Designing Algorithms for Machine M)
Learning and Data Mining e

Antoine Cornuéjols and Christel Vrain

Abstract Designing Machine Learning algorithms implies to answer three main
questions: First, what is the space .7# of hypotheses or models of the data that the
algorithm considers? Second, what is the inductive criterion used to assess the merit
of a hypothesis given the data? Third, given the space .7# and the inductive crite-
rion, how is the exploration of .7 carried on in order to find a as good as possible
hypothesis? Any learning algorithm can be analyzed along these three questions. This
chapter focusses primarily on unsupervised learning, on one hand, and supervised
learning, on the other hand. For each, the foremost problems are described as well
as the main existing approaches. In particular, the interplay between the structure
that can be endowed over the hypothesis space and the optimisation techniques that
can in consequence be used is underlined. We cover especially the major existing
methods for clustering: prototype-based, generative-based, density-based, spectral
based, hierarchical, and conceptual and visit the validation techniques available. For
supervised learning, the generative and discriminative approaches are contrasted and
a wide variety of linear methods in which we include the Support Vector Machines
and Boosting are presented. Multi-Layer neural networks and deep learning methods
are discussed. Some additional methods are illustrated, and we describe other learn-
ing problems including semi-supervised learning, active learning, online learning,
transfer learning, learning to rank, learning recommendations, and identifying causal
relationships. We conclude this survey by suggesting new directions for research.

1 Introduction

Machine Learning is the science of, on one hand, discovering the fundamental laws
that govern the act of learning and, on the other hand, designing machines that learn
from experiences, in the same way as physics is both the science of uncovering the

A. Cornuéjols (X))
UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
e-mail: antoine.cornuejols @agroparistech.fr

C. Vrain
LIFO, EA 4022, University of Orléans, 45067 Orleans, France
e-mail: christel.vrain @univ-orleans.fr

© Springer Nature Switzerland AG 2020 339
P. Marquis et al. (eds.), A Guided Tour of Artificial Intelligence Research,
https://doi.org/10.1007/978-3-030-06167-8_12

340 A. Cornuéjols and C. Vrain

laws of the universe and of providing knowledge to make, in a very broad sense,
machines. Of course, “understanding” and “making” are tightly intertwined, in that
a progress in one aspect generally benefits to the other aspect. But a Machine Learn-
ing scientist can feel more comfortable and more interested in one end of the spectrum
that goes from ‘theorize Machine Learning’ to ‘making Machine Learning’.

Machine Learning is tied to data science, because it is fundamentally the science
of induction, that tries to uncover general laws and relationships from some set of
data. However, it is interested as much in understanding how it is possible to use
very few examples, like when you learnt how to avoid a “fork™ in chess from one
experience only, as how to make sense of large amount of data. Thus, “big data” is not
synonymous with Machine Learning. In this chapter, we choose not to dwell upon the
problems and techniques associated with gathering data and realize all the necessary
preprocessing phases. We will mostly assume that this has been done in such a way
that looking for patterns in the data will not be too compromised by imperfections of
the data at hand. Of course, any practitioner of Machine Learning will know that this
is a huge assumption and that the corresponding work is of paramount importance.

Before looking at what can be a science of designing learning algorithms, it is
interesting to consider basic classical Machine Learning scenarios.

2 Classical Scenarios for Machine Learning

A learning scenario is defined by the exchanges between the learner and its environ-
ment. Usually, this goes hand in hand with the target task given to the system.

In supervised learning, the learner receives a set of examples . = {(X;, yi)}1<i<m
from the environment, each composed of a set of explanatory or input variables x;
and of output variable(s) y;, of which the value must be predicted when the explana-
tory variables are observed. The goal for the learner is to be able to make predictions
about the output values given input values. For example, the learner may receive
data about patients registered in an hospital, in the form of pairs (measures made on
the patient, diagnostic), and aims at being able to give a correct diagnostic for new
arriving patients on which measurements are available.

By contrast, the objective of unsupervised learning is not to make predictions
from input values to output values, but to reveal possible hidden structures in the
data set, . = {xy, ..., X,,}, or to detect correlations between the variables. If these
putative structures or regularities may sometimes be extrapolated to other data col-
lections, this is not the primary goal of unsupervised learning.

A third type of learning, of growing importance, is reinforcement learning (see
chapter “Reinforcement Learning” of Volume 1). There, the learner acts in the envi-
ronment and therefore must be able to decide on the action to take in each successive
state encountered in its peregrinations. The trick is that the learner receives rein-
forcement signals, positive or negative, from time to time, sometimes long after the
action that triggered it has been performed. It is therefore not easy to determine which
actions are the best in each possible state. The goal of the learner is to maximize the

Designing Algorithms for Machine Learning and Data Mining 341

cumulated reinforcement over time even though the credit assignment problem is
hard to solve. Reinforcement learning is at the core of the famous AlphaGo system
that beat one of the strongest Go player in the world in March 2016, and is now
believed to far outclass any human player (see chapter “Artificial Intelligence for
Games” of this volume).

One important distinction is between descriptive learning and predictive learning.
Descriptive learning aims at finding regularities in the data in the hope that they may
help to better understand the phenomenon under study. For instance, descriptive
learning may uncover different groups in a population of customers, which may in
turn help to understand their behavior and suggest different marketing strategies.
Descriptive learning is strongly linked to unsupervised learning. Predictive learning
is concerned with finding rules that allow one to make prediction when given a new
instance. Predictive learning is therefore inherently extrapolative. Its justification is
in making prediction for new instances, while descriptive learning is turned towards
the examples at hand, and not, at least directly, towards telling something about new
instances. Predictive learning is tightly associated with supervised learning.

Sometimes, a third type of learning, called prescriptive learning, is mentioned.
The goal there is to extract information about what can be levers or control actions that
would allow one to alter the course of some phenomenon (e.g. climatic change, the
diet of the general population). Generally, gaining control means that causal factors
have been identified. And this is not the same as being able to predict some events
based on the occurrence of some other ones, which might be done by discovering
correlations between events. Therefore, special techniques and some specific form
of knowledge have to be called up to confront this challenge.

2.1 The Outputs of Learning

It is useful to clarify what is the output of learning. It can indeed change in function
of the application. A learning algorithm .2/ can be seen as a machine that takes as
input a data set . and produces as output either a model (loosely speaking) of the
world . or a decision procedure &, formally <7 : . +— . or h.

Let us consider this last case, there the decision procedure # is able to associate
anoutput y € % to any inputx € £ . Thenwe have h : x € 2 +— y € ¥.

So, we see that we naturally speak of different outputs—either a model .# or
a function h—without using different words. And the decision function A outputs a
prediction y given any input X. The right interpretation of the word output is provided
by the context, and the reader should always be careful about the intended meaning. In
the following of this section, output will mean the output of the learning algorithm o7

One important distinction is between the generative and the discriminative models
or decision functions.

In the generative approach, one tries to learn a (parametric) probability distribu-
tion p ,- over the input space 2. If learning a precise enough probability distribution
is successful, it becomes possible in principle to generate further examples x € 2~

342 A. Cornuéjols and C. Vrain

of which the distribution is indistinguishable from the true underlying distribution.
Using the learnt distribution p 4, it is possible to use it as a model of the data in
the unsupervised regime, or as a basis for a decision function using maximum a
posteriori criterion (see Sect. 3.3 below). Some say that this makes the generative
approach “explicative”. This is only true as far as a distribution function provides an
explanation. Not every one would agree on this.

The discriminative approach does not try to learn a model that allows the gener-
ation of more examples. It contents itself with providing either means of deciding
when in the supervised mode, or means to express some regularities in the data set in
the unsupervised mode. The regularities or these decision functions can be expressed
as logical rules, graphs, neural networks, etc. While they do not allow to generate
new examples, they nonetheless can be much more interpretable than probability
distributions. Furthermore, as Vapnik, a giant in this field, famously said “If you are
limited to a restricted amount of information, do not solve the particular problem
you need by solving a more general problem” (Vapnik 1995), p. 169. This can be
translated by, if you need to make prediction or to summarize a data set, it might not
be convenient to look first for a generative model, something that generally implies
to have large quantities of data.

Now, a decision function might provide a yes or no answer when someone would
like to have an associated confidence score. The generative techniques are gener-
ally able to provide this uncertainty level rather naturally, while the discriminative
techniques must be adapted, often through some heuristic means.

2.2 The Inputs of Learning

According to the discussion about the possible outputs of learning, the inputs can
be either a whole data set ., or a particular instance x for which one wants a
prediction y. Here, we list some possible descriptions that the elements x € 2" can
take depending on the application domain.

1. Vectorial. This is generally the case when the data is taken from a relational
database. In this case, the descriptors are considered as dimensions of an input
space, which is often considered as a vectorial space. In addition, when a distance
is defined, we get a normed vectorial space: this is very convenient for lots of
mathematical techniques have been devised for such spaces.

2. Non vectorial. This is the case for instance when the number of internal elements
of an example is not fixed. For instance, genomes or documents have a undefined
number of elements (e.g. nucleotides or words). Then, it is more difficult to define
proper distances, but in most cases, adapted distances have been defined.

3. Structured data. In this case, one can exploit the internal structure of the data
points, thus adding new structural features. It is possible to further distinguish:

Designing Algorithms for Machine Learning and Data Mining 343

e Sequential data. In sequential data, the description of a data point is com-
posed of ordered elements: the individual measurements cannot be exchanged
without changing its information content. A time series for instance can be
characterized by some trend, or some periodic variations.

e Spatial data. Spatial data exhibit a spatial structure, expressing some depen-
dencies between adjacent or distant elements of the description.

e Graphical data. Some data, like social networks, are best described as graphs
with directed or undirected, weighted or not, edges.

e Relational data. More generally, complex structures, like molecules or textual
documents, may need to be described, relying on formalisms close to first order
logic.

Some data, like videos, share several descriptions, for instance being both sequen-
tially and spatially organized.

It must be emphasized that finding the appropriate description of the data is very
often a tricky task, which requires skilled experts. This must be done before some
extra techniques that seek to massage the data further be put to work, like, for instance,
identifying the principal components, or selecting the most informative descriptors.

3 Designing Learning Algorithms

3.1 Three Questions that Shape the Design of Learning
Algorithms

Although predictive and descriptive algorithms have different goals and different
success criteria, the overall approach to their design is similar, and it can be cast as
the answer to three main questions.

1- What type of regularities is of interest for the expert in the data? In unsupervised
learning, this question is paramount since the goal of descriptive learning is to uncover
structures in the data. This question seems less central in supervised learning where
the first concern is to make prediction, and, it could be said, whatever the means.
However, even in the supervised setting, the type of decision function that one is ready
to consider to make predictions determines the type of algorithm that is adapted.

2- What is the performance criterion that one wants to optimize? In the early days
of machine learning, algorithms were mostly designed in an algorithmic way. The
algorithm had to fill a function, and if it did, if possible with smarty procedures, all
was good. The approach, nowadays, is different. One starts by specifying a perfor-
mance criterion. It evaluates the quality of the model or of the hypothesis learned. In
supervised learning, the criterion takes into account the fit to the training data plus
a component that expresses how much the hypothesis satisfies some prior bias. In
unsupervised learning, the criterion conveys how much the structure discovered in
the data matches the kind of regularities one is expecting.

344 A. Cornuéjols and C. Vrain

3- How to organize the search in the space of possible structures? Learning is
viewed as a search procedure in a space of possible structures, given a performance
criterion. Once a space of possibilities and a performance measure have been decided
upon, it is time to devise an algorithm that is able to search efficiently the space of
possibilities, called the search space in order to find one that has the best, or at least
a good, performance measure. This where computer science comes to the fore.

In the following of this section, we stay at a general level of description. Details
about the choice of responses for these questions will be given in later sections.

3.2 Unsupervised Learning

3.2.1 The Problems of Unsupervised Learning

Unsupervised learning works on a dataset described in an input space 2~ and aims at
understanding the underlying structure of data and of the representation space w.r.t.
this data. Two kinds of problems are considered: the first one, clustering, tends to
find an organization of data into classes, whereas the second one aims at finding
dependencies, such as correlations, between variables.

e Given a dataset, unsupervised classification, also called clustering aims at finding
a set of compact and well separated clusters, which means that objects in a same
cluster are similar (their pairwise distance is low) and objects in different clusters
are dissimilar (their pairwise distance is large). This set of clusters can form a
partition of the data (partitioning problem) or it can be organized into a hierarchy
(hierarchical clustering). The problem is usually modeled by an optimization
criterion specifying properties the output must satisfy. For instance, in partitioning
problems, the most used optimization criterion popularized by k-means algorithm
is the minimization of the sum of the squared distance of the points to the center of
the cluster they belong to. Given m objects Xy, ..., X,, usually in RY let{Cy, ..., Ci}
denote the k clusters and let 1 ; denote the centroid of the cluster C}, it is written

k
D0 lix = il

j=l1 X,’GCj

This domain has received a lot of attention, and the framework has been extended
in several directions. For instance, requiring a partition of the data can be too
restrictive. As an example, in document classification, a text can be labelled with
several topics and thus could be classified into several clusters. This leads to soft
clustering (in opposition to hard clustering), including fuzzy clustering where a
point belongs to a cluster with a degree of membership, or overlapping clustering
where an object can belong to several clusters. Fuzzy-c-means (Dunn 1973; Bezdek
1981) for instance is an extension of k-means for fuzzy clustering. Data can also be

Designing Algorithms for Machine Learning and Data Mining 345

described by several representations (for instance, texts and images for a webpage),
thus leading to multi-view clustering that aims at finding a consensus clustering
between the different views of the data.

Classic clustering methods are usually heuristic and search for a local optimum
and different local optima may exist. Depending on the representation of data,
on the choice of the dissimilarity measure, on the chosen methods and on the
parameter setting, many different results can be produced. Which one is the correct
partition, the one the expert expects? To overcome this problem, two directions
have been taken. The first one initiated in (Wagstaff and Cardie 2000) integrates
user knowledge, written as constraints, in the clustering process. Constraints can
be put on pairs of points: a must-link constraint between two points require these
two points to be in the same cluster whereas a cannot-link constraint between
two points require these two points to be in different clusters. This leads to a
new field, called Constrained Clustering, that is presented in chapter “Constrained
Clustering: Current and New Trends” of this volume. The second solution is to
generate many partitions and then to combine them in a hopefully more robust
partition, this research direction is called cluster ensemble (Vega-Pons and Ruiz-
Shulcloper 2011).

Another domain related to clustering is bi-clustering, also called co-clustering:
given a matrix M, bi-clustering aims at finding simultaneously a clustering of rows
and of columns. Its goal is therefore to identify blocks or biclusters, composed
of rows and columns, satisfying a given property: for instance the elements in a
block are constant or the elements in each row of the block are constant. See for
instance (Busygin et al. 2008; Madeira and Oliveira 2004) for an introduction to
co-clustering.

e Mining interesting patterns has been introduced in the 90s by (Agrawal and Srikant
1994) and has known a growing interest since then. The initial problem was to
find association rules, modeling a dependency (A;j A---AAy) = (BiA--- A
B,) between two sets of variables. The interest of the dependency was measured
by two criteria: the support, defined as the proportion of the population satisfying
both sets of variables and the confidence, an estimation of P(B; A -+ A By|A| A
--- A A,) measured by the proportion of the population satisfying the conclusion
of the rule among those satisfying the conditions.

Unsupervised learning has to face two important problems: controlling the com-
plexity of the algorithms and ensuring the validation of the results. Indeed, the number
of partitions of a set of m elements is given by the Bell number B,, and when the
number k of clusters is fixed, it is given by the Stirling number of the second kind
S(m, k).! When mining frequent patterns, the complexity is linked to the size of the
search space (in case of a boolean dataset, the size of the search space is 29, where
d is the number of boolean attributes) and to the size of the dataset (computing the
frequency of a pattern require to consider all points of the dataset). This explains
why many works in pattern mining have tried to reduce the complexity by pruning

S(m. k) = 4 5o (=K (kj) ™.

346 A. Cornuéjols and C. Vrain

the search space and/or changing the representation of the database. From the per-
spective of finding an actual solution, clustering is often defined as an optimization
problem, e.g., finding the best partition given an optimization criterion whereas pat-
tern mining is an enumeration problem, e.g. finding all the patterns satisfying some
given constraints.

Another important difficulty for unsupervised learning is the problem of vali-
dation. It is well-known that the notion of confidence for association rules can be
misleading: it only measures the probability of the conclusion of the rule given the
condition (P(B|A) forarule A — B) but it does not measure the correlation between
A and B, and it is possible to have a rule A — B with a high confidence despite a
negative correlation between A and B, therefore, different measures have been intro-
duced for assessing the interest of a rule (see for instance Han et al. 2011). Moreover
this domain has to confront the large amount of patterns that can be generated, thus
making an expert evaluation difficult. Regarding clustering, the problem is aggra-
vated: how can we validate an organization of data into classes, while, in addition,
it can depend on points of views. Classically two kinds of evaluation are performed:
either relying on an internal criterion or by evaluating the classification in regards of
a ground truth.

3.2.2 Approaches to Unsupervised Learning

Pattern mining and clustering are two distinct tasks, with their own family of methods.
The first one works at the attribute level whereas the latter one works at the data level.
Nevertheless, they interact in the domain of conceptual clustering that addresses the
problem of finding an organization of data in concepts, where a concept is defined
by two components: the extent of the concept, a subset of observations belonging to
this concept, and the intent of the concept, a subset of attributes satisfied by elements
of the concept.

Distance-based/similarity-based clustering

In distance-based clustering, the notion of dissimilarity between pairs of points is fun-
damental. When points are described by real features, the Euclidean distance (|].|]2)
is generally considered, but when dealing with more complex data (texts, images)
the identity (d(x, y) = 0 if and only if x = y) and the triangle inequality properties
can be difficult to enforce, and therefore a dissimilarity measure must be defined.

Many clustering tasks are often defined as an optimization problem. But because
of the complexity of most optimization criteria, there exist only few exact methods,
either exploring the search space by Branch and Bound strategies or based on declar-
ative frameworks, such as Integer Linear Programming or Constraint Programming
(see Sect.4.1). Methods are mainly heuristic and search for a local optimum. The
heuristic nature of the methods depends of several factors

e Initialization of the method: some methods, such as k-means or k-medoids, start
from a random initialization and search for a local optimum that depends on the
initial choice.

Designing Algorithms for Machine Learning and Data Mining 347

e Search strategy: usually, the optimization of the criterion relies on a gradient
descent procedure which is prone to converge to a local optimum.

Another family of clustering methods is no longer based on an optimization cri-
terion but on the notion of density (see Sect.4.4). This is illustrated by DBSCAN
(Ester et al. 1996) and it relies on the notion of core points: a core point is a point the
neighborhood of which is dense. The important notions are then the neighborhood
defined as a ball of a given radius around the point and the density specified by a min-
imum number of points in the neighborhood. Relying on core points, dense regions
can be built. One interest of such approaches is that they allow finding clusters of
various shapes.

Spectral clustering (see Sect.4.5) is the most recent family of methods. It is based
on a similarity graph, where each point is represented by a vertex in the graph and
edges between vertices are weighted by the similarity between the points. The graph
is not fully connected: for instance edges between nodes can be removed when their
similarity is less than a given threshold. The unnormalized graph Laplacian L of
the graph has an interesting property: the multiplicity of the eigenvalue O of L is
equal to the number of connected components in the similarity graph. This property
leads to different algorithms. Classically, the k first eigenvalues of the Laplacian are
computed, inducing a change in the data representation and then a k-means procedure
is applied on the new representation. It has been shown that there are some tight links
between spectral clustering, Non Negative Matrix factorization, kernel k-means and
some variant of min-cut problems (see Sect.4.5).

Finally, generative models that aim at modeling the underlying distribution p(x)
of data can be applied. For clustering, data are modeled by a mixture of Gaussian and
the parameters are learned, usually by maximizing the log likelihood of data, under
the assumption that the examples are i.i.d. The EM algorithm is the most widely used
algorithm in this context.

Conceptual clustering. Conceptual clustering was first introduced in (Michalski
1980). The aim is to learn concepts where a concept is defined by a set of objects
(extent of the concept) and a description (intent of the concept). It is well illustrated
by the system Cobweb (Fisher 1987): it incrementally builds a hierarchy of concepts
where a concept C is described by the quantities P(X; = v|C) for each feature X;
and each possible value v this feature can take.

The interest for conceptual clustering has been revived for a decade now with
the emergence of pattern mining. Truly, an important notion in itemset mining is the
notion of closed itemsets, where a closed itemset is a set of items that forms a concept,
as defined in Formal Concept Analysis (see Sect.7.1.4). Therefore once interesting
closed itemsets, and therefore concepts, have been found, it becomes natural to study
the organization of (some of) these concepts in a structure, leading to a partition of
data or to a hierarchical organization of data.

Pattern mining. The problem introduced in (Agrawal and Srikant 1994) was min-
ing association rules in the context of transactional databases: given a predefined
set of items ., a transaction is defined by a subset of items, called an itemset. A

348 A. Cornuéjols and C. Vrain

transactional database can be also represented by means of |.#| Boolean features,
each feature X; representing the presence (X; = 1) or absence (X; = 0) of the item
in the transaction. In this context a pattern is a conjunction of items, represented
by an itemset. Mining association rules is divided into two steps, first mining the
frequent patterns, i.e., those with a support greater than a predefined threshold and
then from these frequent patterns, building the association rules. The first step is the
most time-consuming, with a complexity depending on the number of features and
on the number of observations: in the Boolean case, the complexity of the search
space is 24 where d is the number of Boolean features and the evaluation of the
patterns, (e.g. computing their supports) require to go through the entire database.
Many algorithms, as for instance Eclat (Zaki 2000), FP-Growth (Han et al. 2000)
or LCM (Uno et al. 2004), have been developed to improve the efficiency of pat-
tern mining, relying on different representations of the database or/and on different
search strategies. The closedness of an itemset is an important property, since the set
of frequent closed itemsets forms a condensed representation of the set of frequent
itemsets, requiring less memory to store it. Some methods find all the frequent pat-
terns, some searches only for maximal frequent itemsets or only for closed frequent
itemsets (Bastide et al. 2000).

Pattern mining has also been developed for handling more complex databases
containing structured data such as sequences or graphs.

3.3 Supervised Learning

Supervised learning aims at finding prediction rules from an input space 2: the
description of examples, or situations of the world, to an output space % the decisions
to be made. The goal is to make predictions about the output values given input values,
and this is done through the learning of a decision procedure i : 2 — % using a
training sample . = {(X1, y1), -+ ., Xp» Ym)}-

Both the input space and the output space can take various forms according to
the task at hand. Classically, the input space often resulted from extractions from
a relational data base, therefore taking the form of vectorial descriptions (e.g. age,
gender, revenue, number of dependents, profession, ...). Recently, non vectorial
input spaces have become fashionable, like texts, images, videos, genomes, and so
on. Similarly, the output space may vary from binary labels (e.g. likes, dislikes),
to a finite set of categories (e.g. the set of possible diseases), or to the set of real
numbers. When the output space is a finite set of elements, the learning task is
known as classification, while, when it is infinite, it is called regression. In the case of
multivariate supervised learning, the output space is the cartesian product of several
spaces (e.g. one may want to predict both the profession and the age of a customer).
Some learning tasks involve structured outputs. For instance, one may want to infer
the structure of a molecule given a set of physical and chemical measurements, or to
infer the grammatical structure of an input sentence.

Designing Algorithms for Machine Learning and Data Mining 349
3.3.1 The Problems of Supervised Learning

In the following, we focus on the classification task and do not deal directly with
regression.

A supervised learning algorithm .7 takes as input the learning set . and a
space of decision functions or hypotheses .77, and it must output a decision func-
tion h : £ —> % . The search for a good hypothesis /& can be done directly by an
exploration of the space .77. This is called the discriminative approach. Or it can be
done indirectly by first inferring a joint probability distribution p 45 over 2 x &
by estimating both py and P 45 and then computing the likelihood p(y[x) for all
possible values of y € ¢/, and choosing the most probable one. This approach is
known as generative since, in principle, it is possible to generate artificial data points
x; for all classes y € % using the estimated distribution P 4-|4 . This is not possible if
one has learned a decision function like, for instance, a logical rule or an hyperplane
in the input space 2~ separating two classes.

The generative viewpoint lies at the core of Bayesian learning, while the discrimi-
native one is central to the machine learning approach. We adopt the later perspective
in the following.

The Inductive Criterion

The learning algorithm .7 must solve the following problem: given a training sam-
ple . = {(X1, ¥1), ..., (Xu, ym)} and an hypothesis space .7, what is the optimal
hypothesis h € 7

Under the assumption of a stationary environment, the best hypothesis is the one
that will minimize the expected loss over future examples. This expected loss, also
called the true risk, writes as:

RO = [ety dxdy
X x%

where £(h(x), y) measures the cost of predicting 4 (x) instead of the true label y,
while p -4 1s the joint probability governing the world and the labeling process. A
best hypothesis is thus: #* = argmin,, ,,» R(h). However, the underlying distribution
P4 2 1s unknown, and it is therefore not possible to estimate R(h) and thus to
determine h*.

Short of being able to compute the true value of any i € 7, it is necessary to
resort to a proxy for the true risk R(/). This is called the inductive criterion.

One of the best known inductive criterion is the empirical risk. It consists in
replacing the expected loss by an empirical measure: the mean loss computed on the
training set.

—~ | —
ROy = — hxi), y)
i=1

Searching the best hypothesis using h = argmin,, ,, R (h) is called the Empirical
Risk Minimization (ERM) principle.

350 A. Cornuéjols and C. Vrain

The ground for using an inductive criterion, such as the ERM, and the guarantees
it offers, in order to find an hypothesis with a true risk not too far from the true
risk of the best hypothesis i* is the object of the statistical learning theory (see
chapter “Statistical Computational Learning” of Volume 1). Under the assumption
that the data points are identically and independently distributed, the theory is able to
show that the ERM must be altered with the incorporation of a bias on the hypotheses
to be considered by the learner. Indeed, if no such bias is imposed, then it is always
possible to find hypotheses that have low empirical risk, they fit the training data
very well, while their true risk is high, meaning they behave badly over instances
that do not belong to the training set. This is called overfitting.

The hypothesis space .7#” must consequently be limited in its capacity to accom-
modate any target concept, or, alternatively, the empirical risk must be “regularized”
with the addition of a term that imposes a cost over hypotheses not well behaved
according to some prior preference. For instance, one may suppose that the target
concepts obeys some smoothness over the input space, which can be translated in
penalizing functions # with high values of their second derivative. Another way of
limiting the space of hypotheses considered by the learner is to prevent it to search
the whole space .7 by stopping the search process early on. This is for instance the
role of the “early stopping rule” known in artificial neural networks.

The challenge in supervised induction is therefore to identify an hypothesis space
rich enough so that a good hypothesis may be found (no underfitting) but constrained
enough so that overfitting can be controlled. Sophisticated learning algorithms are
able to automatically adjust the “capacity” of the hypothesis space in order to balance
optimally the two competing factors.

Once the inductive criterion is set, it remains to explore the hypothesis space in
order to find an hypothesis that optimizes as best as possible the inductive criterion.

Controlling the Search in the Hypothesis Space and the Optimization Strategy

Finding the hypothese(s) that optimize(s) the inductive criterion can be done analyt-
ically only in very specific cases. Typically, learning algorithms implement meth-
ods that update estimates of the solution via an iterative process. These processes
include optimization techniques, solving systems of linear equations, and searching
lattice-like state spaces. Usually, the learning algorithms require large amounts of
numerical and other operations, and it is therefore of foremost concern to control the
computational and space complexities of these processes as well as ensuring that the
approximations for real numbers stay correct.

When the hypothesis space is the space of vectors of real numbers R” (n € N), as
is the case for artificial neural networks for instance, gradient-based methods are the
method of choice for optimizing a numerical criterion. When the hypothesis space is
discrete, for instance when it is a space of logical expressions, it is important to find
operators between expressions that render the exploration of the hypothesis space
amenable to classical artificial intelligence search techniques, and in particular to
efficient pruning of the search space. This is central to the version space learning
algorithm (see Mitchell 1982, 1997) and to the search for typical patterns in databases
(see Agrawal and Srikant 1994; Aggarwal 2015).

Designing Algorithms for Machine Learning and Data Mining 351
3.3.2 Approaches to Supervised Learning

There exist a wide variety of supervised learning methods, with new methods, or at
least variations of methods, invented almost daily. It is nonetheless possible to group
these methods into broad categories.

Parametric Methods

It often happens that the expert knows in advance precisely the type of regularities
he/she is looking for in the data. For instance, one may want to fit a set of data points
with linear regression. In this case, the learning problem is generally to estimate the
coefficients, or parameters, of the model.

E.g., in a linear regression in R”, h(x) = Y " w; x), where the x© are the
coordinates of the input x, the n + 1 parameters w; (0 < i < n) must be estimated.

Parametric methods include most of the generative models (which hypothesize
some probability distributions over the data), linear and generalized linear models
and simple neural networks models.

Non Parametric Methods

The difference between parametric methods and non parametric methods is not as
clear cut as the terms would suggest. The distinction is between families of mod-
els that are constrained by having a limited number of parameters and those which
are so flexible that they can approximate almost any posterior probabilities or deci-
sion functions.

This is typically the case of learning systems that learn a non a priori fixed number
of prototypes and use nearest neighbors technique to decide the class of a new input.
These systems are ready to consider any number of prototypes as long as it allow
them to fit well the data. The Support Vector Machines (SVM) fall in this category
since they adjust the number of support vectors (learning examples) in order to fit the
data. Deep neural networks are in between parametric methods and non parametric
methods. They have often indeed a fixed number of parameters, but this number
is usually so large that the system has the ability to learn any type of dependency
between the input and the output.

Other non parametric methods include decision tree learners, and more generally
all learning systems that partition the input space into a set of “boxes” of which the
structure depends on the learning data. Systems that learn logical descriptions of the
data, often in the form of a collection of rules, are equally non parametric, and may
be seen as variants of technique that partition the input space into a set of categories.

Finally, ensemble learning methods, such as bagging, boosting and random
forests, are also non parametric since the number of base hypotheses that are com-
bined to form the final hypothesis is determined during learning.

It is worth noting that methods that use regularized inductive criteria or that
adjust the hypothesis space to the learning task at hand (like the Structural Risk
Minimization (SRM) principle of Vapnik) may be seen as belonging to an intersection
between parametric and non parametric methods. They are parametric because they
impose a constrained form to the learning hypotheses, but they adjust the number of
non null parameters in function of the learning problem.

352 A. Cornuéjols and C. Vrain

Changes of Representations in Supervised Learning

Many learning methods rely at their core on some change of representation of the
input space, so that the structure of the data or the decision function becomes easy to
discover. These changes of representation may be obtained through a preprocessing
step, when e.g. a Principal Component Analysis (PCA) or Singular Value Decompo-
sition (SVD) or Non Negative Matrix Factorization (NMF) are performed. They can
also result from the learning process itself, like when using MultiLayer Perceptrons
and deep neural networks, where the first layers adapt their weights (parameters) so
that the top layer of neurons can implement a linear decision function.

Likewise, regularized techniques, like LASSO, that select the descriptive features
that play a role in the final hypothesis, can be considered as methods for changing
the representation of the input space.

3.4 The Evaluation of Induction Results

Most methods in inductive learning entail building a model of the relationships
between the attributes and the outcome (supervised learning) or between attributes
themselves (unsupervised learning), with a penalty term that penalizes the complexity
of the model. In order to select the best model, and therefore, the optimal complexity
parameter, and the best meta parameters of the methods (e.g. the architecture of the
neural networks), which ensure the best predictive performance without overfitting,
one has to be able to evaluate the model’s performance.

The biggest hurdle to evaluate the value of a learning model is that one does
not know the future events that the system will have to process. One has therefore
to rely on the known (training) instances and on some a priori assumptions about
the relationship between the training data and the future environment in which the
system will have to perform. One such assumption is that the world is stationary.

Learning entails the optimization of two different sets of parameters: the parame-
ters that define one specific hypothesis in the model which is also the class of possible
hypotheses (e.g. the weights of the neural network of which the architecture is given),
and the parameters, aka meta-parameters, that control the model (e.g. the architec-
ture of the neural network, the learning step and other such choices that govern the
optimization process). In order for these two optimization problems to be properly
carried out, it is essential that the training data used for these two optimization tasks
be different to obviate the risk of obtaining optimistic and biased results. Thus, ide-
ally, the available data is split into three different subsets: the learning set used to
set the parameters of the hypothesis, the validation set that is used both to evaluate
the generalization performance of the hypothesis and to learn the meta-parameters
in order to optimize the model, and the fest set that is used just once, at the end of the
whole learning procedure in order to estimate the true value of the final hypothesis.

When data is abundant, it is possible to reserve a significant part of the sample
for each of the three subsets. Often, however, data is scarce and methods such as

Designing Algorithms for Machine Learning and Data Mining 353

cross-validation must be used which, in essence, uses repeated learnings and tests on
different subsets of the training sample in order to compensate for the lack of data.

Evaluating the performance of a learned model differs in supervised learning and
in unsupervised learning. We first look at evaluation in supervised learning.

In supervised learning, the estimation of the rate of error in generalization is
sometimes insufficient as a way to evaluate the value of the learned hypothesis.
Thus, for example, it may be useful to estimate more precisely the rates of false
positives and false negatives, or of precision and recall. Confusion matrices are then
an useful tool.

It is even possible to obtain curves of the evolution of the learning performance
when some meta-parameters are varied. The ROC curve (English Receiver Operating
Characteristics, motivated by the development of radars during the Second World
War) is the best known example. Typically it is sought to optimize the area under
the ROC curve which characterizes the discriminating power of the classification
method employed. The book (Japkowicz 2011) is a good source of information
about evaluation methods for supervised classification.

Inunsupervised learning, the goal is not to be able to predict the value of the output
for some new input, but to uncover structures of interest in the data. Therefore, the
error in generalization is replaced by other criteria that appreciate to which extent
the structures discovered in the data fit the expectations set by the user. For instance,
if one wishes to uncover subgroups or clusters in the data, performance criteria will
be based on measures of the compactness of each cluster together with a measure of
the dissimilarity between clusters. One can then choose for instance the number of
clusters that maximizes the chosen criterion. However, in contrast with supervised
learning, where the ground truth is known on the training data, in unsupervised
learning, the estimation criteria are very dependent on a priori assumptions about the
type of patterns present in the world, and this can easily give very misleading results
if these assumptions are not verified.

3.5 Types of Algorithms

The presentation of learning algorithms can be organized along several dimensions:

1. The optimization method used by the learner. For instance, gradient-based, divide-
and-conquer, and so on. As an illustration, many recent learning algorithms have
been motivated by the allure of convex optimization.

2. The types of hypotheses that are considered for describing the world or to make
predictions. For instance, linear models, non linear models, by partitioning the
input spaces, etc.

3. The type of structure of the hypothesis space. For instance, vectorial spaces,
Galois lattice, and so on.

Obviously, the optimization methods and the structure of the hypothesis space are
closely interrelated, while the type of hypotheses considered commands, in a large
part, the structure of the hypothesis space.

354 A. Cornuéjols and C. Vrain

A specialist of Machine Learning tries to solve inductive problems, that is dis-
covering general patterns or models from data by processes that can be automatized.
The first questions asked are: what are the available data? What is the task? How one
expects to measure the quality or performance of the learned regularities? What kind
of regularities are of interest? Only after these questions have answers does the prob-
lem of actually searching the space of possible regularities arise. Of course, Machine
Learning is also concerned with feasibility issues, and this all the more that the data
is increasingly massive and that the regularities considered become more complex.
Therefore the space and time requirements of the computations involved in learning
are also a factor in choosing or devising a learning method. This is where Machine
Learning blend with Computer Science. However, if a specialist of Machine Learn-
ing has to be aware of the computational demands of various types of algorithms,
this has not to be his/her foremost forte, in the same way that a specialist in Arti-
ficial Intelligence is centrally interested in knowledge representation and automatic
reasoning, and less centrally, even though this is important, in computational issues.

In accordance with these considerations, in the following, the chapter is struc-
tured around families of regularities that current learning algorithms are able to

uncover. For each of these types, however, algorithmic and computational issues
will be addressed.

4 Clustering

Clustering aims at finding the underlying organization of a dataset . = {x, ...,
X,, }. An observation is usually represented by the values it takes on a set of descriptors
{X1,..., X4}, thus defining the input space 2 . Most methods require the defini-
tion of either a dissimilarity measure, denoted by dis, between pairs of objects, or
a similarity (also called affinity) measure, denoted by sim. Clustering has attracted
significant attention since the beginning of exploratory data analysis, and many meth-
ods have been developed. In this chapter we focus on partitioning methods that aim
at building a partition of . (see Sects. 4.1-4.5) and hierarchical methods that aim at
organizing data in a hierarchical structure (see Sects. 4.6 and 4.7). The methods differ
according to the way clustering is modeled. Prototype-based methods (Sect. 4.2) seek
for representative points of the clusters, density-based methods (Sect.4.4) assume
that a cluster is built from connected dense regions whereas generative methods
(Sect.4.3) assume that data has been generated by a mixture of gaussians. Spectral
clustering (Sect.4.5) relies on a similarity measure and the construction of a graph
reflecting the links in terms of similarity between objects.

We present in this section a few well-known methods that are representative of
the various existing algorithms. More complete overviews of clustering and analysis
of clustering methods can be found in (Bishop 2006), (Hastie et al. 2009). Let us
also mention that outlier detection is a domain close to clustering that we do not
address in this chapter. An outlier is defined in (Hawkins 1980) as an observation
which deviates so much from the other observations as to arouse suspicions that it

Designing Algorithms for Machine Learning and Data Mining 355

Table 1 Criteria on a cluster C with centroid p: homogeneity (left)/separation (right)

Homogeneity of C to be minimized Separation of C to be maximized
diameter (diam): max(,i,(,jecdis(o,-, 0j) split 2: mingiec’oﬁcdis(o,-, 0j)
radius (r): min, ccmax,;ecdis(o;, 0;) cut: Zo,»ec ZO#C dis(0;,0;)
- mi feln ; . cut(C)
star (st): ming, ec Zojec dis(o;,0}) ratio_cut: <
normalized star: st (C)/|C]| normalized_cut(C)°:
. cut (C)

clique (cl): Zoi,()jec dis(o;,0}) TSEC=Ie))
normalized cl: st (C)/(IC] x (|C| — 1))
sum of squares (ss): ZoieC [loi — ull%

. ec lloi—ull3
variance(var)®: %

40r margin

b Also called the error sum of squares, for instance in Ward (1963)

“Given a weighted similarity graph, the normalized cut is defined differently by cut (C)/vol(C),
with vol(C) =) d;

0;eC

was generated by a different mechanism. Some clustering methods, as for instance
density-based methods, allow the detection of outliers during the clustering process
whereas other methods, as for instance k-means, need the outliers to be detected
before the clustering process. An overview of outlier detection methods can be found
in (Aggarwal 2015).

Defining a metric between objects is fundamental in clustering. We discuss in
Sect. 5 the kernel trick allowing to embed data in a higher dimension, without explic-
iting the new representation. Many clustering methods, relying on metrics, have been
“kernelized”.

4.1 Optimization Criteria and Exact Methods

Clustering looks for a partition of data made of compact and well separated clusters.
Several criteria have been defined for assessing the quality of a single cluster. A large
list is given in (Hansen and Jaumard 1997), and some examples are given in Table 1,
assuming a dissimilarity measure dis between pairs of objects, or the Euclidean
distance ||.||>.

Once criteria have been defined for assessing the property of a cluster, we can
define different objective functions, specifying the properties of the expected output
partition ¢ = (Cy, ..., Ct). For instance the minimization of the maximal diameter
(defined by maxj?zldi am(C)), or the minimization of the within-clusters sum of
squares (WCSS), defined in Eq. 1, rely on the notion of compactness. On the other
hand the maximization of the minimal margin (defined by mi ”I;=1 split(C;)) empha-
sizes the notion of separation. The first problem is polynomial only for k = 2, the
second one is NP-hard, the third one is polynomial. A criterion can be to maximize
the cut (Z’;Z1 cut(Cj)), which can be solved efficiently for k = 2, but which leads
to unbalanced clusters. This is why usually the normalized cut or the ratio cut are

356 A. Cornuéjols and C. Vrain

preferred. In case where we have a similarity matrix between points (see Sect.4.5),
the criterion becomes to minimize the cut or the ratio cut.

Because of the complexity of the problem, there are few exact methods. (Hansen
and Delattre 1978) presents a method based on graph coloring for the minimization
of the maximum diameter. Branch and bound algorithms (see for instance Brusco and
Stahl 2005) have been proposed for different criteria. Clustering has also been mod-
eled in Integer Linear Programming (Rao 1969; Klein and Aronson 1991; du Merle
et al. 1999) and there exists a new stream of research on using declarative frame-
works (Integer Linear Programming, Constraint Programming, SAT) for clustering
as for instance (Aloise et al. 2012; Dao et al. 2017) and for constrained clustering
(see chapter “Constrained Clustering: Current and New Trends” of this volume).

4.2 K-Means and Prototype-Based Approaches

The most well-known algorithm for clustering is k-means (Lloyd 1982; Forgy 1965).
The main ideas are that a cluster can be characterized by its centroid (the most central
point in the cluster) and an observation x is assigned to the closest cluster, measured
by the distance between x and the centroid of the cluster. The number & of classes
must be provided a priori. First, k observations, ,u?, ey ,ug, are chosen as initial
seeds and then the algorithm alternates two phases until convergence (i.e. when the
partition is no longer changed): it first assigns each observation to the cluster whose
centroid is the closest and then computes the new centroid of the clusters with the
observations assigned to this cluster. Let), ..., u; denote the centroids at iteration
t, the main scheme of the algorithm is given in Algorithm 1.

Algorithm 1: k-means algorithm

Initialization: Choice of k observations /,L(l), R ug as initial seeds;
t<0
repeat

For each point xj,i = 1...m, assign x; to the cluster C; with

I = argminje; g lI%; — 11123
For each j, j = 1, ...k, compute the new centroid:
Wit = 1 e, X
J ICjl 4=xeC;
t<—t+1
until Convergence;

As already stated, clustering is often viewed as an optimization problem, stating
the quality of the desired partition. In this case, the optimization criterion is called
the within-clusters sum of squares and it is defined by

WCSS = S5 Syec, I — 14113 M

Designing Algorithms for Machine Learning and Data Mining 357
when || ||, denotes the Euclidian distance. It is equivalent to

WCSS = T, Syree, 10V
j=1 u,veC; |CJ|

The complexity of the algorithm is O (mkt), when m is the number of observations,
k the number of clusters and ¢ the number of iterations. Let us notice two important
points. First, to be applicable, the number of classes must be given and computing
the means of a subset of observations must be feasible. It means that all the features
must be numeric. K-means can be adapted to handle non numeric attributes, for
instance by replacing the centroid by the most central observation (the observation
minimizing the star, i.e. defined by argmin,, - Zoj cc dis(o;,0})). But in case of
non numeric attributes, the most used method consists in looking for k observations,
called medoids, that are the most representative of the clusters, as for instance in
the system PAM (Kaufman and Rousseeuw 1990): the search space is the space of
all k-subsets of the observations; the search consists in considering pairs of objects
composed of a medoid and a non medoid and analyzing whether a swap between
them would improve WCSS. It has been further extended to improve its efficiency
(see for instance Ng and Han 1994; Park and Jun 2009).

The second observation is that the optimization criterion is not convex and there-
fore the initialization step is fundamental: the results depend heavily on it. Several
methods have been proposed for the initialization, as for instance K-means++ (Arthur
and Vassilvitskii 2007).

K-means is an iterative alternate optimization method. When looking at Eq. 1,
it can be seen that it depends on two parameter sets: the assignment of points to
clusters and the centroids of the clusters. Let us define a boolean variable X,
I,...,m, j=1...k which is true when the observation x; belongs to cluster C;.

I =

We have for all i, Zl;zl X;; = 1, that is each point is assigned to one and only one
cluster. Then Eq. 1 can be written:

WCSS = Z" B X 1% — 11113 (2)

This form highlights the two sets of parameters: X;; (i =1,...,m, j=1...k)
(assignment of points to clusters)and ; (j = 1, ... k) (determination of the centroid
of cluster) and in fact, the two alternate steps correspond to (1) fix u;, j = 1,...kin
Eq.2andoptimize X;;,i =1,...,m,j=1... kandQ)fixX; ;,i =1,...,m, j =
...k and optimize u;, j =1, ...k. For solving (1) we can notice that the terms
involving X;; are independent from those involving X; ol " 2 i and can be optimized
independently, thus giving X;; = 1 iff [= argmin;, ,||X; — p;|l>. The variables
X; being fixed, finding the best v, j = 1...k, is a quadratic optimization problem
that can be solved by setting the derivatives with respect to u ; equal to 0, leading to

Wi = ZZ%B—XX’X For more details, see (Bishop 2006).
i=1 1)
K-means relies on the Euclidian distance and makes the underlying assumption

that the different clusters are linearly separable. As many clustering algorithms, it has

358 A. Cornuéjols and C. Vrain

been extended to kernel k-means, thus mapping points in a higher dimensionality
space using a non linear function @. Kernel k-means relies on the fact that |ju —
V||% =<u,u> —2 <u,v>+ <v,v > and that the dot product can be replaced
by a kernel function. Compared to k-means, the first part of the iteration, i.e. the
assignment of a point x to a cluster, has to be changed: argmin,, ,||®(x) — u;ll,
with pu; = % Zuecj @ (u). Replacing u ; by its value and developing the norm using
the dot product allows one to express ||®(x) — ;| |> in terms of the kernel, thus
avoiding the computation of @ (x).

Self-organizing maps (SOM) are also based on prototypes. The simplest approach
called vector quantization (VQ) follows the same philosophy as k-means, in the
sense that k prototypes are initially chosen at random in the input space, each point
is assigned to the cluster of its closest prototype and prototypes are updated. Never-
theless, at each iteration of VQ a single point x is chosen at random and the closest
prototype is updated, so as to move closer to x. Let us call m3 the prototype of cluster
J at iteration ¢. If x is assigned to C;, then its prototype is updated by the formula
(e 1s a fixed parameter): 1

t+

t t
m; <—mj+s(x—mj)

thus m?“ —x=(1- 8)(1’113 — x). Self-organizing map (Kohonen 1997) adds a

structure (often a grid) on the prototypes and at each iteration, the closest proto-
types and its neighbors are updated. The prototypes and their structure can be seen
as aneural network, but learning can be qualified as competitive since at each iteration
only the winning prototype and its neighbors are updated.

4.3 Generative Learning for Clustering

In Sect. 2.1, we have mentioned that there are two approaches in Machine Learning:
generative versus discriminative. Generative methods aims at learning a (parametric)
probability distribution p ,- over the input space 2. On the other hand, clustering as
an exploratory process aims at discovering the underlying structure of data, and this
structure can naturally be modeled by a probability distribution p - . This leads to the
use of generative methods for clustering. The model that is chosen is usually a linear
combination of k£ Gaussian densities (intuitively a Gaussian density for each cluster):

k
PX) =) 7N (x|pj, Z)) 3)
j=1
k
with for all jm; > 0and Y m; =1 4)
j=1

The coefficients 7; are called the mixing coefficients and can be interpreted as
the prior probability for a point to be generated from the jth cluster, 4 (x| ;, X))
is the probability of the point given that it is drawn from the jth component.

Designing Algorithms for Machine Learning and Data Mining 359

This can also be formulated by introducing a k dimensional binary random
variable, z = (zy, ..., Zx), intuitively representing the assignment of a point to a
cluster (z; = 1 if x is assigned to cluster j). Therefore, only one z; is equal to 1
and the other ones are equal to 0 (Zl;zl z; = 1). The marginal distribution of z is
given by p(z; = 1) = mr; and the conditional probability of x given z is given by
P(x|z; = 1) = A (x|p, ¥;) and since p(x) = }_; p(z; = DP(x|z; = 1), we fall
back on Eq. 3. The k dimensional variable z is called a latent variable. It can be seen
as a hidden set of variables: observations are described in the input space (2", Z)
of dimension d + k, where hidden variables in 2 give the assignment of points to
clusters.

Given the observations .¥, learning a generative model for . is classically
achieved by maximizing the log likelihood of the data, defined as In(p(|, i, X)),
where 7, u, X denote respectively w = (7, ..., m), 4 = (U1, ..., ug) and X' =
(X1, ..., 2%). Supposing that examples have been drawn independently from the
distribution we get

m k
(L), . 2) =Y In(Y_m N (xilwj, Z) (5)

i=1 j=1

Maximizing the log likelihood, or, in other words, learning the coefficients
(wj,pmj,X;),j =1...kis usually achieved by the Expectation/Minimization algo-
rithm (EM) algorithm. Roughly, after having initialized the parameters to learn, EM
iterates two phases: an expectation phase, computing the probability of the assign-
ment of a point to a cluster given that point (P(z; = 1/x,)) and a maximization step
that given the assignments of points to cluster, optimize the parameters (7, u;, X;)
for maximizing the likelihood. The algorithm for learning mixture of Gaussians is
given in Algorithm 2 (Bishop 2006).

Algorithm 2: EM algorithm for learning Gaussian mixtures (Bishop 2006)

Initialize, for all j in 1, ...k, the means u ;, the covariance X; and the mixing coefficients
JTj 5

Evaluate the log likelihood using Eq.5;

repeat

E step Evaluate the responsibilities y (z;;) = p(z; = 11x;)
TN (Xilpj, Xj)
2:0) = :
v ig) Yo T (il Zr)
M step Reestimate the parameters
M'}ew = m% Yo v @ipxi, withmj = 350 v (zif)

DI = o Yy @) (i — W (i — W)

new __ Mj .,

g
J m’

Evaluate the log likelihood using Eq.5;

until Convergence;

360 A. Cornuéjols and C. Vrain

The structure of this algorithm looks similar to the structure of k-means algorithm
(Algorithm 1). Let us notice that in k-means a point is assigned to a single cluster
(hard assignment) whereas with this approach a point is assigned to the cluster with
a probability (soft assignment).

A more detailed presentation of EM can be found in (Bishop 2006).

4.4 Density-Based Clustering

Density-based methods are based on the assumption that clusters correspond to high-
density subspaces. The first method was proposed in the system DBSCAN (Ester
et al. 1996): it relies on the search for core points, that are points with a dense
neighborhood. The notion of density is based on two parameters: the radius ¢ defining
the neighborhood of a point and a density threshold Min Pts, defining the minimum
number of points that must be present in the neighborhood of a point for the density
around this point to be high. More formally the e-neighborhood of a point u is
defined by:
N.(u) ={v e .L|dis(u,v) < &}

and a core point is a point u satisfying |N.(u)| > MinPts. A point v is linked to a
core point u when there exists a sequence of core points uy, ..., u, such thatu; = u,
andforalli,i =2,...,n,u; € N.(u;_;)andv € N.(u,) A dense clusteris a maximal
set of connected objects, that is objects that are linked to a same core point. It is thus
composed of core points (the internal points of the cluster) and non core points (the
border points of the cluster). The method is described in Algorithms 3 and 4: roughly
for each point that has not yet been visited (marked by Uncl) and that is a core point,
a new cluster is built and this cluster is iteratively expanded considering the core
points in its neighborhood (Ester et al. 1996).

Algorithm 3: Outline of DBSCAN algorithm

Data: SetofPoints, &, MinPts
Clustld <— first(Clusterld) ; // First cluster label
for each point x do
if Mark(x) = Uncl ; // X unclassified
then
if Expand(SetofPoints, X, Clustld, ¢, Min Pts) then
| Clustld <— next(ClusterlId) ; // New cluster label
end
end
end

Designing Algorithms for Machine Learning and Data Mining 361

Algorithm 4: Expand(Setof Points, x, Clustld, ¢, MinPts)

N «— N.(x);

if [N| < MinPts ; // Not a core point
then

| Mark(x) <— Noise and Return False // Mark may change later
else

for all points z in N Mark(z) <— Clustld ; // Init the cluster with N.(x)
Delete x from N;
while N = () do
Let s be the first element of N;
if N.(s) > MinPts ; // Expand the cluster
then
for all points z in N(s) do
if Mark(z) = Uncl then add z to N;
if Mark(z) = Uncl or Noise then Mark(z) < Clustld,
end
end
Delete s from N;
end
Return True;
end

The average complexity of this algorithm is O (n x log(n)) with adapted data
structures, such as R * —trees. Density-based clustering allows the detection of out-
liers, that are defined in DBSCAN as points that are connected to no core points.
The second important property is that by merging neighborhoods, density-based
clustering allows one to find clusters of arbitrary shape. On the other hand the draw-
back is that the output is highly dependent on the parameters € and Minpts, although
heuristics have been proposed to set these parameters. Moreover the algorithm cannot
handle cases where the density varies from one cluster to another. Some extensions,
as for instance OPTICS proposed in (Ankerst et al. 1999), have been defined to take
into account learning in presence of clusters with different density.

4.5 Spectral Clustering, Non Negative Matrix Factorization

A clear and self-contained introduction to spectral clustering can be found in von
Luxburg (2007). Spectral clustering takes as input a similarity graph ¥4 = (S, E): the
nodes S of the graph are the observations and E is a set of weighted edges, where the
weight w;;, w;; > 0, between two nodes Xx; and X; represent the similarity between
x; and X; (w;; = 0 when there are no edges between x; and x; or when the similarity
is null).

When the input is a pairwise dissimilarity or a distance dis between pairs of
points, a function transforming the distance into a similarity must first be applied;

362 A. Cornuéjols and C. Vrain

for instance it can be a Gaussian similarity function: sim(x;, X;) = exp(— % ,
where o 1s a parameter. Several methods have been proposed to build the graph. All
nodes can be connected and the edges weighted by the similarity. It is also possible
to use an unweighted graph, connecting points whose distances are less than a given
parameter €.

In the following Sim = (sim;;); j—1..» denotes a similarity matrix with sim;; the
similarity between x; and x;, W = (w;;); j=1..,» denotes the weight matrix and D
the degree matrix. D is a diagonal matrix whose diagonal terms are the degree d; of
points, defined by d; = Z'};l wij, i =1,...m.

Given this graph, a Laplacian matrix is built. The Laplacian matrix is particularly
interesting since the multiplicity of the eigenvalue O of the Laplacian matrix is equal
to the number of connected components of the graph. If the multiplicity is equal
to k then the partition of the observations in k clusters is naturally given by the k
connected components of the graph. More precisely, several Laplacian graphs can
be built: the unnormalized graph Laplacian L, or the normalized graph Laplacians,

Lgym or L,,, defined by:
L=D—-W, Ly,=D:LD> and L,,=D"'L.

Laplacian have important properties. For instance considering L, we have:

1 m
VX = (x1,...,x,) e R", X'Lx = 3 .le,-j(xi —xj)?
L,]=

The definition of L and this property allow to show that L is a symmetric, positive
semi-definite matrix, it has m non negative, real-valued eigenvalues,) < A} < --- <
Am and O is the smallest eigenvalue with as eigenvector the unit vector 1 whose
components are all equal to 1.

This leads to two kinds of approaches:

e Spectral clustering, that given the graph Laplacian L computes the first k eigenvec-
tors uy, ..., u; of L. Considering U = [uy, ..., ux],eachelementu;;,i =1...m,
J = 1...k can be seen as the belonging of x; to C;. K-means is then applied on
the rows to obtain a partition. See Algorithm 5.

e Structured graph learning (Nie et al. 2014) that aims at modifying the similarity
matrix Sim so that the multiplicity of O in its graph Laplacian is equal to k.
This leads to the following minimization problem, where a regularization term is
introduced to avoid a trivial solution (||.||r denotes the Frobenius norm)

m
. 2 . .
ming;,, E lIx; — xll3sim;; + w||Sim||F
i.j=1

s.it. Sim1=1,sim;; >0, rank(Lgj,) =m — k.

Designing Algorithms for Machine Learning and Data Mining 363

Algorithm 5: Unnormalized spectral clustering (von Luxburg 2007)

Input : a similarity matrix Sim = (s;;); j=1..m, € R™*™
a number k of classes

Output: £ clusters, Cy, ..., Cy

Compute the similarity graph G = (S, E);

Compute the unnormalized Laplacian L, L € R™*™,;

Compute the first k eigenvectors uy, ..., uy of L;
LetU = [uy, ..., ur], the matrix whose columns are u; (U Rka);
Letz;,i =1, ..., m, the vectors corresponding to the rows of U

Cluster the points (z;);=1,....m into k clusters Ay ...Ag;
Return forall j, j =1...1,C; = {x;]z; € A}}

Spectral clustering can be seen as a relaxation of the problem of finding a parti-
tion ¢ = (Cy, ..., Cx) minimizing the ratioCut of ¢, defined by ratioCut(%¢) =
Z];':] Cultc(ﬁj) In fact it can be shown that ratioC ut (%) can be rewritten by intro-

J
1

ducing am x k matrix H defined by h;; = NG ifx; € Cjand h;; =0ifx; ¢ C;.

ratioCut(€) = Trace(H'LH)

H satisfies H' H = I. Each row of H contains a single non zero value, denoting
the cluster the point belongs to whereas each column of H is an indicator vector rep-
resenting the composition of the corresponding cluster. The relaxation is performed
by allowing H to take arbitrary real values. The minimization problem:

minimizeycgm Trace(H'LH)
under the condition H'H = I

has as solution the matrix U = [uy, ..., u,] composed by the first k eigenvectors of L
(theorem of Rayleigh—Ritz). U has to be transformed to model a partition and this is
achieved by applying k-means. Other relations between clustering frameworks have
been addressed: Dhillon et al. (2004) also shows a relation on a weighted version
of kernel k-means, spectral clustering as defined in Ng et al. (2001) and normalized
cut; Ding and He (2005) has also shown the relation between Spectral Clustering,
kernel k-means and Nonnegative Matrix Factorization of W. Let us recall that non
Negative Factorization of W consists in finding a matrix H, H € R’jfk minimizing
||W — HH'||r, where ||.||r denotes the Frobenius norm.

4.6 Hierarchical Clustering

Searching for an organization of data into a single partition requires to choose the
level of granularity, defined by the number of clusters in the partition. Hierarchical
clustering solves this problem by looking for a sequence of nested partitions.

364 A. Cornuéjols and C. Vrain

Hierarchical clustering (Ward 1963; Johnson 1967) aims at building a sequence
of nested partitions: the finest one is the partition &, & = {{x}, ...,{X,,}} where
each point is put in a cluster reduced to this point and the coarsest one is 2, 2=
{{x1,...,x,}}, composed of a single class containing all the points. There exists
two family of algorithms. Divisive algorithms start with the partition composed of
a single class and iteratively divide a cluster into 2 or more smaller clusters, thus
getting finer partitions. On the other hand, agglomerative algorithms start with the
finest partition &7, composed of m clusters, each cluster being reduced to a single
point. The two closest clusters are merged and the process is iterated until getting
the partition .2 composed of a single cluster. A sketch of these algorithms is given
in Algorithm 6

Algorithm 6: Agglomerative hierarchical clustering

Compute dis(x;, x;) for all pairs of points x; and X; in .;
Let IT = {{x}|x € S};
Let 2 a dendrogram with m nodes at height 0, one node for each element in I7;
while |[[1]| > 1 do
Choose two clusters C,, and C,, in IT so that dis(C,, C,) is minimal ;
Remove C,, and C,, from IT and add C,, U C,;
Add a new node to the dendrogram labeled by C,, U C, at height dis(C,, Cy);
Compute dis(C, U Cy, Cy,) for all Cy, € IT;
end

This algorithm is parameterized by the choice of the dissimilarity between two
clusters. For instance (Ward 1963) proposes to optimize the variance, defined in Table
1. The most known strategies for defining a dissimilarity between two clusters are:

e single linkage (nearest-neighbor strategy):

dis(Cy, C,)) = min{dis(u,v)lu € C,, v € C,} (split between C, and C,)
e average linkage:

dis(C,, C,) = mean{dis(u,v)jue Cy,,v e C,}
e complete linkage (furthest-neighbor strategy):

dis(C,, C,) = max{dis(u,v)lue C,,veC,)}

Single linkage suffers from the chain effect (Johnson 1967): it merges clusters
with a minimal split but it can iteratively lead to clusters with large diameters. On
the other hand, complete linkage aims at each step at minimizing the diameter of the
resulting clusters and thus finding homogeneous clusters, but quite similar objects
may be classified in different clusters, in order to keep the diameters small. Average
linkage tends to balance both effects.

(Lance and Williams 1967) reviews different criteria used in hierarchical clus-
tering and proposes a general formula, allowing to update dis(C, U C,, C,,) from
dis(Cy,, C,),dis(C,, Cy,) and dis(C,, Cy).

Designing Algorithms for Machine Learning and Data Mining 365

4.7 Conceptual Clustering

Conceptual clustering was introduced in (Michalski 1980), (Michalski and Stepp
1983). The main idea of conceptual clustering is that, in order to be interesting, a
cluster must be a concept, where a concept can be defined by characteristic properties
(properties satisfied by all the elements of the concept) and discriminant properties
(properties satisfied only by elements of the concept).” The system Cobweb, pro-
posed in (Fisher 1987) is original in the sense that it learns probabilistic concepts
organized into a hierarchy and it is incremental, that is examples are sequentially
processed and the hierarchy is updated given a new example. More precisely, each
concept C is described by the probability of the concept P(C) (estimated by the rate
of observations in this concept w.r.t. the total number of observations) and for each
attribute X and each value v, P(X = v|C) (estimated by the proportion of observa-
tions in the concept satisfying X = v).

Given a hierarchy of concepts and a new observation x, the aim is to update
the hierarchy taking into account this new observation. The new observation is first
inserted at the root of the hierarchy and then iteratively integrated at the different
levels of the tree. The algorithm relies on four main operators, the two last operators
aims at repairing the bad choices that could have been done, because of the sequential
processing of the observations:

e Creating a new concept: when, at a given level, x seems too different from the
existing concepts, a new concept is created, reduced to this observation and the
process stops.

e [ntegrating X in an existing concept C. When this concept is composed of a single
observation, x is added to C (thus getting a concept with 2 observations) and
two leaves are created one for each observation. Otherwise, probabilities of C are
updated and the process goes on, considering the sons of C as the new level.

e Merging two concepts: when X seems close to two concepts, the two concepts are
merged, X is integrated in the new resulting concept and the process goes on.

e Splitting two concepts: the concept is removed and its descendants are put at the
current level.

The choice of the best operator relies on a criterion, called category utility, for
evaluating the quality of a partition. It aims at maximizing both the probability that
two objects in the same category have values in common and the probability that
objects in different categories have different property values. The sum is taken across
all categories Cy, all features X; and all feature values v;;

D DY P = vi)P(X; = vl CHP(C;IX; = vi)

j i l

2If P is a property and C is a concept, a property is characteristic if C — P and discriminant if
P—C.

366 A. Cornuéjols and C. Vrain

e P(X; =v;|Cj) is called predictability. It is the probability that an object has the
value v;; for feature X; given that the object belongs to category C;

e P(C;|X; = vi) is called predictiveness. It is the probability with which an object
belongs to the category C; given it has a value v;; for a feature X;.

e P(X; = v;;) serves as a weight. Frequent features have a stronger influence.

4.8 Clustering Validation

Validation of a clustering process is a difficult task since clustering is per nature
exploratory, aiming at understanding the underlying structure of data, which is
unknown. Thus, contrary to supervised learning, we have no ground truth for assess-
ing the quality of the result. Several approaches have been developed:

e deviation to a null hypothesis reflecting the absence of structure (Jain and Dubes
1988): for instance samples can be randomly generated and the result is compared
to the output computed on real data.

e comparison of the result with some prior information on the expected results.
They can be formulated in terms of the expected structure of the clustering, as for
instance getting compact and/or well separated clusters, or in terms of an expected
partition. This method is mostly used for assessing the quality of a new clustering
method, by running it on supervised benchmarks in which the true partition is
given by the labels. It can also be used when only partial information is given.

e stability measures that study the change in the results, either when the parameters
of the clustering algorithm (number of clusters, initial seeds, ...) vary or when
data is slightly modified.

In all methods, performance indexes must be defined, either measuring the quality
of the clustering by itself (called internal indexes) or comparing the result with other
clusterings (either obtained by a ground truth, or on randomly generated data, or with
different settings of the parameters) (called external indexes). There are also some
relative indexes that compare the results of several clusterings.

4.8.1 Internal Indexes

Such indexes allow measuring the intrinsic quality of the partition. There are many
indexes (a list can be found in Halkidi et al. 2002). They tend to integrate in a
single measure the compactness of the clusters and their separation: the first one
must be minimized whereas the second one must be maximized, and usually they
are aggregated using a ratio. Some criteria for assessing the compactness of a cluster
or its separation from other clusters are given in Table 1, this list is far from being
exhaustive. For example, Davies—Bouldin index is defined by

Designing Algorithms for Machine Learning and Data Mining 367

1 8 +9;

A 2| Max; ji Ay
In this expression, §; is the average distance of the objects of cluster i to the
centroid p;, it measures the dispersion of the cluster i (to be minimized for com-
pactness). A;; is the distance between the centroid of cluster i and the centroid of
cluster j (dis(w;, u;)), it measures the dissimilarity between the two clusters (to
be maximized for cluster separation). The term % represents a kind of similarity
between clusters C; and C;. Clustering aims at ﬁndjing dissimilar clusters and there-
fore the similarity of a cluster with the other ones must be small. Davies—Bouldin
index averages out the similarity of each cluster with its most similar one, the quality

is higher when this index is small.

4.8.2 External Indexes

We suppose that the result of the clustering is a partition 4 = (Cy, ..., Ci) and we
already know a partition & = (Py, ..., P;), which is called the reference partition.
The external indexes compare the situation of pairs of points (X, y) in each cluster:
do they belong to the same cluster in both partitions? Do they belong to different
clusters in both partitions? More precisely comparing the two partitions can involve
the following numbers:

e a: number of pairs of points belonging to a same cluster in both partitions
e b: number of pairs of points belonging to a same cluster in € but not in &
e c: number of pairs of points belonging to a same cluster in & but not in ¢
e d: number of pairs of points belonging in different clusters in both partitions.

This leads to the definition of the Rand Index defined by

a—+d

nn—1)
2

RI =

where a + d represents the number of agreements between ¢ and &7: when the
partitions are identical, the Rand index is equal to 1. The adjusted rand index (ARI)
is usually preferred. It corrects the Rand Index by comparing it to the expected one:
when ARI = (0, the learned partition is not better than a random partition, whereas
if ARI = 1, the two partitions are identical.

5 Linear Models and Their Generalizations

We now turn to various hypothesis spaces, which can be used either in the unsuper-
vised context or in the supervised one. Most of the following presentation, however,
is put in the supervised setting. We start with the simplest model: the linear ones.

368 A. Cornuéjols and C. Vrain

When the input space .2 is viewed as a vectorial space, for instance R¢, where
d is the dimension of this space, it becomes natural to think of regularities in the
data as geometric structures in this input space. The simplest such structures are
linear, like lines or (hyper)planes. Their appeal for inductive learning comes from
their simplicity which helps in understanding or interpreting what they represent,
and from the property of the associated inductive criteria that are often convex and
therefore lead to efficient ways of approximating their global optimum. Additionally,
because these models have limited expressive power, they are not prone to overfitting
and are stable to small variations of the training data.

Typically, the expressions considered for representing regularities are of the form:

h(x) = f(Zwl- g,-<x>+wO)

i=l

1. When the g; (-) are the projection on the ith coordinate of 2", and f is the identity
function, we have the classical linear regression model.

2. When f is the sign function, we have a binary linear classification model, where
Y wi gi(x) +wy = 0is the equation of the separating hyperplane.

3. Mixtures models in the generative approach are also often expressed as linear
combination of simple density distributions, like mixtures of Gaussians: p(x) =
Yoy 7 pi(x16)).

4. When the functions g;(-) are themselves non linear transformations of the input
space, we get the so-called generalized linear models.

5. Even though the Support Vector Machine is a non parametric method for classi-
fication _ meaning that its number of parameters depends on the training data _,
it can also be cast as a linear model of the form:

h(X) = > o k(X,X;) ¥
i=1

where the kernel function x measures a “similarity” between instances in the
input space, and can be seen as special cases of function g; (-), with each g; (x) =
K (X, X).

6. Some ensemble learning methods, such as boosting for binary classification, are
equally members of the linear models family. In these methods, the hypotheses
generally take the form:

H(x) = sign <Z ;i h; (X)>
i=1

where the number n of base (or “weak’) hypotheses controls the expressive power
of the hypothesis, and hence the risk of overfitting the data.

Designing Algorithms for Machine Learning and Data Mining 369

The first problem to solve in learning these models is to choose the “dictionary”
of functions g; (-). The second one is to estimate the parameters w; (1 <i < n).

The choice of the dictionary is either trivially done using classical base func-
tions, like the splines for linear regression, or is the result on the expert’s insights.
When there exists a large amount of training data, methods for “dictionary learn-
ing” can be used. The design of these methods, however, remains largely a research
problem because the search for a good hypothesis within an hypothesis space is now
compounded by the problem of constructing the hypothesis space itself. Dictionary
learning methods have been mostly used in the context of vision systems and scene
analysis (Qiu et al. 2012; Rubinstein et al. 2010; Tosic and Frossard 2011).

The estimation of the parameters demands first that a performance criterion be
defined, so that it can be optimized by controlling their values.

In regression, the problemis tolearn a function 2 : 2~ — R fromaset of examples
(Xi, Yi)1<i<m. The differences between the actual and estimated function values on
the training examples are called residuals ¢; = y; — h(X;). The least-squares method
adopts as the empirical risk the square of the residuals) ", sl.z, and, according to
the ERM principle, the best hypothesis h is the one minimizing this criterion. One
justification for this criterion is to consider that the true target function is indeed
linear, but that the observed y; values are contaminated with a Gaussian noise.

The problem of optimizing the empirical risk can be solved by computing a closed-
form solution. The matrix inversion of X ' X is needed, where X denotes the m-by-d
data matrix containing m instances in rows described by d features in columns.
Unfortunately, this can be prohibitive in high-dimensional feature spaces and can
be sensitive to small variations of the training data. This is why iterative gradient
descent methods are usually preferred.

It is also in order to control this instability, and the overfitting behavior it can
denote, that regularization is called for. The idea is to add penalties on the parame-
ter values.

In shrinkage, the penalty is on the square norm of the weight vector w:

w* = argmin {(y — Xw)" (y — Xw) + A ||w|]*}
w

This favors weights that are on average small in magnitude.
In Lasso (least absolute shrinkage and selection operator), the penalty is on the
absolute values of the weights w:

*

w* = argmin {(y — Xw)" (y — Xw) + A|w|}

Lasso uses what is called the L; norm and favors sparse solutions, in that it
favors solutions with zero values for as many weights as possible while still trying
to fit the data.

370 A. Cornuéjols and C. Vrain

We now look at two simple, yet still widely used, discriminative methods: logistic
regression and the perceptron.

Logistic regression assumes that the decision function is linear and that the dis-
tance in the input space of an example from the decision boundary is indicative of
the probability of the example to belong to the class associated with this side of the
boundary. In fact, the method assumes that the histogram of these distances follows
a normal distribution. If d(x) is the distance of x to the decision function, we have:

A L o exp(W-Xx—wp) 1
p(class(x) = +|d(x)) = exp(W-X—wo) +1 1 +exp(—(w-x—wp))

Because the model is based on generative assumptions (i.e. the model is able
to generate data sets, in contrast to, say, decision functions), one can associate a
likelihood function to the training data:

L(w,wy) = HP(y,-|x,-) = 1_[P(x)Y (1 — p(x;)) =)

We want then to maximize the log-likelihood with respect to the parameters, which
means that all partial derivatives must be zero:

VwL(w,wp) =0
0

—L(w,w) =0
8w0

The corresponding weight parameters w and wy can be obtained through a gradient
descent procedure applied to the negative log-likelihood.

The logistic regression algorithm is based on the assumption that the distances
from the decision function in the input space 2 follows a normal distribution. If
this assumption is not valid, it is possible that a linear separation exists between the
two classes, but that the logistic regression outputs a decision function that does not
separate them properly.

By contrast, the perceptron algorithm guarantees that if a linear separation exists
between the classes, it will output a linear decision function making no errors on
the training set. The perceptron considers the training examples one at a time, and
updates its weight vector every time the current hypothesis h, misclassifies the current
example X;, according to the following equation:

Wil = W, +10YiX; (6)

The algorithm may cycle several times through the training set. Learning stops when
there is no more training example misclassified. The perceptron algorithm is simple
to implement and is guaranteed to converge in a finite number of steps if the classes
are linearly separable.

Designing Algorithms for Machine Learning and Data Mining 371

feature
map

yperplane

Fig. 1 A complex decision function in the input space can be made linear in a feature space with
an appropriate mapping

All methods described above are limited to finding linear models within the input
space. One way to circumvent this serious limitation is by changing the input space.
This is what the so-called generalized linear models do by using sets of non linear
basis functions g; defined over 2. In the new description space spanned by the
functions g;, a linear separation can thus be associated with a non linear separation
in the input space 2" (Fig.1).

Aside its limited expressive power, the perceptron has another unsatisfactory prop-
erty: it outputs a linear decision function as soon as it has found one between the
training data. However, intuitively, some linear separations can be better than others
and it would be preferable to output the best one(s) rather than the first one discov-
ered. This realization is the basis of methods that attempt to maximize the “margin”
between examples of different classes (Fig.2).

Suppose we call the margin of an example x with respect to a linear decision
function defined by its weight vector w the distance of this example from the decision
function: w - x, then we want to have all the training examples on the good side of
the decision function that is learned (i.e. all the positive instances on one side, and
the negative ones on the other side), and the smallest margin for the positive training
examples and for the negative ones to be as large as possible (see Fig.2). In this way,
the decision boundary is the most robust to small changes of the training points, and
accordingly, it can be expected that it is the best separator for new unseen data that
follow the same distribution as the training set. This leads to a quadratic constrained
optimization problem:

1
w* = argmini ||w||2 subjectto y;(w-x;) > 1,1 <i<m

w

This optimization problem is usually solved using the method of Lagrange multi-
pliers. Ultimately, it can be shown that the solution only depends on the set .5 of
the so-called support vectors which are the training examples nearest, i.e. with the
smallest margin to the decision boundary. Each support vector x; is associated with

372 A. Cornuéjols and C. Vrain

Fig. 2 A linear decision X, 4
function between two classes
of data points can be defined
by the support vectors that
are on the margin. Here only
three points suffice to
determine the decision
function

a weight «;. The decision function then becomes:

hx) = sign{ D iy <x,-.x>}

X; Ee/(ﬁs

where (x;.x) is the dot product of x; and x in the input space 2 . The dot product
can be considered as a measure of ressemblance between x; and x. Accordingly, the
SVM can be seen as a kind of nearest neighbors classifier, where a new example x
is labeled by comparison to selected neighbors, the support vectors x;, weighted by
the coefficients «;.

However, even though SVM outputs decision functions that are likely to be better
than the ones produced by perceptrons, they would still be limited to produce linear
boundaries in the input space. A fundamental realization by Vapnik and his co-
workers (Cortes and Vapnik 1995) has changed the expressive power of the SVM,
and indeed of many linear methods, such as linear regression, Principal Component
Analysis, Kalman Filters, and so on.

Indeed, an essential problem of the methods based on examples is the choice
of an appropriate measure of similarity. Thus, any chess player is aware that two
exactly identical game situations, but for the position of a pawn, may actually lead to
completely different outcomes of the game. The same can happen when comparing
various objects such as molecules, texts, images, etc. In every case, the choice of the
right similarity measure is crucial for methods that decide on the basis of similarities
to known examples.

If mathematics provides us with many measures suited to vector spaces, for exam-
ple in the form of distances, the problem is much more open when the data involve
symbolic descriptors and/or are defined in non-vector spaces, such as texts. This is
why a significant part of current machine learning contributions is the definition and

Designing Algorithms for Machine Learning and Data Mining 373

testing of new similarity measures appropriate for particular data types: sequences,
XML files, structured data, and so on. The invention and popularization of SVM
by Vapnik and its co-workers have been very influential in reviving and renewing
the problem of the design of appropriate similarity functions, and this can be seen
especially with the rise of the so-called kernel methods (Scholkhopf and Smola 2002).

If one wants to adapt linear methods to learn non-linear decision boundaries, a
very simple idea comes to mind: transform the data non-linearly to a new feature
space in which linear classification can be applied. The problem, of course, is to find
a suitable change of representation, from the input space to an appropriate feature
space. We will see that one approach is to learn such a change of representation in
a multilayer neural network (see Sect. 6). But one remarkable thing is that, in many
cases, the feature space does not have to be explicitly defined. This is the core of the
so-called “kernel trick”.

Suppose that you must compare two points in R2:u = (uy,up) and v = (vq, v2).
One way to measure their distance is through their dot-productu - v = u v| + upv;.
Suppose now that you decide to consider the mapping (x, y) — (x2, y, V2x y),
which translates points in R? into points in R?. Then, the points u and v are respec-
tively mapped tou’ = (u%, u%, V2ujup) and v = (vf, v%, V2 viv»). The dot product
of these two vectors is:

2.2 2.2 2 2
u v = upvi +usvy +2uiuavivy = (uvy +uzvp)” = (u-v)

In other words, by squaring the dot product in the input space, we obtain the dot prod-
uct in the new 3-dimensional space without having to actually compute it explicitly.
And one can see on this example that the mapping is non linear.

A function that computes the dot product in a feature space directly from the
vectors in the input space is called a kernel. In the above example, the kernel is:
k(u,v) = (u-v)>. Many kernel functions are known, and because kernel functions
form a group under some simple operators, it is easy to define new ones as wished.

In order to be able to use the kernel trick to transform a linear method into a non
linear one, the original linear method must be entirely expressible in terms of dot
products in the input space. Many methods can be expressed that way, using a “dual
form”. This is for instance the case of the perceptron, which thus can be transformed
into a kernel perceptron able to separate non linearly separable data in the input
space. A kernel perceptron that maximizes the margin between the decision function
and the nearest examples of each class is called a Support Vector Machine.

The general form of the equation of Support Vector Machines is:

h(x) = sign{Za,- K (X, X;) yi}
i=l1

where m is the number of training data. However, it suffices to use the support
vectors (the nearest data points to the decision function) in the sum, which most

374 A. Cornuéjols and C. Vrain

often drastically reduces the number of comparisons to be made through the kernel
function.

It is worth stressing that kernel functions have been devised for discrete structures,
such as trees, graphs and logical formulae, thus extending the range of geometrical
models to non-numerical data. A good introductory book is (Shawe-Taylor and Cris-
tianini 2004).

The invention of the boosting algorithm, another class of generalized linear clas-
sifiers, is due to Shapire and Freund in the early 1990s (Shapire and Freund 2012).
It has stemmed from a theoretical question about the possibility of learning “strong
hypotheses”, ones that perform as well as possible on test data, using only “weak
hypotheses” that may perform barely above random guessing on training data.

Algorithm 7: The boosting algorithm

Input: Training data set .# ; number of combined hypotheses T ;
weak learning algorithm .o/

Initialization of the distribution on the training set: w; | = 1/|.| forallx; € .7 ;

forr=1,...,T do
Run & on . with weights w; ; to produce an hypothesis #;;
Calculate the weighted error ¢; of /; on the weighted data set;
if &, > 1/2 then

| setT <t — 1and break

end

a; < 5 log,(1;5’) (confidence for the hypothesis &,) ;

Wittl < ;’;—8’[for instances x; misclassified at time 7 ;

Wil < % for instances x; correctly classified at time ¢ ;
end

QOutput: the final combined hypothesis H : 2~ — %

T
H(x) = sign{z o h,(x)} (7

t=1

The idea is to find a set of basis decision functions 4; : 2 — {—1, +1} such
that used collectively in a weighted linear combination, they can provide a high-
performing decision function H (x). How to find such a set of basis functions or
weak hypotheses? The general principle behind boosting and other ensemble learning
methods 1is to promote diversity in the basis functions so as to eliminate accidental
fluctuations and combine their strengths (Zhou 2012). The way boosting does that is
by modifying the training set between each stage of the iterative algorithm. At each
stage, a weak hypothesis 4, is learnt, and the training set is subtly modified so that A,
does not perform better than random guessing on the new data set. This way, at the
next stage, one is guaranteed that if a better than random hypothesis can be learnt,

Designing Algorithms for Machine Learning and Data Mining 375

it has used information not used by /4, and therefore brings new leverage on the rule
to classify the data points.

In boosting, the training set is modified at each stage by changing the weights of
the examples. Specifically, at start the weights of all training examples are uniformly
setto 1/|.7|. At the next step, half of the total weight is assigned to the misclassified
examples, and the other half to the correctly classified ones. Since the sum of the
current weight of the misclassified examples is the error rate ¢;, the weights of the
misclassified examples must be multiplied by 1/2¢,. Likewise the weights of the
correctly classified examples must be multiplied by 1/2(1 — &;). That way, at stage
t + 1, the total weight of the misclassified examples is equal to the total weight of
the other examples, and equal to 1/2. In each successive round, the same operation
is carried out. Finally, a confidence is computed for each learned weak hypothesis
h,. An analysis of the minimization of the empirical risk (with a exponential loss
function) leads to associate o; = %logz(lz—f") to each h,. The basic algorithm is
given in Algorithm 7.

From the Eq.7, it can be seen that boosting realizes a linear classification in a
feature space made of the values of the learned weak hypotheses (see Fig. 3). It can
therefore be considered as generalized linear method which learns its feature map.

While not strictly linear in a geometrical sense, another method, the random forest,
belongs to the family of ensemble learning, like boosting (Breiman 2001). There, the
idea is to foster diversity in the basis hypotheses by changing both the training data
and the hypothesis space at each round of the algorithm. The training set is changed
at each time step using a bootstrap strategy, by sampling with replacement m training
examples (not necessarily different) from the initial training set . of size m. The
hypothesis space is made of decision trees, and in order to accentuate diversity, a
subset of the attributes is randomly drawn at each step, forcing the individual “weak
decision tree” to be different from each other. Random forests have been the winning
method in numerous competitions on data analysis, and while they are no longer well
publicized since the advent of the deep neural networks, they remain a method of
choice for their simplicity and their propensity to reach good level of performance.

Fig.3 Boosting in effect maps the data points into a feature space with 7 dimensions corresponding
to the values of the weak hypotheses %, (-). In this new feature space the final hypothesis H (x) =
sign{Z,T:] oy hy (x)} corresponds to a linear classifier

376 A. Cornuéjols and C. Vrain

Linear methods are said to be shallow since they combine only one “layer” of
descriptors, and, supposedly, this would limit their expressive power. Methods that
change the representation of the data, and specially deep neural methods are moti-
vated by overcoming this limitation.

6 Multi-layer Neural Networks and Deep Learning

The preceding section has introduced us to linear models and ways to learn them.
Among these models, the perceptron was introduced by Frank Rosenblatt in the late
1950s with the idea that it was a good model of learning perceptual tasks such as
speech and character recognition. The learning algorithm (see Eq.6) was general,
simple and yet efficient. However, it was limited to learning linear decision functions
with respect to the input space. This limitation was forcibly put forward in the book
Perceptrons by Marvin Minsky and Seymour Papert in 1969 (see Minsky and Papert
1988) and this quickly translated into a “winter period” for connectionism. Actually,
Minsky and Papert acknowledged in their book that layers of interconnected neurons
between the input and the last linear decision function could perform some sort
of representation change that would allow the system to solve non linear decision
tasks, but they did not see how it would be possible to disentangle the effects of
modifications in the various weights attached to the connections, and thus to learn
these weights. They believed that these first layers would have to be hand-coded,
which would be a daunting task but for the simplest perceptual problems.

For more than ten years, no significant activity occurred in the study of artifi-
cial neural networks, not to lessen the works of some courageous scientists during
this period. In 1982, a change happened coming from a field foreign to Artificial
Intelligence. John Hopfield, a solid state physicist, noticed a resemblance between
the problem of finding the state of lowest energy in spin glass and the problem
of pattern recognition in neural networks (Hopfield 1982). In each case, there is a
“basin of attraction”, and changing the weights in the connections between atoms or
neurons can alter the basins of attractions which translates into modifying the ideal
patterns corresponding to imperfect or noisy inputs. For the first time, a non linear
function from the input space to the output one was shown to be learnable with a
neural network. This spurred the development of other neural models, noticeably
the “Boltzman machine”, unfortunately slow and impractical, and the Multi-layer
perceptron.

6.1 The Multi-layer Perceptron

In multi-layer perceptrons, the signal is fed to an input layer made of as many
neurons (see Fig.4) as there are descriptors or dimensions in the input space, and is
then propagated through a number of “hidden layers” up until a final output layer
which computes the output corresponding to the pattern presented to the input layer.

Designing Algorithms for Machine Learning and Data Mining 377

Fig. 4 Model of a formal bias neuron
neuron

Fig. 5 The back-prop
algorithm illustrated. Here

the desired output u is N [wiolt + 1) = wis (8) = n(t) 8, a5)
compared to the output

R = S\
produced by the network y, AQ‘;,. W
and the error is T2 ‘.\\\ s (%)

K==
back-propagated in the T3 v
network using local Y «~—u
equations X
[0 = g(a)® -y) |
wij O
\ g ’

The hidden layers are in charge of translating the input signal in such a way that the
last, output, layer can learn a linear decision function that solve the learning problem.
The hidden layers thus act as a non linear mapping from the input space to the output
one. The question is how to learn this mapping. It happens that the solution to this
problem was found the very same year that the book “Perceptrons” was published,
by Arthur Bryson and Yu-Chi Ho, and then again in 1974 by Paul Werbos in his
PhD. thesis. However, this is only in 1986 that the now famous “back-propagation
algorithm” was widely recognized as the solution to the learning of hidden layers
of neurons and credited to David Rumelhart, Geoff Hinton and Ronald Williams
(Rumelhart et al. 1987), while Yann Le Cun, independently, in France, homed on the
same algorithm too (Le Cun 1986) (see Fig.5).

To discover the learning algorithm, it was needed that the neurons were no longer
seen as logical gates, witha {0, 1} or { False, True } output, but as continuous functions
of their inputs: the famous ‘S’ shaped logistic function or the hyperbolic tangent
one. This allowed the computation of the gradient of the signal error _the difference
between the desired output and the computed one_ with respect to each connection
in the network, and thus the computation of the direction of change for each weight
in order to reduce this prediction error.

378 A. Cornuéjols and C. Vrain

The invention of the back-propagation algorithm arrived at a timely moment in the
history of Artificial Intelligence when, on one hand, it was felt that expert systems
were decidedly difficult to code because of the knowledge bottleneck and, on the
other hand, symbolic learning systems started to show brittleness when fed with
noisy data, something that was not bothering for neural networks.

Terry Sejnowski and Charles Rosenberg showed to stunned audiences how the
system NETtalk could learn to correctly pronounce phonemes according to the con-
text, reproducing the same stages in learning as exhibited by children, while other
scientists applied with success the new technique to problems of speech recogni-
tion, prediction of stock market prices or hand-written character recognition. In fact,
almost a decade before the DARPA Grand Challenge on autonomous vehicles, a team
of Carnegie-Mellon successfully trained a multilayer perceptron to drive a car, or,
more modestly but yet, to appropriately turn the steering wheel by detecting where
the road was heading in video images recorded in real time. This car was able to
self-direct itself almost 97% of the time when driving from the East coast of the
United States to the West coast in 1997 (see https://www.theverge.com/2016/11/27/
13752344/alvinn-self-driving-car- 1989-cmu-navlab).

However, rather rapidly, in the mid-90s, multilayer perceptrons appeared limited
in their capacity to learn complex supervised learning tasks. When hidden layers
were added in order to learn a better mapping from the input space to the output
one, the back propagated error signal would rapidly become too spread out to induce
significant and well-informed changes in the weights, and learning would not suc-
ceed. Again, connectionism subsided and yielded to new learning techniques such
as Support Vector Machines and Boosting.

6.2 Deep Learning: The Dream of the Old AI Realized?

Very early, researchers in artificial intelligence realized that one crucial key to suc-
cessful automatic reasoning and problem solving was how knowledge was repre-
sented. Various types of logics were invented in the 60s and 70s, Saul Amarel, in a
famous paper (Amarel 1968), showed that a problem became trivial if a good rep-
resentation of the problem was designed, and Levesque and Brachman in the 80s
strikingly exhibited the tradeoff between representation expressiveness and reason-
ing efficiency (Levesque and Brachman 1987) demonstrating the importance of the
former.

Likewise, it was found that the performance of many machine learning methods
is heavily dependent on the choice of representation they use for describing their
inputs. In fact, most of the work done in machine learning involves the careful
design of feature extractors and generally of preprocessing steps in order to get a
suitable redescription of the inputs so that effective machine learning can take place.
The task can be complex when vastly different inputs must be associated with the
same output while subtle differences might entail a difference in the output. This
is often the case in image recognition where variations in position, orientation or
illumination of an object should be irrelevant, while minute differences in the shape,

Designing Algorithms for Machine Learning and Data Mining 379

or texture can be significant. The same goes for speech recognition, where the learning
system should be insensitive to pitch or accent variations while being attentive to
small differences in prosody for instance. Until 2006, and the first demonstration
of successful “deep neural networks”, it was believed that these clever changes of
representation necessary in some application areas could only be hand-engineered.
In other words, the dream of Al: automatically finding good representations of inputs
and/or knowledge could only be performed for “simple” problems, as was done, in
part, by multilayer perceptrons.

If it was known that representations using hierarchical levels of descriptors could
be much more expressive than shallow representations given the same number of
features, it was also believed that learning such multiple levels of raw features and
more abstract descriptors was beyond the reach of algorithmic learning from data.
All that changed in 2006 when a few research groups showed that iteratively stacking
unsupervised representation learning algorithms could yield multiple levels of repre-
sentation, with higher-level features being progressively more abstract descriptions
of the data. These first successes made enough of an impression to rekindle interest in
artificial neural nets. This interest spectacularly manifested itself in the unexpected
large audience of the “Deep Learning Workshop: Foundations and Future Direc-
tions” organized aside of the NIPS-2007 conference. Since then, there has been an
increasing number of scientific gatherings on this subject: noticeably one workshop
every year at the NIPS and ICML conferences, the two major conferences in machine
learning, and a new specialized conference created in 2013: ICLR, the International
Conference on Learning Representations.

But then, what was the novelty with respect to the previous multilayer perceptrons?
It was not a revolution, but still there were three significant new ingredients that
changed the realm of possibilities.

The first one was related to the fact that it would help learning tremendously if the
weights of the connections were not initialized randomly but in a cleverer way. And
the new idea was to train each layer one by one with unsupervised learning, and then
finishing with a round of supervised learning with the standard back-propagation
technique. In the early stages of the deep learning, this was done by variants of
the Boltzman machines invented in the 1980s, later it was carried out with auto
encoders that learn to associate each input with itself but with a limited bandwidth
represented by a constrained hidden layer of neurons. That way, enormous volumes
of unsupervised training data could be put to use in order to learn the initial weights
of the network, and more importantly to learn meaningful hierarchically organized
descriptors of the data.

The second ingredient was the use of vastly more computing power than a decade
earlier. To learn the millions of weights typical of the new deep networks, the classical
CPU, even with parallelism were not enough. The computing power of Graphics Pro-
cessing Units (GPU) had to be harnessed. This was quickly realized and lead to new
record breaking achievements in machine learning challenges. Thus the possibility
of using vastly larger sets of training data and correspondingly much faster compu-
tation lead to new horizons. Indeed, the use of very large data sets is instrumental in
avoiding overfitting.

380

A. Cornuéjols and C. Vrain

Table 2 Some usual activation functions in artificial neurons. The Heaviside activation function

was used in the perceptron

Name Graph Equation Derivative
. 5 0 ifx <0 0 ifx #£0
Heaviside = "(x) =
@) {1 x>0 | I {? ifx =0
Logistic or = 1
sigmoid 1 T flx) = — [= fl) (1= f)
function I+e

0 ifx<O 0 ifx<O
RelLU / _ () —
f) {x ifx>o0 | T {1 ifx >0

However, a third ingredient was also of considerable importance, and it was related
to the analysis of the inefficiencies of the back-propagation algorithm when the
number of hidden layers exceeded a small value, like 2 or 3. This analysis lead to
two major findings. First, that the non-linear activation function in neurons has a
big impact on performances, and that the classical ‘S’ shaped ones, like the sigmoid
function, results easily in vanishing gradients and thus in very slow or inexistent
learning. It was found that rectified linear units (ReLU), which is simply the half-
wave rectifier g(z) = max(z, 0), albeit not strictly differentiable, lead to far more
efficient back-propagation of the error signal (see Table 2). The second finding was
that to better channel the error signal, it was possible to randomly “paralyse” a
proportion of neurons during each back-propagation learning step. This trick, called
“dropout”, not only improved the back-propagation of the error signal in the deep
networks, but it also proved to be related to the bagging technique that enlists an
ensemble of classifiers in order to reduce the variance of the learned models, and
therefore to increased learning performance.

A good book about deep learning is (Goodfellow et al. 2016).

6.3 Convolutional Neural Networks

While the early revival of research in neural networks, in 2006 and later, was largely
spurred by the realization that iterative construction of deep neural networks was

Designing Algorithms for Machine Learning and Data Mining 381

possible by using iterative unsupervised learning of each individual layer of neurons,
another competing neural architecture soon regained attention. This architecture was
the Convolutional Neural Network on which Yann Le Cun had been working as early
as 1990 (Le Cun et al. 1990, 1995).

Deep neural networks in general exploit the idea that many natural signals are hier-
archical and compositional, in which higher-level features are composed of lower
level ones. For instance, in images, low-level detectors may attend to edge and local
contrasts, those being combined in motifs in higher levels, motifs that are then com-
bined into parts and parts finally into objects. Similar hierarchies exist in speech or
in texts and documents.

Whereas the deep architectures obtained from iteratively using unsupervised
learning trust the successive layers to encode such hierarchical descriptors, the convo-
lutional neural networks are designed to realize some invariance operations, through
convolutions, that conduct to such hierarchies. Four key ideas are drawn upon in
ConvNets: local connections, shared weights, pooling and the use of many layers.

The first few stages of a typical ConvNet are composed of two types of layers:
convolutional layers and pooling layers (see Fig.6). The input to a ConvNet must
be thought of as arrays (one dimensional or multi-dimensional). The units in convo-
lutional layers see only a local patch in the input array, either the raw input in the
first layer, or an array from the previous layer in later layers. Each unit is connected
to its input patch through a set of weights called a filter bank. The result of this
local weighted sum is then passed through the function activation, usually a ReLLU.
Units in convolutional layers are organized in several feature maps, and all units
in the same feature map share the same filter bank (aka weight sharing). This way,
each feature map specializes into the detection of some local motif in the input, and
these motifs can be detected anywhere in the input. Mathematically, this amounts to
a discrete convolution of the input. Then, the role of the pooling layer is to merge

...
s L A W B S & A & W & LT E e e e e s e W N AN e &~y

"”’ﬁ”"’ﬂﬂ - - - - AL LA

LT - - - - B S LT L L& &

Fig. 6 A convolutional network taking as input an image of a dog, transformed into RGB input
arrays. Each rectangular image is a feature map corresponding to the output for one of the learned
feature detected at each of the image positions. Information flows bottom up with ever more com-
bined features as the signal goes up toward the last layer where a probability is assigned to each
class of object. (image taken from Le Cun et al. 2015)

382 A. Cornuéjols and C. Vrain

local motifs into one. One typical pooling unit may compute the maximum of the
output of the local detectors realized by the convolutional unit, thus claiming that
some motif has been found anywhere in the array if this maximum is high enough.
This encodes a detector invariant by translation. Pooling units may also be used to
reduce the dimension of the input, or to create invariance to small shifts, rotations
or distortions. Typically, several stages of convolutions, non-linearity and pooling
are stacked, followed by more convolutional and fully-connected layers. The back
propagation algorithm, possibly using dropout and other optimization tricks is used
allowing all the weights in all the filter banks to be trained. Recent Convolutional neu-
ral networks have more than 10 layers of ReLLU, and hundreds of millions, sometimes
billions, of weights.

A ConvNet takes an input expressed as an array of numbers and returns the prob-
ability that the input, or some part of it, belongs to a particular class of objects or pat-
terns. ConvNets have been applied to speech recognition, with time-delay neural net-
works, and hand-written character recognition in the early 1990s. More recently, Con-
vNets have yielded impressive levels of performance, sometimes surpassing human
performance, in the detection, segmentation and recognition of objects and regions
in images, like traffic signal recognition, the segmentation of biological images, the
detection of faces in photos, and so on. These networks have also been instrumental
in the success of the AlphaGo program that now beats routinely all human champions
at the game of Go (Silver et al. 2016, 2017). The other area where ConvNets are
gaining importance are speech recognition and natural language understanding.

6.4 The Generative Adversarial Networks

The preceding sections have dealt mainly with supervised learning: learning to asso-
ciate inputs to outputs from a training sample of pairs (input, output). In 2014, Ian
Goodfellow and co-workers (Goodfellow et al. 2014) presented an intriguing and
seducing idea by which deep neural networks could be trained to generate synthetic
examples that would be indistinguishable from a training example. For instance,
given a set of images of interiors in apartments, a network can be trained to generate
other interiors that are quite reasonable for apartments. Or a network could be trained
to generate synthetic paintings in the style Van Gogh.

The idea is the following. In GANSs, two neural networks are trained in an adver-
sarial way (see Fig. 7). One neural network, G, is the generator network. It produces
synthetic examples using a combination of latent, or noise, variables as input, and its
goal is to produce examples that are impossible to distinguish from the examples in
the training set. For this, it learns how to combine the latent input variables through
its layers of neurons. The other neural network, D, is the discriminator. Its tasks is to
try to recognize when an input is coming from the training set or from the generator
G. Each neural network evolves in order, for G to fool D, while for D the task is to
learn to be able to discriminate the training inputs from the generated ones. Learning
is successful when D is no longer able to do so.

Designing Algorithms for Machine Learning and Data Mining 383

/

ake image

Fig. 7 A typical GAN
network

Discriminator

Generator

6.5 Deep Neural Networks and New Interrogations on
Generalization

A recent paper (Zhang et al. 2016) has drawn attention to a glaring lack of understand-
ing of the reason of the success of the deep neural networks. Recall that supervised
learning is typically done by searching for the hypothesis function that optimizes as
well as possible the empirical risk, which is the cost of using one hypothesis on the
training set. In order for this empirical risk minimization principle to be sound, one
has to constraint the hypothesis space .7#” considered by the learner. The tighter the
constraint, the tighter the link between the empirical risk and the real risk, and the
better the guarantee that the hypothesis optimizing the empirical risk is also a good
hypothesis with regard to the real risk. If no such constraint on the hypothesis space
exists, then there is no evidence whatsoever that a good performance on the training
set entails a good performance in generalization.

One way to measure the constraint, or capacity, of the hypotheses space is to
measure to which extent one can find an hypothesis in .7 that is able to fit any
training set. If, for any training set, with arbitrary input and arbitrary output, one can
find a hypothesis with low, or null, empirical risk, then there is no guaranteed link
between the measured empirical risk and the real one.

But this is exactly what happens with deep neural networks. It has been shown
in several studies that typical deep neural networks, used successfully for image
recognition, can indeed be trained to have a quasi null empirical risk on any training
set. Specifically, these neural nets could learn perfectly images where the pixels
and the output were randomly set. For all purposes, there was no limit to the way
they could fit any training set. According to the common wisdom acquired from the
statistical learning theory, they should overfit severely any training set. Why, then,
are they so successful on “natural” images?

A number of papers have been hastily published since this finding. They offer
at the time of this writing only what seem partial explanations. One observation is
that learning is not done in the same way when learning, by heart, a set of “random”
data and learning a set of “reasonable” data. Further studies are needed, and it is
expected that they bring new advances in the understanding of what makes successful
induction.

More information about deep neural networks can be found in Le Cun et al. (2015),
Goodfellow et al. (2016).

384 A. Cornuéjols and C. Vrain

7 Concept Learning: Structuring the Search Space

Concept learning is deeply rooted in Artificial Intelligence, at the time when knowl-
edge appeared to be the key for solving many Al problems. The idea was then to learn
concepts defined by their intent, and thus meaningful models easily understandable
by experts of the domain. Logic - propositional or first order logic - was therefore
the most used representation formalism. Nevertheless, modeling the world require
dealing with uncertainty and thus to study formalisms beyond classical logic: fuzzy
logic, probabilistic models, ...Learning a representation of the world becomes much
more difficult, since two learning problems must then be faced: learning the struc-
ture (a set of rules, dependencies between variables, ...) and learning the parameters
(probabilities, fuzzy functions, ...). We focus in this section on learning the structure
in classic logic, and probabilistic learning will be addressed in Sect. 8. The structure
depends on the input data and on the learning task. Data can be given in a table,
expressing the values taken by the objects on attributes or features, or it can be more
complex with a set of objects described by attributes and linked by relations, such as
a relational database or a social network. Data can also be sequential or structured
in a graph. Depending on the data types, the outputs vary from a set of patterns
(conjunction of properties, rules, ...), often written in logics or graphical models
(automata, Hidden Markov model, Bayesian networks, conditional random fields,
).

Before going further, let us specify some basic notions about the different repre-
sentation languages used in this section. We focus mainly on rule learning.

A rule is composed of two parts, the left-hand side of the rule expresses the condi-
tions that must be satisfied for the rule to be applied and the right-hand side or conclu-
sion specifies what become true when the conditions are realized. Several languages
can be used to express rules: the propositional logic, composed only of propositional
symbols, as for example in the rule vertebrate A tetrapod A winged — bird,
the attribute-value representation as for instance temperature > 37.5 — fever.
First order logic allows one to express more complex relations between objects, such
as father (X, Y), father (Y, Z) — grandFather (X, Z).Sometimes, when
the concept to be learned is implicit (for example, learning the concept mammal),
the conclusion of the rule is omitted and only the conjunction of properties defining
the concept is given. More complex expressions can be written, like general clauses
allowing to specify alternatives in the conclusion or to introduce negation. Learn-
ing knowledge expressed in first-order logic is the field of study of Inductive Logic
Programming (Raedt 2008; Dzeroski and Lavrac 2001). Another representation for-
malism is the family of graphical models (Koller and Friedman 2009): they are based
on graphs representing dependencies between variables. We distinguish mainly the
Bayesian networks, oriented graphs associating to each node the conditional prob-
ability of this node, given its parents and the Markov models, non-oriented graphs
for which a variable is independent of the others, given its neighbors. A research
stream, called Statistical Relational Learning (Raedt et al. 2008; Getoor and Taskar
2007) tends to couple Inductive Logic Programming with probabilistic approaches.

Designing Algorithms for Machine Learning and Data Mining 385

Finally, grammatical inference (de la Higuera 2010 or Miclet 1990) aims at learning
grammars or languages from data: the family of models considered is often that of
automata, possibly probabilistic ones.

Let us notice that often we do not look for an hypothesis but for a set of hypotheses,
for instance a disjunction of hypotheses. Consider learning a concept from positive
and negative examples. It may be unrealistic to look for a single rule covering posi-
tive examples and rejecting negative ones, since this would assume that all positive
examples follow the same pattern: we then look for a set of rules. However, extending
the model to a set of hypotheses introduces again the necessary compromise between
the inductive criterion and the complexity of the hypothesis space. Indeed, the dis-
junction of the positive examples, X; V - - - V X,,, represents a set of hypotheses that
covers all positive examples and rejects all negatives, under the condition that the
negative examples differ from the positive ones. We then have an arbitrarily complex
hypothesis, varying according to the learning examples, and with a null empirical
error. This is called learning by heart, involving no generalization. In order to solve
this problem, constraints on the hypotheses must be introduced, that is, making reg-
ularization as mentioned in Sect. 3.3.

7.1 Hypothesis Space Structured by a Generality Relation

7.1.1 Generalization and Coverage

When the hypothesis space .7 is no longer parameterized, the question is how to
perform an informed exploration of the hypothesis space. The notion of hypothesis
space structured by a generality relation has been first introduced for concept learning,
where the aim is to learn a definition of a concept in presence of positive and negative
examples of this concept. A hypothesis describes a part of the space 2", and we search
for a hypothesis that covers the positive examples and excludes the negative ones.
Two hypotheses can then be compared according to the subspace of .2 they describe,
or according to the observations they cover. We define the coverage of a hypothesis
as the set of observations of 2~ satisfied or covered by this hypothesis. A hypothesis
is more general than another one, denoted by h; > h,, if the coverage of the former
contains the coverage of the latter (h; > h; iff coverage(h,) C coverage(hy)).

The inclusion relation defined on 2 thus induces a generality relation on 7,
as illustrated in Fig. 8, which is a partial preorder. It is not antisymmetric since two
different hypotheses may cover the same subspace of 2", but it can be transformed
into an order relation by defining two hypotheses as equivalent when they cover
the same subspace of 2~ and by considering the quotient set of .7 with respect
to this equivalence relation. Thus only one representative hypothesis among all the
equivalent ones has to be considered.

The coverage relationship is fundamental for induction, because it satisfies an
important property: when a hypothesis is generalized (resp. specialized), then its
coverage becomes larger (resp. smaller). Indeed, when learning a concept, an incon-

386 A. Cornuéjols and C. Vrain

/" i _[[..-» cover(h3) h

cover(h1)

/ \ __ cover(h2)

H X

Fig. 8 The inclusion relation in 2" induces a generalization relation in 7. It is a partial preorder:
h1 and Ay are not comparable, but they both are more specific than 43

sistent hypothesis covering negative examples must be specialized to reject these
negative examples, whereas an incomplete hypothesis covering not all known pos-
itive examples has to be generalized, in order to cover them. In other words, an
inconsistent hypothesis when generalized remains inconsistent, whereas an incom-
plete hypothesis when specialized, remains incomplete. The induction process is
therefore guided by the notion of coverage, which allows to define quantitative crite-
ria such as the number of covered positive examples, the number of covered negative
examples, useful for guiding the search and for pruning the search space.

7.1.2 Generalization in Logic

This notion of generalization is defined in terms of the input space 2", used to
describe the observations while learning is performed by exploring the hypothesis
space .7Z. From the point of view of search, it is more efficient to define operators
working directly in the set of hypotheses .77 but respecting the generality relation
defined in .77 in terms of the inclusion relation in 2Z". Let us notice that in some
cases the representation language of the examples is a subset of .77, thus making
the computation of the coverage easier. To illustrate this point, let us consider a
dataset describing animals inspired by the zoo dataset of the UCI Machine Learning
Repository.> An observation is described by some boolean properties (presence
of feathers for instance) that can be true or false. In propositional logic, it can
be represented by a conjunction of literals, where a literal is either a property of
the negation of a property. Given a set of animals, it may be interesting to find the
properties they have in common. This set of properties can still be expressed by a
conjunction of literals: 2~ and .7Z share the same representation space: a conjunction
of literals or equivalently a set of literals. In this context, a hypothesis is more general
than another when it contains less properties (h; > h, if by C hy). Itis easy to show
that if 4y C h,, then coverage(hy) C coverage(h;). The first definition is more

3http://archive.ics.uci.edu/ml/datasets/zoo.

Designing Algorithms for Machine Learning and Data Mining 387

interesting than this latter since comparison are made in .7’ and does not involve 2.
Thus defining a generality relation is quite easy in propositional logic, it becomes
more problematic in predicate logic.

Indeed, in first order logic, a natural definition would be the logical implication
between two formulas, but this problem is not decidable and this is why (Plotkin 1970)
introduced the notion of #-subsumption between clauses: given two clauses A and B,
A is more general than B if there exists a substitution 6 such that A.6 € B.* Let us
consider 4 people: John (jo), Peter (pe), Ann (an) and Mary (ma) and the two rules:

father(X,Y), father(Y, Z) — grandFather(X, Z)
father(jo, pe), father(pe, ma), mother(an, ma) — grand Father(jo, ma)

They can be transformed into clauses:

—father(X,Y)V —father(Y, Z) Vv grand Father(X, Z)
—father(jo, pe) VvV — father(pe, ma) vV —mother(an, ma) vV grand Father(jo, ma)

Consider these clauses as sets of literals. If we instantiate X by jo, Y by pe and Z
by ma, the first instantiated clause is included in the second, it is therefore considered
as more general w.r.t. f-subsumption. The 8-subsumption test involves potentially
costly comparisons between hypotheses. Computing the l.g.g. of 2 clauses under
6-subsumption is &'(n?), where n is the size of the clauses and computing the 1.g.g.
of s clauses under #-subsumption is &'(n*).

In this example, we have made the assumption that examples were described in
the same representation space as the hypotheses: an example is a fully instantiated
clause and a hypothesis is a clause. This is called the single representation trick and
this generally makes the coverage test simpler. We could also have given a set of
atoms describing many people, including John, Peter, Mary, Ann and the relations
between them and the subsumption test would have been even more costly, since
many comparisons would have to be performed with non relevant information.

The definition of 6-subsumption can be extended to take into account knowledge
on the domain, for example that a father or a mother are parents, but then reasoning
mechanisms must be introduced at the price of complexity. It is important to realize
that the complexity of the coverage test is often a determining factor for choosing
the representation space 2 and the hypothesis space .77.

The representation language chosen for the hypothesis space is thus essential for
determining a generality relation allowing an efficient exploration of the hypothesis
space. Among the possible order relations, a special interest has been put on the
relations that form a lattice: in this case given two hypotheses h; and h;, there
exists a least upper bound and a greatest lower bound. They are called the least
general generalization, lgg(h;, h;), and the least specific specialization, Iss(h;, h;).
6-subsumption induces a lattice on the space of clauses, whereas this is not true for

4A clause is a disjunction of literals, assimilated in this definition to a set of literals.

388 A. Cornuéjols and C. Vrain

logical implication. These notions are easily extended to more than 2 hypotheses,
leading to Igg(h;, hj, hy, ...) and Iss(h;, hj, hy, .. .). Finally, it is assumed that the
lattice is bounded and that there exists a hypothesis, denoted by T, that is more
general than all the others and an hypothesis, denoted by _L, that is more specific
than the others.

7.1.3 Exploration of the Search Space

The generality relation allows one to structure the hypothesis space and general-
ization/specialization operators can be defined to explore the search space. Let us
consider a quasi-ordering® > on J# (h, > h; if h, is more general than h). A
downward refinement operator or specialization operator is a function p from 7 to
2% such that for all 4 in 2, p(h) C {h' € F|h > I}, whereas a upward refine-
ment operator or generalization operator is a function p such that for all 4 in 7,
p(h) S {h" € A|W = h}.

Let us consider the zoo example and let us assume that the hypothesis space
is composed of all the conjunctions of literals in propositional logic. A hypothesis
couldbe:hair Amilk A four_legs. It will cover all the animals satisfying these
properties, as for instance a bear or a cat. Let us consider now two simple operators
that consist in adding/removing a literal to a hypothesis. Removing a literal for
instance allows producing the hypothesis hair A milk that covers more instances,
and is therefore more general. Removing a literal (resp. adding a literal) allows
the production of a more general (resp. a more specific) hypothesis. Refinement
operators coupled with a coverage measure can be used to guide efficiently the
exploration of the hypothesis space. Indeed, if a hypothesis does not cover all the
positive examples, a generalization operator must be used to produce more general
hypotheses covering this positive example, whereas, conversely, if negative examples
are covered, specialization operators must be considered. This leads to different
strategies for exploring the hypothesis space.

The generalization/specialization operators depend on the description language
of the hypotheses. If it is simple enough in propositional logic, it becomes more
complicated in the presence of domain knowledge or in more complex languages
such as first order logic. In this case, different generalization operators can be defined,
such as deleting a literal, transforming a constant into a variable or transforming two
occurrences of the same variable into different variables.

To be interesting a refinement operator must satisfy some properties: it must
be locally finite (i.e. it generates a finite and calculable number of refinements),
proper (each element in p (h) is different from /) and complete (for a generalization
operator, it means that for all &, if 4" > h then i’ or an hypothesis equivalent to 4’ can
be reached by the application of a finite number of p to A; the definition is similar
for a specialization operator). Such an operator is called ideal. See van der Laag

5 A reflexive and transitive relation.

Designing Algorithms for Machine Learning and Data Mining 389

and Nienhuys-Cheng (1998) for a discussion on the existence of ideal refinement
operators.

7.1.4 Formal Concept Analysis

As we have seen, there is a duality between the observation space 2~ and the hypoth-
esis space 7. This duality is formalized by the notion of Galois connection, which
forms the basis of Formal Concept Analysis (Ganter et al. 1998, 2005). Let us
consider a set & of objects (animals in the zoo dataset), a set .o/ of propositional
descriptors and a binary relation » on & x o7 such that r (o, p) is true when object
o satisfies property p. The connection between the objects and the properties is
expressed by two operators, denoted here by f and g. The first one corresponds
to the notion of coverage: given a set of descriptors A, A C o7, f(A) returns the
extent of A, i.e., the set of objects satisfying A. The second one corresponds to the
notion of generalization: given a set of objects O, O C 0, g(O) returns the intent
of O, 1.e., the set of descriptors that are true for all objects of O.

Let us consider again the concept of animals, described by only 4 properties
(hair, milk, four_legs, domestic) and consider only 3 objects (a bear, a cat and a
dolphin)

name |hair \milk| four_legs domestic
bear T |T T F
cat T T T T
dolphin| F | T F F

The extent of the descriptor mi 1k contains the three animals whereas the extent
of hair and milk contains two animals, namely the bear and the cat. The intent
of the first two animals, i.e., the descriptors they have in common is composed of
hair,milk and four_legs.

These two operators form a Galois mapping satisfying the following properties:
(1) f and g are anti-monotonous (if A; € A, then f(A;) € f(A;) andif O C O,
then g(0;) C g(0y)), (i1) any set of descriptors is included in the intent of its extent
(for any A of o/, A C g(f(A))) and every set of objects is included in the extent
of its intent (for any O of &, O C f(g(0))) and (iii) f(A) = f(g(f(A))) and
g(0) = g(f(g(0))). The operator g o f has received particular attention in the
field of frequent pattern mining and is called the closure of a set of descriptors.

A concept is then defined as a pair (O, A) of objects and descriptors such that
O 1s the extent of A and A is the intent of O. In the previous example, the pair
({bear, cat}, {hair, milk, four_legs}) isa concept. Letus notice
that if (O, A) is a concept then A is a closed set (A = g(f(A))) and the set of closed
descriptors with C is a lattice. This notion is particularly useful in frequent itemset
mining since the set of frequent closed itemsets is a condensed representation of the
set of frequent itemsets.

390 A. Cornuéjols and C. Vrain

For more details on Formal Concept Analysis, see chapter “Formal Concept Anal-
ysis: From Knowledge Discovery to Knowledge Processing” of this volume.

7.1.5 Learning the Definition of a Concept

name |hair| four_legs|domestic| class
bear T T F mammal
cat T T T mammal
dolphin | F F F mammal

honeybee, T F F insect

moth T F F insect

Let us suppose now that we want to learn a definition of the concept mammal given
the three positive examples (bear, cat, dolphin) and the negative exam-
ples (honeybee, moth), with only three attributes, namely hair, four_legs,
domestic. If we consider a generalization of the three positive examples, it is
empty: they share no common properties. In fact these 3 examples do not belong
to the same concept and must be split into two groups for common properties to
emerge. To learn a concept from positive and negative examples, the most common
method is to learn a hypothesis covering some positive examples and then to iterate
the process on the remaining examples: this is a divide and conquer strategy. Alter-
native methods exist, as for instance first separating positive examples into classes
(unsupervised classification) and then learning a rule for each class.

This leads to the problem of constructing a rule covering positive examples. Sev-
eral strategies can be applied: a greedy approach, which builds the rule iteratively by
adding conditions, as in Foil system (Quinlan 1996) or a strategy driven by exam-
ples, as for instance in Progol system (Muggleton 1995). Progol starts from a positive
example, constructs a rule covering this example and as many positive examples as
possible, while remaining consistent and iterates with the positive examples that are
not yet covered by a rule. Other approaches propose to search exhaustively all the
rules with sufficient support and confidence (one finds then the problem of association
rule mining) and to construct a classifier from these rules (see for instance Liu et al.
1998; Li et al. 2001). For example, to classify a new example, each rule applicable
on this example vote for its class with a weight depending on its confidence.

7.1.6 Extensions

An area in which learning is based on a generality relation in the hypothesis space
is that of the induction of languages or grammars from examples of sequences.
In grammatical inference, the description of hypotheses generally takes the form
of automata. Most of the work has focused on the induction of regular languages
that correspond to finite state automata. It turns out that the use of this representation

Designing Algorithms for Machine Learning and Data Mining 391

naturally leads to an operator associated with a generality relation between automata.
Without entering into formal details, considering a finite state automaton, if we merge
in a correct way two states of this automaton, we obtain a new automaton, which
accepts at least all the sequences accepted by the first one; it is therefore more general.
Using this generalization operator, most methods of grammatical inference thus start
from a particular automaton, accepting exactly the positive sequences and generalize
it, by a succession of merging operations, stopping either when a negative sequence is
covered or when a stop criterion on the current automaton is verified. (de la Higuera
2010) describes thoroughly all the techniques of grammatical inference.

Sometimes data results from inaccurate or approximate measurements, and it
is possible that the precision on the values of the attributes is unrealistic. In this
case, it may be advantageous to change the representation to take into account a
lower accuracy and possibly to obtain more comprehensible concept descriptions.
The rough sets (Suraj 2004) formalism provides a tool for approximate reasoning
applicable in particular to the selection of informative attributes and to the search for
classification or decision rules. Without going into details, the rough sets formalism
makes it possible to seek a redescription of the examples space taking into account
equivalence relations induced by the descriptors on the available examples. Then,
given this new granularity of description, the concepts can be described in terms of
lower and upper approximation. This leads to new definitions of the coverage notion
and of the generality relation between concepts.

7.2 Four Illustrations

7.2.1 Version Space and the Candidate Elimination Algorithm

In the late 1970s Tom Mitchell showed the interest of generalization for Concept
Learning. Given a set of positive and negative examples, the version space (Mitchell
1982, 1997) is defined as the set of all the hypotheses that are consistent with the
known data, that is to say that cover all the positive examples (completeness) and
cover no negative examples (consistency). The empirical risk is therefore null. Under
certain conditions, the set of hypotheses consistent with the learning data is bounded
by two sets in the generalization lattice defined on .77: one, called the S-set is the set
of the most specific hypotheses covering positive examples and rejecting negative
examples, whereas the G-set is the set of maximally general hypotheses consistent
with the learning data.

Tom Mitchell proposed then an incremental algorithm, called the candidate elimi-
nation algorithm: it considers sequentially the learning examples and at each presen-
tation of a new example, it updates the two frontiers accordingly. It can be seen as a
bidirectional width-first search, updating incrementally, after each new example, the
S-set and the G-set: an element of the S-set that does not cover a new positive exam-
ple is generalized if possible (i.e. without covering a negative example), whereas an
element of the G-set that covers a new negative example is specialized if possible.

392 A. Cornuéjols and C. Vrain

Inconsistent hypotheses are removed. Assuming that the language of hypotheses is
perfectly chosen, and that data is sufficient and not noisy, the algorithm can in prin-
ciple converge towards a unique hypothesis that is the target concept. An excellent
description of this algorithm can be found in Chap. 2 of Tom Mitchell (Mitchell
1997).

While this technique, at the basis of many algorithms for learning logical expres-
sions as well as finite state automata, was experiencing a decline in interest with the
advent of more numerical methods in Machine Learning, it knows a renewal of inter-
est in the domain of Data Mining, which tends to explore more discrete structures.

7.2.2 Induction of Decision Trees

The induction of decision trees is certainly the best known case of learning models
with variable structure. However, contrary to the approaches described above, the
learning algorithm does not rely on the exploitation of a generality relation between
models, but it uses a greedy strategy constructing an increasingly complex tree,
corresponding to an iterative division of the space 2~ of the observations.

A decision tree is composed of internal nodes and leaves: a test on a descriptor
1s associated to each internal node, as for instance size > 1.70m, while a class
label is associated to each leaf. The number of edges starting from an internal node is
the number of possible responses to the test (yves/no for instance). The test differs
according to the type of attribute. For a binary attribute, it has 2 values and for a
qualitative attribute, there can be as many branches as the domain of the attribute or
it can be transformed into a binary test by splitting the domain into two subsets. For
a quantitative attribute, it takes the form A < 6 and the difficulty is to find the best
threshold 6.

Given a new observation to classify, the test at the root of the tree is applied on that
observation and according to the response, the corresponding branch towards one of
the subtrees is followed, until arriving at a leaf, which gives then the predicted label.
It is noteworthy that a decision tree can be expressed as a set of classification rules:
each path from the root to a leaf expresses a set of conditions and the conclusion of
the rule is given by the label of the leaf. Figure 9 gives the top of a decision tree built
on the zoo dataset.

A decision tree is thus the symbolic expression of a partition of the input space.
We can only obtain partitions parallel to the axes insofar as the tests on numerical
variables are generally of the form X > 6. Each subspace in the partition is then
labelled, usually by the majority class of the observations in this subspace. When
building a decision tree, each new test performed on a node refines the partition by
splitting the corresponding subspace. Learning consists in finding such a partition.
The global inductive criterion is replaced by a local criterion, which optimizes the
homogeneity of the nodes of the partition, where the homogeneity is measured in
terms of the proportion of observations of each class. The most used criteria are
certainly the information gain used in C5.0 (Quinlan 1993; Kotsiantis 2007) and

Designing Algorithms for Machine Learning and Data Mining 393

Fig. 9 A decision tree on
the zoo dataset Milk
Yeés No
Mammal Feathers
Backbone

based on the notion of entropy or the Gini index, used in Cart (Breiman et al. 1984).
Techniques for pruning the built tree are then applied in order to avoid overfitting.

This algorithm is of reduced complexity: &'(m - d - log(m)) where m is the size
of the learning sample and d the number of descriptive attributes. Moreover, an
induction tree is generally easy to interpret (although this depends on the size of the
decision tree). This is a typical example of a divide and conquer algorithm with a
greedy exploration.

7.2.3 Inductive Logic Programming

Inductive Logic Programming (ILP) has been the subject of particular attention since
the 1980s. Initially studied for the synthesis of logical programs from examples, it
has gradually been oriented towards learning knowledge from relational data, thus
extending the classical framework of data described in vector spaces and allowing to
take into account relations in the data. When developed for the synthesis of logical
programs, a key problem was learning recursive or mutually recursive concepts,
whereas learning knowledge requires to take into account quantitative and uncertain
information.

One interests of ILP is the possibility to integrate knowledge domain, allowing
to obtain more interesting concept definitions. For example, if one wishes to learn
the concept of grandfather from examples of persons linked by a father-mother
relationship, introducing the concept of parent will allow a more concise definition
of the concept. The definition of #-subsumption defined in Sect.7.1.2 must then be
modified accordingly.

One of the major challenges ILP has to face is the complexity due to the size
of the search space and to the coverage test. To overcome this problem, syntactic
or semantic biases have been introduced, thus allowing to reduce the search space.

394 A. Cornuéjols and C. Vrain

Another idea is to take advantage of the work carried out in propositional learning. In
this context, a rather commonly used technique, called propositionalization, consists
in transforming the first-order learning problem into a propositional or attribute-value
problem (see an example in Zelezny and Lavrac 2006). The difficulty then lies in the
construction of relevant characteristics reflecting the relational character of the data
and minimizing the loss of information.

The best known ILP systems are Foil (Quinlan 1996) and Progol (Muggleton
1995). As already mentioned, Foil iteratively builds rules covering positive examples
and rejecting the negative ones. For building a rule, it adopts a top-down strategy:
the most general clause (a rule without conditions) is successively refined to reject
all negative examples. It is based on a greedy strategy relying on a heuristic, close
to the information gain: it takes into account the number of instantiations that cover
positive, respectively negative, examples. The quality of each refinement is measured
and the best one is chosen without backtracking. This strategy suffers from a well
known problem: it may be necessary to add refinements, corresponding to functional
dependencies (for example introducing a new object in relation with the target object),
which are necessary to construct a consistent clause, but which have a null information
gain (they are true for all positive and all negative examples). Progol differs in the
way clauses are built: the construction of a clause is driven by a positive example.
More precisely, Prolog chooses a positive example and constructs the most specific
clause covering this example-it is called the saturation; search is performed in the
generalization space of this saturated clause. The results produced by Prolog depend
on the order positive examples are processed. It was implemented in the system
Aleph (see http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph).

During the 1990s, it was shown that a large class of constraint satisfaction prob-
lems presented a phase transition phenomenon, namely a sudden variation in the
probability of finding a solution when the parameters of the problem vary. It was
also noted that finding a hypothesis covering (in terms of 8-subsumption) positive
examples, but no negative ones can be reduced to a constraint satisfaction problem.
It was then shown empirically that a phenomenon of phase transition actually may
appear in ILP. This discovery has been extended to certain types of problems in gram-
matical inference. (Saitta et al. 2011) is devoted to the study of Phase Transitions in
Machine Learning.

Finally, it should be noted that while supervised classification has long been the
main task studied in ILP, there are also work on searching for frequent patterns in
relational databases, or on subgroup discovery. Important references include (Lavrac
and Dzeroski 1994; Dzeroski and Lavrac 2001; Raedt 2008; Fiirnkranz et al. 2012).

Inductive Logic Programming is still an active research field, mainly these recent
years in Statistical Relational Learning (Koller and Friedman 2009; Raedt et al.
2008). The advent of deep learning has launched a new research stream, aiming at
encoding relational features into neural networks, as shown in the last International
Conferences on Inductive Logic Programming (Lachiche and Vrain 2018).

Designing Algorithms for Machine Learning and Data Mining 395
7.2.4 Mining Frequent Patterns and Association Rules

Searching for frequent patterns is a very important Data Mining problem, which
has been receiving a lot of attention for twenty years. One of its application is the
discovery of interesting association rules, where an association rule isarule I — J
with 7 and J two disjoint patterns. The notion of pattern is fundamental: it depends
on the input space 2", and more precisely on the representation language of 2. It
may be a set of items, called an itemset, a list of items when considering sequential
data, or more complex structures, such as graphs. A pattern is said to be frequent if
it occurs in the database a number of times greater than a given threshold (called the
minimal support threshold).

As in the version space, it is quite natural to rely on a generality relation between
patterns. A pattern is more general than another when it occurs in more examples in
the database. This is yet the notion of coverage defined in Sect.7.1. When a pattern
is a conjunction (or a set) of elementary expressions taken in a fixed vocabulary
set 7 (7 can be a set of Boolean features, a set of pairs (attribute, value), ...), the
generalization (resp. specialization) operator is the removal (resp. addition) of a term
in the pattern. The pattern space is then ordered by the inclusion relation, modeling
the generality relation (h; > h, ifh; C hy)and it has a lattice structure. This ordering
induces an anti-monotonous property, which is fundamental for pruning the search
space: the specialization of a non frequent pattern cannot be frequent, or in other
terms, when a pattern is not frequent it is useless to explore its specializations, since
they will be non frequent too.

This observation is the basis of Apriori algorithm (Agrawal and Srikant 1994),
the first and certainly the most well-known algorithm for mining frequent itemsets
and solid association rules. It is decomposed into two steps: mining frequent item-
sets and then building from these itemsets association rules, which are frequent by
construction. The confidence of the association rules can then be computed from the
frequency of the itemsets. The first step is the most difficult one since the search
space is 2¢, (with d = |#'|) and computing the frequency of itemsets require to go
through the entire database.

Apriori performs a breadth-first search in the lattice, first considering 1-itemsets,
then 2-itemsets and so on, where a [-itemset is an itemset of size [. At each level,
the support of all /-itemsets is computed, through a single pass in the database. To
prune the search space, the anti-monotonicity property is used: when an itemset is
not frequent, its successors can be discarded. The complexity depends on the size of
the database and on the number of times it is necessary to go through the database.
It depends also on the threshold: the lowest the minimum support threshold, the less
pruning. Complexity is too high to be applicable on large data and with a low min-
imum support threshold and therefore new algorithms have been developed, based
either on new search strategies (for instance partitioning the database, or sampling),
or on new representations of the database, as for instance in FP-Growth (Han et al.
2004) or in LCM (Uno et al. 2004).

Another source of complexity is the number of frequent itemsets that are gener-
ated. Condensed representations have been studied, they are usually based on closed

396 A. Cornuéjols and C. Vrain

patterns, where a pattern is closed if the observations that satisfy this pattern share
only the elements of this pattern. It corresponds to the definition of concepts, under-
lying Formal Concept Analysis and described in Sect.7.1.4. We can notice that the
support of an itemset can be defined as the cardinal of its extent (the number of
elements in the database that satisfy it) and we have interesting properties stating for
instance that two patterns that have the same closure have the same support, or that
if a pattern is included in another pattern and has the same support then these two
patterns have the same closure. These properties allow one to show that the set of
closed patterns with their support are a condensed representation of all the itemsets
with their support, and therefore only closed patterns have to be stored in memory
(see for instance Zaki 2000; Bastide et al. 2000).

Itemset mining has been extended to deal with structured data, such as relational
data, sequential data, graphs. All these structures are discrete. A remaining difficult
problem is pattern mining in the context of numeric data, since learning expressions
such as (age > 60) A (HDL-cholesterol >1.65 mmol/L) require to learn the threshold
(60, 1.65 forinstance) in a context where the structure is not fixed and has to be learned
simultaneously.

8 Probabilistic Models

So far we have mainly addressed the geometric and symbolic views of Machine
Learning. There is another important paradigm in Machine Learning, that is based
on a probabilistic modeling of data. It is called generative in the sense that it aims
at inducing the underlying distribution of data and given that distribution, it is then
possible to generate new samples following the same law. We have addressed it in
the context of clustering in Sect.4.3 but it is also widely used in supervised learning
with the naive Bayesian classifier. Generative and discriminative approaches differ,
since as stated in (Sutton and McCallum 2012), a discriminative model is given
by the conditional distributions p(y|x), whereas a generative model is given by
P, y) =pP([x) x pX).

Let us consider a sample . = {(X1, y1), ..., (X, Ym)}, Where X; is described by
d features X;, [= 1...d, with domain D; and y; belongs to a discrete set % (the
set of labels or classes). The features X;,/ = 1...d and the feature ¥ corresponding
to the class of the observations can be seen as random variables. Let X denote the
set of features X;. Given a new observation x = (xy, ..., x;) the Bayesian classifier
assigns to X the class y in % that maximizes p(Y = y|X = x). Thus we have:

h:xe 2 +— argmaxyey p(Y = y|X =X))

Using Bayes theorem p(Y = y|X = x) can be written p(X:XILI(/; = l‘;(Y:y). Since
the denominator is constant given X, it can be forgotten in the argument of argmax,

thus leading to the equivalent formulation

Designing Algorithms for Machine Learning and Data Mining 397

h:xeZ +— argmaxyen P(X =X[Y = y)p(Y =y) 9)

Learning consists in inferring an estimation of the probabilities given the data.
When the input space 2 is described by d discrete features X;, [= 1...d, with
domain Dy, this means learning p(X; = xy, ..., Xg = x4|Y = y) for all possible
tuples and p(Y = y) forall y, leading to (| D| x --- x |Dy| + 1) x |Y| probabilities
to estimate. This would require many observations to have reliable estimates. An
assumption is needed to make the problem feasible: the features are assumed to be
independent conditionally to the class, that means:

PX1=x1,....Xg=x4lY =y) =pX1 =x1|]Y =y) x - - x pXg = WlY =)

This leads to the definition of the naive Bayesian classifier

h:x=(x,...,x7) — argmaxyeg/ﬂldzlp(Xl =x|Y =y)xp¥ =y) (10)

Nevertheless this assumption is often too simple to accurately model the data.
More complex models, grouped under the term graphical models (Koller and Fried-
man 2009) have been introduced to take into account more complex dependencies
between variables. Dependencies between variables are represented by a graph whose
nodes are the variables and whose edges model the dependencies. There exist two
main families of models: Bayesian networks that are acyclic oriented graphs asso-
ciating to each node the conditional probability of this node given its parents and
Conditional Random Fields (CRF), that are non oriented graphs in which a variable
is independent from the other ones, given its neighbors. The naive Bayesian classi-
fier is a special case of a Bayesian network, as illustrated by Fig. 10. A third model,
Hidden Markov Model (HMM) is also frequently used for sequential data: a HMM
is defined by a directed graph, each node of the graph represents a state and can
emit a symbol (taken from a predefined set of observable symbols), two families
of probabilities are associated to each state: the probabilities of emitting a symbol
s, given this state (P(s|n)) and the probability of moving in state n’, given state n
(P(n’|n)). A HMM models a Markovian process: the state in which the process is at
time ¢ depends only of the state reached at time t — 1 (P(g; = n’|q;—1 = n)), it also
assumes that the symbol emitted at time ¢ depends only on the state the automaton

Fig. 10 Dependency
between variables for the Y

naive Bayesian classifier / l \

X1 Xd

398 A. Cornuéjols and C. Vrain

has reached at time ¢. Let us notice that a HMM can be modeled by a CRF: indeed the
probability distribution in a CRF is often represented by a product of factors put on
subsets of variables, the probability P(n’|n) and P(s|n) are easily converted into fac-
tors. CRFs, by means of factors, allow the definition of more complex dependency
between variables and this explains why it is now preferred to HMMs in natural
language processing. An introduction to CRF and a comparison with HMM can be
found in (Sutton and McCallum 2012).

Learning graphical models can be decomposed in two subproblems: either the
structure is already known and the problem is then to learn the parameters, that is the
probability distribution, or the structure is not known and the problem is to learn both
the structure and the parameters (see Koller and Friedman 2009, and Pearl 1988).
The first problem is usually addressed by methods such as likelihood maximization
or such as Bayesian maximization a priori (MAP). Different methods have been
developed for learning the structure. For more information, the reader should refer
to chapter “Belief Graphical Models for Uncertainty Representation and Reasoning”
of this volume, devoted to graphical models.

Statistical Relational Learning (Raedt et al. 2008; Getoor and Taskar 2007) is
an active research stream that aims at linking Inductive Logic Programming and
probabilistic models.

9 Learning and Change of Representation

The motivation for changing the input space 2 is to make the search for regularities
or patterns more straightforward. Changes can be obtained through unsupervised
learning or through supervised learning, guided by the predictive task to solve.

Unsupervised learning is often used in order to estimate density in the input space,
or to cluster the data into groups, to find a manifold where most of the data lies near, or
to make denoising in some way. The overall principle is generally to find a represen-
tation of the training data that is the simplest while preserving as much information
about the examples as possible. Of course, the notion of “simplicity” is multifarious.
The most common ways of defining it are: lower dimensional representations, sparse
representations, and independent representations.

When looking for lower dimensional representations, we are interested in finding
smaller representations that keep as much useful information as possible about the
data. This is advantageous because it tends to remove redundant information and
generally allows for more efficient processing. There are several ways to achieve
this. The most straightforward is to perform feature selection. Another one is to
change the representation space and to project the data into a lower dimensional
space.

An altogether different idea is to use a high dimensional representation space, but
to make sure that each piece of data is expressed using as few of these dimensions, or
descriptors, as possible. This is called a sparse representation. The idea is that each
input should be expressible using only a few “words” in a large dictionary. These

Designing Algorithms for Machine Learning and Data Mining 399

dictionaries are sometimes called overcomplete representations from earlier studies
on the visual system (Olshausen and Field 1996).

Independent representations seek to identify the sources of variations, or latent
variables, underlying the data distribution, so that these variables are statistically
independent in some sense.

10 Other Learning Problems

10.1 Semi-supervised Learning

Learning to make prediction, that is to associate an input to an output, requires a
training set with labelled inputs, of the form (X;, yi)(1<i<m). The larger the training
set, the better the final prediction function produced by the learning algorithm. Unfor-
tunately, obtaining labels for a large set of inputs is often costly. Think of patients
at the hospital. Determining the right pathology from the symptoms exhibited by a
patient requires a lot of expertise and often costly medical examinations. However, it
is easy to get a large data set comprised of the description of patients and their symp-
toms, without a diagnostic. Should we ignore this (potentially large) unsupervised
data set?

Examining Fig. 11 suggests that this might not be the case. Ignoring the unlabelled
examples would lead a linear SVM to learn the decision function on Fig. 11 (left).
But this decision function sure does feel inadequate in view of the unlabelled data
points in Fig. 11 (right). This is because, it seems reasonable to believe that similarly
labelled data points lie in “clumps”, and that a decision function should go through
low density region in the input space. If we accept this assumption as a prior bias,
then it becomes possible to use unlabelled data in order to improve learning. This is
the basis of semi-supervised learning (Chapelle et al. 2009).

Fig. 11 Given a few labelled data points, a linear SVM would find the decision function on the
left. When unlabelled data points are added, it is tempting to change the decision function to better
reflect the low density region between the apparent two clouds of points (right)

400 A. Cornuéjols and C. Vrain

Semi-supervised learning is based on the assumption that the unlabelled points
are drawn from the same distribution as the labelled ones, and that the decision
function lies in the low density region. If any of these assumption is erroneous, then
semi-supervised learning can deteriorate the learning performance as compared to
learning from the labelled data points alone.

10.2 Active Learning

The learning scenarios we have presented so far suppose that the learner is passively
receiving the training observations. This hardly corresponds to learning in natural
species and in humans in particular who are seekers of information and new sensa-
tions, and this seems wasteful when, sometimes, a few well chosen observations could
bring as much information as a lot of random ones. Why not, then, design learning
algorithms that would actively select the examples that seem the most informative?
This is called active learning.

Suppose that inputs are one dimensional real valued in the range [0, 100], and
that you know that their label is decided with respect to a threshold: all data points
of the same class (‘+’ or ‘—") being on one side of the threshold (see Fig. 12). If
you can ask the class of any data point in [0, 100], then you start by asking the class
of the point ‘50’°, and of the point ‘0’. If they are of the same class, you should now
concentrate on the interval (50, 100], and ask for the class of the point ‘75’, otherwise
concentrate on the interval (0, 50) and test the point ‘25’. By systematically halving
the interval at each question, you can be e-close to the threshold with &'(log, 1/¢)
questions, whereas you should ask &'(1/¢) random questions in order to have the
same precision on the threshold.

In this example, active learning can bring an exponential gain over a passive
learning scenario. But is this representative of what can be expected with active
learning? In fact, four questions arise:

1. Isit possible to learn with active learning concept classes that cannot be learned
with passive learning?!

2. What is the expected gain if any in terms of number of training examples?

3. How to select the best (most informative) training examples?

4. How to evaluate learning if the assumption of equal input distribution in learning
and in testing is no longer valid, while it is the foundation of the statistical theory
of learning?

The answer of question (1) is that the class of concepts learnable in the active
learning scenario is the same as with the passive scenario. For question (2), we have

e o, 0= = = = = —— 4 + 4+ 4+
hu-(;l‘)z{l ifr>w o—o—o—o—o—o++—4—o—o—&

0 ifr<w w

Fig. 12 Active learning on a one-dimensional input space, with the target function defined by 4,

Designing Algorithms for Machine Learning and Data Mining 401

exhibited, in the example, a case with an exponential gain. However, there exist
cases with no gain at all. On average, it is expected that active learning provides an
advantage in terms of training examples. This, however, should be put in regards to
the computation gain. Searching the most informative examples can be costly. This
is related to question (3). There exist numerous heuristics to select the best examples.
They all rely on some prior assumptions about the target concept. They also differ
in their approach to measure the informativeness of the examples. Question (4)
itself necessitates that further assumptions be made about the environment. There
are thus different results for various theoretical settings (See Chapter ‘““Statistical
Computational Learning”).

10.3 Online Learning

In the batch learning scenario, the learner is supposed to have access to all the
training data at once, and therefore to be able to look at it at will in order to extract
decision rules or correlations. This is not so in online learning where the data arrives
sequentially and the learner must take decisions at each time step. This is what
happens when learning from data streams (Gama 2010). In most cases, the learner
cannot store all the past data and must therefore compress it, usually with loss.
Consequently, the learner must both be able to adapt its hypothesis or model of the
world iteratively, after each new example or piece of information, and be able to
decide what to forget about the past data. Often, the learner throws out each new
example as soon as it has been used to compute the new hypothesis.

Online learning can be used in stationary environments, when data arrives sequen-
tially or when the data set is so large that the learner must cope with it in piecemeal
fashion. It can as well be applied in non stationary environment, which complicates
things since, in this case, the examples have no longer the same importance according
to their recency.

Because there can no longer be a notion of expectation, since the environment may
be changing with time, the empirical risk minimization principle, or the maximization
of likelihood principles can no longer be used as the basis of induction.

In the classical “batch scenario”, one tries several values of the hyperparameters
that govern the hypothesis space being explored, and for each of them record the best
hypothesis, the one minimizing:

A

: 1 <
h = argmin RReg(h) = ZE(h(X,‘, yi)) + thperparameters(%)
hest m

i=1
where $2hyperparameters (72°) penalizes the hypothesis space according to some prior
bias encoded by the hyper parameters. The best hyper parameters are found using
the validation set (see Sect. 3.4).

402 A. Cornuéjols and C. Vrain

In on line learning, this is no longer the best hypothesis space that is looked for, but
rather the best adaptive algorithm, the one that best modifies the current hypothesis
after each new arriving piece of information. Let us call this algorithm %%qqp. Then
the best adaptive algorithm is the one having the best performance on the last T
inputs, if T is supposedly relevant as a window size:

1«
atlapt = argmin {? Zg(ht(xt)’yt)}

=Q{adapt 34 =1

In fact aTiapt is found using several “typical” sequences of length 7', that are supposed
to be representative of the sequences the learning system will encounter.

Numerous heuristical online learning systems are based on this general principle.

But how do you get by if no regularity is assumed about the sequence of arriving
data? Can you still devise a learning algorithm that can cope with any sequence of
data whatsoever, even if it is ruled by an adversary who tries to maximize your error
rate? And, if yes, can you still guarantee something about the performance of such
an online learning system?

This is the province of the online learning theory. Now, the performance criterion
is called a regret. What we try to achieve is to have the learner to be competitive with
the best fixed predictor & € 7. The regret measures how “sorry” the learner is, in

retrospect, not to have used the predictions of the best hypothesis A, in retrospect,

in J7.

T T
Ry =) LG —yy) — minger Y LA, y1)

=1 =1

where y; is the guess of the online learner for the input x,.

Surprisingly, it is found that it is possible to devise learning algorithms with
guarantees, meaning bounds, over the regret, whatever can be the sequence feed to
the learner. One good reference about these algorithms is (Cesa-Bianchi and Lugosi
2006).

10.4 Transfer Learning

In the classical supervised learning setting, one seeks to learn a good decision
function & from the input space 2 to the output space % using a training set
S = {(Xi, yi)}1<i<m- The basis of the inductive step is to assume that the training
data and future test data are governed by the same distribution P 44 . Often, how-
ever, the distributions are different. This may happen for instance when learning to
recognize spam using data from a specific user and trying to adapt the learned rule
to another user. The resulting learning problem is called Domain Adaptation. A fur-
ther step is taken when one wishes to profit from a solved learning task in order to

Designing Algorithms for Machine Learning and Data Mining 403

facilitate another different learning task, possibly defined on another input space 2.
For instance, a system that knows how to recognize poppy fields in satellite images,
might learn more efficiently to recognize cancerous cells in biopsy images than a
system that must learn this from scratch. This is known as transfer learning (Pan and
Yang 2010).

Formally, in transfer learning, there is a Source domain % & defined as the product
of a source input space and a source output space: Z» X #.. The source informa-
tion can come either through a source training set S » = {(Xl-y , y;.y)}1<i<m Or through
adecision function h » : 2.y — %, with or without a training set. If only the deci-
sion function & is available, this is called hypothesis transfer learning. Similarly,
the Target domain 9+ is defined as a product of a target input space and a target
output space: 27 x ¥4 . Often, it is assumed that the available target training data
Sz = {(ng , y;?)}1<i<m 18 too limited to allow a learning algorithm to yield a good
decision function k7 : 27 — %7 . In some scenarios, the target data is assumed
to be unlabeled: S = {x;y bi<i<m-

Two questions arise then. First, can the knowledge of the source hypothesis 4 &
help in learning a better decision function in ¥4 than would be possible with the
training set .’ alone? Second, if yes, how can this be achieved?

Transfer learning is becoming a hot topic in machine learning, both because a
growing number of applications could benefit from it, and because it demands new
theoretical developments adapted to non stationary environments.

10.5 Learning to Rank

Learning to rank (Li 2011) is related to descriptive learning in that the goal is not
to make predictions about new unknown instances, but to order the set of available
data according to some “relevance”. It is however related to supervised learning in
that, usually, there are supervised information in the training data, for instance, that
such instance is preferred to some other one.

A typical application is the ordering of the results of a search engine according
to their relevance to a query, and, possibly, to a user.

One approach is to first define a loss function that measures the difference between
the true ranking of a set of instances and the one produced by the system, and then
to apply the empirical risk minimization (ERM) principle to find a good ranking
function on the training sets (several sets of which the true ranking is known).

For instance, linear predictors for ranking can be used. In this technique, assuming
that 2" C R? for any vector w € R?, a ranking function can be defined as:

how((X1,...0X%0) = ((W,X1), ..., (W, X))

The elements x; (1 < i < r) can then be ordered according to the values (w, Xx;).

404 A. Cornuéjols and C. Vrain

There are other learning algorithms, some of which are based on learning binary
classifiers that take two instances X; and X; and that return the output ‘+’ if the first
argument X; is before x;, and ‘-’ otherwise.

10.6 Learning Recommendations

Learning to make recommendations is somewhat related to learning to rank, but
aims at extrapolating the relevance to new instances, not already seen by the user.
For instance, a system can learn to make recommendations about movies that should
interest someone based on his/her history of seeing movies and the appreciations that
he/she reported.

One way to do that is to describe the items to be rated (e.g. movies), and thus rec-
ommended or not, on the basis of attributes, and then to learn to associate the resulting
descriptions with appreciations, or grades. This is called content-based recommen-
dation. One problem is to find relevant attributes. Another is that such recommending
systems can only use the past history of each customer or user. Information is not
shared among users.

Another approach is to suppose that if another user has expressed ratings that are
close to mine for a set of items that we both rated, then it is likely that I would rate
similarly to this user other items that [have not yet seen. In this way, it is possible to
capitalize on the vast data sets of preferences expressed by the whole community of
users. The idea is to compute the similarity (or dissimilarity) with other users based
on sets of items rated in common, and then to extrapolate the way I would rate new
items based on these similarities and the rates that these other users gave to the new
items. This is called collaborative filtering.

Among many techniques dedicated to solve the problem of collaborative filtering,
the prominent one currently operates using matrix completion. The idea is to con-
sider the matrix R defined over user x item with each element R; ;) of the matrix
containing the rate given by user; to item ;. When no rate has been given the element
contains 0.

This matrix is usually very sparse (few values R; ;) # 0) since users have gener-
ally tested only a few tens or at most hundreds of items. The goal is then to complete
this matrix, filling the missing values. A range of techniques can be used for this. The
most classical relies on the Singular Value Decomposition (SVD), which, in a way,
expresses the fact that the columns (or the rows) of this matrix are not independent.

If these techniques are rather powerful, they nonetheless give results that are
somewhat less than satisfactorily. This is due to several factors, including the fact
that the missing values are not randomly distributed as would demand SVD, the
performance measures such as the root mean square error (RMSE) give the same
importance to all entries R(; j) while users are interested in high value ratings, and in
fact are not interested in accurate ratings, but rather on the respective ratings given
to the most interesting items. Furthermore, recommendations are highly context

Designing Algorithms for Machine Learning and Data Mining 405

dependent: for instance, the same item can be quite interesting one day, and not the
day after because a similar item has been purchased.

For all these reasons, new approaches for recommendation systems are to be
expected in the years to come (see for instance Jannach et al. 2016).

10.7 Identifying Causality Relationships

It might be easy to come up with correlations such as people who eat ice-creams
wear swimming suits. But should we rely on a rule that says: “to make people eat
ice-cream, make them wear swimming suits”? Clearly, correlations are not causal
relationships, and believing they are can lead to disastrous conclusions. In order
to be able to “act” on some phenomenon, it is crucial to identify the causes of the
phenomenon. Unfortunately, almost all of the current predictive learning systems are
geared to discover correlations, but not causal links, and going from correlations to
causality is not a trivial problem. It is indeed mostly an open problem.

Judea Pearl has shown that the standard concepts, and notations, of statistics are
not able to capture causality (Pearl 2009). Some approaches suppose that a graph
of potential causal links is provided by an expert before a learning algorithm tries
to identify the true causal links together with their directions and intensities (see
chapter “A Glance at Causality Theories for Artificial Intelligence” of Volume 1 for
an extended discussion of causality within Artificial Intelligence, and the book by
(Peters et al. 2017) for a thorough discussion of causality and machine learning).

Recently an interesting idea has been proposed where the data points correspond-
ing to some phenomenon are analyzed by a classifier (in this work, a deep neural
network) which, after learning on synthetic data reflecting causality between vari-
ables, can recognize if some variable is likely to cause the value of some other one
(Lopez-Paz et al. 2016).

11 Conclusion

Machine learning is all the rage in artificial intelligence at the moment. Indeed,
because it promises to eliminate the need to explicitly code the machines by hand
when it suffices to feed the machines with examples to allow it to program itself,
machine learning seems the solution to obtain high performing systems in many
demanding tasks such as understanding speech, playing (and winning) games, prob-
lem solving, and so on.

And, truly, machine learning has demonstrated impressive achievements in recent
years, reaching superhuman performances in many pattern recognition tasks or in
game playing. Autonomous vehicles are, so to speak, around the corner, while Wat-
son, from IBM, and other similar automatic assistant systems that can sift through
millions of documents and extract information in almost no time are deemed to pro-

406 A. Cornuéjols and C. Vrain

foundly change the way even high level professions, such as law making or medicine,
will be carried out in the years to come.

Still for all these breakthroughs and the accompanying hype, today’s machine
learning is above all the great triumph of pattern recognition. Not much progress has
been made in the integration of learning and reasoning since the 1980s. Machines
are very limited in learning from unguided observations and, unlike less that 2 years
aged children, they are very task-focused, lack contextual awareness, and look for
statistical correlations when we look for casual relationships. Progress in reinforce-
ment learning and in neural networks have been highly touted, and in part rightly so,
but the improvements in performance are due in large parts to gains in computational
power, and in the quantity of training examples rather than on new breakthroughs in
concepts, even though it is indisputable that new ideas have been generated.

The field of machine learning is therefore all but a finished, polished, or even a
mature domain. Revolutionary ideas are yet to come. They have to come. Accord-
ingly, let us conclude this chapter with an intriguing idea. Maybe the key of true
intelligence is not learning per se, but teaching. Infants, and, later, adults, share
knowledge in an innate compulsion. We share information and we share it with no
immediate gain other than to remedy the gap of knowledge we perceive in others.
It starts when a one-year old child see an object falling behind a piece of furniture
and points to it to an adult who did not see where the object fell. Teaching is an
universal instinct among humans. It is certainly intricately linked to our capacity of
learning. We have models of what the others know or ignore, and we act, we teach,
accordingly. In order to do so, we need to recognize the state of the world and the
state of others, and we need to reason. Is the teaching ability, or rather the teaching
instinct, the true frontier that machine learning must conquer? Learning/teaching, do
we need to look at the two faces of a same coin in order to understand each one?
Intriguing idea isn’t it, Watson!

References

Aggarwal CC (2015) Data mining: the textbook. Springer Publishing Company Incorporated, Berlin

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. Very
large data bases (VLDB-94). Santiage, Chile, pp 487—499

Aloise D, Hansen P, Liberti L (2012) An improved column generation algorithm for minimum
sum-of-squares clustering. Math Program 131(1-2):195-220

Amarel S (1968) On representations of problems of reasoning about actions. Mach Intell 3(3):131-
171

Ankerst M, Breunig MM, Kriegel H, Sander J (1999) OPTICS: ordering points to identify the
clustering structure. In: SIGMOD 1999, proceedings ACM SIGMOD international conference
on management of data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pp 49—60. https://doi.
org/10.1145/304182.304187

Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of
the eighteenth annual ACM-SIAM symposium on discrete algorithms, SODA 2007, New Orleans,
Louisiana, USA, January 7-9, 2007, pp 1027-1035. http://dl.acm.org/citation.cfm?id=1283383.
1283494

Designing Algorithms for Machine Learning and Data Mining 407

Bastide Y, Pasquier N, Taouil R, Stumme G, Lakhal L. (2000) Mining minimal non-redundant
association rules using frequent closed itemsets. In: Computational logic, pp 972-986

Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic
Publishers, Norwell

Bishop CM (2006) Pattern recognition and machine learning. Springer, Secaucus

Breiman L (2001) Random forests. Mach Learn 45(1):5-32

Breiman L, Friedman J, Olshen R, Stone CJ (1984) Classification and regression trees. Wadsworth
and Brooks/Cole Advanced Books and Software

Brusco M, Stahl S (2005) Branch-and-bound applications in combinatorial data analysis (Statistics
and computing), 1st edn. Springer, Berlin

Busygin S, Prokopyev OA, Pardalos PM (2008) Biclustering in data mining. Comput OR 35:2964—
2987

Cesa-Bianchi N, Lugosi G (2006) Prediction, learning, and games. Cambridge University Press,
Cambridge

Chapelle O, Scholkopf B, Zien A (2009) Semi-supervised learning (chapelle O, et al eds; 2006).
IEEE Trans Neural Netw 20(3):542

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273-297

Dao T, Duong K, Vrain C (2017) Constrained clustering by constraint programming. Artif Intell
244:70-94. https://doi.org/10.1016/j.artint.2015.05.006

de la Higuera C (2010) Grammatical inference: learning automata and grammars. Cambridge Uni-
versity Press, Cambridge

Dhillon IS, Guan Y, Kulis B (2004) Kernel k-means: spectral clustering and normalized cuts. In:
Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and
data mining, Seattle, Washington, USA, August 22-25, 2004, pp 551-556. https://doi.org/10.
1145/1014052.1014118

Ding CHQ, He X (2005) On the equivalence of nonnegative matrix factorization and spectral
clustering. In: Proceedings of the 2005 SIAM international conference on data mining, SDM
2005, Newport Beach, CA, USA, April 21-23, 2005, pp 606-610, https://doi.org/10.1137/1.
9781611972757.70

du Merle O, Hansen P, Jaumard B, Mladenovic N (1999) An interior point algorithm for minimum
sum-of-squares clustering. SIAM J Sci Comput 21(4):1485-1505

Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-
separated clusters. J Cybern 3(3):32-57. https://doi.org/10.1080/01969727308546046

Dzeroski S, Lavrac N (eds) (2001) Relational data mining. Springer, Berlin

Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Proceedings of the second international conference on
knowledge discovery and data mining (KDD-96), Portland, Oregon, USA, pp 226-231. http://
www.aaai.org/Library/KDD/1996/kdd96-037.php

Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn
2(2):139-172. https://doi.org/10.1007/BF00114265

Forgy E (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classifica-
tion. Biometrics 21(3):768-769

Fiirnkranz J, Gamberger D, Lavrac N (2012) Foundations of rule learning. Springer, Berlin

Gama J (2010) Knowledge discovery from data streams. Chapman & Hall

Ganter B, Wille R, Franke C (1998) Formal concept analysis: mathematical foundations. Springer,
Berlin

Ganter B, Stumme G, Wille R (eds) (2005) Formal concept analysis: foundations and applications.
Springer, Berlin

Getoor L, Taskar B (eds) (2007) An introduction to statistical relational learning. MIT Press, Cam-
bridge

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND,

408 A. Cornuéjols and C. Vrain

Weinberger KQ (eds) Advances in neural information processing systems 27, Curran Associates,
Inc., pp 2672-2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Getoor L, Taskar B (eds) (2007) An introduction to statistical relational learning. MIT Press

Halkidi M, Batistakis Y, Vazirgiannis M (2002) Clustering validity checking methods: part ii.
SIGMOD Rec 31(3):19-27. https://doi.org/10.1145/601858.601862

Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. SIGMOD Rec
29(2):1-12. https://doi.org/10.1145/335191.335372

HanJ, PeiJ, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-
pattern tree approach. Data Min Knowl Discov 8(1):53-87

Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann
Publishers Inc., San Francisco

Hansen P, Delattre M (1978) Complete-link cluster analysis by graph coloring.] Am Stat Assoc
73:397-403

Hansen P, Jaumard B (1997) Cluster analysis and mathematical programming. Math Program 79(1-
3):191-215

Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining,
inference, and prediction, 2nd edn. Springer series in statistics. Springer, Berlin

Hawkins D (1980) Identification of outliers. Monographs on applied probability and statistics.
Chapman and Hall. https://books.google.fr/books?7id=fb0OAAAAQAAJ

Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational
abilities. Proc Natl Acad Sci 79(8):2554-2558

Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall

Jannach D, Resnick P, Tuzhilin A, Zanker M (2016) Recommender systems-: beyond matrix com-
pletion. Commun ACM 59(11):94-102

Japkowicz N (2011) Evaluating learning algorithms: a classification perspective. Cambridge Uni-
versity Press

Johnson S (1967) Hierarchical clustering schemes. Psychometrika 32(3):241-254

Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley,
New York

Klein G, Aronson JE (1991) Optimal clustering: a model and method. Nav Res Logist 38(3):447—
461

Kohonen T (ed) (1997) Self-organizing maps. Springer, New York Inc, Secaucus

Koller D, Friedman N (2009) Probabilistic graphical models. Principles and techniques. MIP Press

Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informat-
ica 31:249-268

Lance GN, Williams WTA (1967) A general theory of classificatory sorting strategies: 1. Hierar-
chical systems 9

Lachiche N, Vrain C (eds) (2018) Inductive logic programming - 27th international conference, ILP
2017, Orléans, France, September 4-6, 2017, Revised selected papers, Lecture notes in computer
science, vol 10759. Springer. https://doi.org/10.1007/978-3-319-78090-0

Lavrac N, Dzeroski S (1994) Inductive logic programming - techniques and applications. Ellis
Horwood series in artificial intelligence. Ellis Horwood

Le Cun Y (1986) Learning process in an asymmetric threshold network. Disordered systems and
biological organization. Springer, Berlin, pp 233-240

Le Cun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Hand-
written digit recognition with a back-propagation network. In: Advances in neural information
processing systems, pp 396—404

Le Cun Y, Bengio Y et al (1995) Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks 3361(10):1995

Le Cun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436—444. https://doi.org/
10.1038/nature14539

Levesque HJ, Brachman RJ (1987) Expressiveness and tractability in knowledge representation and
reasoning. Comput Intell 3(1):78-93

Designing Algorithms for Machine Learning and Data Mining 409

Li H (2011) A short introduction to learning to rank. IEICE Trans Inf Syst 94(10):1854—1862

Li W, Han J, Pei J (2001) CMAR: accurate and efficient classification based on multiple class-
association rules. In: Proceedings of the 2001 IEEE international conference on data mining, 29
November—2 December 2001, San Jose, California, USA, pp 369-376. https://doi.org/10.1109/
ICDM.2001.989541

Liu B, Hsu W, Ma Y (1998) Integrating classification and association rule mining. In: Proceedings
of the fourth international conference on knowledge discovery and data mining, AAAI Press,
KDD’98, pp 80-86. http://dl.acm.org/citation.cfm?id=3000292.3000305

Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129-136. https://
doi.org/10.1109/TIT.1982.1056489

Lopez-Paz D, Nishihara R, Chintala S, Scholkopf B, Bottou L (2016) Discovering causal signals
in images. arXiv:160508179

Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a sur-
vey. IEEE/ACM Trans Comput Biol Bioinform 1:24-45. https://doi.org/10.1109/TCBB.2004.
2, www.doi.ieeecomputersociety.org/10.1109/TCBB.2004.2

Michalski RS (1980) Knowledge acquisition through conceptual clustering: a theoretical framework
and an algorithm for partitioning data into conjunctive concepts. Int J Policy Anal Inf Syst 4:219-
244

Michalski RS, Stepp RE (1983) Automated construction of classifications: conceptual clustering
versus numerical taxonomy. IEEE Trans Pattern Anal Mach Intell 5(4):396—410. https://doi.org/
10.1109/TPAMI.1983.4767409

Miclet L (1990) Grammatical inference. In: Bunke H, Sanfeliu A (eds) Syntactic and structural
pattern recognition theory and applications. World Scientific, Singapore

Minsky ML, Papert S (1988) Perceptrons, expanded ed. MIT Press, Cambridge, vol 15, pp 767, 776

Mitchell T (1982) Generalization as search. Artif Intell J 18:203-226

Mitchell T (1997) Machine learning. McGraw-Hill

Muggleton S (1995) Inverse entailment and progol. New Gener Comput 13(3&4):245-286

Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. In: Advances
in neural information processing systems 14 [neural information processing systems: natural and
synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada], pp 849-856.
http://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm

NgRT, HanJ (1994) Efficient and effective clustering methods for spatial data mining. In: VLDB’94,
proceedings of 20th international conference on very large data bases, September 12—15, 1994,
Santiago de Chile, Chile, pp 144-155. http://www.vldb.org/conf/1994/P144.PDF

Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: The
20th ACM SIGKDD international conference on knowledge discovery and data mining, KDD
"14, New York, NY, USA - August 24-27, 2014, pp 977-986. https://doi.org/10.1145/2623330.
2623726

Olshausen BA, Field DJ (1996) Natural image statistics and efficient coding. Netw Comput Neural
Syst 7(2):333-339

Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345-
1359

Park HS, Jun CH (2009) A simple and fast algorithm for k-medoids clustering. Expert Syst Appl
36:3336-3341

Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-
gan Kaufmann

Pearl J (2009) Causal inference in statistics: an overview. Statist Surv 3:96—146. https://doi.org/10.
1214/09-SS057

Peters J, Janzing D, Scholkopf B (2017) Elements of causal inference: foundations and learning
algorithms. MIT Press

Plotkin G (1970) A note on inductive generalization. In: Machine intelligence, vol 5. Edinburgh
University Press, pp 153-163

Qiu Q, Patel VM, Turaga P, Chellappa R (2012) Domain adaptive dictionary learning, pp 631-645

410 A. Cornuéjols and C. Vrain

Quinlan J (1993) C4.5: programs for machine learning. Morgan Kauffman

Quinlan JR (1996) Learning first-order definitions of functions. CoRR. arXiv:cs.AI/9610102

Raedt LD (2008) Logical and relational learning. Springer, Berlin

Raedt LD, Frasconi P, Kersting K, Muggleton S (eds) (2008) Probabilistic inductive logic program-
ming - theory and applications. Lecture notes in computer science, vol 4911. Springer, Berlin

Rao M (1969) Cluster analysis and mathematical programming 79:30

Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc
IEEE 98(6):1045-1057

Rumelhart DE, McClelland JL, Group PR et al (1987) Parallel distributed processing, vol 1. MIT
Press, Cambridge

Saitta L, Giordana A, Cornuéjols A (2011) Phase transitions in machine learning. Cambridge
University Press

Scholkhopf B, Smola A (2002) Learning with kernels. MIT Press

Shapire R, Freund Y (2012) Boosting: foundations and algorithms. MIT Press

Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University
Press

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J,
Antonoglou I, Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep
neural networks and tree search. Nature 529(7587):484-489

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M,
Bolton A et al (2017) Mastering the game of go without human knowledge. Nature 550(7676):354

Suraj Z (2004) An introduction to rough sets theory and its applications: a tutorial. In:
ICENCO’2004, Cairo, Egypt

Sutton C, McCallum A (2012) An introduction to conditional random fields. Found Trends Mach
Learn 4(4):267-373. https://doi.org/10.1561/2200000013

Tosic I, Frossard P (2011) Dictionary learning. IEEE Signal Process Mag 28(2):27-38

Uno T, Kiyomi M, Arimura H (2004) LCM ver. 2: efficient mining algorithms for fre-
quent/closed/maximal itemsets. In: FIMI *04, proceedings of the IEEE ICDM workshop on
frequent itemset mining implementations, Brighton, UK, November 1, 2004. http://ceur-ws.org/
Vol-126/uno.pdf

van der Laag PR, Nienhuys-Cheng SH (1998) Completeness and properness of refinement operators
in inductive logic programming. J Log Program 34(3):201-225. https://doi.org/10.1016/S0743-
1066(97)00077-0, http://www.sciencedirect.com/science/article/pii/S0743106697000770

Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin

Vega-Pons S, Ruiz-Shulcloper J (2011) A survey of clustering ensemble algorithms. [JPRAI
25(3):337-372. https://doi.org/10.1142/S0218001411008683

von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395-416. https://doi.
org/10.1007/s11222-007-9033-z

Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceedings of the 17th
international conference on machine learning, pp 1103-1110

Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc
58(301):236-244. https://doi.org/10.1080/01621459.1963.10500845, http://www.tandfonline.
com/doi/abs/10.1080/01621459.1963.10500845

Zaki MJ (2000) Generating non-redundant association rules. In: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining, Boston, MA, USA,
August 20-23, KDD, pp 34-43

Zelezny F, Lavrac N (2006) Propositionalization-based relational subgroup discovery with rsd.
Mach Learn 62(1-2):33-63

Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2016) Understanding deep learning requires
rethinking generalization. arXiv:161103530

Zhou ZH (2012) Ensemble methods: foundations and algorithms. CRC Press

