy example of MIP with no linearity bias is displayed on Fig. 1. The target concept
is the conjunction of four elementary concepts represented as balls; the positive example
includes 7 instances (noted +) such that: i/ all concept balls are visited (actually some
concept balls are visited several times); ii/ some instances do not belong to any concept
ball. The negative example includes 4 instances (noted —); while two of them visit a
concept ball, not all balls in the concept are visited.

® |+ "
®

®

Figure 1: A multiple instance problem with no linearity bias in IR?: the target con-
cept (four balls), one positive example (7 instances noted +), one negative example (5
instances noted —).

Let the kernel instance be defined as follows. For x; = (a;,%;) and x; = (a;, ¥;)
two instances in the instance space X X R4, k(x;,x;)is 0 if x; and x; do not bear the
same symbol in ¥ (a; # a;), and otherwise, it is defined as the polynomial or Gaussian
kernel of ¥; and ¥; (Mahé et al., 2006).

As noted in section 2.3, MIP kernels compute the instance kernel value averaged over
the pairs of example instances. The question thus is whether the existential information
(does a given example x place an instance in every ball of the target concept) can be
reconstructed from the average information available (the average distance between the
x instances and those of every training example x;, for x; ranging over the training set).

3.2 When MIP learning meets CSPs

In order to investigate the above question, one standard procedure is to generate artificial
problems, where each problem is made of a training set and a test set, and to compute the
test error of the classifier learned by the algorithm under examination from the training
set. The test error, averaged over a sample of artificial problems generated after a set
of parameter values, indeed measures the competence of the algorithm conditionally to
these parameter values (Botta et al., 2003).

A different approach is followed in the present paper, for the following reason. Our
goal is to examine how kernel tricks can be used to alleviate the specific difficulties of
relational learning; in relational terms, the question is about the quality of the propo-
sitionalization achieved through relational kernels. In other words, the focus is on the
representation (the capacity of the hypothesis search space defined after the MIP ker-
nel) instead of a particular algorithm (the quality of the best hypothesis retrieved by this
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algorithm in this search space).

Accordingly, the methodology we followed is based on the generation of artificial
problems composed of a training set £ = {(x1,¥1),.--,(Xn,yn)} and a test set 7
={(x'1,91)s -, (X'n,yl,)}. The training set £ induces a propositionalization of
the domain space, mapping every MIP example x on the n-dimensional real vector
®(x) = (K(x1,%),...,K(xn,x)). Let R, denote this propositional representation
based on the training set L.

The novelty of the proposed methodology is to handle the MIP learning problem as a
constraint satisfaction problem in the R representation.

Specifically, we examine whether there exists a linear form h defined on IR™, with

h(Z) =351 ;5% +b
such that h actually belongs to the search space explored by the MIP-SVM algorithms
and h separates the test examples mapped onto R, i.e. such that i/ o; > 0 for j =
1...n; and ii/ for each test example (x,y) the sign of h(P(x)) is y.

Find & = (a1,...a,) e R",be R
(Q1) subject to
yi (< a, @(x';) > +b) > 1, j=1...n
a;>0,1=1...n

In other words, the question examined is (Q1) does there exist a separating hyperplane
in the propositionalized representation R~ defined from the training set, which belongs
to the search space of MIP-SVMs and which correctly classifies the test set, as opposed
to, (Q2) does the separating hyperplane which would have been learned using MIP-
SVM algorithms from the training set, correctly classify the test set.

Clearly, (Q1) is much less constrained than (Q2), as one uses the fest examples (ie,
cheats...) in order to find the «; coefficients. The claim is that CSP (Q1) gives much
deeper insights into the quality of the propositionalization based on the kernel trick.
Formally, with inspiration from (Kearns & Li, 1993), we show that the satisfiability
probability (the percentage of times (Q1) succeeds) induces a lower bound on the gen-
eralization error reachable in the representation R ..

Let p denote the generalization error of the optimal linear classifier ~* defined on
R, and let 7 denote the fraction of (Q1) CSP defined after £ that are satisfiable over
N independent test sets.

Proposition
With the above notations, let n > 0. With probability at least 1 — exp(—2n? N,),

1

p>1—(7+n)w

Proof

The probability for a test sample 7 of n’ examples to include no example misclassified
by h*is (1 — p)™.

On the other hand, it is straightforward that if 7~ does not contain examples that are mis-
classified by h*, (Q1) succeeds for 7. Therefore the probability T for (Q1) to succeed
is greater than (1 — p)™ . Using Hoeffding’s inequality, the probability 7 for a test set
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T to satisfy Q1 can be bounded from 7:
Pr(t — 7| <n) > 1 —exp(—2n* N,)
It comes that with probability 1 — exp(—2n% N,)
(1—p)" <747

which concludes the proof.

3.3 The Order Parameters

As detailed in section 2.2, the Phase Transition framework defines the experimental
complexity and other relevant indicators of algorithmic efficiency as random variables
depending on the distribution of the problem instances. The distribution of the problems
is parametrized after some order parameters, capturing the main factors of difficulty of
the task.

Focusing on multiple-instance problems, three types of order parameters respectively
devoted to instances, target concept and examples, are defined.

e At the instance level, each instance I = (a, ¥) is formed of a symbol « drawn in
an alphabet 3, and a d-dimensional vector 7, in [0, 1]¢. By definition, the ¢ ball
of an instance I denoted B.(I) includes all instances I’ = (a’,7") such that I
and I’ bear the same symbol a = o’ and the distance |, — ¥, | on each coordinate

k of ¥ and ¢ is less than €.

o At the concept level, the target concept is characterized as the conjunction of P
elementary concepts C;, where C; is the ¢ ball centered on some target instance
I;.

o At the example level, a positive (respectively negative) example x; is character-
ized as a set of NT (resp. N ™) instances x;,1; example x; is positive iff each C;
in the target concept contains at least one instance of x;.

The instances of the target concept are uniformly drawn in [0, 1]%. The N instances
of positive examples are drawn as follows: P;. instances are drawn in the elemen-
tary concepts C;, ensuring that at least one instance is drawn in every C; (P;. > P);
N7 — P, other instances are uniformly drawn in [0, 1]¢. Likewise, the N~ instances of
negative examples involve N, instances drawn in the elementary concepts C;, ensuring
that nm (near-miss) C; are not visited (nm > 1); the other N~ — N, are randomly
drawn in [0, 1]¢.

Additionally, we introduce the notion of Universe concept to model the fact that the
example instances are never uniformly drawn. Like the target concept, the Universe
concept is made of @ balls with radius ; the example instances are either sampled in
the target concept balls or in the Universe concept balls.

By symmetry with the target concept, we similarly require that some balls of the
Universe concept be not visited; the number of Universe balls not visited is set to nmg.
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4 Experiments

After describing the experimental setting, this section reports on the results obtained
through an extensive campaign of tests, generating artificial multiple instance problems
and observing the percentage of satisfiable problems after the order parameters.

4.1 Experimental setting

The reported experiments consider fixed values of the order parameters related to the
instance space and the target concept.
The instance space is 3 x [0, 1]¢, with |[X| = 15, d = 30. The target concept is the
conjunction of P = 30 elementary concepts B (I;), where ¢ = .15 and I; is uniformly
drawn in [0, 1]3°. Every example is a bag of 100 instances (N T = N~ = 100). Every
training set £ includes 30 positive and 30 negative examples (n = 60); every test set 7°
includes 100 positive and 100 negative examples (n’ = 200).

The number P;. (resp. N;.) of instances in the positive (resp. negative) examples that
belong to the concept balls varies in [30, 100] (resp. [0, 100]).

The number nm of elementary concepts which are not visited by instances of negative
examples varies in [10, 25].

When instances are drawn in a Universe, the Universe is defined by 30 balls on which
15 are not visited by positive examples.

The list of order parameters together with their range of variations is given in Table
1.

|2 15 d 30

P 30 € 15

Nt N— 100 nm [10,25]

P, [30,100] Nie [10, 100]

n 60 (30 +,30 —) || n’ 200 (100 +, 100 —)
Q 30 nmy 15

Table 1: Order parameters for the MIP constraint satisfaction problem and their range
of variations

For each set of order parameter values, 40 independent MIP problems are constructed,
made of a training set £ and a test set 7. The instance kernel is a Gaussian kernel. The
associated CSP (Q1) (section 3.2), involving n’ = 200 constraints and n + 1 = 61
variables is constructed, solved using the GLPK package, and the average satisfiability
for a set of parameter values is monitored.

The goal of the experiments is to examine how the average satisfiability, and hence
the relevance of the MIP propositionalization, depends on the values of the order pa-
rameters, specifically focusing on the case where P;. = N,;.. Does the MIP proposi-
tionalization handle the case where the positive and negative examples have a similar
number of instances in the elementary concepts, and only differ by the distribution of
these instances among the elementary concepts ?
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For each experiment, the average satisfiability is displayed in the 2D plane P;., N;.
in black (resp. white) if the fraction of satisfiable CSPs is O (resp. 100%).

4.2 Sensitivity analysis wrt Near-miss

The first experiment reports the influence of the near-miss parameter nm, controlling
the number of elementary concepts which are not visited by instances of negative exam-
ples. As expected, a failure region centered on the diagonal ;. = N;. can be observed,
and the failure region increases as the near-miss parameter increases.

0 0 0
30 40 50 60 70 8 90 100 30 40 50 60 70 8 90 100 30 40 50 60 70 8 90 100
Pic Pic Pic

Figure 2: Fraction of satisfiable CSP (Q1) in plane P;., IV;. out of 40 runs. Influence of
the near-miss parameter: Left: nm = 10. Center: nm = 20. Right: nm = 25.

These results are explained as follows. The MIP propositionalization maps every ex-
ample x onto the n-dimensional vector ®(x)=(K (x1,x), -, K(xn,X)).

Let C (resp. c) denote the mean value of k(I, I’) for two instances I and I’ belonging
to the same elementary concept (resp. drawn uniformly in the instance space). These
values depend on both the instance kernel and the instance order parameters d and |%|,
which are constant in the experiments.

Let Zj' (respectively Z,”) denote the random variable defined as K (x;,%), where x;
is a positive (resp. negative) training example. Zj and Z; follow Gaussian distribu-
tions. Realizations of (Z;", Z;") obtained for positive and negative x, with legend +
(resp. x) for positive (resp. negative) examples x are graphically depicted on Fig. 3.

Kb(Xneg,X)

° Kbix:os‘x)
Figure 3: Distribution of (K (x4,x), K(x_,x)) for positive examples x (legend +)
and negative examples x (legend x), where P = 30, nm = 20, P;. = 50, N;. = 30.

With no difficulty, it is shown that when x; and x are positive, the expectation of
2
K(x;,x)is %(C’ —c¢)+cN +2_ Likewise, if both examples are negative, the expec-
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tation of K (x;,x) is NTI'ZC(C’ —¢c)+cN =2 Last, if both examples belong to different
classes, the expectation of K (x;,x) is ZelVie (C'— ¢) + e NTN ™.

So when P;. = Ny, the distribution of K (x;,x) does not depend on the class of x,
which clearly hinders the linear discrimination task.

In the general case (when P;. # N;.), both distributions differ by their average value
and by their variance. Still, as the clouds of positive and negative test examples in
the propositionalized representation R overlap, their linear separation is only made
possible as the number of training examples increases.

Note that although the near-miss parameter nm has no effect on the center of both dis-
tributions, it controls their variance. Specifically, when nm increases the IV;. instances
of the negative examples are concentrated within fewer elementary concepts, increas-
ing the variance of the propositionalization. The larger dispersion of the propositional
examples in turn adversely affects the satisfiability of the (Q1) CSP, as shown on Fig.
2.

4.3 Size of the training and test sets

As could have been expected, increasing the number of training examples n makes the
failure region to decrease (Fig. 4 (a)). Two interpretations are proposed for the fact that,
as usual, more training examples facilitate the learning task. On one hand — provided
that N,;. # P;. —, the distance between the centers of the propositionalized positive and
negative examples increases proportionally to /n, where n is the number of training
examples. On the other hand, the more training examples, the more likely one of them
will derive a propositional attribute with good discrimination power.

As could have been expected too, the size of the failure region increases with the size
of the test set (Fig. 4 (b)). Indeed, the number of constraints in (Q1) is the number of
test examples; the probability for the (Q1) CSP to be unsatisfiable thus increases with
the number of test examples.

4.4 Sensitivity analysis wrt P,. and N;.

In order to examine the impact of P;. and NN;., complementary experiments are per-
formed by varying the the number of instances in positive and negative training exam-
ples.

Firstly, the number of instances in positive (respectively, negative) training examples
is uniformly drawn in [P;. — A, P, + A] (resp. [Nje — A, N;. + A]), with A varying
in [0,10] while the number of instances in test examples is kept fixed.

When A increases, it is observed that the size of the failure region decreases (Fig. 5
(a)). The proposed explanation is the same as when the size of the training set increases
(second interpretation): the higher variance among the training examples makes it more
likely that one of them will derive a propositional attribute with good discrimination
power.
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(a) Influence of the size of the training set. Left: n = 20. Center: n = 60. Right: n = 180.
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(b) Influence of the size of the test set. Left: n’ = 100.Center: n’ = 200. Right: n’/ = 400.

Figure 4: Fraction of satisfiable CSP (Q1) in plane P;., N;. out of 40 runs.

Secondly, the number of instances for training examples is fixed while the number
of instances in positive (respectively, negative) test examples is uniformly drawn in
[Pie — A, Pie + A] (resp. [Nie — A, N, + A]), with A varying in [0,10]. Here, the
failure region increases with A (Fig. 5 (b)); this is explained as the higher variance
among the test examples makes it more likely to generate inconsistent constraints.

Finally, if the number of instances in all training and test examples varies, the overall
effect is to increase the failure region (Fig. 5 (c)): even though there are propositional
attributes with better discriminant power, there are more inconsistent constraints too,
and the percentage of satisfiable problems decreases.

4.5 Sensitivity Analysis wrt Example size

The impact of the irrelevant instances (not belonging to any elementary target concept)
is studied through increasing the example size N+ and N ~. Experimentally, the failure
region increases with N+ and N~ (Fig. 6). The interpretation proposed for this goes
as follows.

On one hand, the distance between positive and negative examples is increasingly due
to the influence of irrelevant instances as N1 and N~ increase. On the other hand, the
instances in positive and negative examples are in majority irrelevant when N and N~
increase; therefore the ratio signal to noise in the propositional representation decreases
and the failure region increases.

On the other hand, the effect of irrelevant instances is limited as they are far away from
each other, comparatively to relevant instances. Therefore increasing the number of
irrelevant instances does not much modify K (x,x’) on average, which explains why
the effect of N* and N~ appears to be moderate (Fig. 6).
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(c) Variation for both training and test examples.

Figure 5: Fraction of satisfiable CSP (Q1) in plane P;., IV;. out of 40 runs. Influence of
the variability A on P;. and N,.. Left: A =0. Center: A = 5. Right: A = 10.

0
30 40 50 60 70 8 90 100 30 40 50 60 70 8 90 100
Pic Pic Pic

Figure 6: Fraction of satisfiable CSP (Q1) in plane P;., IV;. out of 40 runs. Influence of
the size of the examples. Left: N = N~ = 100.Center: N™ = N~ = 200. Right:
Nt =N— =400.

4.6 Sensitivity Analysis wrt the Universe Concept

So far, we have supposed that the instances are either drawn from target concept balls
or are drawn uniformly outside of these balls.

This section describes how the results change — or more precisely do not change —
when the negative instances are in fact drawn in balls defining a Universe concept. It
would indeed be conceivable that a non uniform distribution of the negative instances
entails different outcomes in learning with MIP kernels.
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4.6.1 Effect of the size of the Universe

We suppose here that the Universe concept is made of () balls, and we measure the
effect on learnability of the value of Q.

Of course, a Universe made of a large number () of uniformly drawn balls should
not be different from a uniform Universe. Indeed, the failure region that is observed is
similar to the one obtained without Universe. However, when () = 30, corresponding
to a Universe of intermediate size, the failure region becomes larger than without a
Universe concept. The effect is even more pronounced for small values (Q=5) (Fig. 7).

0
30 40 50 60 70 8 90 100
Pic Pic Pic

Figure 7: Fraction of satisfiable CSP (Q1) in plane P;., IV, out of 40 runs. Influence of
the size ) of the Universe when nmy = 0. Left: (Q =5. Center: @ = 30. Right: Q) =
1000.

Indeed, as the instances are drawn in a Universe consisting of () concept balls, the

expectation of K (x;,x) when x and x; are positive becomes (C' —c) P %(% -

Liey2 4 N*z(Cﬁ +c(1 - ﬁ)) Likewise, if both examples are negative, the

expectation of K (x;,x) is (C' — c)P%Q(N%Q“ - %)2 + N’Q(Cﬁ + (1l —

Qﬁ)) Last, if both examples belong to different classes, the expectation of K (x;,x)

1 ——Qic ic t— ic ic -
is (C'— ) Ppig (Mg — Po)(Hghe — L) + NTN~(Coip + (1 - gip))-
Note that, as the size of the Universe approaches oo, these expressions tend to be the
same as when there is no Universe (section 4.2).
Thus, when N = N~ the absolute value of the gap between the expectation of Z f

for a positive example x and the expectation of Z;“ for a negative example x changes

from (C' — ¢)|P;e — Nic| B (without Universe) to (C' — ¢)| Py — Ny (A58 — L)
(with Universe). The ratio of both values follows the curves given by Fig. 8.

When the size of the Universe is huge, the observed values of P;. are large compared
to the poi, and the results are similar to those observed without a Universe concept.

When the Universe and the Target concept contain approximately the same number
of elements, the observed values of P;. are around [NV +QTPP and therefore the ratio is
smaller than 1. Thus the gap between the expectations is smaller with a Universe than
without, and consequently the failure region is larger.
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Ratio

Figure 8: Ratio of the difference between the expectation of Z;r for a positive example
x and the expectation of Z;r for a negative example x with a Universe by the same
difference without Universe. P =30, NT = 100. () takes three values: 5 (curve legends
with ’+”), 30 (curve legends with ’+’) and 1000 (simple curve).

Last, when the Universe contains few elements, most of the values of P;. are smaller
than N +2Q% (the point for which the ratio is 1) and the ratio is greater than 1. The
failure region is then smaller.

4.6.2 Effect of the near miss factor of the Universe

The number of near-miss nm (concept balls not visited by the negative instances) and
the number nmy (negative instances drawn from the Universe concept) have similar
effects. They do not change the expectation of ®(x) but change its variance: when
nmy increases, the variance of ®(x) increases too, and consequently less CSP are
satisfiable.

However, one can observe that nm has more effect for large values of P;. and N;.

(Fig. 2) while nmy makes the size of the failure region to increase for small values of
P;. and N;. (Fig. 9).

This is reasonable as nm deals with the P;. (resp. N,.) instances in the target concept
while nmy acts on the Nt — P;. (resp. N~ — N,.) instances drawn in the universe.

20 = 20 = 20
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Figure 9: Fraction of satisfiable CSP (Q1) in plane P;., N;. out of 40 runs. Influence of
the size of the near-miss factor of the Universe. Left: nmy = 0. Center: nmy = 15.
Right: nmy =25.
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4.6.3 Effect of the Universe on results given by other parameters

The introduction of the Universe does not change the global effect of other parameters.
However it increases strongly the effect due to the size of the examples (Fig. 10).

Contrary to the test without Universe (section 4.5), here the uninformative instances
are close enough on average to have an influence on the values taken by the kernel
K. Therefore, their effect can be easily observed on the curves: the size of the failure
region increases with the number of instances of examples.
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Figure 10: Fraction of satisfiable CSP (Q1) in plane P;., N;. out of 40 runs. Influence of
the size of the example using a Universe. Left: N™ = N~ =100. Center: N* = N~
=200. Right: Nt = N~ =400.

5 Discussion and Perspectives

The contribution of the paper is i/ to define a relaxed version of the MIP-SVM problem
as a Constraint Satisfaction Problem; ii/ to establish the link between the satisfiability
of this CSP, and the generalization error of the MIP problem; and iii/ to show that there
exists indeed a region in the order parameter landscape where the CSP is not satisfiable.

Clearly, some care must be exercised to interpret the limitations of the well-founded
MIP-SVM algorithms suggested by our experiments on artificial problems.

Still, the question of whether MIP-SVM algorithms enable to characterize existen-
tial properties as opposed to average properties makes sense in a relational perspective.
Actually, in some domains where the number and/or the diversity of the available exam-
ples are limited, as in the domain of chemometry, one might learn average properties,
these might do well on the test set, and still be poorly related to the target concept;
some evidence for the possibility of such a phenomenon was presented in (Botta et al.,
2003), where the test error could be 2% or lower although the concept learned was a
gross overgeneralization of the true target concept.

A research perspective opened by this work is based on the further investigation of
the CSP, hybridizing the CSP resolution and the kernel-based propositionalization.
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