
Statistical Computational Learning

Antoine Cornuejols, Frédéric Koriche and Richard Nock

Abstract Statistical computational learning is the branch of Machine Learning that
defines and analyzes the performance of learning algorithms using two metrics:
sample complexity and runtime complexity. This chapter is a short introduction to
this important area of research, geared toward the reader interested in developing
learning algorithms for AI models. We first provide the formal background about
statistical learning problems, captured by three basic ingredients: tasks, models and
loss functions.We next examine the PAC learning framework and its generalizations,
used to capture the concepts of statistical learnability and computational (or efficient)
learnability. Based on this framework, the conditions of statistical learnability are
investigated through the properties of uniform convergence and algorithmic stability.
We also survey several theoretical results and algorithms in the topics of concept
learning and convex learning, which take a central place in statistical computational
learning. We then conclude this survey with some trends and open questions in
learning AI models, by mainly focusing on sparse models, probabilistic models,
preference models and deep neural models.

1 Introduction

The cognitive ability of learning has long fascinated philosophers, psychologists,
statisticians, computer scientists and, of course, the parents of young children. In
Computer Science, Turing already speculated in Turing (1950) that learning would
be used to build machines that think. Since then, the field of Machine Learn-

A. Cornuejols (B)
AgroParisTech, Paris, France
e-mail: antoine.cornuejols@agroparistech.fr

F. Koriche
CRIL-CNRS and Université d’Artois, Lens, France
e-mail: frederic.koriche@cril.univ-artois.fr

R. Nock
NICTA, ANU College of Engineering and Computer Science, Canberra, Australia
e-mail: richard.nock@nicta.com.au

© Springer Nature Switzerland AG 2020
P. Marquis et al. (eds.), A Guided Tour of Artificial Intelligence Research,
https://doi.org/10.1007/978-3-030-06164-7_11

341

342 A. Cornuejols et al.

ing has flourished with the development of various learning frameworks, theories,
algorithms, and practical applications. In fact, we are nowadays surrounded by
learning-based computer technologies: our smartphones learn to recognize voice
commands, our digital cameras learn to identify faces, antispam softwares learn to
filter our email messages, and recommender systems learn our preferences about
daily consumer objects. Learning algorithms are also widely used in scientific appli-
cations such as astronomy, bioinformatics, medicine, economy and robotics.

Broadly speaking, the main concern of Machine Learning is to study how
computer algorithms can improve automatically through experience. Virtually all
machine learning activities involve a task we wish to solve, a set of candidate pre-
diction models for solving this task, and an objective function for measuring the
performance of a model at solving the task. In this setting, the term “experience”
refers to the information provided to the learning algorithm for assessing the quality
of candidate models, and ultimately, choosing the right one.

To illustrate these aspects with a concrete example, consider the common task
of classifying incoming email messages as either Spam or non-Spam. As electronic
messages usually contain a text in natural language, possibly coupled with graphical
elements and URL links, the problem of recognizing whether an incoming email is
a spam, or not, is far from easy. So, in order to facilitate the learning process, each
electronic message is associated with a set (or vector) of features, which capture
informative properties of the message, such as its size, its text-to-image ratio, the
presence of some domain names in the header, or the occurrence of certain regular
expressions in the content. Based on this feature representation, the task of spam
filtering is essentially to map email messages, described by their features, to the set
of labels {Spam, non−Spam}. Any such mapping is called hypothesis or model, and
the set of candidate models available to the learner is called the hypothesis class.
Since spam filtering is a binary classification task, various models can be used, such
as decision trees, separating hyperplanes, or Bayesian classifiers. Finally, we need
to assess the performance of the chosen model at filtering incoming messages. Here,
a natural objective function is the “zero-one” loss function, which simply counts the
number of mistakes made by the model in labeling messages.

Based on the three ingredients, tasks, models and objective functions, the goal of a
learning algorithm is essentially to find, in its hypothesis class, amodel that optimizes
some given objective function for the task at hand. To achieve this goal, the learner
has usually access to a training set, that is, a sequence of data instances upon which
the quality of candidate models can be measured. In spam filtering, the training set is
a pool of email messages, each described by its features, and labeled by Spam or by
non-Spam. Importantly, this training set captures only a small fragment of emails we
are expected to receive. So, the learning problem is not to find amodel that makes few
mistakes on the training set, but to extrapolate from observed instances a model that
accurately classifies new, incoming messages. In a nutshell, the key characteristic of
learning algorithms lies in their ability to generalize, that is, to predict from observed
data, the outcome of future data.

This chapter focuses on statistical computational learning, the branch ofMachine
Learning that lies at the intersection of statistical modeling and computational

Statistical Computational Learning 343

learning theory. In this setting, the generalization ability of learning algorithms is
defined and analyzed through two key metrics: sample complexity and runtime com-
plexity. Because statistical computational learning has long been recognized as the
mainstream theoretical framework for analyzing the performance of learning algo-
rithms, a detailed survey of this research field and its applications would require
a whole book! In fact, there are already excellent printed works on statistical and
computational learning, targeted to various audiences (Natarajan 1991; Kearns and
Vazirani 1994; Anthony and Biggs 1997; Vapnik 1998; Engel and Broeck 2001;
Hastie et al. 2009; DasGupta 2011; Kulkarni and Harman 2011; Webb and Copsey
2011; Devroye et al. 2013; James et al. 2013; Vapnik 2013; Sugiyama 2015). Fur-
thermore, many introductory books in Machine Learning are devoting a significant
part to statistical and/or computational learning theory (Mitchell 1997; Bishop 2006;
Alpaydin 2009; Flach 2012; Mohri et al. 2012; Murphy 2012; Shalev-Shwartz and
Ben-David 2014; Theodoridis 2015). So, this chapter is an elementary introduction
to statistical computational learning, geared toward readers who have familiar with
AI models, such as logical representations, geometric descriptions, and graphical
models.

We introduce in Sect. 2 the formal background about statistical learning problems.
The central notions of statistical learnability and computational learnability are
defined in Sect. 3. The related optimization principles and conditions of learnability
are examined in Sect. 4. With these theoretical notions in hand, the important topics
of concept learning and convex learning are surveyed in Sects. 5 and 6, respectively.
Finally, we conclude this chapter by discussing about some trends and open questions
in statistical learning with sparse models, probabilistic models, preference models,
and neural networks.

Notation. For the sake of clarity we shall use as much as possible the standard
notation in Machine Learning. Scalars and vectors are denoted by lowercase letters.
Sets, matrices, sequences, and distributions are denoted by uppercase letters. We
use boldface letters for vectors and matrices. For an integer n, we use [n] as an
abbreviation of {1, . . . , n}. Given a sequence S of m vectors (x1, . . . , xm), we use
xi, j to denote the j th element of xi . The inner product of two vectors x, y ∈ Rn is
denoted ⟨x, y⟩, and for any p ∈ [1,∞], the ℓp norm of x is denoted ∥x∥p. In other
words,

∥x∥p =
(

n∑

i=1

|xi |p
) 1

p

and in particular ∥x∥1 =
n∑

i=1

|xi | and ∥x∥∞ = max
i∈[n]

|xi |

We omit the subscript from the standard ℓ2 (Euclidean) norm when it is clear from
the context. The number of nonzero coordinates in x, often called ℓ0 pseudo-norm
of x, is denoted ∥x∥0. For a set of scalars X ⊆ R, the greatest lower bound of X
and the least upper bound of X are denoted inf X and sup X , respectively. Finally,
we shall assume throughout this chapter that the sample space of any probability
distribution is equipped with an implicit σ -algebra upon which the distribution is

344 A. Cornuejols et al.

defined. Given a probability distribution D over a sample space X ⊆ Rn , we use
x ∼ X to indicate that x is sampled according toD . Probabilities and expectations
over D are denoted P and E, respectively.

2 Statistical Learning Problems

In order to provide a clear definition of “statistical computational learning”, we need
to capture in a formal way the three aforementioned ingredients: tasks, models, and
objective functions. We start this section by discussing about these notions, and then
describe the statistical learning framework upon which the rest of chapter is built.

2.1 Tasks

As Machine Learning can be considered as a data-driven approach to problem solv-
ing, the notion of “task” is described through its data instances. Specifically, an
instance space is a (possibly infinite) subset Z of Rd . Each coordinate i ∈ [d] rep-
resents a distinct feature, and each instance z ∈ Z is a vector of d feature values.

Learning algorithms can solve a wide variety of tasks and, for this reason, it may
be useful to separate them into categories. A first separation, commonly advocated
in the Machine Learning literature, is to distinguish supervised learning tasks from
unsupervised ones.

Basically, supervised learning tasks capture applications for which we need to
predict the dependence of an outcome y ∈ Y on an observed information x ∈ X .
Here, Z is the Cartesian product X × Y of a domain set X and a target set Y .
Pairs of the form z = (x, y) are often referred to as labeled instances or examples.
The dimensions ofX andY are denoted n and p, respectively.A supervised learning
task is uni-dimensional if p = 1, and multi-dimensional if p > 1. Some of the most
common supervised learning tasks include the following:

• Classification: Y is a finite subset of Z, encoding a collection of labels. The
spam filtering task mentioned in the introduction of this chapter is an example of
binary classification problem, where Y is usually defined by {0, 1} or {−1,+1}.
Classification problems with more than two labels are often referred to as multi-
class or multi-nominal classification tasks.

• Regression:Y is a (typically bounded) subset ofR, capturing the domain of some
real-valued variable. A common example of regression task is to estimate the
revenue of a company, using historical accounting data.

• Multi-label classification: Y is a subset of {0, 1}p or {−1,+1}p for p > 1. Here,
the learner as access to p distinct labels, and the goal is to map each input vector
to a subset of these labels. A common example of multi-label classification in
document analysis is to “tag” incoming news according to their most relevant
topics (e.g. sports, entertainment, politics, science).

Statistical Computational Learning 345

• Multi-variate regression: By analogy with multi-label classification,Y is a subset
of Rp for p > 1. A well-studied example in ecological modeling is to simultane-
ously predict multiple target variables describing the condition or quality or plant
species.

• Structured prediction: This setting covers multi-dimensional prediction tasks in
which target variables are organized into some structure, such as a permutation,
a tree, or a bipartite graph. One example is parsing, the task of mapping a natu-
ral language sentence into a tree that predicts its grammatical structure. Another
example is label ranking, the task of mapping a feature vector (e.g. a user profile)
into a permutation of items (e.g. movies).

In contrast with supervised tasks, there is no target set Y in unsupervised tasks.
Here,Z is a setX of unlabeled instances. The overall goal of unsupervised learning
is to extract from observed data some regularities or patterns which are likely to be
found in future data. Two of the most popular unsupervised learning tasks are:

• k-Means clustering: The goal is to partition the instance spaceX into k clusters,
each identified by a centroid c in Z . Any incoming instance x is mapped to the
centroid c that minimizes the squared distance ∥x − c∥2.

• Density estimation: Here, the task is to find a probability distribution overX that
estimates the likeliness of incoming instances. This distribution can be viewed as
a maximum likelihood estimator of the data instances supplied to the learner.

2.2 Models

In order to solve a given task, the learner has access to a set of candidate hypotheses,
called the hypothesis class, and denotedH . From a general viewpoint, any hypoth-
esis in H can be viewed as a mapping h : X → Y †, where X is the set of input
observations, and Y † is a set of decisions. By analogy with learning tasks, hypothe-
ses can be separated into discriminative models and descriptive models. Basically,
discriminative models are dedicated to supervised learning tasks. Here, the decision
set Y † coincides with the target set Y, and hence, any class H of discriminative
models is a subset of the function space Y X. By contrast, descriptive models are
used to explain observations by extracting regularities or patterns. For those models,
the choice ofY † depends on how observations are explained. An important subclass
of descriptive models is the family of generative models, where Y † = [0, 1], and
H is a set of probability distributions overX . While generative models are mainly
devoted to unsupervised learning tasks, they may be applied to supervised learning
problems by first extracting from examples a probabilistic model that estimates the
underlying distribution, and then using this model for solving various tasks.

Some of the most common families of hypothesis classes which have been exam-
ined in Machine Learning include:

• Logical models:H is typically a set of functions of the form h : {0, 1}n → {0, 1}.
In other words, the domain of a logical model is a set of Boolean features, and

346 A. Cornuejols et al.

its range is a Boolean variable. Simple logical models are constructed using a
single logical operator; they include monomials (conjunctions of literals), clauses
(disjunctions of literals), andXOR clauses (exclusive-or of literals).More complex
functions are built using at least two logical operators. They include, among others,
DNF formulas (disjunctions of monomials), decision trees (disjunctions of mono-
mials organized into a tree), and decision lists (sets of monomials organized into
a preference list). The main learning task considered for logical models is binary
classification; this problem had long been considered as a central topic in com-
putational learning theory (Natarajan 1991; Anthony 2010; Kearns et al. 1994a;
Kearns andVazirani 1994). BesidesBoolean functions, logicalmodels investigated
in Machine Learning include relational models, defined over structured domain
spaces (Getoor and Taskar 2007; De Raedt 2008).

• Geometric models: H is a set of geometric objects or functions over X ⊆ Rn .
Arguably, the simplest hypothesis class in the family of geometric models is the
class of separating hyperplanes, also known as linear threshold functions, which
has been studied since the very start ofMachine Learning (Rosenblatt 1958). Here,
each hypothesis h : Rn → {−1,+1} is represented by a pair (w, b), wherew ∈ Rn

is a weight vector, and b ∈ R is a threshold value. The label assigned to any input
object x ∈ Rn is given by

h(x) =
{
+1 if ⟨w, x⟩ > b
−1 otherwise.

(1)

For zero-threshold or homogeneous linear functions, h is simply described by its
weight vector w, and defined by h(x) = sign ⟨w, x⟩. More complex geometric
objects may be defined using a weight vector w ∈ Rp, together with a feature
expansion mapping: φ : X → X †, where X † is an Euclidean or Hilbert space.
In this general setting,

h(x) =
{
+1 if ⟨w,φ(x)⟩ > b
−1 otherwise.

(2)

Linear functions and their feature expansions can be extended, in a natural way, to
regression tasks, multi-nominal classification tasks, and even multi-dimensional
prediction tasks. Besides hyperplanes,manifolds and distances take also an impor-
tant place in geometric learning. Namely, manifolds are used for extracting a low-
dimensional structure from a high-dimensional domain (Ma and Fu 2011), and
distance functions are commonly used in classification, regression, and clustering
(Aggarwal and Reddy 2013).

• Probabilistic models:H is a set of probability distributions over an instance space
Z ⊆ Rd . Of particular importance are probabilistic graphical models, which
encode high-dimensional probability distributions in a compact and intuitive way
(Koller and Friedman 2009; Murphy 2012). Here, each hypothesis is represented
by a pair (G, θ), where G is a graph over [d] nodes, and θ is a vector of parameters

Statistical Computational Learning 347

which together determine a probability distribution overZ . In directed graphical
models, also known as Bayesian networks (Pearl 1988; Darwiche 2009), G is a
directed acyclic graph, and θ is a set of conditional probability tables associated
with the nodes of G. In undirected graphical models (Wainwright and Jordan
2008), such as factor graphs andMarkov networks, G is an undirected graph and
θ is a vector of energy functions defined on the edges (for factor graphs) or the
cliques (for Markov networks) of the graph. Probabilistic graphical models can
be applied to a wide variety of learning tasks, including density estimation and
structured prediction.

• Preference models: H is a set of functions from X to Y , where X is a set of
objects, possibly coupledwith user profiles, andY is a partial or total ordering over
some reference set I . In preference learning (Fürnkranz and Hüllermeier 2010),
the family of models may be organized into different subclasses, depending on the
type of reference set I , and the type of preference relation Y . In object ranking
(Cohen et al. 1999),I is a set of objects inX , while in label ranking (Vembu and
Gärtner 2010), I is a set of labels associated with objects in X . Orthogonally,
total rankings are permutations over I , while partial rankings are pre-orderings
on I . For example, in the task of top-k object ranking commonly used in infor-
mation retrieval, the goal is to find a total ordering over the k best objects in X ,
while others objects are considered indifferent. Similarly, the task of bipartite
ranking is to separate objects inX in two categories: the most preferred objects,
and the less preferred ones (Clémençon and Vayatis 2007). Common preference
models advocated in the Machine Learning literature include the Placket-Luce
model (Plackett 1975), the Mallows model (Mallows 1957), and their extensions
(Fligner and Verducci 1986; Lebanon and Lafferty 2002; Meila and Chen 2010;
Lu and Boutilier 2014; Zhao et al. 2016).

• Neural models:H is a class of artificial neural networks, inspired from the struc-
ture of neural networks in the brain. A feedforward neural netwok is defined by
a labeled and weighted directed acyclic graph. Each node in the graph a simple
model of neuron, labeled by an activation function σ : R → R. Common scalar
functions include the sign function σ (a) = sign(a), the threshold function given
by (1), and the sigmoid function σ (a) = 1/1+exp(−a). Each edge in the graph, link-
ing the output of some neuron to the input of another neuron, is associated with
a weight that reflects the strength of the signal joining both neurons. The input
of a neuron is obtained by taking the weighted sum of the outputs of its incident
neurons. It is often assumed that neurons are organized in layers. Namely, the set
of nodes in the graph is partitioned into d + 1 subsets {V0, V1, . . . , Vd}, where V0

is the input layer, Vd is the output layer, and {V1, . . . , Vd−1} are the hidden layers.
The depth and width of the network are given by d and maxi |Vi |, respectively.
Based on this layer structure, the output of the layer Vt is given by:

xt = σ
(
W ⊤

t xt−1 + bt
)

where xt−1 is the input of the t th layer, σ is the (possibly rectified) activation
function for this layer,W t is the weight matrix capturing weighted edges between

348 A. Cornuejols et al.

the layers Vt−1 and Vt , and bt is a bias vector. The family of hypothesis classes of
artificial neural networks is very expressive: notably, Boolean functions of polyno-
mial circuit complexity can be represented by neural networks of polynomial size
(Parberry 1994). For this reason, neural networks have been a subject of extensive
research in statistical computational learning (Anthony and Barlett 1999; Anthony
2001; Du and Swamy 2013). Deep networks, characterized by more than two lay-
ers, have recently shown very impressive practical performance on a wide variety
of learning tasks (Goodfellow et al. 2016).

2.3 Objective Functions

InMachine Learning, the connexion between tasks andmodels is established through
objective or loss functions. Formally, a loss function is a map ℓ from H × Z to R
that penalizes a model h ∈ H picked by the learner when it observes the instance
z ∈ Z . In other words, ℓ(h, z) is the cost incurred by h on z. Some of the most
common loss functions include the following:

• Zero-one loss: Applied to binary classification, this function measures whether a
binary hypothesis is misclassifying a labeled instance. Formally, ℓ(h, (x, y)) = 1
if h(x) ̸= y, and ℓ(h, (x, y)) = 0 otherwise.

• Quadratic loss: This function, commonly used in regression tasks, measures
the squared distance between a predicted value and the target value. Namely,
ℓ(h, (x, y)) = (h(x) − y)2.

• Hinge loss: This function is a convex surrogate of the zero-one loss in linear
classification. For a zero-threshold separating hyperplane h, represented by its
weight vector w, the hinge loss of h on some example (x, y) is given by

ℓ(h, (x, y)) = max{0, 1 − y ⟨w, x⟩}

• Log-loss: Used in density estimation, this function measures the negative log-
likelihood of a probabilistic model h : X → [0, 1] given an incoming instance x.
Formally, ℓ(h, x) = − ln[h(x)].

• Conditional log-loss: As a direct extension of the log-loss, this function is often
used in structured prediction. Given a conditional probabilistic model h that maps
each input object x to a probability distribution h(· | x) over Y , the conditional
log-loss of h with respect to an example (x, y) is ℓ(h, (x, y)) = − ln[h(y | x)].

2.4 The Framework

The three components - tasks, models, and objective functions - are common to
many machine learning frameworks. The specificity of statistical learning lies in a

Statistical Computational Learning 349

fourth component that captures how data instances are generated. Here, it is assumed
that instances are independently and identically distributed (i.i.d.) according to some
probability distribution D over Z . Importantly, D is an arbitrary but hidden dis-
tribution: the incoming data can be generated according to any possible distribution
over the sample spaceZ , and the learning algorithm has no prior information about
this distribution. Instead, the learner has access to D through a procedure ex(D),
that runs in unit time, and on each call returns an instance z ∈ Z drawn randomly
and independently according to D . This procedure, referred to as example oracle,
is used to generate a training set, that is, a sequence S = (z1, . . . , zm) of instances
which are i.i.d. according to D .

Recall that in supervised learning, the instance space Z is the Cartesian product
of a domain setX and a target setY . So, in this setting,D is a joint distribution over
X × Y . Equivalently, this distribution can be viewed as the conditional probability
of observing the labeled object (x, y) given an unlabeled object x. For instance, in
the spam filtering task,D specifies the probability of encountering a spam message,
given a feature description of this message. In unsupervised learning, the learner
has only access to unlabeled observations, and its goal is essentially to predict the
data-generation model D using a limited number of calls to ex(D).

With these components in hand, we are now in position to describe the learn-
ing framework upon which the remaining sections are built. Formally, a statistical
learning problem is defined as follows:

Given:

• A task described by its instance space Z
• A hypothesis classH for Z
• A loss function ℓ : H × Z → R
• A distribution D accessible through the example oracle ex(D)

Find a hypothesis h ∈ H that minimizes

LD (h) = Ez∼ D [ℓ(h, z)] (3)

The objective function LD : H → R in (3) is called the true risk, or risk for short.
It measures the expected loss of a hypothesis h ∈ H with respect to the probability
distributionD overZ . Since the learner has only access to a sample of data instances
picked randomly according toD , we define the empirical risk of a hypothesis h with
respect to a training set S = (z1, . . . , zm) as:

LS(h) =
1
m

m∑

i=1

ℓ(h, zi) (4)

The main difficulty of statistical learning is to estimate the unknown true risk
according to the known empirical risk. The intimate relation between LD and LS

will be discussed in Sect. 4.

350 A. Cornuejols et al.

In practice, how do we analyze the performance of learning algorithms? There
is no simple answer to this question, since the instance space Z of most learning
problems is immense, or infinite. In practice, we typically have a limited “dataset”
for the task we wish to solve. If the dataset is already separated into a training
sample S and a test sample S′, then we just have to train our algorithm on S, and
to measure the empirical risk of its output model on S′. Yet, if the dataset does
not include a predefined test sample, we need to resort on a statistical validation
technique for assessing the performance of the learner. The following k-fold cross-
validation procedure is often applied: randomly partition the dataset S in k parts or
“folds” S1, . . . , Sk , pick one fold Sj for testing, train the algorithm on the comple-
mentary set S\Sj , and evaluate the resulting hypothesis h j on the test fold Sj . This
process is repeated k times, until each fold has been picked for testing once. The
cross-validation risk of the k hypotheses (h1, . . . , hk) returned by the algorithm is
given by

Lcv(h1, . . . , hk) =
1
k

k∑

j=1

LSj (h j)

3 Complexity Measures

As mentioned above, a statistical learning problem involves a task, described by its
instance space Z , a hypothesis class H for Z , a loss function ℓ, and a hidden
distribution D over Z which is only accessible through an example oracle ex(D).
The goal is to to find a model with good generalization performance, that is, a
hypothesis h ∈ H for which the true risk LD (h) is as small as possible. Based on this
formulation, there are twomain sources of complexity in the computational approach
to statistical learning. The first, sample complexity, measures the inherent difficulty
of generalizing from examples: it is the number of calls to ex(D)which are required
to find a good hypothesis. The second, runtime complexity, measures the amount of
computational steps required to find such a model. This section explores in more
detail both sources of complexity which are related to the concept of learnability.

3.1 Sample Complexity

As indicated above, sample complexity is the amount of information learning
requires. to find a “good” hypothesis. In order to capture this metric in a more
rigorous way, we need a formal model of learnability, that explains the ability of
algorithms to predict with respect to a hypothesis class, given access to training
samples.

Statistical Computational Learning 351

We begin with a conceptually simple notion of learnability, introduced by (Valiant
1984) and thoughtfully detailed in various textbooks about computational learning
theory (Natarajan 1991; Kearns and Vazirani 1994; Anthony and Biggs 1997). In
Probably Approximately Correct (PAC) learning, we are concerned with supervised
learning tasks, where the instance space Z is the product of a domain set X and a
target set Y . Originally, the PAC learning framework was defined for binary classi-
fication tasks, but we can easily extend the framework to other discriminative tasks,
using an appropriate loss function. The key assumption in PAC learning, often called
realizability condition, is to consider that the hypothesis class H includes at least
one model, say h∗, which correctly solves the task at hand. In other words, the out-
come y of any input object x is given by y = h∗(x). The realizability assumption
can be captured using a restricted example oracle ex(h∗,D) which returns, on each
call, a labeled example (x, h∗(x)), where x is drawn at random according to a hidden
distribution D over X .

A PAC learning algorithm takes as input a confidence parameter and a accuracy
parameter, denoted δ and ε, respectively. These parameters are use to control two
types failures which are inherent to learn from samples drawn at random according
to an unknown distribution D . The confidence parameter is necessary since there is
always a chance that the training set picked by the learner is not representative of
D . For example, the learner might be very unlucky by picking a sample consisting
of repeated draws of the same object in X , despite the fact that the distribution is
spread evenly over all the domain set X . The accuracy parameter is also necessary
since, even with a training set that is representative of D , some objects in X may
have a very low probability under D , and hence, the learning algorithm will not see
the target function’s behavior on those objects. So, the best we can hope is that the
likeliness of both types of failure can bemade arbitrary small, at the cost of increasing
the size of the training set.

Definition 1 (PAC Learning) Let Z = X × Y be an instance space, H be a
hypothesis class overZ , and ℓ : H × Z → R be a loss function. Then,H is PAC
learnable with respect to ℓ if there exist an algorithm learn with the following
property: for any hypothesis h∗ ∈ H , any distribution D over X , and any pair
(δ, ε) ∈ (0, 1)2, if learn is given inputs δ and ε, and access to ex(h∗,D), then
learn returns a hypothesis h ∈ H that satisfies LD (h) ≤ ε with probability 1 − δ.

In essence, PAC learning is a distribution-free model of statistical learning: for
any possible distribution D over the domain set X , the algorithm learnmust be
“approximately correct” with high probability. The sample complexity of learn is
the number of calls to the example oracle ex(h∗,D), that is, the numberm of training
examples required to output with confidence 1 − δ, an ε-accurate hypothesis. Ifm is
polynomial in 1/δ and 1/ε, then the hypothesis classH is called PAC learnable with
polynomial sample complexity.

Though conceptually elegant, the PAC learning framework relies on some real-
izability condition which is unrealistic in practice. Indeed in many, if not most, sta-
tistical learning problems, there is no well-defined target model that perfectly labels

352 A. Cornuejols et al.

incoming instances. For example, if we choose the class H of decision trees for
learning to filter spam messages, we are not guaranteed thatH will always include
a decision tree that accurately filters any possible electronic message. This realizabil-
ity assumption is relaxed in the agnostic PAC learning framework, which is general
enough to cover both supervised and unsupervised learning tasks involving arbitrary
distributions over their instance space (Haussler 1992). In essence, the agnostic PAC
learning framework follows the general setting of statistical learning, investigated
by (Vapnik, 1998, 2013).

Definition 2 (Agnostic PAC Learning) LetZ be an instance space,H be a hypoth-
esis class over Z , and ℓ : H × Z → R be a loss function. Then, H is agnostic
PAC learnablewith respect to ℓ if there exist an algorithm learnwith the following
property: for any distribution D over Z , and any (δ, ε) ∈ (0, 1)2, if learn is given
inputs δ and ε, and access to ex(D), then learn returns a hypothesis h ∈ H that
satisfies, with probability 1 − δ,

LD (h) − inf
h′∈H

LD (h′) ≤ ε (5)

Again, agnostic PAC learning is a distribution-free model: for every distribution
over the instance space, the learner is ask to find with high probability, a model
whose performance is near to that of the best model in its hypothesis class. It is
important to emphasize that, in the agnostic case, D is a arbitrary distribution over
the whole instance space Z , and ex(D) is a procedure that returns on each call an
instance z ∈ Z drawn independently at random according to D . In particular, if Z
is the instance space X × Y of a supervised learning task, then D is an arbitrary
joint distribution over X × Y , and ex(D) generates a sample (x, y) where y is
not determined by some hypothetical target function, but drawn at random with
probability D(y | x), whenever x is drawn at random with probability D(x).

3.2 Runtime Complexity

Based on the definition of agnostic PAC learnability, we might be tempted to char-
acterize the runtime complexity of a PAC algorithm learn as the amount of com-
putation it performs for returning with probability 1 − δ a hypothesis whose risk is
ε-close to the best possible risk. Yet, this measure is not really satisfactory, because
we have swept under the rug two key issues.

The first issue is related to the input of the learning algorithm A. Typically, the
runtime complexity of A does not only depend on the accuracy (ε) and confidence (δ)
parameters, but also on the dimension d of the learning task. A natural approach for
incorporating this parameter in the input of a statistical learning problem is consider
stratified classes parameterized by d. Formally, a stratified instance space is a set
Z =⋃d∈N Zd , where each Zd is a subset of Rd . A stratified hypothesis class is
defined in a similar way using H =⋃d∈N Hd . For example, if H is the class of

Statistical Computational Learning 353

hyperplanes of arbitrary dimension, thenH1 is the set of points in the line R,H2 is
the set of lines in the plane R2, H3 is the set of planes in the space R3, and so on.
By extension, a stratified class of loss functions is a set L = {ℓd}d∈N, where each
ℓd is a mappingHd × Zd → R. Based on these stratified classes, the generalization
ability of the algorithm learn is analyzed for every dimension d, every confidence
δ and accuracy ε, and every distribution D over Zd .

The second issue is related to the output of the learner. Specifically, the model
returned by a computer algorithm is not an abstract function h ∈ H , but a symbolic
representation of this mathematical object. From a computational viewpoint, this
representation would be of little use if an exponential amount of computational
resources was needed for inferring h(x) given some incoming instance x. So, to
alleviate this issue, each candidate hypothesis h ∈ H should be associated with a
representation for which the inference task is tractable. To this end, letR be a set of
finite strings defined over some alphabet &. Then,R is called a representation class
forH if there exist a surjective function fromR toH : each representation r ∈ R is
associatedwith exactly one hypothesis inH denoted h r , and each hypothesis h ∈ H
is associated with at least one representation r ∈ R such that h r = h. By extension,
R =⋃d∈N Rd is called a stratified representation class for H =⋃d∈N Hd if for
each dimension d, Rd is a representation class ofHd .

With these notions in hand, we are now in position to provide a formal model
of computationally efficient learnability. The next definition is essentially a variant
of the computational learning models presented in Kearns et al. (1994b), Shalev-
Shwartz and Ben-David (2014).

Definition 3 (Efficient Agnostic PACLearning) LetZ be a stratified instance space,
H be a stratified hypothesis class, andL be a stratified class of loss functions over
H and Z . In addition, let R be a stratified representation class for H . Then, H
is efficiently agnostic PAC learnable with respect to ℓ and R if both the following
conditions hold:

• Polynomial inference: There exist an algorithm eval such that for every positive
integer d, every representation r ∈ Rd , and every instance x ∈ Zd , if eval is
given inputs r and x, then eval returns h r(x) in time polynomial in d.

• Polynomial convergence: There exist an algorithm learn such that for every
positive integer d, every distribution D over Zd , and every (δ, ε) ∈ (0, 1)2, if
learn is given inputs d, δ and ε, and access to ex(D), then learnreturns in time
polynomial in d, 1/δ and 1/ε a representation r ∈ Rd that satisfies, with probability
1 − δ,

LD (h r) − inf
h′∈H d

LD (h′) ≤ ε

Conceptually, there is a fundamental difference between “statistical learnability”
specified in Definition 2, and “computational learnability” characterized by Defini-
tion 3. On the one hand, a hypothesis class H is statistically learnable if we can
find an algorithm that converges with high probability to the best hypothesis in H ,

354 A. Cornuejols et al.

using a finite number of calls to the example oracle. On the other hand, computa-
tional learnability imposes much stronger conditions. In order to establish thatH is
efficiently learnable, we must not only prove that H is tractable for inference, but
also find an algorithm that converges in probability to the best model, using a poly-
nomial amount of operations. Since each call to the example oracle takes unit time,
this directly implies thatH must be learnable with polynomial sample complexity.

This crucial difference will be illustrated in the forthcoming sections. Many
hypothesis classes of interest in the AI literature are learnable, even in the agnostic
case, if computational considerations are not taken into account. By contrast, very
few of them are efficiently learnable. An important class of statistical learning prob-
lems satisfying the property of efficient learnability is the family of convex learning
problems, examined in Sect. 6.

4 Learning as Optimization

Arguably, statistical learning shares strong similarities with optimization problems.
Based on the framework presented in Sect. 2.4, any statistical learning problem can be
viewed as a stochastic optimization problem, involving a decision variable h defined
over H , a random variable z specified by a probability distribution D over Z , and
a loss function ℓ : H × Z → R. The problem is to

minimize Ez∼ D [ℓ(h, z)] (6)

subject to h ∈ H

Recall that the expression Ez∼ D [ℓ(h, z)] is the true risk of h, denoted LD (h).
The key specificity - and difficulty - of statistical learning lies in the fact that this
objective function cannot be directly evaluated, since the underlying distribution D
is unknown. In other words, statistical learning is a black-box stochastic optimization
problem, for which the objective function can only be approximated using a limited
number of calls to an example oracle Ex(D). In the statistical learning literature,
various optimization principles have been proposed for replacing the unknown risk
function (6) with a known, evaluable objective function. In this section, we begin to
reviewseveral optimizationprinciples, andnext,we examine somegeneral conditions
for learnability which justify the use of these principles, and open the door to new
optimization strategies.

4.1 Optimization Principles

In statistical learning, the data generation processD is unknown, but we still do have
access to a training sample S, given explicitly by a dataset, or implicitly through

Statistical Computational Learning 355

an example oracle ex(D). Let S denote the set of all finite training sets over Z ,
that is, S =⋃m∈N Z m . The main idea behind most optimization principles in sta-
tistical learning is to replace the unknown objective function (6) defined over D ,
with an evaluable objective function fS defined for every training set S ∈ S . The
corresponding optimization problem is to

minimize fS(h) (7)

subject to h ∈ H

A learning rule is a map A : S → H that takes as input a training set S ∈ S ,
and returns as output a hypothesis A(S) ∈ H . We note in passing that any agnostic
PAC learning algorithm learn can be unambiguously specified by a learning rule
A and an integer-valued function m : (0, 1)2 → N. Namely, given as input a desired
confidence δ and a desired accuracy ε, the algorithm learn starts by picking a
training set S ∈ S by calling m(δ, ε) times the example oracle ex(D), and then
uses the learning rule A with S in order to produce a model A(S) ∈ H . Here,
m(δ, ε) captures the sample complexity of learn.

Based on these considerations, we say that a learning rule A : S → H solves
the optimization task (7) if for every input S ∈ S , the algorithm A returns as output
a hypothesis A(S) ∈ H satisfying fS(A(S)) = infh∈H fS(h). If in addition A runs
in time polynomial in the dimension d of the training instances, and the size m of
the training set S, then we say that A efficiently solves the optimization task (7).

4.1.1 Empirical Risk Minimization

Perhaps the most common approach for handling statistical learning problems is to
replace the true risk function LD by the empirical risk function LS that measures
the average loss of a model on the observed instances (Vapnik 1998; Zhang 2010).
Based on this principle, called Empirical Risk Minimization (ERM), the objective
function fS , defined for a training set S = (z1, . . . , zm), is given by

fS(h) =
1
m

m∑

i=1

ℓ(h, zi)] = LS(h) (8)

Correspondingly, any learning rule A : S → H that solves the optimization task
(7), using (8) as objective function, is called an empirical risk minimizer.

Borrowing the terminologyof stochastic optimization, theERMprinciple is equiv-
alent to the paradigmof sample average approximation, which aims at approximating
the expected value function by a sample average function (Birge andLouveaux2011).
Though this idea is conceptually simple, and statistically justified by the law of large
numbers, we must keep in mind that LS is only an estimator of LD , In practice, the
divergence between these objective functions depend on the choice of the hypoth-
esis class H and the available training set S. More precisely, the true risk of the

356 A. Cornuejols et al.

hypothesis A(S) returned by an empirical risk minimizer A can be decomposed as
the sum of two terms:

LD (A(S)) = inf
h∈H

LD (h)
︸ ︷︷ ︸
approximation

+
[
LD (A(S)) − inf

h∈H
LD (h)

]

︸ ︷︷ ︸
estimation

The approximation term measures the minimum risk achievable by any possible
model in the hypothesis classH . The estimation term evaluates the performance of
the hypothesis A(S) chosen by the learning rule A, relatively to the best model in
H . By minimizing the sum of both terms, we are faced with a dilemma between
approximation and estimation, called bias-complexity trade-off (Shalev-Shwartz and
Ben-David 2014). On the one hand, if we choose a very rich hypothesis classH , then
we decrease the approximation error by covering good models for the task at hand
but, at the same time, we increase the sample complexity required to guarantee that,
with high probability, training sets are representative of the underlying distribution
D . Thus, if the available training set S is too small for achieving this guarantee, the
objective function fS is likely to be a poor estimator of LD , and hence, the hypothesis
A(S) is prone to overfitting, by having an optimal performance on training data, but a
poor performance on test data.On the other hand, ifwe choose a very small hypothesis
class H , then we increase the odds that the available training set is representative,
but we also increase the approximation error bymissing goodmodels for the learning
task. So here, A(S) is prone to underfitting, by exhibiting a relatively stable, but low
performance, on both training data and test data.

4.1.2 Structural Risk Minimization

A natural idea to prevent overfitting situations is to penalize complex hypotheses,
in favor of simpler ones, whenever they share the same empirical risk. This idea
follows the well-known law of parsimony, according to which plurality should not
be posited without necessity. This law, called Occam’s razor after the philosopher
William of Ockham, gives precedence to simplicity: of two competing theories, the
simpler explanation of an entity is to be preferred.

In the paradigm of Structural Risk Minimization (SRM), due to Vapnik and
Chervonenkis (Vapnik and Chervonenkis 1974), it is assumed that the hypothesis
class H is associated with a stratified representation class R =⋃k∈N Rk , where
k is a structural parameter. For instance, if H is the class of all (zero-threshold)
separating hyperplanes over the domain set X ⊆ Rn , then its representation class
R ⊆ Rn can be stratified by the number k of nonzero weights. Namely, each stra-
tum Rk is the set of all weight vectors w ∈ Rn such that ∥w∥0 ≤ k. Given a model
h ∈ H , we use kh to denote the smallest integer k such that h = h r for at least one
representation r ∈ Rk . Based on these notions, the objective function is a mapping
of the form

Statistical Computational Learning 357

fS(h) = LS(h)+ penm,δ(kh) (9)

where penm,δ is a penalty function that depends on the size m of the training set,
and a confidence parameter δ ∈ (0, 1). Ideally, the penalty function should satisfy
the condition that for every confidence δ ∈ (0, 1) and every distribution D over the
instance space, with probability 1 − δ over the choice of S ∼ Dm , the following
bound holds for any hypothesis h ∈ H :

|LD (h) − LS(h)| ≤ penm,δ(kh) (10)

If this condition is indeed satisfied, then the estimation error of h is bounded by
LS(h)+ penm,δ(kh). In other words, the SRM principle handles the bias-complexity
trade-off by giving preference to simple hypotheses (with small penalty value) which
behave well on the training set.

A closely related paradigm is theMinimum Description Length (MDL) principle,
due to Rissanen (1983, 1985), and surveyed in detail by Grünwald (2007). Here,
it is assumed that the hypothesis class H is associated with a prefix-free represen-
tation class R. Namely, R is a prefix-free language if no representation r ∈ R is
the prefix of a distinct representation r ′ ∈ R. Notice that R can be viewed as a
stratified representation class

⋃
k∈N Rk , where Rk is the set of all representations,

or “codewords”, of length k. Based on this observation, hk measures the length of
the smallest codeword r such that h = h r , and it is simply denoted |h|. In the MDL
principle, the objective function is given by

fS(h) = LS(h)+ penm,δ(|h|) where penm,δ(|h|) =

√
|h| + ln 2

δ

2m
(11)

Notably, using the well-known Kraft’s inequality property of prefix-free languages,
it can be shown that the penalty function penm,δ(|h|) satisfies the condition (10). A
detailed proof is given in Shalev-Shwartz and Ben-David (2014).

To sum up, the MDL paradigm provides an elegant way to circumvent the pitfall
of overfitting in rich hypothesis classes, by penalizing models with their code length.
However, the MDL principle does not come without practical issues: a key difficulty
in the design of MDL-based learning algorithms is to find an appropriate prefix free
representation language for the hypothesis class at hand. Another important issue
is the runtime complexity of the optimization task. Notably, if the loss function ℓ

is convex, then ERM objective (8) remains convex, but the MDL objective (11)
is generally not convex due to the additional, non-convex, penalty term. Similar
computational issues arise for the more general SRM principle, for which penalty
functions in (9) are typically not convex.

358 A. Cornuejols et al.

4.1.3 Regularized Risk Minimization

For hypothesis classesH represented by linear functions, the predominant approach
to penalize complex models is through “regularizing” their representation. In this
setting, called Regularized Risk Minimization (RRM), the representation class of
H is a set of weight vectors, denoted here W . The objective function fS takes the
following form:

fS(h) = LS(h)+ reg(w) (12)

where w is the vector representation of h, and reg : W → R is a regularization term
that penalizes hypotheses according to the “complexity” of their vector representa-
tion. The complexity of vectors is typically measured using some norm overW . For
example, the regularizer reg(w) = λ ∥w∥22 due to Tikhonov (1943), penalizes weights
with large magnitudes. Alternatively, the regularizer reg(w) = λ ∥w∥1 gives prefer-
ence to parsimoniousmodels involving few nonzeroweights. In both expressions, the
parameter λ is a positive scalar that controls the regularization effect. We emphasize
that regularization functions are not always defined through norms. For instance, the
entropic regularizer reg(w) = λ

∑
i wi ln 1/wi is often used when the representation

class W is a probability simplex.
Obviously, the RRM paradigm shares strong similarities with the SRM principle:

both approaches aim at preventing overfitting issues by penalizing models which are
excessively complex for the task at hand. From a pragmatic viewpoint, there are, yet,
important differences related to the formulation of the statistical learning problem as
an optimization task, and the resolution of this optimization task. The regularization
term in RRM is often specified by a simple analytic form, while the penalty term in
SRM is typically much more difficult to characterize. For example, the penalty term
in (11) is defined using the code length |h| of amodel h ∈ H , which requires a prefix-
free representation language for H . Furthermore, most regularization terms in the
Machine Learning literature are convex functions. If, in addition, the representation
classW is convex, and the loss function is convex forW , then the optimization task
(7) using (12) as objective function is a convex optimization problem, which can be
efficiently solved by a wide variety of algorithms. As mentioned above, objective
functions for SRM and MDL principles typically lead to intractable optimization
tasks, due to the non-convex nature of penalty terms.

4.2 Conditions for Learnability

The overall goal of optimization principles in statistical learning is to reformulate the
black-box stochastic optimization task (6) as a standard, well-formed, optimization
task (7). If we put aside computational considerations, there is still an important
question that emerges from those principles: under which conditions an optimization
algorithm for (7) is guaranteed, with high probability, to solve (6)?

Statistical Computational Learning 359

In the statistical learning literature, various conditions for learnability have been
proposed, in order to characterize the key relationships between learning and opti-
mization (Vapnik 1998; Bousquet and Elisseeff 2002; Poffio et al. 2004;Mohammadi
and van de Geer 2005; Mukherjee et al. 2006; Watanabe 2009; Wibisono et al. 2009;
Shalev-Shwartz et al. 2010; Liu et al. 2017). We shall concentrate on two of them,
namely, uniform convergence and stability, which play a central role in statistical
learning theory.

To this end, we need some additional definitions. A rate function is a monotone
decreasing mapping ϵ: N → R that converges to 0 as m tends to infinite. With these
notions in hand, a learning rule A is called (universally) consistent with rate ϵcons if
for any m ∈ N and any distribution D over Z ,

ES∼ D m [LD (A(S))] − inf
h∈H

LD (h) ≤ϵcons (m)

The next result, derived from Shalev-Shwartz et al. (2010), Sridharan (2012),
states that consistency is a necessary and sufficient condition for achieving learn-
ability in the setting of bounded loss functions, that is, cost functions of the form
ℓ : H × Z → [0, b], where b is a positive scalar.

Theorem 1 (Learnability as Consistency) Let Z be an instance space, H be a
hypothesis class over Z , and ℓ : H × Z → [0, b] be a bounded loss function.
Then, H is (agnostic PAC) learnable with respect to ℓ if and only if there is a
learning rule A for H and a rate function ϵcons such that A is consistent with rate
ϵcons.

4.2.1 Uniform Convergence

For bounded loss functions, the statistical learning problem is to find a learning
rule that achieves a uniform rate for all distributions. To this point, it is well-known
that the empirical risk minimizer is consistent, provided that its hypothesis class
satisfies the uniform convergence property (Vapnik 1998, 2013). This key condition
for learnability can be formalized in the following way.

Definition 4 (Uniform Convergence) LetZ be an instance space,H be a hypothe-
sis class overZ , and ℓ : H × Z → R be a loss function. Then,H has the uniform
convergence property with respect to ℓ if for every distribution D over Z ,

lim
m→∞

ES∼ D m

[
sup
h∈H

|LD (h) − LS(h)|
]
= 0

Intuitively, the quantity suph∈H |LD (h) − LS(h)|measures the ability of a train-
ing set S to adequately represent the underlying distribution D for the task at hand.
Given an accuracy parameter ε, the training set S is called ε -representative if for all
hypotheses h ∈ H , we have |LD (h) − LS(h)| ≤ ε. Based on this notion, a hypoth-
esis class H has the uniform convergence property if there exist an integer-valued

360 A. Cornuejols et al.

function mH : (0, 1)2 → N such that, for every pair (δ, ε) ∈ (0, 1)2, and every dis-
tribution D over Z , if the example oracle ex(D) is called m ≥ mH (δ, ε) times,
then the resulting sample S ∈ Z m is ε-representative with probability 1 − δ. Based
on this reformulation of uniform convergence, the metric mH shares similarities
with the sample complexity of learning. Specifically, mH (δ, ε) is the amount of
information needed to ensure that, with probability 1 − δ, the training set S supplied
to the learner is ε-representative. Thus, if S is sufficiently large, then the empirical
risk of hypotheses is a faithful approximation of their true risk. The ERM principle
(8) can therefore be used without the need of penalty or regularization terms.

Theorem 2 (Learnability via Uniform Convergence) Let Z be an instance space,
H be a hypothesis class overZ , and ℓ : H × Z → [0, b] be a bounded loss func-
tion. IfH has the uniform convergence property with sample complexity mH (δ, ε),
then H is (agnostic PAC) learnable with sample complexity mH (δ, ε/2), and the
empirical risk minimizer is consistent.

Interestingly, for supervised classification and regression tasks, a converse result
also holds; namely,H is learnable if and only if it enjoys the uniform convergence
property (Blumer et al. 1989; Alon et al. 1997).

For rich hypothesis classes H , the sample complexity mH (δ, ε) required to
ensure uniform convergence can bemuch larger than the size of training sets available
in practice, and hence, the ERM rule is prone to overfitting. So, we need here aweaker
form of uniform convergence that justifies the use of alternative principles, such as
SRM. To this end, assume that H is associated with a stratified representation
class R =⋃k∈N Rk , and let Hk be the set of models represented by Rk . Then,
H is said to have the locally uniform convergence property if each Hk enjoys
the uniform convergence condition with sample complexity mH k . Intuitively, the
quantity mH k (δ, ε) is small for simple hypothesis classes Hk , and increases with
the structural parameter k. Given a sample size m, let εk(m, δ) be the minimum
value of ε ∈ (0, 1) for whichmH k (δ, ε) ≤ k. SinceHk has the uniform convergence
property, it follows that any training sample S ∼ Dm is εk(m, δ)-representative with
probability 1 − δ. Thus, the penalty rule

penm,δ(kh) = ε

(
m,

δ

2kh

)

satisfies the condition (10), which in turn implies that any structural risk minimizer
defined on this penalty rule is consistent. In a nutshell, the locally uniform conver-
gence property is a sufficient condition for learnability using the SRM paradigm.

4.2.2 Stability

In contrast with uniform convergence, a condition defined for hypothesis classes,
stability is a property related to learning rules. Intuitively, a learning algorithm is
characterized by an overfitting behavior when it overreacts to small fluctuations in

Statistical Computational Learning 361

the training data. Put another way, a learning rule A : S → H is stable if a small
change of the input S ∈ S will only induce a small change of the output h ∈ H .

The next definition of stability, often referred to as average replace-one stability,
is based on replacing one instance in the training set, with a new instance drawn at
random according to the underlying distribution. Given a sample S = (z1, . . . , zm)
and an instance z′ ∈ Z , let Szi←z′ = (z1, . . . , zi−1, z′, zi+1, . . . , zm) be the sequence
obtained by replacing the i th observation of S with the instance z′.

Definition 5 (Stability) Let Z be an instance space, H be a hypothesis class over
Z , and ℓ : H × Z → R be a loss function. Then, a learning rule A for H is (on
average replace-one) stable with rate ϵstable if for any distribution D over Z ,

1
m

∣∣∣∣∣

m∑

i=1

ES∼ D m ,(z′
1,...,z′

m)∼ D m

[
ℓ
(
A(Szi←z′

i
); z′

i

)
− ℓ
(
A(S); z′

i

)]
∣∣∣∣∣ ≤ϵstable (m)

For stable learning rules, the erm principle is not a necessary condition for ensur-
ing learnability. Instead, the learner is only required to converge toward the erm
minimizer when the number m of training instances tends to infinite. Formally, a
learning rule A is an Asymptotic Empirical Risk Minimizer (aerm) with rate ϵerm if
for any distribution D over Z ,

ES∼ D m

[
LS(A(S)) − inf

h∈H
LS(h)

]
≤ϵerm (m)

The next result, demonstrated in Shalev-Shwartz et al. (2010), establishes an
equivalence between statistical learnability and stable aerm rules.

Theorem 3 (Learnability via Stability) LetZ be an instance space,H be a hypoth-
esis class over Z , and ℓ : H × Z → [0, b] be a bounded loss function. Then H
is (agnostic PAC) learnable if and only if there exists a stable aerm for H . In par-
ticular, if a learning rule A is stable with rate ϵstable and aerm with rate ϵerm, then
A is consistent with rate

ϵcons (m) ≤ϵstable (m)+ ϵerm (m)

In a nutshell, uniform convergence and stability provide different mathematical
tools for building learning algorithms. If the hypothesis class H is endowed with
uniform convergence, then Empirical Risk Minimization is the paradigm of choice
for designing a learning rule with a good generalization ability. Yet, H may be
learnable even if it does not satisfy the uniform convergence property: in this case,
stable asymptotic empirical risk minimizers are guaranteed to work. For convex
learning problems described in Sect. 6, such learning rules can be constructed in a
simple and intuitive manner using the Regularized Risk Minimization principle.

362 A. Cornuejols et al.

5 Concept Learning

Basically, the problem of concept learning is to extrapolate, from a series of positive
and negative examples, a model that accurately separate future, unseen instances.
In other words, concept learning problems are binary classification tasks whose
objective function is the zero-one loss. The instance space Z is a set X × {0, 1}
of instances labeled as negative (0) or positive (1). A concept is a subset of X , or
equivalently, an indicator function h mapping X to {0, 1}. By extension, a concept
class is a subsetH ⊆ {0, 1}X . Recall that the zero-one loss function ℓ overH and
Z is given by:

ℓ(h; (x, y)) =
{
0 if h(x) = y
1 otherwise

Based on this objective function, the true risk and the empirical risk of a concept can
be viewed as errormeasures. Namely, LD (h) captures the probability that the concept
h is making a mistake on a labeled instance (x, y) drawn at random according toD .
LS(h) is the proportions of mistakes made by h on the training set S.

In this section, we begin to examine the Vapnik-Chervonenkis dimension of con-
cept classes, an important notion related to their sample complexity. We next survey
some theoretical results related to learning concepts in the realizable case and the
agnostic case.We close this section by briefly discussing about bagging and boosting,
two efficient techniques for learning combinations of models.

5.1 VC-Dimension

As explained in Sect. 4.2, the uniform convergence property is a sufficient condition
for establishing the learnability of hypothesis classes. In concept learning, this prop-
erty is intrinsically related to the classification power of the concept class, called
Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis 1974). Intuitively,
the VC-dimension ofH is the maximum size of any set of input objects which can
be labeled in any possible way using concepts taken from H . More formally, let
S = {x1, . . . , xm} ⊆ X be a set of m input objects, and let

HS = {(h(x1), . . . , h(xm) : h ∈ H }

be the restriction of H to S, that is, the set of functions from S to {0, 1} which can
be derived fromH . Then, S is called shattered byH ifHS is the set of all possible
Boolean functions from S to {0, 1}, that is, |HS| = 2|S|.

Definition 6 (VC-dimension) LetX be a set, andH be a set of functions fromX
to {0, 1}. Then, the VC-dimension ofH , denoted VCdim(H), is the maximal size

Statistical Computational Learning 363

Table 1 VC-dimension of some concept classes. A k-term DNF formula is a disjunction of at most
k monomials, and a k-DNF formula is a disjunction of monomials, with at most k literals per term
Concept class VCdim

Monotone monomials on {0, 1}n n

Homogeneous Linear functions on Rn n

Linear threshold functions on Rn n + 1

Feedforward linear threshold neural networks with E edges on Rn 6E log2 E

k-term DNF formulas on {0, 1}n ((kn)

k-DNF formulas on {0, 1}n ((nk)

Polynomial threshold functions of degree k on Rn (n+k
k

)

Arbitrary DNF formulas on {0, 1}n 2n

Arbitrary functions from Rn to {0, 1} ∞

of any set S ⊆ X that is shattered by H . If H can shatter sets of arbitrary large
size, then VCdim(H) = ∞.

We mention in passing that for a finite class H , a set S of instances cannot by
shattered byH if |H | < 2|S|. It follows that

VCdim(H) ≤ log2 |H |

Actually, the VC-dimension of finite concept classes H can be much smaller than
the logarithm of their size. Consider for example the class H = {h1, . . . , hn} of
Boolean functions from {0, 1}n → {0, 1}, defined as follows: hi (x) = 1 if and only
if all features in x ranging from i ton are set to 1.Clearly,H can shatter a singleton set
S = {x} using x1 = 0 and x2 = 1. Yet, H cannot shatter any pair of input objects
S = {x, x′}, because there is no pair of hypotheses H for which the first gives
the labeling (0, 1) and the second gives the opposite labeling (1, 0). So, the VC-
dimension ofH is 1, and since n can be arbitrary large, the gap betweenVCdim(H)

and log2 |H | may be arbitrary large.
The VC-dimension of several concept classes is reported on Table 1; the proofs

may be found in Anthony (2001, 2010). It is important to keep in mind that some
infinite classes, such as linear threshold functions and feedforward neural networks,
have a finite (and sometimes low) VC-dimension. The next theorem is a standard
result in statistical learning theory, and its proof can be found in various textbooks
(Anthony and Barlett 1999; Vapnik 2013; Shalev-Shwartz and Ben-David 2014).

Theorem 4 (Learnability of Concept Classes) Let H be a hypothesis class from
a domain X to {0, 1}, and let ℓ be the zero-one loss function. Then, then following
are equivalent:

• H has a finite VC-dimension.
• H has the uniform convergence property.
• H is agnostic PAC learnable.

364 A. Cornuejols et al.

In particular, ifVCdim(H) ≤ d, then the sample complexity ofH is inO(d+ln(1/δ)
ε2

).

An important notion related to the VC-dimension is the growth function of a
hypothesis class, which measures the number of different functions from a set S
of size m to {0, 1} that can be obtained by restricting H to S. Formally, the growth
function ofH , is the mapping)H : N → N given by

)H (m) = max
S⊆X :|S|=m

|HS|

Clearly, if the VC-dimension of H is d, then)H (m) = 2d for all m ≤ d. More
precisely, by Sauer’s Lemma (1972), the growth function of a concept class H for
which the VC-dimension is upper-bounded by d satisfies)H (m) ≤∑d

i=0

(m
i

)
for

all m ∈ N. In particular, when m is becoming larger than d, the growth function
is bounded by (em/d)d , that is,)H increases polynomially with m. As a direct
corollary of Theorem 4, if H has a finite VC-dimension, then H is agnostic PAC
learnable with a sample complexity that is logarithmic in)H .

5.2 Realizable Concept Learning

We first explore the PAC learnability of concept classes in the realizable setting,
where a target function in the concept class is labeling the instances supplied to the
learner. A useful algebraic tool in realizable PAC learning is the notion of version
space, due to Mitchell (1982). Given a concept class H and a training sample
S ⊆ X × {0, 1}, the version space of H with respect to S is given by

VS(H , S) = {h ∈ H | h(x) = y for all (x, y) ∈ S}

Let D denote the hidden distribution over X , and h∗ ∈ H denote the hidden
target concept. Given a desired accuracy ε ∈ (0, 1), the version space of H with
respect to S is called ε-exhausted if LD (h) ≤ ε for any hypothesis in VS(H , S).
In other words, all candidate concepts in an ε-exhausted version space have error at
most ε with respect to h∗. The following result, established in Blumer et al. (1989),
Haussler (1988), provides a relation between ε-exhausted version spaces and the
growth function of the concept class.

Theorem 5 Let H be a hypothesis class from a domain X to {0, 1}, and let ℓ be
the zero-one loss function. In addition, let D be a arbitrary distribution over X ,
and h∗ ∈ H be a target concept. Then for any ε ∈ (0, 1) and any training sample
S of size m drawn from D and labeled by h∗, the probability that VS(H , S) is not
ε-exhausted is at most

2)H (2m)2−εm/2

Statistical Computational Learning 365

As a corollary, if the size m of the training sample S is at least

4
ε

[
VCdim(H) log2

(
12
ε

)
+ log2

(
2
δ

)]
(13)

the version space is ε-exhausted with probability 1 − δ. Consequently, the con-
cept class H is PAC learnable with a sample complexity which is linear in the
VC-dimension of H . So, in order to show that logical concept classes of polyno-
mial VC-dimension are efficiently PAC learnable in the realizable case, we simply
need to devise an algorithm that returns in polynomial time an element in the version
space VS(H , S), given as input a training sample S of size at least (13). In other
words, realizable PAC learning is essentially a consistency (or feasibility) problem:
given a set of labeled instances, find a concept that correctly labels all instances.

For simple concept classes, the consistency problem is relatively straightforward.
For example, monomials and clauses may be learned using a standard variable elim-
ination algorithm (Mitchell 1982; Kearns et al. 1987). Parity functions represented
by XOR clauses can be learned using a closure algorithm (Helmbold et al. 1992).
For linear threshold functions, the feasibility problem can be cast as a standard
Linear Programming (LP) task, and hence, may be solved in polynomial time using
an LPmethod. Here, the incremental Perceptron algorithm (Rosenblatt 1958) is more
attractive in practice, but it is not generally efficient, because the number of its itera-
tions depends on the margin of the training set, which can be exponential in the input
dimension n (Anthony and Shawe-Taylor 1993).

Much less obvious is the consistency issue of expressive concept classes. On
the one hand, k-DNF are efficiently PAC learnable using a simple extension of the
variable elimination algorithm, and decision lists with clauses of size at most k can
be efficiently learned using Rivest’s algorithm (1987). On the other hand, for k-term
DNF formulas, the consistency problem is NP-hard (even for k = 3) (Pitt and Valiant
1988). Similar hardness results have been found for expressive classes of geometric
models: the consistency problem is NP-hard for k intersections of halfspaces (even
for k = 2) (Megiddo 1988; Blum and Rivest 1992).

The above negative results hold for realizable and proper PAC learning; the con-
cept returned by the learner must be a representation of a model in the hypothesis
class H . What about relaxing this condition? Namely, the computational issue of
finding a representation of a model in H that is consistent with the data may be
circumvented by allowing the learner to output in polynomial time a representation
of a model in some larger concept class H ′ that includes H . In this relaxed set-
ting, often referred to as improper or representation independent PAC learning, the
aforementioned class of k-term DNF formulas is efficiently learnable using k-CNF
formulas, simply because any disjunction of k monomials can be encoded into a
CNF expression, involving at most k literals per clause. Based on a similar encod-
ing, the class of decision trees with at most s leaves is efficiently learnable using
log2 s-decision lists (Blum 1992). In this representation independent setting, various
sub-exponential time algorithms have been found for learning expressive concepts,
such as DNF formulas or intersections of halfspaces, using polynomial threshold

366 A. Cornuejols et al.

representations (Klivans et al. 2004; Klivans and Servedio 2004). Yet, polynomial
time learning algorithms seem to be unachievable, under the standard assumption
that NP ̸= RP. Notably, several negative results indicate that DNF formulas are not
efficiently learnable in the representation independent setting (Alekhnovich et al.
2008; Daniely and Shalev-Shwartz 2016). Analogous results have been obtained for
intersections of halfspaces (Klivans and Sherstov 2009).

5.3 Agnostic Concept Learning

In the agnostic PAC learning setting, which does not make any assumption about
the labels of incoming instances, the growth function of a hypothesis class, and
hence its VC-dimension, may be used for assessing the sample complexity of binary
classification under the zero-one loss. The proof of the next result, related to the
sample complexity of uniform convergence, can be found in several textbooks (Mohri
et al. 2012; Shalev-Shwartz and Ben-David 2014).

Theorem 6 Let H be a hypothesis class from a domain X to {0, 1}, and let ℓ be
the zero-one loss function. Then, for every distribution D over X × {0, 1}, every
δ ∈ (0, 1) and every h ∈ H , with probability 1 − δ over the choice of S ∼ Dm,

|LD(h) − LS(h)| ≤
√
2 ln

∏
H (m)

m
+
√
ln 1/δ

2m

Thus, by combining the above result with Theorem 2, it follows that if H has a
finite VC-dimension, then H is agnostic PAC learnable with sample complexity

O
(
VCdim(H)+ ln 1/δ

ε2

)

As shown in Anthony and Barlett (1999), this asymptotic bound is tight: the O
function can be replacedwith the(function. Thus, the increase of sample complexity
is mainly related to the accuracy parameter: the dependence on 1/ε is nearly linear in
the realizable case, while it is quadratic in the agnostic case.

From a computational viewpoint, a sufficient condition for achieving efficient
agnostic PAC learnablity is a polynomial time empirical risk minimizer. Indeed, as
established in Theorem 2, the erm learning rule is statistically consistent whenever
H is endowed with the uniform convergence property. To this point, recall that real-
izable concept learning is a feasibility problem: find h ∈ H such that LS(h) = 0.
By contrast, agnostic concept learning is an optimization problem: minimize LS(h)
subject to h ∈ H . This crucial difference has drastic consequences on the computa-
tional learnability of concept classes. Notably, for simple classes such as monotone
monomials and linear threshold functions, the problem of finding a concept that
minimizes is empirical error on a training sample is NP-hard (Johnson and Preparata

Statistical Computational Learning 367

1978;Angluin andLaird 1987;Höffgen andSimon1992;Kearns andLi 1993;Kearns
et al. 1994b). Consequently, monotone monomials and linear threshold functions are
not efficiently agnostic PAC learnable, unless NP = RP.

In order to alleviate this computational barrier, a natural approach is to con-
sider approximation schemes: for a given approximation parameter α ≥ 1, an α-
approximation algorithm for H is a polynomial-time algorithm that takes as
input an arbitrary sample S, and returns as output a hypothesis h ∈ H , such that
LS(h) ≤ α infh′∈H LS(h′). In other words, the learner must find a concept for which
the empirical error is at most α times the empirical error of the erm rule. Unfor-
tunately, even under this relaxed setting, the problem of approximately minimizing
the empirical error of monotone monomials and linear threshold functions remain
NP-hard (Arora et al. 1997; Ben-David et al. 2003; Feldman et al. 2009).

Another approach, already suggested for realizable concept learning, is to allow
the learner to return hypotheses in some class H ′ that covers H . Yet, even in this
representation-independent setting, simple concept classes are hard to learn (under
the usual assumption that NP ̸= RP). For instance, monomials are not efficiently
agnostic PAC learnable using arbitrary disjunctions of conjunctions (Kearns et al.
1994b), or halfspaces (Feldman et al. 2012).

In a nutshell, concept learning is an area of stark contrast from the viewpoint of
runtime complexity. On the one hand, realizable concept learning is computationally
easy for relatively simple classes, but remains difficult formore expressive hypothesis
classes. On the other hand, the more “realistic” problem of agnostic concept learning
proves to be very hard, even for simple hypothesis classes.

5.4 Bagging and Boosting

As expressive models are difficult to learn, what about learning simple models and
combining them together, in order to produce more accurate predictors? Bagging
and boosting are two techniques which grew out of this pragmatic question and
became very practical tools for solving complex learning problems. The basic idea
underlying these techniques is to amplify the accuracy of weak learners. One can
think of a weak learner as an algorithm that uses a simple heuristic or “rule of thumb”
in order to produce a hypothesis whose performance is just slightly better than a pure
random guess. If such a weak learner can be implemented efficiently, then bagging
and boostingmay be used to iteratively combineweak hypotheses in order to produce
a gradually better predictor. Inwhat follows, we assume thatH is closed under linear
combinations, in order to produce model ensembles.

Introduced by Breiman (1996), the boostrap aggregating technique, abbreviated
as bagging, aims at creating diverse weak hypotheses on different random samples of
the training set S. As explained in Algorithm 1, These samples are taken uniformly
with replacement, and a simple averaging of weak hypotheses is used to produce the
final predictor. Bagging is particularly useful for learning combinations of decision
trees, trained with weak learners such as ID3 (Quinlan 1986) or C4.5 (Quinlan

368 A. Cornuejols et al.

1993, 1996). When applied to tree models, bagging is often coupled with another
idea, referred to as subspace sampling: at each iteration t ∈ [T], select uniformly at
random n′ ≤ n features from X and train the weak learner A (without pruning) on
the sample S′

t formed by the projection of St onto [n′]. This encourages the diversity in
the ensemble of weak hypotheses, and contributes to reduce the runtime of learning.
The resulting method, called random forests (Breiman 2001), is easily parallelizable,
and its performance in binary classification is comparable to that of Support Vector
Machines (Caruana et al. 2008).

The algorithmic paradigm of boosting, studied by Schapire (1990), consists in
gradually training diverse weak hypotheses by increasing the weight of previously
misclassified examples. This paradigm gave rise to a practically useful algorithm,
called AdaBoost (Freund and Schapire 1997), which is described in Algorithm 2.
For convenience, the set of labels is here given by Y = {−1,+1}. The AdaBoost
algorithm maintains a probability distribution pt over the training instances in S.
Namely, on each round t , AdaBoost starts by training the weak learner A on the
weighted dataset (St , pt) = {(x1, y1, pt,1), . . . , (xm, ym, pt,m)}. Next, the ensemble
learner chooses a weight wt for the weak hypothesis ht , and then, updates the dis-
tribution pt in a multiplicative way, where Zt is the partition constant. A common
choice for wt is

wt =
1
2
ln
(
1
εt

− 1
)

where εt =
∑

i∈[m],ht (xi)=yi

pi,t

Algorithm 1: Bagging
input: data set S ∈ Z m , number of rounds T , weak learner A : X m → H
for t = 1 to T do

build a sample St from S by drawing m instances with replacement
run A on St to find a concept ht in H

end
output: h(x) = 1

T

∑T
t=1 ht (x)

Algorithm 2: Boosting (AdaBoost)
input: data set S ∈ Z m , number of rounds T , weak learner A : X m → H
initialize: set pt,i = 1

m for each i ∈ [m]
for t = 1 to T do

run A on (St , pt) to find a concept ht in H
choose wt

set pt+1,i = 1
Zt

pt,i exp(−wtht (xi))
end
output: h(x) = sign

∑T
t=1 wtht (x)

Statistical Computational Learning 369

The AdaBoost algorithm benefits from a solid theoretical analysis, surveyed in
Schapire and Freund (2012). As a well-known result, let γ ∈ (0, 1), and suppose
that at each iteration of AdaBoost, the weak learner returns a hypothesis for which
εt ≤ 1/2 − γ . Then, the training error of the final hypothesis h returned by AdaBoost
after T iterations is at most:

LS(h) ≤ exp(−2γ 2T)

From a practical viewpoint, theAdaBoost algorithm has been successfully applied
to face recognition tasks, using axis-aligned rectangles for weak hypotheses (Viola
and Jones 2001). Moreover, the boosting technique is particularly suited for learning
linear combinations of decision rules (Cohen and Singer 1999; Schapire and Singer
1999), and alternating decision trees (Freund and Mason 1999).

Finally, it is important to emphasize that bagging and boosting are not limited to
binary classification tasks. Notably, bagging and random forests have been applied to
regression, density estimation, and manifold learning; a detailed survey can be found
in Criminisi et al. (2012). The boosting technique has been extended to multi-class
learning and ranking; see again (Schapire and Freund 2012) for a comprehensive
survey about this paradigm.

6 Convex Learning

Convex learning problems cover a wide variety of learning tasks, where the hypoth-
esis class is a convex set and the loss function is convex. Many, if not most, statistical
learning problems which are easy to solve fall into this category. In this section, we
first introduce somemathematical background about convex learning problems, next
we examine several well-known algorithms for solving these problems, and then, we
briefly survey the topic of Support Vector Machines which heavily relies on convex
learning techniques.

6.1 Convex Learning Problems

Let W be a subset of an Euclidean space or, more generally, a Hilbert space. The,
W is convex if for any two points u,w ∈ W , and any scalar λ ∈ (0, 1), the point
formed by the convex combination λu + (1 − λ)w belongs to W . By extension, a
function f : W → R is convex if its epigraph {(w, v) | v ≥ f (w)} is a convex set. For
the sake of simplicity, we shall consider in this section that every convex function
is differentiable, but most results can be extended to non-differentiable functions,
using the notion of sub-differential (Hiriart-Urrut and Lemaréchal 2004; Rockafellar
1970). A real-valued, differentiable function f on W is convex if and only if, for
any u,w ∈ W ,

370 A. Cornuejols et al.

f (u) − f (w) ≥ ⟨∇ f (w), u − w⟩

Families of convex learning problems are typically characterized in terms of three
basic properties about convex objectives. Namely, given a convex set W and three
positive scalars ρ, α, and β, a convex function f : W → R is

• ρ-Lipschitz if for any u,w ∈ W ,

| f (u) − f (w)| ≤ ρ ∥u − w∥

• α-strongly convex if for any u,w ∈ W ,

| f (u) − f (w)| ≥ ⟨∇ f (w), u − w⟩ + α

2
∥u − w∥2

• β-smooth if for any u,w ∈ W ,

| f (u) − f (w)| ≤ ⟨∇ f (w), u − w⟩ + β

2
∥u − w∥2

Furthermore, given a positive scalar B > 0, we say that a convex setW is B-bounded
if ∥w∥ ≤ B for all w ∈ W .

Informally, the Lipschitzness property indicates that f cannot change too fast. A
sufficient condition for this condition is that ∥∇ f (w)∥ ≤ ρ for every w ∈ W . The
properties of smoothness and strong convexity are related to the curvature of f .
Notably, if f is twice-differentiable, then f is β-smooth and α-strongly convex if
and only if, for every w ∈ W , we have:

α I ≼ ∇2 f (w) ≼ β I

where A ≼ B denotes the fact that A − B is positive semi-definite. In other words,
the scalars α and β can be viewed as bounds on the eigenvalues of f . The ratio α/β

is often referred to as the condition number of f .

Definition 7 (Convex Learning) Let Z be an instance space, H be a hypothesis
class overZ , and ℓ : H × Z → R be a loss function. Then, (Z ,H , ℓ) is a convex
learning problem if H is representable by a convex set W , and for every z ∈ Z ,
the function f : W → R given by f (w) = ℓ(hw, z) is convex.

For convex learning problems we shall replace the hypothesis class H by its
convex representation class W , and rewrite the loss function ℓ as a mapping from
W × Z . Based on the aforementioned properties about convex objectives, convex
learning problems may be declined into several categories, depending on whether
the loss function is Lipschitz, smooth, or strongly convex on its first argument.
For example, consider the binary classification task defined over an instance space
Z = X × {−1,+1}, a convex representation classW , and the hinge loss function:

Statistical Computational Learning 371

ℓ(w, (x, y)) = max(0, 1 − y ⟨w, x⟩)

If the domain set is the ball X = {x ∈ Rn : ∥x∥ ≤ ρ}, then ℓ is both convex and
ρ-Lipschitz. Now, if we use the same domain set, but replace the above loss function
with the regularized hinge loss function:

ℓ(w, (x, y)) = max(0, 1 − y ⟨w, x⟩)+ α

2
∥w∥2

it follows that ℓ is both α-strongly convex and ρ-Lipschitz. As another example,
consider the regression task defined over an instance space Z = X × R, a convex
representation class W , and the square loss function

ℓ(w, (x, y)) = (y − ⟨w, x⟩)2

If the domain set is the ball X = {x ∈ Rn : ∥x∥ ≤ β/2}, then ℓ is both convex and
β-smooth.

In general, a convex learning problem can be formulated as a stochastic convex
optimization task of the form:

minimize LD(w) = Ez∼ D [ℓ(w, z)] (14)

subject to w ∈ W

where W is a convex set, and ℓ is convex on its first argument. We may attempt to
solve this problem in a direct way, using a stochastic convex optimization algorithm
that calls the example oracle ex(D) for approximating the unknown objective LD .
Alternatively, we may rely on an indirect approach, by using learning rules defined
over the empirical risk LS , and described in Sect. 4. In the convex setting, Regularized
RiskMinimization rrm is the paradigm of choice. Recall here that the rrm rule finds
a minimizer of

1
m

m∑

i=1

ℓ(w, zi)+ reg(w)

subject to w ∈ W , where reg : W → R+ is a regularization function. Namely, the
next result established in Shalev-Shwartz et al. (2010), Shalev-Shwartz and Ben-
David (2014) indicates that the rrm rule is stable for various families of convex
learning problems.

Theorem 7 (Stability of rrm) Let (Z ,W , ℓ) be a convex learning problem. Then,

• the rrm rule with the Tikhonov regularizer reg(w) = λ ∥w∥2 is stable with rate
O(1/m), whenever ℓ is ρ-Lipschitz or β-smooth;

• the erm rule (i.e. rrm with no regularizer) is stable with rate O(1/m), whenever ℓ

is ρ-Lipschitz and α-strongly convex.

372 A. Cornuejols et al.

6.2 Convex Learning Algorithms

In the rich literature of convex optimization, a wide variety of algorithms have been
devised for solving convex learning problems in a computationally efficient way.
We invite the reader in browsing excellent textbooks about this active research topic
(Bertsekas 2015; Boyd and Vandenberghe 2004; Bubeck 2015; Kushner and Yin
2010; Nesterov 2004; Nemirovski 1995; Sra et al. 2012). Here, we shall focus on
three, well-studied convex learning algorithms: Stochastic Gradient Descent (SGD),
Stochastic Coodinate Descent (SCD), and Conditional Gradient (CG).

6.2.1 Stochastic Gradient Descent

Arguably, the Gradient Descent algorithm is one of the oldest strategy for solving
convex optimization problems (Cauchy 1847). The overall idea of this iterative opti-
mization algorithm is to improve the solution at each iteration, by taking a step along
the negative of the gradient of the function to be minimized at the current point. The
stochastic version of this algorithm, which dates back to Robbins andMonro (1951),
aims at minimizing a stochastic convex objective function of the form LD(w). To
this end, SGD takes at each iteration a step along a random direction, for which the
expectation is the negative of the gradient. As most convex learning problems are
defined over a restricted subset W of an Euclidean or Hilbert space, the adaptation
of SGD to statistical learning typically involves an additional projection step, which
maintains the current point in the set of feasible solutions W .

Algorithm 3: Stochastic Gradient Descent
input: scalar η, integer m
initialize: v1 = 0
for t = 1 to m do

wt = argminw∈W ∥w − vt∥2
zt = ex(D)
vt+1 = wt − η∇ℓ(wt , zt)

end
output: w = 1

m

∑m
t=1 wt

The resulting projected SGDmethod is described inAlgorithm3.At each iteration
t , the algorithm first projects the current point vt onto the representation class W ,
next calls the example oracle for an instance zt ∈ Z , and then performs a descent
step using the gradient of the loss ℓ(wt , zt). The convergence of SGD has been
analyzed for various families of objective functions (Kushner and Yin 2010; Rakhlin
et al. 2012; Shalev-Shwartz et al. 2009; Shalev-Shwartz and Ben-David 2014). The
next theorem summarizes convergence results obtained for the three aforementioned
families.

Statistical Computational Learning 373

Theorem 8 (Convergence of SGD) Let (Z ,W , ℓ) be a convex learning problem.
Then, the SGD algorithm is

• universally consistent with rate O(1/
√
m) if W is B-bounded, and ℓ is ρ-Lipschitz

or β-smooth.
• universally consistent with rate Õ(1/m) if W is B-bounded, and ℓ is both

ρ-Lipschitz and α-strongly convex.

In other words, stochastic convex optimization problems of the form (14) can be
solved directly, using the SGD algorithm, under reasonable assumptions about the
representation classW and the loss function ℓ. The choice of the learning parameter η
is governed by the input parameters defining the family of convex learning problems.
For example, if W is B-bounded and ℓ is ρ-Lipschitz then, using η = B/ρ

√
m, the

convergence rate is bounded by Bρ/
√
m. Thus, given a desired accuracy ε, it suffices

to run SGD m ≥ (Bρ/ε)2 iterations in order to achieve, in expectation, a risk that is
ε-close to the smallest risk.

TheGradient Descent method and its stochastic variant belong to the larger family
of Mirror Descent algorithms (Nemirovski and Yudin 1983; Beck and Teboulle
2003), used to solve regularized risk minimization tasks for various regularization
functions. The overall idea is to first map the current pointwt ∈ W into the dual space
W ∗, next perform the gradient descent in the dual space, and then mapping back the
resulting point into the primal space. Various instances of Mirror Descent schemes
include the Exponentiated Gradient algorithm (Kivinen and Warmuth 1997), and
the p-norm algorithms (Gentile 2003). One of key geometric properties of Mirror
Descent schemes is that an objective function f over the primal space W is α-
strongly convex with respect to a norm ∥·∥ if and only if its conjugate f ∗ on the dual
space W ∗ is 1/α-strongly smooth with respect to the dual norm ∥·∥∗ (Hiriart-Urrut
and Lemaréchal 2004; Kakade et al. 2012). This, together with standard properties of
Bregman divergences, typically yield convergence rates in O(1/

√
m) or Õ(1/m)which

depend only logarithmically in the dimension n of the data instances.

Algorithm 4: Stochastic Coordinate Descent
input: convex objective LS(w) = 1

m

∑m
i=1 ℓ(w, zi)

initialize: w1 = 0
for t = 1 to T do

Choose index j uniformly at random in [n]
Choose stepsize ηt

wt+1 = wt − ηt | ∂LS (wt)
∂ j |e j

end
output: w = wT

From a computational viewpoint, the main bottleneck of the SGD algorithm,
and more generally Mirror Descent algorithms, lies in the projection step, which
is a constrained convex optimization task performed at each iteration. For simple

374 A. Cornuejols et al.

representation classes W , such as balls, hypercubes, simplices, and permutahedra,
fast projection methods have been proposed (Duchi et al. 2008; Krichene et al. 2015;
Lim and Wright 2016). However, for more complex representation classes, such as
polyhedra described by linear inequalities, the projection step has to rely on general,
time-consuming, convex optimization techniques. Circumventing this bottleneck by
limiting the number of projection steps in gradient descent algorithms is a subject of
ongoing research (Mahdavi et al. 2012; Zhang et al. 2013).

6.2.2 Stochastic Coordinate Descent

When the hypothesis class is a simple convex object, characterized by separable or
block-separable constraints, the empirical risk can be minimized using the family
of Coordinate Descent algorithms (Censor and Zenios 1997; Tseng and Yun 2009;
Nesterov 2012;Wright 2015). Suchmethods, inspired from theGauss-Seidel method
for systems of linear equations, solve convex optimization tasks by iteratively per-
forming approximate minimization along coordinate directions.

Algorithm 4 describes a stochastic version of Coordinate Descent for minimizing
the empirical risk in the unconstrained setting (i.e. W = Rn). During each iteration
t , the SCD algorithm first selects a coordinate j uniformly at random, and indepen-
dently of past rounds, and then performs a descent according to the derivative of the
empirical risk LS(wt) of the current pointwt at coordinate j . As detailed for instance
inWright (2015), the SCD algorithmmay be easily upgraded to constrained versions
of this task, using block-separable constraints.

Algorithm 5: Conditional Gradient
input: convex objective LS(w) = 1

m

∑m
i=1 ℓ(w, zi)

initialize: w1 is an arbitrary point in W
for t = 1 to T do

vt = argminv∈W ⟨∇LS(wt), v⟩
Choose stepsize ηt ∈ (0, 1)
wt+1 = (1 − ηt)wt + ηtvt

end
output: w = wT

Although SCD is a fast, easy-to-implement algorithm, its convergence analysis
requires more sophisticated conditions on the feasible set and the objective function
(Nesterov 2012;Lu andXiao 2015;Wright 2015).Notably, if LS satisfies the property
of coordinate-wise Lipschitz continuity with constants {β j }nj=1, and the diameter of
W with respect to the norm

Statistical Computational Learning 375

∥w∥β =
√√√√

n∑

j=1

β jw2
j

is bounded by a constant R, then SCD converges to the empirical risk minimizer
with rate in O(1/T). Better convergence bounds may be achieved for strongly convex
loss functions, or using accelerated versions of SCD.

6.2.3 Conditional Gradient

For hypothesis classes characterized by complex geometric objects, such as cones or
polyhedra, convex projection tasks may be computationally demanding. Yet, linear
optimization tasks on those objects are typically much easier. Projection-free algo-
rithms constitute a family of convex optimization methods which replace the convex
projection step with a cheaper linear optimization step (Clarkson 2010; Hazan and
Kale 2012; Jaggi 2013; Lacoste-Julien and Jaggi 2015; Freund and Grigas 2016;
Garber and Hazan 2016; Garber andMeshi 2016). The prototypical algorithm in this
family is the Conditional Gradient method, due to Franck and Wolfe (1956).

Algorithm 5 describes a simple version of CG. During each iteration t , the algo-
rithm starts by performing a linear optimization step using the gradient of the empir-
ical risk of the current point wt , and then updates its solution according to a convex
combination of wt and the linear minimizer vt . Different strategies for choosing the
stepsize ηt at each iteration are reported in Jaggi (2013), Freund and Grigas (2016).
Apart from the choice of ηt , CG algorithms essentially differ in the linear optimiza-
tion step. For example, a local linear optimization step is suggested in Garber and
Hazan (2016), while step-away strategies are advocated in Lacoste-Julien and Jaggi
(2015), Garber and Meshi (2016).

Overall, the performance of CG is relatively similar to the performance of SGD
(forminimizing the empirical risk), using only linear optimization steps. Specifically,
the convergence rate of CG is in

• O(1/
√
T) if W is B-bounded, and LS is ρ-Lipschitz,

• Õ(1/T) if W is B-bounded, and LS is both ρ-Lipschitz and α-strongly convex.

We mention in passing that the SGD, SCD, and SG algorithms enjoy convergence
rates in O(exp(−T))when the objective function is both smooth and strongly convex
(Bubeck 2015).

6.3 Support Vector Machines

Asmentioned in the introduction of this section, convex learning problems constitute
the most important family of statistical learning problems where efficient learnabil-
ity results can be obtained. It is therefore not surprising that convex learning algo-

376 A. Cornuejols et al.

rithms have been successfully applied to a wide range of statistical learning tasks.
In particular, the key tools for handling high-dimensional learning tasks are Sup-
port Vector Machines (SVMs). Introduced in Boser et al. (1992), SVMs have been
a subject of extensive research, both from a theoretical and practical perspective,
summarized in various textbooks (Vapnik 1998; Cristianini and Shawe-Taylor 2000;
Schölkopf and Smola 2002; Steinwart and Christmann 2008).

Support Vector Machines are defined through two main notions: margins and
kernels. Intuitively, the notion of margin is related to the sample complexity of learn-
ing: SVMs handle high-dimensional hypothesis classes by searching for largemargin
separators. A linear classifier separates a training set with a large margin if it does not
only classify examples in a correct way, but also pushes those examples away from
the separating hyperplane. Thus, a large margin classifier may require a small sample
complexity, even if the dimensionality of the feature space is high, or even infinite.
The notion of kernel is related to the runtime complexity of learning. Basically, a
kernel is a similarity measure between instances, which can be characterized as an
inner product in some Hilbert space. For classifiers involving a feature expansion
mapping, the “kernel trick” enables a computationally efficient implementation of
learning, without explicitly handling the high dimensional feature expansion vector.
Of course, the notions of margins and kernels are not limited to binary classification:
they have been extended to various learning task including, for example, multi-class
prediction and structured prediction.

There are two main categories of SVMs, depending on whether the training set
supplied to the learner is assumed to be separable, or not. For the sake of simplicity,
we focus here on zero-threshold linear functions, but the SVM rules defined below
can easily be extended to non-homogeneous linear functions, using data points in the
extendeddomain setX × {1}. A training set S = {(x1, y1), . . . , (xm, ym)} is linearly
separable if there exists a vector w such that yi = sign ⟨w, xi ⟩ for all i ∈ [m]. In this
separable case, the margin of the hyperplane w with respect to the training set S is
the minimal distance between an example in S and the hyperplane. In particular, if
∥w∥ = 1, then the distance between w and any example (xi , yi) is simply given by
yi ⟨w, xi ⟩. Therefore, the Hard-SVM rule is to find a separating hyperplane w with
∥w∥ = 1 that maximizes the distance mini∈[m] yi ⟨w, xi ⟩. The Hard-SVM rule may
be formulated in an equivalent way by the (constrained) convex optimization task:

minimize ∥w∥2 (15)

subject to yi ⟨w, xi ⟩ ≥ 1 ∀i ∈ [m]

If the training set S is linearly separable, then this optimization task is feasible. In
this case, the solution w is normalized by ∥w∥ to yield the final predictor.

In the more general case where S is not linearly separable, the formulation (15)
can be relaxed by allowing separability constraints to be violated by some examples.
As usual, this may be formulated by adding slack variables ξ1, . . . , ξm , where each
ξi captures by how much the the constraint yi ⟨w, xi ⟩ ≥ 1 is violated. The resulting
Soft-SVM rule jointly minimizes the margin and the violations of separability con-
straints, using the following optimization task:

Statistical Computational Learning 377

minimize λ ∥w∥2 + 1
m

m∑

i=1

ξi (16)

subject to yi ⟨w, xi ⟩ ≥ 1 − ξi ∀i ∈ [m]

To this point, recall that the hinge loss between a linearmodelw and an example (x, y)
is given by ℓ(w, (x, y)) = max{0, 1 − y ⟨w, x⟩}. With this formulation in hand, the
Soft-SVM rule (16) can be expressed as a standard rrm task, given by

min
w,b

(
m∑

i=1

ℓ((w, b), (xi , yi))+ λ ∥w∥2
)

(17)

This rrm objective is referred to as the primal formulation of the Soft-SVM rule.
Since we are dealing with a convex optimization task, the Soft-SVM rule admits an
equivalent dual formulation, where the optimal solution is characterized by a linear
combination of examples in S, using Lagrangian variables α1, . . . ,αm :

max
α∈Rm ,α≽0

⎛

⎝
m∑

i=1

αi − 1
2

m∑

i=1

m∑

j=1

αiα j yi y j
〈
xi , x j

〉
⎞

⎠ (18)

and the correspondence between (17) and (18) is given by w =∑m
i=1 αi xi . If w is

an optimal solution of (17) then the data points xi for which αi is positive are called
the support vectors of w.

Based on the above formulations, various convex optimization algorithms can
be exploited for implementing linear Soft-SVMs. For example, (Shalev-Shwartz
et al. 2007) solve the primal problem (17) using Stochastic Gradient Descent, and
(Hsieh et al. 2008) solve the dual problem (18) using (dual) Coordinate Descent. The
Conditional Gradient algorithm was also advocated for solving structured prediction
tasks with SVMs (Lacoste-Julien et al. 2013).

Since the expressive power of linear functions is limited, a natural approach for
extending SVMs to non-linear functions is to use a feature expander, that is, an
embedding φ of the domain setX onto some (possibly infinite dimensional) Hilbert
space F . Based on this feature expander, the hypothesis class H is represented by
the set of vectors w such that hw(x) = sign(⟨w,φ(x)⟩). Given an embedding φ, the
corresponding Kernel operator is defined as

K (x, x′) =
〈
φ(x),φ(x′)

〉

and the dual formulation (18) of Soft-SVM can be rewritten using the “kernel trick”:

max
α∈Rm ,α≽0

⎛

⎝
m∑

i=1

αi − 1
2

m∑

i=1

m∑

j=1

αiα j yi y j K (xi , x j)

⎞

⎠ (19)

378 A. Cornuejols et al.

By the Kernel Representer Theorem (Schölkopf et al. 2001), the optimal
solution w can be expressed as a linear combination of expanded points, that is,
w =∑m

i=1 αiφ(xi). Since the dimension of w can be large or infinite, the kernel trick
allows us to efficiently encode w as a set of support vectors xi , each associated with
its coefficient αi . Furthermore, since the kernel operator K associated with a feature
expander φ defines a positive semidefinite matrix, the kernelized SVM rule (19)
is a concave optimization problem. Again, convex optimization algorithms can be
advocated for efficiently solving this task, provided that the kernel operator K can
be computed in polynomial time. Various kernels satisfying this condition have been
proposed in the literature, and we refer the reader to Herbrich (2002), Schölkopf and
Smola (2002), Shawe-Taylor and Cristianini (2004), Bottou (2007), Kung (2014),
for detailed surveys about kernel methods.

Finally, as kernels provide a way to express prior knowledge about the learning
task at hand, an important subject of ongoing research in SVMs is to learn kernels,
using a kernel family (Lanckriet et al. 2004; Bach 2008; Cortes et al. 2009, 2010).

7 Conclusion

In this chapter, we have drawn a conceptual map of statistical computational learning
byproviding answers to several questions:what is a statistical learning problem?How
tomeasure the performance of a learning algorithm?Which are themain optimization
principles in statistical learning? And, under which conditions a hypothesis class is
learnable? Based on these foundations, we have surveyed two important problems in
Machine Learning: concept learning and convex learning. In this concluding section,
we highlight several topics of research at the intersection of statistical computational
learning and AI. Due to space reasons, the list is by no means exhaustive, and we
apologize for omitting other topics of interest.

Learning Sparse Models The concept of sparsity is ubiquitous in many scientific
and engineering applications, for identifying parsimonious solutions to high-
dimensional problems. Informally, a sparse solution can be viewed as a high-
dimensional vector or matrix satisfying some sparsity constraint, which limits the
degrees of freedom of the model. Various sparsity constraints have been proposed
in the literature of machine learning and signal processing, ranging from the stan-
dard cardinality constraint that restrains the number of nonzero coordinates (Shalev-
Shwartz et al. 2010), to more sophisticated sparsity constraints which impose a
low-dimensional structure on the set of nonzero features (Hegde et al. 2015; Jain
et al. 2016). For example, in the “group-structured” sparsity constraint, the rele-
vant features are partitioned into a small number of contiguous blocks, and in the
“tree-structured” sparsity constraint, such features are arranged into a connected
acyclic graph. As convex optimization under sparsity constraints is NP-hard (Natara-
jan 1995), two main approaches have been advocated for learning sparse mod-
els: convex relaxation (Shalev-Shwartz and Tewari 2011; Bach et al. 2012), and

Statistical Computational Learning 379

approximation algorithms (Bahmani et al. 2013; Jain et al. 2014). A recent survey
on sparse modelling and learning can be found in Rish and Grabarnik (2014).

Learning Probabilistic Models In statistical learning, probabilistic models aim at
estimating the hidden distribution that generates data instances. Of particular interest
inAI are probabilistic graphical models which are able to represent high-dimensional
probability distributions (Koller and Friedman 2009; Murphy 2012). As explained
in Sect. 2, a probabilistic graphical model is a pair (G, θ), where G is a graphical
structure and θ is a vectorized set of parameters. Parameter learning is the task of
estimating from data the parameters of a probabilistic model, when the structure is
fixed. Correspondingly, structure learning is the problem of extracting the graphi-
cal structure of a probabilistic model, given a class of candidate structures, such as
directed acyclic graphs for Bayesian networks, or hypertrees for bounded-treewidth
Markov networks. Various algorithms have been proposed for estimating parameters
under the (possibly regularized) log-likelihood loss function. In particular, Expec-
tation Minimization (EM) (Dempster et al. 1977) is the prototypical algorithm for
estimating parameters in presence of missing values (Lauritzen 1995). A compre-
hensive treatment of the subject is given in Little and Rubin (2014).

Structure learning is arguably more challenging, since the corresponding regular-
ized risk minimization task involves combinatorial constraints capturing admissible
graphical structures. Although structure learning is tractable for tree-directed models
(Chow and Liu 1968) and their mixtures (Meila and Jaakkola 2006), the problem is
NP-hard for more expressive models, such as Bayesian networks (Chickering 1996),
Bayesian polytrees (Dasgupta 1999), and bounded-treewidthMarkov networks (Sre-
bro 2003). For this reason, structure learning is an active research topic relying on
both statistical and combinatorialmethods.Notably, (Cussens 2011;Kumar andBach
2013; Nie et al. 2014; Bartlett and Cussens 2017) use Integer Linear Programming
techniques for learning the structure of Bayesian networks or Markov networks with
bounded-treewidth. SAT and CSP techniques have also been proposed for solving
these structure learning problems (Cussens 2008; Berg et al. 2014; van Beek and
Hoffmann 2015).

Learning PreferenceModels The spectrum of applications that resort on the ability
to learn preferences is extremely wide, ranging from configuration softwares and
recommender systems to information retrieval and group decision-making (see e.g.
chapter “Compact Representation of Preferences” of Volume 1). It is therefore not
surprising that topic of preference learning has gained a considerable interest in
statistical and computational learning. As explained in Sect. 2, preference learning
problems can be divided into several categories, depending on the type of reference
set, the type of preference relation, the examples provided to the learner and, of
course, the class of preference models.

In label ranking (Vembu and Gärtner 2010), the problem is to associate instances
with a total order of predefined labels. With each training instance, we receive super-
vision given as a binary relation on the labels. More formally, the instance space is
givenZ = X × Y , whereX is the domain set, and Y is the space of all directed
acyclic graphs over the set of labels [k]. The goal is to learn from a training set S a

380 A. Cornuejols et al.

hypothesis h : X → Y † in the available hypothesis class H that minimizes some
loss function ℓ : H × Z → R. For total ranking tasks, Y † is the group of permu-
tations over [k], and for more general ranking tasks, Y † is a subset of Y . Several
families of label ranking problems can be solved by reduction to binary classifica-
tion (Hüllermeier et al. 2008), boosting (Dekel et al. 2003), multi-label classification
(Crammer and Singer 2003), ordinal regression (Herbrich et al. 2000), or regularized
least-square minimization (Gärtner and Vembu 2009).

In object ranking (Kamishima et al. 2010), X is a set of objects, and Y is a
space of total rankings (permutations) or partial rankings (DAGs) over X . Each
training instance is formed by a pair, or more generally a set, of objects in X , and
the supervision is given by a preference ordering on these objects. The goal is to learn
a hypothesis h : X → Y , chosen from a classH that minimizes some loss function
ℓ. Again, various statistical learning techniques have been successfully applied for
solving tractable object ranking problems. They include, among others, boosting
methods (Freund et al. 2003; Xu and Li 2007), and SVMs (Joachims 2002; Kazawa
et al. 2005; Cao et al. 2006).

Ranking tasks are intrinsically related to preference aggregation problems.
Notably, the problem of finding a total ranking of objects minimizing a pairwise
loss function is generally NP-hard (Cohen et al. 1999; Alon 2006). The difficulty is
even more accute when the hypothesis class is a Mallows model or an exponential
family (Vembu et al. 2009; Lu and Boutilier 2014).

Learning Neural Models As mentioned in Sect. 2, neural models and Machine
Learning have a long shared history, dating back to Rosenblatt’s invention of the Per-
ceptron algorithm (Rosenblatt 1958). Neural networks were extensively studied in
the 1980s, butwithmixed empirical results. During this past decade, a combination of
algorithmic advances in Machine Learning, together with increasing computational
power and data size, has led to a breakthrough in the effectiveness of deep neural net-
works (Goodfellow et al. 2016). In particular, the families of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) have shown impressive
performance on a variety of application domains, including computer vision (LeCun
et al. 2010; Krizhevsky et al. 2012; Pinheiro and Collobert 2014), speech recogni-
tion (Hinton et al. 2012; Graves et al. 2013), and natural language processing (Col-
lobert and Weston 2008; Cho et al. 2014; Kalchbrenner et al. 2014). In the present
book, deep neural networks are discussed in chapter “Reinforcement Learning” of
Volume 1, and chapter “Designing Algorithms for Machine Learning and Data Min-
ing” of Volume 2.

Despite the undoubled practical success of deep learning, there are many open
theoretical questions related to this fascinating subject of research. As discussed
in Sect. 5, intersections of separating hyperplanes over {0, 1}n are not efficiently
PAC learnable for the zero-one loss (Klivans and Sherstov 2009). This implies that
no efficient algorithm can be found for training neural networks, even if we allow
additional layers or effective activation functions. For other loss functions advocated
in deep learning, the corresponding optimization task remains highly non-convex,
and hence, generally intractable. So, there is a fundamental gap between the theory

Statistical Computational Learning 381

of statistical computational learning and the practical efficiency of deep learning,
achieved by gradient-based methods with backpropagation (Rumelhart et al. 1986).
Recent investigations in the theoretical analysis of deep models have attempted to
bridge this gap (Kawaguchi 2016;Bach2017;Kawaguchi et al. 2017; Shalev-Shwartz
et al. 2017; Song et al. 2017; Zhang et al. 2017), but much remains to be done before
having a comprehensive analysis of practical results.

References

Aggarwal C, Reddy C (2013) Data clustering: algorithms and applications. Taylor and Francis
AlekhnovichM, BravermanM, Feldman V, Klivans A, Pitassi T (2008) The complexity of properly
learning simple concept classes. J Comput Syst Sci 74(1):16–34

Alon N (2006) Ranking tournaments. SIAM J Discret Math 20(1):137–142
Alon N, Ben-David S, Cesa-Bianchi N, Haussler D (1997) Scale-sensitive dimensions, uniform
convergence, and learnability. J ACM (JACM) 44(4):615–631

Alpaydin E (2009) Introduction to machine learning. MIT, USA
Angluin D, Laird PD (1987) Learning from noisy examples. Mach Learn 2(4):343–370
Anthony M (2001) Discrete mathematics of neural networks: selected topics. SIAM monographs
on. discrete mathematics and applications

Anthony M (2010) Probabilistic learning and boolean functions. In: Crama Y, Hammer P (eds)
Boolean models and methods in mathematics, computer science, and engineering, encyclopedia
of mathematics and its applications. Cambridge University, Cambridge, pp 197–220

Anthony M, Barlett P (1999) Neural network learning: theoretical foundations. Cambridge Univer-
sity, Cambridge

Anthony M, Biggs N (1997) Computational learning theory. Cambridge University, Cambridge
Anthony M, Shawe-Taylor J (1993) Using the perceptron algorithm to find consistent hypotheses.
Comb, Probab Comput 2:385–387

Arora S, Babai L, Stern J, Sweedyk Z (1997) The hardness of approximate optima in lattices, codes,
and systems of linear equations. J Comput Syst Sci 54(2):317–331

Bach FR (2008) Exploring large feature spaces with hierarchical multiple kernel learning. In:
Advances in neural information processing systems 21 (NIPS 2008), pp 105–112

Bach FR (2017) Breaking the curse of dimensionality with convex neural networks. J Mach Learn
Res 18:19:1–19:53

Bach FR, Jenatton R, Mairal J, Obozinski G (2012) Optimization with sparsity-inducing penalties.
Found Trends Mach Learn 4(1):1–106

Bahmani S, Raj B, Boufounos P (2013) Greedy sparsity-constrained optimization. J Mach Learn
Res 14:807–841

BartlettM, Cussens J (2017) Integer linear programming for the bayesian network structure learning
problem. Artif Intell 244:258–271

Beck A, TeboulleM (2003)Mirror descent and nonlinear projected subgradient methods for convex
optimization. Oper Res Lett 31(3):167–175

Ben-David S, EironN, Long PM (2003) On the difficulty of approximatelymaximizing agreements.
J Comput Syst Sci 66(3):496–514

Berg J, Järvisalo M, Malone B (2014) Learning optimal bounded treewidth bayesian networks
via maximum satisfiability. In: Proceedings of the 17th international conference on artificial
intelligence and statistics (AISTATS 2014), pp 86–95

Bertsekas D (2015) Convex optimization algorithms. MIT, USA
Birge J, Louveaux F (2011) Introduction to stochastic programming. Springer, Berlin
Bishop C (2006) Pattern recognition and machine learning. Springer, Berlin

382 A. Cornuejols et al.

Blum A (1992) Rank-r decision trees are a subclass of r -decision lists. Inf Process Lett 42(4):
183–185

Blum A, Rivest RL (1992) Training a 3-node neural network is NP-complete. Neural Netw 5(1):
117–127

Blumer A, Ehrenfeucht A, Haussler D, Warmuth M (1989) Learnability and the Vapnik-
Chervonenkis dimension. J ACM (JACM) 36(4):929–965

Boser BE, Guyon L, Vapnik V (1992) A training algorithm for optimal margin classifiers. In:
Proceedings of the 5th annual ACM conference on computational learning theory (COLT 1992),
pp 144–152

Bottou L (2007) Large-scale kernel machines, Neural information processing series. MIT, USA
Bousquet O, Elisseeff A (2002) Stability and generalization. J Mach Learn Res 2(Mar):499–526
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University, Cambridge
Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Bubeck S (2015) Convex optimization: algorithms and complexity. Found Trends Mach Learn
8(3–4):231–358

Cao Y, Xu J, Liu T, Li H, Huang Y, Hon H (2006) Adapting ranking SVM to document retrieval.
In: Proceedings of the 29th annual international ACM conference on research and development
in information retrieval (SIGIR 2006), pp 186–193

Caruana R, Karampatziakis N, YessenalinaA (2008) An empirical evaluation of supervised learning
in high dimensions. In: Proceedings of the 25th international conference on machine learning
(ICML 2008), pp 96–103

Cauchy A (1847) Méthode générale pour la résolution des systèmes d’équations simultanées. C. R.
Acad. Sci. Paris 25:536–538

Censor Y, Zenios SA (1997) Parallel optimization. Oxford University, Oxford
Chickering DM (1996) Learning Bayesian networks is NP-complete. In: Learning from data: arti-
ficial intelligence and statistics V, Springer, Berlin, pp 121–130

Cho K, van Merrienboer B, Gülçehre Ç, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014).
Learning phrase representations using RNN encoder-decoder for statistical machine translation.
In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP 2014), pp 1724–1734

Chow CK, Liu CN (1968) Approximating discrete probability distributions with dependence trees.
IEEE Trans Inf Theory 14(3):462–467

Clarkson KL (2010) Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM
Trans Algorithms 6(4):63:1–63:30

Clémençon S, Vayatis N (2007) Ranking the best instances. J Mach Learn Res 8:2671–2699
CohenW,SchapireR, SingerY (1999)Learning to order things. JArtif Intell Res (JAIR) 10:243–270
Cohen WW, Singer Y (1999). A simple, fast, and effictive rule learner. In: Proceedings of the 16th
national conference on artificial intelligence (AAAI 1999), pp 335–342

Collobert R, Weston J (2008) A unified architecture for natural language processing: deep neural
networks with multitask learning. In: Proceedings of the twenty-fifth international conference in
machine learning (ICML 2008), pp 160–167

Cortes C, Mohri M, Rostamizadeh A (2009) Learning non-linear combinations of kernels. In:
Advances in neural information processing systems 22 (NIPS 2009), pp 396–404

Cortes C, Mohri M, Rostamizadeh A (2010) Generalization bounds for learning kernels. In: Pro-
ceedings of the 27th international conference on machine learning (ICML 2010), pp 247–254

Crammer K, Singer Y (2003) A family of additive online algorithms for category ranking. J Mach
Learn Res 3:1025–1058

Criminisi A, Shotton J, Konukoglu E (2012) Decision forests: a unified framework for classification,
regression, density estimation, manifold learning and semi-supervised learning. Found Trends
Comput Graph Vis 7(2–3):81–227

Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-
based learning methods. Cambridge University, Cambridge

Statistical Computational Learning 383

Cussens J (2008) Bayesian network learning by compiling to weighted MAX-SAT. In: Proceedings
of the 24th conference in uncertainty in artificial intelligence (UAI 2008), pp 105–112

Cussens J (2011) Bayesian network learning with cutting planes. In: Proceedings of the 27th con-
ference on uncertainty in artificial intelligence (UAI 2011), pp 153–160

Daniely A, Shalev-Shwartz S (2016) Complexity theoretic limitations on learning dnf’s. In: Pro-
ceedings of the 29th conference on learning theory (COLT 2016), pp 815–830

Darwiche A (2009) Modeling and reasoning with bayesian networks. Cambridge University, Cam-
bridge

DasGupta A (2011) Probability for statistics and machine learning: fundamentals and. advanced
topics. Springer, Berlin

Dasgupta S (1999) Learning polytrees. In: Proceedings of the fifteenth conference on uncertainty
in artificial intelligence (UAI 1999), pp 134–141

De Raedt L (2008) Logical and relational learning. Springer, Berlin
Dekel O,Manning CD, Singer Y (2003) Log-linear models for label ranking. In: Advances in neural
information processing systems 16 (NIPS 2003), pp 497–504

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM
algorithm. J R Stat Society Ser B (Methodological) 39(1):1–38

Devroye L, Györfi L, Lugosi G (2013) A probabilistic theory of pattern recognition. Springer, Berlin
Du K-L, Swamy MNS (2013) Neural networks and statistical learning. Springer, Berlin
Duchi JC, Shalev-Shwartz S, Singer Y, Chandra T (2008) Efficient projections onto the l1-ball for
learning in high dimensions. In: Machine learning, proceedings of the twenty-fifth international
conference (ICML 2008), pp 272–279

Engel A, Broeck C (2001) Statistical mechanics of learning. Cambridge University, Cambridge
FeldmanV,GopalanP,Khot S, PonnuswamiAK (2009)On agnostic learning of parities,monomials,
and halfspaces. SIAM J Comput 39(2):606–645

Feldman V, Guruswami V, Raghavendra P, Wu Y (2012) Agnostic learning of monomials by half-
spaces is hard. SIAM J Comput 41(6):1558–1590

Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cam-
bridge University, Cambridge

Fligner MA, Verducci JS (1986) Distance based ranking models. J R Stat Soc 48(3):359–369
Franck M, Wolfe P (1956) An algorithm for quadratic programming. Naval Res Logis Q 3:95–110
Freund RM, Grigas P (2016) New analysis and results for the Frank-Wolfe method. Math Program
155(1–2):199–230

Freund Y, Iyer RD, Schapire RE, Singer Y (2003) An efficient boosting algorithm for combining
preferences. J Mach Learn Res 4:933–969

Freund Y, Mason L (1999) The alternating decision tree learning algorithm. In: Proceedings of the
16th international conference on machine learning (ICML 1999), pp 124–133

Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. J Comput Syst Sci 55(1):119–139

Fürnkranz J, Hüllermeier E (2010) Preference learning. Springer, Berlin
Garber D, Hazan E (2016) A linearly convergent variant of the conditional gradient algorithm
under strong convexity, with applications to online and stochastic optimization. SIAM J Optim
26(3):1493–1528

Garber D, Meshi O (2016) Linear-memory and decomposition-invariant linearly convergent condi-
tional gradient algorithm for structured polytopes. In: Advances in neural information processing
systems 29 (NIPS 2016), pp 1001–1009

Gärtner T, Vembu S (2009) On structured output training: hard cases and an efficient alternative.
Mach Learn 76(2–3):227–242

Gentile C (2003) The robustness of the p-norm algorithms. Mach Learn 53(3):265–299
Getoor L, Taskar B (2007) Introduction to statistical relational learning. MIT, Cambridge
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT, USA

384 A. Cornuejols et al.

Graves A,Mohamed A, Hinton GE (2013) Speech recognition with deep recurrent neural networks.
In: IEEE international conference on acoustics, speech and signal processing (ICASSP 2013), pp
6645–6649

Grünwald P (2007) The minimum description length principle. MIT, USA
Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, infer-
ence, and prediction. Springer, Berlin

Haussler D (1988) Quantifying inductive bias: AI learning algorithms and Valiant’s learning frame-
work. Artif Intell 36(2):177–221

Haussler D (1992) Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Inf Comput 100(1):78–150

Hazan E, Kale S (2012) Projection-free online learning. In: Proceedings of the 29th international
conference on machine learning (ICML 2012)

Hegde C, Indyk P, Schmidt L (2015) A nearly-linear time framework for graph-structured sparsity.
In: Proceedings of the 32nd international conference on machine learning (ICML 2015), pp
928–937

Helmbold DP, Sloan RH, Warmuth MK (1992) Learning integer lattices. SIAM J Comput 21(2):
240–266

Herbrich R (2002) Learning kernel classifiers: theory and algorithms. MIT, USA
Herbrich R, Graepel T, Obermayer K (2000) Large margin rank boundaries for ordinal regression.
In: Advances in large margin classifiers. MIT Press, USA, pp 115–132

Hinton G, Deng L, Yu D, Dahl GE, r. Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P,
Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recog-
nition: the shared views of four research groups. IEEE Signal Process Mag 29(6):82–97

Hiriart-Urrut JB, Lemaréchal C (2004) Fundamentals of convex analysis. Springer, Berlin
Höffgen K, Simon HU (1992) Robust trainability of single neurons. In: Proceedings of the fifth
annual acm conference on computational learning theory (COLT 1992), pp 428–439

Hsieh C, Chang K, Lin C, Keerthi SS, Sundararajan S (2008) A dual coordinate descent method for
large-scale linear SVM. In: Proceedings of the 25th international conference onmachine learning,
pp 408–415

Hüllermeier E, Fürnkranz J, Cheng W, Brinker K (2008) Label ranking by learning pairwise pref-
erences. Artif Intell 172(16–17):1897–1916

JaggiM (2013) Revisiting frank-wolfe: projection-free sparse convex optimization. In: Proceedings
of the 30th international conference on machine learning (ICML 2013), pp 427–435

Jain P, Rao N, Dhillon I (2016) Structured sparse regression via greedy hard thresholding. In:
Advances in neural information processing systems 29 (NIPS 2016), pp 1516–1524

Jain P, Tewari A, Kar P (2014) On iterative hard thresholding methods for high-dimensional M-
estimation. In: Advances in neural information processing systems 27 (NIPS 2014), pp 685–693

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with
applications in R. Springer texts in statistics, Springer, New York

Joachims T (2002) Optimizing search engines using clickthrough data. In: Proceedings of the 8th
ACM international conference on knowledge discovery and data mining (SIGKDD 2002), pp
133–142

Johnson DS, Preparata FP (1978) The densest hemisphere problem. Theorertical Comput Sci 6:93–
107

Kakade SM, Shalev-Shwartz S, Tewari A (2012) Regularization techniques for learning with matri-
ces. J Mach Learn Res 13:1865–1890

Kalchbrenner N, Grefenstette E, Blunsom P (2014) A convolutional neural network for modelling
sentences. In: Proceedings of the 52nd annual meeting of the association for computational
linguistics (ACL 2014), pp 655–665

Kamishima T, Kazawa H, Akaho S (2010) A survey and empirical comparison of object ranking
methods. Preference learning. Springer, Berlin, pp 181–201

Kawaguchi K (2016) Deep learning without poor local minima. In: Advances in neural information
processing systems 29 (NIPS 2016), pp 586–594

Statistical Computational Learning 385

Kawaguchi K, Kaelbling LP, Bengio Y (2017) Generalization in deep learning. CoRR.
arXiv:1710.05468

Kazawa H, Hirao T, Maeda E (2005) Order SVM: a kernel method for order learning based on
generalized order statistics. Syst Comput Jpn 36(1):35–43

KearnsM,LiM (1993)Learning in the presence ofmalicious errors. SIAMJComput 22(4):807–837
KearnsM, LiM, Pitt L, Valiant L (1987) Recent results on boolean concept learning. In: Proceedings
of the fourth international workshop on machine learning (ICML 1987), pp 337–352

Kearns M, Li M, Valiant LG (1994a) Learning boolean formulas. J. ACM 41(6):1298–1328
Kearns M, Schapire R, Sellie L (1994b) Toward efficient agnostic learning. Mach Learn 17(2):
115–141

Kearns M, Vazirani U (1994) An introduction to computational learning theory. MIT, USA
Kivinen J,WarmuthMK(1997)Exponentiated gradient versus gradient descent for linear predictors.
Inf Comput 132(1):1–63

Klivans AR, O’Donnell R, Servedio RA (2004) Learning intersections and thresholds of halfspaces.
J Comput Syst Sci 68(4):808–840

Klivans AR, Servedio RA (2004) Learning DNF in time 2õ(n
1/3). J Comput Syst Sci 68(2):303–318

Klivans AR, Sherstov AA (2009) Cryptographic hardness for learning intersections of halfspaces.
J Comput Syst Sci 75(1):2–12

Koller D, Friedman N (2009) Probabilistic graphical models. MIT, USA
Krichene W, Krichene S, Bayen AM (2015) Efficient bregman projections onto the simplex. In:
Proceedings of the 54th IEEE conference on decision and control, (CDC 2015), pp 3291–3298

KrizhevskyA, Sutskever I,HintonGE (2012) Imagenet classificationwith deep convolutional neural
networks. In: Advances in neural information processing systems 25 (NIPS 2012), pp 1106–1114

Kulkarni S, Harman G (2011) An elementary introduction to statistical learning theory.Wiley series
in probability and statistics, Wiley, New York

Kumar KSS, Bach FR (2013) Convex relaxations for learning bounded-treewidth decomposable
graphs. In: Proceedings of the 30th international conference on machine learning (ICML 2013),
pp 525–533

Kung S (2014) Kernel methods and machine learning. Cambridge University, Cambridge
Kushner HJ, Yin GG (2010) Stochastic approximation and recursive algorithms and applications.
Springer, Berlin

Lacoste-Julien S, Jaggi M (2015) On the global linear convergence of frank-wolfe optimization
variants. In: Advances in neural information processing systems 28 (NIPS 2015), pp 496–504

Lacoste-Julien S, Jaggi M, Schmidt MW, Pletscher P (2013) Block-coordinate frank-wolfe opti-
mization for structural SVMs. In: Proceedings of the 30th international conference on machine
learning (ICML 2013), pp 53–61

Lanckriet GRG, Cristianini N, Bartlett PL, Ghaoui LE, JordanMI (2004) Learning the kernel matrix
with semidefinite programming. J Mach Learn Res 5:27–72

Lauritzen SL (1995) The em algorithm for graphical association models with missing data. Comput
Stat Data Anal 19(2):191–201

Lebanon G, Lafferty J (2002) Conditional models on the ranking poset. In: Advances in neural
information processing systems 15 (NIPS 2002), pp 415–422

LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In:
Proceedings of the international symposium on circuits and systems (ISCAS 2010), pp 253–256

Lim CH, Wright SJ (2016) Efficient bregman projections onto the permutahedron and related
polytopes. In: Proceedings of the 19th international conference on artificial intelligence and
statistics (AISTATS 2016), pp 1205–1213

Little R, Rubin D (2014) Statistical analysis with missing data. Wiley, New York
Liu T, Lugosi G, Neu G, Tao D (2017) Algorithmic stability and hypothesis complexity. In: Pro-
ceedings of the 34th international conference on machine learning (ICML 2017), pp 2159–2167

Lu T, Boutilier C (2014) Effective sampling and learning for Mallows models with pairwise-
preference data. J Mach Learn Res 15(1):3783–3829

386 A. Cornuejols et al.

Lu Z, Xiao L (2015) On the complexity analysis of randomized block-coordinate descent methods.
Math Program 152(1–2):615–642

Ma Y, Fu Y (2011) Manifold learning theory and applications. CRC
Mahdavi M, Yang T, Jin R, Zhu S, Yi J (2012) Stochastic gradient descent with only one projection.
In: Advances in neural information processing systems 25 (NIPS 2012), pp 503–511

Mallows CL (1957) Non-null ranking models. Biometrika 44(1–2):114–130
Megiddo N (1988) On the complexity of polyhedral separability. Discret Comput Geom 3(4):
325–337

MeilaM, ChenH (2010) Dirichlet processmixtures of generalizedmallowsmodels. In: Proceedings
of the twenty-sixth conference on uncertainty in artificial intelligence (UAI 2010), pp 358–367

Meila M, Jaakkola TS (2006) Tractable bayesian learning of tree belief networks. Stat Comput
16(1):77–92

Mitchell T (1982) Generalization as search. Artif Intell 18(2):203–226
Mitchell T (1997) Machine learning. McGraw-Hill Education
Mohammadi L, van de Geer S (2005) Asymptotics in empirical risk minimization. J Mach Learn
Res 6:2027–2047

Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. MIT, USA
Mukherjee S, Niyogi P, Poggio T, Rifkin R (2006) Learning theory: stability is sufficient for general-
ization and necessary and sufficient for consistency of empirical risk minimization. Adv Comput
Math 25(1):161–193

Murphy K (2012) Machine learning: a probabilistic perspective. MIT, USA
Natarajan B (1991) Machine learning: a theoretical approach. M. Kaufmann Publishers
Natarajan B (1995) Sparse approximate solutions to linear systems. SIAM JComput 24(2):227–234
Nemirovski A (1995) Efficient methods in convex programming. http://www2.isye.gatech.edu/
~nemirovs/Lec_EMCO.pdf

Nemirovski AS, Yudin DB (1983) Problem complexity and method efficiency in optimization. J.
Wiley, New York

Nesterov Y (2004) Introductory lectures on convex optimization: a basic course. Kluwer Academic
Publishers

Nesterov Y (2012) Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM J Optim 22(2):341–362

Nie S, Mauá DD, de Campos CP, Ji Q (2014) Advances in learning bayesian networks of bounded
treewidth. In: Advances in neural information processing systems 27 (NIPS 2014), pp 2285–2293

Parberry I (1994) Circuit complexity and neural networks. MIT, USA
Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-
gan Kaufmann, San Mateo

Pinheiro PHO, Collobert R (2014) Recurrent convolutional neural networks for scene labeling. In:
Proceedings of the 31th international conference on machine learning (ICML 2014), pp 82–90

Pitt L, Valiant L (1988) Computational limitations on learning from examples. J ACM 35(4):965–
984

Plackett RL (1975) The analysis of permutations. J R Stat Soc 24(10):193–202
Poffio T, Rifkin R, Kukherjee S, Niyogi P (2004) General conditions for predictivity in learning
theory. Nature 428(6981):419

Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106
Quinlan JR (1993) C4. 5: Programs for machine learning. Morgan Kaufmann
Quinlan JR (1996) Bagging, boosting, and C4.5. In: Proceedings of the 30th national conference
on artificial intelligence (AAAI 1996), pp 725–730

Rakhlin A, Shamir O, Sridharan K (2012) Making gradient descent optimal for strongly convex
stochastic optimization. In: Proceedings of the 29th international conference onmachine learning
(ICML 2012)

Rish I, Grabarnik G (2014) Sparse modeling: theory, algorithms, and applications. CRC
Rissanen J (1983) A universal prior for integers and estimation by minimum description length.
Ann stat 416–431

Statistical Computational Learning 387

Rissanen J (1985) Minimum description length principle. Wiley, New York
Rivest RL (1987) Learning decision lists. Mach Learn 2(3):229–246
Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–407
Rockafellar T (1970) Convex analysis. Princeton University, Princeton
Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization
in the brain. Psychol Rev 65:386–408

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propa-
gation. In: Parallel distributed processing: explorations in the microstructure of cognition, vol 1.
MIT, USA, pp 318–362

Sauer N (1972) On the density of families of sets. J Comb Theory 13:145–147
Schapire RE (1990) The strength of weak learnability. Mach Learn 5:197–227
Schapire RE, Freund Y (2012) Boosting. MIT, USA
Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions.
Mach Learn 37(3):297–336

Schölkopf B, Herbrich R, Smola AJ (2001) A generalized representer theorem. In: Proceedings of
the 14th annual conference on computational on computational learning theory (COLT 2001), pp
416–426

Schölkopf B, Smola A (2002) Learning with Kernels: support vector machines, regularization,
optimization, and beyond. Adaptive computation and machine learning, MIT, USA

Shalev-Shwartz S, Ben-David S (2014)Understandingmachine learning: from theory to algorithms.
Cambridge University, Cambridge

Shalev-Shwartz S, Shamir O, Shammah S (2017) Failures of gradient-based deep learning. In:
Proceedings of the 34th international conference on machine learning (ICML 2017), pp 3067–
3075

Shalev-Shwartz S, Shamir O, Srebro N, Sridharan K (2009) Stochastic convex optimization. In:
Proceedings of the 22nd conference on learning theory (COLT 2009), pp 177–186

Shalev-Shwartz S, Shamir O, Srebro N, Sridharan K (2010) Learnability, stability and uniform
convergence. J Mach Learn Res 11:2635–2670

Shalev-Shwartz S, Singer Y, Srebro N (2007) Pegasos: primal estimated sub-gradient solver for
SVM. In: Proceedings of the 24th international conference on machine learning (ICML 2007),
pp 807–814

Shalev-Shwartz S, SrebroN, ZhangT (2010) Trading accuracy for sparsity in optimization problems
with sparsity constraints. SIAM J Optim 20(6):2807–2832

Shalev-Shwartz S, Tewari A (2011) Stochasticmethods for l1-regularized lossminimization. JMach
Learn Res 12:1865–1892

Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Kernel methods for
pattern analysis, Cambridge University, Cambridge

Song L, Vempala S, Wilmes J, Xie B (2017) On the complexity of learning neural networks. CoRR.
arXiv:1707.04615

Sra S, Nowozin S, Wright S (2012) Optimization for machine learning. Neural information pro-
cessing series, MIT, USA

Srebro N (2003) Maximum likelihood bounded tree-width Markov networks. Artif Intell
143(1):123–138

SridharanK (2012)Learning fromanoptimization viewpoint. Ph.D. thesis, Technicological Institute
of Chicago, Toyota

Steinwart I, Christmann A (2008) Support vector machines. Information science and statistics,
Springer, Berlin

Sugiyama M (2015) Introduction to statistical machine learning. Elsevier Science
Theodoridis S (2015) Machine learning: a bayesian and optimization perspective. Elsevier Science
TikhonovA (1943) On the stability of inverse problems. DokladyAkademii Nauk SSSR 39(5):195–
198

TsengP,YunS (2009)A coordinate gradient descentmethod for nonsmooth separableminimization.
Math Program 117(1–2):387–423

388 A. Cornuejols et al.

Turing A (1950) Computing machinery and intelligence. Mind 59:433–460
Valiant LG (1984) A theory of the learnable. Commun ACM 27(11):1134–1142
van Beek P, Hoffmann H (2015) Machine learning of bayesian networks using constraint program-
ming. In: Proceedings of the 21st confernce on principles and practice of constraint programming
(CP 2015), pp 429–445

Vapnik V (1998) Statistical learning theory. Wiley, New York
Vapnik V (2013) The nature of statistical learning theory, 3rd edn. Springer, Berlin
Vapnik V, Chervonenkis A (1974) Theory of pattern recognition. Nauka, Moskow (in Russian)
Vembu S, Gärtner T (2010) Label ranking algorithms: a survey. In: Preference learning. Springer,
Berlin, pp 45–64

Vembu S, Gärtner T, Boley M (2009) Probabilistic structured predictors. In: Proceedings of the
twenty-fifth conference on uncertainty in artificial intelligence (UAI 2009), pp 557–564

Viola PA, Jones MJ (2001) Robust real-time face detection. In: Proceedings of the 8th international
conference on computer vision ICCV 2001, p 747

Wainwright M, Jordan M (2008) Graphical models, exponential families, and variational inference.
Found Trends Mach Learn 1(1–2):1–305

Watanabe S (2009) Algebraic Geometry and Statistical Learning Theory. Cambridge University,
Cambridge

Webb A, Copsey K (2011) Statistical pattern recognition. Wiley, New York
WibisonoA,RosascoL, PoggioT (2009) Sufficient conditions for uniform stability of regularization
algorithms. Technical Report MIT-CSAIL-TR-2009-060. MIT, Computer Science and artificial
intelligence laboratory

Wright SJ (2015) Coordinate descent algorithms. Math Program 151(1):3–34
Xu J, Li H (2007) AdaRank: a boosting algorithm for information retrieval. In: Proceedings of the
30th annual international ACM conference on research and development in information retrieval
(SIGIR 2007), pp 391–398

Zhang L, Yang T, Jin R, He X (2013) O(log T) projections for stochastic optimization of smooth
and strongly convex functions. In: Proceedings of the 30th international conference on machine
learning (ICML 2013), pp 1121–1129

Zhang X (2010) Empirical risk minimization. In: Sammut C, Webb G, (eds) Encyclopedia of
machine learning, Springer, Berlin, p 312

ZhangY,LiangP,WainwrightM (2017)Convexified convolutional neural networks. In: Proceedings
of the 34th international conference on machine learning (ICML 2017), pp 4044–4053

Zhao Z, Piech P, Xia L (2016) Learning mixtures of plackett-luce models. In: Proceedings of the
33nd international conference on machine learning (ICML 2016), pp 2906–2914

