
Minimum Description Length Principle applied to
Structure Adaptation for Classification under

Concept Drift
Pierre-Alexandre Murena

LTCI CNRS, Télécom ParisTech, Université Paris-Saclay
46 rue Barrault, 75013 Paris, France

murena@telecom-paristech.fr

Antoine Cornuéjols
AgroParisTech

INRA UMR MIA 518 Paris
16 rue Claude Bernard, 75231 Paris, France

antoine.cornuejols@agroparistech.fr

Abstract—Traditional supervised machine learning tests the
learned classifiers on data which are drawn from the same
distribution as the data used for the learning. In practice, this
hypothesis does not always hold and the learned classifier has to
be transferred from the space of learning data (also called source
data) to the space of test data (also called target data) where it is
not directly applicable. To operate this transfer, several methods
aim at extracting common structural features in the source and
target.

Our approach employs a neural model to encode the structure
of data: such a model is shown to compress the information in the
sense of Kolmogorov theory of information. To perform transfer
from source to target, we adapt a result shown for analogy rea-
soning: the structure of the source and target models are learned
by applying the Minimum Description Length Principle which
assumes that the chosen transformation has the shortest symbolic
description on a universal Turing machine. We encounter a
minimization problem over the source and target models. To
describe the transfer, we develop a multi-level description of the
model transformation which is used directly in the minimization
of the description length. Our approach has been tested on toy
examples, the difficulty of which can be controlled easily by a
one-dimensional parameter and is shown to work efficiently on
a wide range of problems.

I. INTRODUCTION

Current machine learning approaches to classification rely
primarily on the assumption that the labeled data used for
learning (training or learning data) and the unlabeled data
used to evaluate the learning performance (test data) are
drawn from the same space, using the same distribution. The
classification problem then consists of learning a function
called classifier which takes a point as input and predicts its
label. According to this assumption, defining a classifier as
a function from the input space X to the label space Y and
evaluating it on the test data makes sense.

In practice, this hypothesis does not always hold: either the
data space or the distribution has changed between learning
and testing. For instance, the training data (used to learn
the classifier) may be selected by experts and therefore be
restricted to a smaller region of the input space X than the
test data. This difference in the distribution corresponds with a
concept drift: the concept, in this case the distributions, drifted
from a source distribution to a target distribution. Using this

vocabulary, we will refer to the learning data as source data
and to the test data as target data.

In scenarios of space change or concept drift, classifiers
learned from the training data cannot be directly used on the
test data: they have to be transferred to the test data. In this
paper, we will study the case of classification under concept
drift, often called Domain Adaptation: the system can learn
from labeled source data and has to classify unlabeled target
data.

Two main families of methods are commonly used for
such problems. The first family is based on the estimation
of the ratio pT (x)/pS(x) for sample selection bias [1], where
pS (resp. pT) designates the source (resp. target) probability
distribution. This ratio is used as a weight in a weighted
version of the empirical risk. Various methods have been found
to estimate this quantity (see in particular [2], [3], [4]). The
second family [5], [6] aims at identifying common features in
source and target data.

Our method belongs to the second family. We represent the
internal structure of the classes by several neural prototypes.
The prototypes are used as a model of the data distribution.
To operate the model transfer from source to target, we use
the Minimum Description Length Principle (MDLP). This
principle assumes that the best theory to describe a system
is the one the programming of which has the shortest length
on a Turing machine.

The Minimum Description Length Principle has previously
been used by Cornuéjols [7] to manage analogy reasoning,
a highly similar problem to Domain Adaptation. He demon-
strates that using an intermediate model to encode both the
description of the inputs and the decision rules is the correct
way to apply the symbolic approach of algorithmic complexity
required by MDLP to the high-level reasoning of analogy.

We apply this theory to Domain Adaptation seen as an
analogy reasoning problem. The model we use to encode the
inputs and decision rules is given by a labeled neural network
and the decision rules are chosen to be 1-Nearest Neighbor.
We demonstrate how such a model corresponds to information
compression and apply MDLP to it the same way it is done
in analogy reasoning.

II. APPLICATION OF THE MINIMUM DESCRIPTION
LENGTH PRINCIPLE TO DOMAIN ADAPTATION

A. Domain Adaptation as analogy reasoning

Analogy reasoning is defined by Davies et al. [8] as infering
a conclusion Q(T) of a property P (T) knowing that a con-
clusion Q(S) has been deduced from a source property P (S).
The main purpose of analogy reasoning consists of estimating
the decision function Q.

The domain adaptation framework corresponds strictly to
a problem of this kind: the property P (S) corresponds to
the source data XS and implies the labels YS which are the
conclusion Q(S). The aim of Domain Adaptation is to deduce
the labels YT (ie. the conclusion Q(T)) from the target data
XT (ie. the property P (T)). Knowing the source data and their
corresponding labels, domain adaptation consists of finding a
decision rule on the source domain and interpolating it to the
target domain.

Thus, the results for analogy reasoning can be applied
directly to domain adaptation.

B. Minimum Description Length Principle in analogy reason-
ing

The Minimum Description Length Principle (MDLP) is
a principle derived from algorithmic theory of information.
Originally expressed in Solomonov’s theory of induction [9],
the MDLP is formalized by Wallace and Boulton [10] as
follows:

The best theory to describe observed data is the one which
minimizes the sum of the description length (in bits) of:

• the theory description
• the data encoded from the theory
The tool to express this principle formally is given by

Kolmogorov’s theory of information [11]: the information
encoded in a string x is defined by this theory as the length
(in bits) of the shortest program producing x in a universal
Turing machine. This quantity, defined up to a constant, is
called Kolmogorov complexity and is denoted by K(x). A
similar definition is provided for the conditional Kolmogorov
complexity of the string x given a string y: K(x|y) is defined
as the minimal length of a program taking y as input and
producing x.

In Domain Adaptation, we have inputs XS and XT for
both source and target. Knowing the output YS for the source
only, the objective is to find the optimal rules �S and �T

which deduce the outputs YS and YT (which is unknown).
As explained by Cornuéjols [7], applying MDLP directly
in analogy reasoning would consist of finding the shortest
program describing the target rule �T from the source rule �S .
This does not make much sense as it strongly relies on the
programming on a Turing machine, ie. on the symbol level,
and cannot express the task of interpretation as described by
Hofstadter [12]. He introduces a slight modification of this
direct approach by adding a so-called model describing both
inputs and decision rules (figure 1). The transfer from source
to target is then completely described by the transfer from the

source model MS to the target model MT . In this framework,
MDLP is reduced to the minimization over the models MS

and MT and the rules �S and �T of the objective:

K(MS) +K(XS |MS) +K(�S |MS)

+K(MT |MS) +K(XT |MT) +K(�T |MT)

(1)

where X designates the inputs, M the models and � the
rules. We use here, and in the rest of the article, the notation
S and T to refer respectively to the source and the target.

Fig. 1. Summary of Domain Adaptation problem with an underlying model.
The transfer task consists of finding the optimal model transition from the
source to target in terms of information compression.

C. Implications for Domain Adaptation

As previously explained, this minimization problem can be
applied directly to domain adaptation. We can give simple
interpretation of the terms in this context. The models M

describe the way the distributions are encoded: knowing M , it
is possible to describe how the inputs X are generated and how
the labels Y = �(X) are calculated. The rules � correspond
to the classifiers.

Equation 1 can be divided into three terms:
• The first term corresponds to the complexity of the

source description: K(MS) is the complexity of the
source model, K(XS |MS) is the complexity of the source
inputs according to source model and K(�S |MS) is the
complexity of the source classifier according to the source
model.

• The second term corresponds to the complexity of the
transfer: K(MT |MS) is the complexity of the target
model according to the source model.

• The third term corresponds to the complexity of the
target description: K(XT |MT) is the complexity of target
inputs according to the target model and K(�T |MT) is
the complexity of the target classifier according to the
target model.

It is important to note that calculating Kolmogorov com-
plexity is a NP-hard problem. In the following, we will
only consider upper-bounds of Kolmogorov complexity: such
bounds are obtained by selecting the program of minimal
length not in the whole set of programs of a universal Turing

machine but on a restricted set of programs on which the
calculation is possible. In the following, we will abusively
assimilate Kolmogorov complexity to this quantity.

In the following sections, we will give an example of data
description and modeling based on neural prototypes, and will
show how MDLP can be applied to it in practice.

III. DESCRIPTION OF THE NEURAL MODEL

A. General description

Such as previously described for analogy reasoning, domain
adaptation involves two domains: the source and target. The
source domain is provided with a labeled data set. The source
input vectors are summarized in the design matrix XS and the
labels in the output vector YS . The classifier �S is a function
from X = Rd to the space of labels Y .

We assume that the input spaces for source and target are
the same and that the labels are the same (XS = XT and
YS = YT). This implies in particular that no class can be
created in the process.

We propose a model similar to the neural networks used
for vector quantization. The model is made up of C vectors
called prototypes (or centroids). Each prototype is associated
to a class y 2 Y . Such a model is frequently used in techniques
like Self-Organizing Maps [13].

We give a basic example of domain adaptation in figure 2.
Instead of directly transfering the classifier, we transfer the
neural model using MDLP. The target model is then used to
build the target classifier �T .

B. Information Compression in the Neural Model

Using a neural model can be interpreted as information com-
pression: rather than describing the whole data set by giving
a complete description of each point, the system describes the
prototypes fully and gives only a relative description of the
input points (figure 3).

Fig. 3. The prototypes C1 and C2 (circled crosses) bring a more compact
description of the points X1, . . . , Xn (bold crosses). Instead of describing all
points by their absolute coordinates, they can be described by their relative
position to a prototype.

In the following, we consider that we have a function size
which returns the size (in bits) of a real number x. We will
discuss a simple construction of this function later. Intuitively,
this function depends on the module of x. Using this function,
a vector X 2 Rd is encoded on

Pd
i=1 size(X

i
) bits, where

X

i denotes the i-th component of the vector X .
The direct way of describing the input data X =

{X1, . . . , Xn} consists of giving the d components of each

vector one by one. This corresponds to a Kolmogorov com-
plexity:

K(X) =

nX

i=1

dX

j=1

size(X

j
i) (2)

On the other hand, the model of Vector Quantization en-
codes the full description of the C prototypes and the descrip-
tion of the input relatively to the prototypes. Each prototype
is encoded by the specification of its key (encoded on log2 C

bits) and by the complete description of its components one
by one:

K(M) =

CX

c=1

0

@
log2 C +

dX

j=1

size(M

j
c)

1

A (3)

To describe a vector, a more subtle approach consists of
specifying its relative position to the closest prototype. To be
able to return the exact position of the vector, a program also
needs the key of the chosen prototype:

K(X|M) =

nX

i=1

0

@
log2 C + min

c=1,...,C

dX

j=1

size(X

j
i �M

j
c)

1

A

(4)
The idea of the compression is that groups of points share a

mean position and can be described by their relative position
compared to this mean value.

A model is effective when the second description is more
compressed than the basic description: K(X) � K(M) +

K(X|M). Basically, it is obvious that such a compression will
be particularly efficient in situations in which many points are
close to each other.

C. Decision rule

A trivial decision rule �trivial consists of returning the
observed label for each of the input point and any value
for other points of the domain. In statistical learning, such
a decision rule is said to correspond to overfitting as it
gives correct results only for input points and is not able to
generalize the learning to other points. Furthermore, it does
not use the information offered by the neural model.

The most direct non-trivial decision rule consists of asso-
ciating a point with the class of the closest prototype. The
method to extract this information is straightforward: it only
consists of computing the distance of a point to all prototypes.
Thus, the Kolmogorov complexity of the rule � given a model
M up to a constant is given by:

K(�|M) = log2 C (5)

The problem with this decision rule is that in general it does
not describe the source correctly. Actually, it is necessary in
our framework that the model MS explains completely the
source data: thus, we may adapt the 1-Nearest Neighbor (1-
NN) decision rule by correcting the done errors. If the point

(a) Source data and model (b) Target data and model

Fig. 2. An example of domain adaptation problem and the corresponding ideal model transfer. The data points are represented by crosses and the prototypes
by circles. The color corresponds to he class: blue corresponds to class 0, red to class 1, and black to unlabeled data.

belongs to the input set and the class of the nearest prototype
is different from the actual label of the point, the program has
to display the result explicitly. If the function yNN denotes the
label of the nearest neighbor and I corresponds to the indicator
function, the Kolmogorov complexity of the rule relative to the
model and the data is:

K(�|M,X,Y) =

log2 C +

nX

i=1

(log2 n+ size(Yi))I(Yi 6= yNN (Xi)) (6)

The better the model predicts the right labels, the lower the
complexity of the rule. In the learning step, the minimization
of this term will lead to a model which minimizes the
prediction error over the data.

D. Algorithmic size of real numbers and vectors

As explained previously, calculating the Kolmogorov com-
plexity is a NP-hard problem. This property is due to the
size of the research space: finding the program of minimum
length on a Turing machine M requires exploring the entire
set of programs encoded on the considered machine. The
common approximation consists of considering a restricted
set of programs. The complexity obtained on this restricted
set is by construction an upper-bound of the Kolmogorov
complexity. In particular, the choice of the restricted set of
programs defines the function size used previously by the
choice of the encoding of real numbers.

A very straightforward encoding of the real numbers is
based on a subdivision of the real line in ordered sections
of fixed length �x. A real number X 2 R is described (with
a precision �x) by the index of the section it belongs to. This
encoding leads to the following definition of the size function:

size(X) = log

�
1 +

|X|
�x

⌫
(7)

The parameter �x controls the precision of the encoding:
two numbers can be distinguished only if their distance is

greater than �x. In practice, the size can be bounded by
simpler measures:

size(X) log

✓
1 +

|X|
�x

◆
 |X|

�x

(8)

This upper-bound is particularly remarkable when gener-
alized to vectors X 2 Rd: with the previous approximation
K(X) =

Pd
i=1 size(Xi), the Kolmogorov complexity of a

vector X is upper-bounded by the L1-norm, up to the precision
parameter �x. This upper-bound will be used especially in the
algorithms derived from the MDLP.

In the following, we will consider only machines which use
this encoding of the real numbers and vectors.

E. Learning the Neural Model in the Source only

Knowing inputs, we have to learn the optimal model in the
sense of information compression:

minimize
M,C,�

K(M) +K(X|M) +K(�|M)

Using the expressions found above, we obtain a well-
defined optimization problem, depending on the definition of
the function size.

From now on, we will consider only an alternative descrip-
tion of the model so that the term K(M) is a constant. In this
description, the prototypes are all described in a fixed number
of bits. In terms of algorithmic probability, for which the prob-
ability of a number depends on its Kolmogorov complexity,
this stronger hypothesis on the encoding of M corresponds
to considering a uniform prior for the prototype positions,
whereas the previous approach provided a higher prior to the
prototypes with low-valued coordinates. Using a more subtle
description of the neural model could be interesting when
the model is based on well-defined structures, eg. when the
prototypes are aligned, or belong to a circle. The encoding of
such structures and its impact over domain adaptation has to
be studied in future works.

According to the assumption that K(M) is constant equal
to CL (where L is the fixed number of bits used to describe a
single prototype), this first term only depends on the number

of prototypes C. The remaining terms in the MDL equation
correspond to the sum of the description length of the data and
of the decision rule relative to the description of the model.

For a fixed number of prototypes C, the term we aim to
minimize can be developed as a sum over the input points:

K(X|M) +K(�|M) =

nX

i=1

0

@
min

c

dX

j=1

size(X

j
i �M

j
c) + ↵I(Yi 6= y(Xi))

1

A (9)

where ↵ = log2 n + log2 nclasses is the misclassification
penalty and y(Xi) designates the class of the nearest prototype
of input point Xi. We observe that taking the function size

defined as a constant is equivalent to a classical risk mini-
mization. On contrary, when the penalization term is null, the
problem is similar to the K-Means problem.

This minimization problem can be solved by EM algorithm:
in the E step, the closest prototype is chosen for each data
point; in the M step, the positions of the prototypes and their
labels are updated in order to minimize the objective with the
chosen point-prototype association.

F. Learning the Source and Target Neural Models

In the Domain Adaptation problem, we must minimize the
objective function (1) in order to learn the models MS and
MT and the rules �S and �T .

As explained, this objective can be split in three parts. In
the source part, the term K(MS) is given by equation (3),
the term K(XS |MS) by equation (4) and K(�S |MS) by
equation (6). In the target part, the term K(XT |MT) is given
by equation (4) and K(�T |MT) by equation (5).

The transfer part consists of only one term: K(MT |MS).
This term corresponds to the complexity of description of the
target model given the source model. It is essential to bind the
source and target situations together. This term is used to make
the source and target independent on each other. We discuss in
the next section the construction of the neural model transfer.

IV. TRANSFER OF THE NEURAL MODEL

To transfer the neural model from the source domain to the
target domain, we aim to characterize the transformation of
the source model returning the target model. To achieve this,
we use a multi-level approach to describe the changes:

• Global transformation: a transformation which affects all
prototypes

• Class transformation: a transformation which affects all
prototypes belonging to a given class

• Local transformation: a transformation which affects one
single prototype

The use of such a multi-level approach enables one to take
global effects into account, such as a global translation of the
data, or effects shared by points of the same class.

In this framework, the resulting complexity K(MT |MS)

can be split into a sum of three terms corresponding to each
level of the total transformation:

K(MT |MS) = Kg(MT |MS)+Kc(MT |MS)+Kl(MT |MS)

We will give an upper-bound of each term by studying a
class of transformation of each type.

A. Global transformation

The global transformation affects the whole neural struc-
ture and corresponds to a movement of all prototypes. The
main transformation consists of a global translation of the
prototypes: it is described by the coordinates of the translation
vector �µ.

In practice, the vector �µ can be initialized as the difference
of means between target data points and source data points:
µ

(T)�µ

(S). However, this equality does not necessarily hold.
Consider for example the case in which only one class is
translated from the source to target. It costs more in terms
of Kolmogorov complexity to translate all points by a vector
µ

(T) � µ

(S) and then to translate each class individually to
its position, than to only translate the right class to its new
position.

With this approach, the global transfer complexity Kg is
defined by:

Kg(MT |MS) =

dX

i=1

size(�µ

i
) (10)

For two-dimensional problems (d = 2), an intuitive trans-
formation is the rotation. Such a transformation is fully
described by the center vector ⌦ and the angle ✓. In higher
dimensions, we can generalize by considering the set of affine
transformations characterized by a translation vector u and a
linear transformation of matrix A. We won’t discuss such a
model in this paper.

B. Class transformation

Once the global transformation has been applied to the
model, we may wish to characterize the common changes
shared by a whole class of points. Such a class transformation
is defined relatively to the global transformation.

If l is a class label, we designate by �µl the class translation
vector. The complete class transformation is given by the
set of vectors {�µ1, . . . ,�µL} where L is the total number
of classes. If �µl,i designates the i-the component of the
translation vector of class l, the complete class transformation
complexity is given by:

Kc(MT |MS) =

LX

l=1

dX

i=1

size(�µ

i
l) (11)

Such as for the global transformation, the class transfor-
mation can be refined in order to include a general linear
transformation (such as a class rotation), but we won’t consider
this generalization here.

C. Local transformation

The local transformation is the residual transformation to
describe completely the position of a target prototype given
the source neural model MS . This transformation is applied
to each prototype after the first two transformations.

A local transformation can consist of three actions:
• Move a point: this action is encoded by the relative

position vector.
• Create a point: this action is encoded by the class index

and the relative position vector in the class.
• Delete a point: this action is encoded by the index of the

point to suppress.
In terms of complexity, the creation of a prototype costs

more than the suppression: this observation is consistent with
the intuition that it is easier to simplify the model than to
complicate it.

The relative position vectors are put together in the local
transformation matrix �M. For each prototype i of class l,
the local transformation �Mi of prototype i is defined as:

�Mi = M(T)
i �M(S)

i ��µl ��µ (12)

We will denote by ndel the number of prototypes to delete
and by N the matrix of positions for the nadd points to add.
Deleting the points in the source model (made up of CS

prototypes) has a complexity Kdel = ndel log2 CS . Once the
points have been deleted, adding new points has a complexity:

Kadd = nadd log2 nadd +

naddX

i=1

dX

j=1

size(N

j
i) (13)

By combining all these complexities, we obtain the com-
plexity of the local transformation:

Kl(MT |MS) =

CS�ndelX

i=1

dX

j=1

size(�M

j
i)+Kdel+Kadd (14)

D. Total description of the target model

Given the target model MS and with the previously de-
scribed transformations, the transfer to MT is described by a
vector �µ, a set of vectors {�µ1, . . . ,�µL} (where L denotes
the total number of classes), a matrix �M corresponding to
the individual local transformations, the coordinates N of the
created points and the index of the ndel points to delete.

A practical construction of the target model consists of:
1) Deleting the specified points
2) Applying a translation of vector �µ to each point
3) For each class l, applying a translation of vector �µl to

all points in the class
4) Applying the translation of vector �Mi to each point i.
5) Concatenating the new points N.
The corresponding Kolmogorov complexity is given by:

K(MT |MS) =K(�µ) +

LX

l=1

K(�µl) +K(�M)

+K(N) + ndel log2 CS (15)

We can note that in our current elementary model, it is
pointless to add a prototype in the target model: as the
prototypes are implicitly supposed to be independent, we
have no way to determine the class of the added prototype.
Nevertheless, this function could be useful in a more advanced
model. In the following, we will consider only prototype
deletions.

E. Interpretation of the multi-level approach

The multi-level approach to describe the transfer of the
neural model from the source to the target is a reduction of
the set of programs used to calculate an upper-bound of the
actual Kolmogorov complexity K(MT |MS).

It works in precisely the same way as the neural model
with the point description: the three levels are used to refine
the representation of the movement. The global movement
is encoded only once at the top level and not repeated for
each point; and the singular movements which can only be
described individually are described at the bottom level.

The choice of three levels here is arbitrary: it could be
possible to work with any other number of levels. Our choice
is mainly motivated by the simple interpretation which can be
done of the results with this point of view.

In the general case, determining the number of levels to use
is a central problem: it can be done by applying the MDLP. A
large number of levels will make the movement descriptions
more compact but will require a larger description, and thus are
not necessarily optimal. On contrary, when the neural model
consists of a low number of prototypes, the shortest description
can be provided by only one or two levels. A work has to be
done to investigate this problem.

F. Transfer learning

Transfer learning consists of evaluating the models MS and
MT . As explained, this transfer is done by minimization of
the objective function (1) over the models with the expressions
described above (equations 4, 5, 6, 15). In practice, it is more
convenient to minimize over the transformation parameters
�µ,�µc and �M than over the target model MT .

When no prototype deletion or adding is considered, the
optimization problem is solved directly by EM algorithm. In
the E step, the points of both source and target domains are
attached to the closest prototype in the corresponding model;
in the M step, the source prototypes and the transformation
parameters are learned by a subgradient method with the fixed
point-prototype association. The optimal value of C is the one
which leads to the lowest complexity.

Deleting points can be done after a first model optimization.
The points to delete are chosen in order to compensate the
deletion cost by a compression gain in the description of the

reduced model. In practice, we run the algorithm with the same
number of points in the source and in the target, and delete
the points one by one. The deletion is performed in two cases:
either the prototype in the target model is useless (ie. no data
point is attached to it) or two prototypes in the target have the
same class and are so close to each other that deleting one
doesn’t affect the global result of the classification.

V. EXPERIMENTAL RESULTS

A. Measuring the quality of transfer
Domain adaptation is not a well-posed problem; conse-

quently, even if it is possible to define a classification error
rate over a labeled target set, this quantity does not measure
exactly the efficiency of a transfer method. A transfer learning
problem has multiple solutions, our approach consisting of
selecting the most simple solution in terms of algorithmic
complexity. In some problems, even human experts cannot
make the distinction between two solutions and, in this sense,
penalizing an inversion of two classes in the result of a method
would seem to be arbitrary.

The misclassification rate (or error rate) expresses how far
the classification results are from the actual labels. This rate
can be calculated for source and target data (as the source
model and the drift are learned simultaneously). Given a set of
points {X1, . . . , Xn} and their respective labels {Y1, . . . , Yn},
the misclassification rate of a classifier y is defined as:

R =

1

n

nX

i=1

I(Yi 6= y(Xi)) (16)

Because of the previous observation, this quantity has to be
considered carefully as a high misclassification rate does not
necessarily imply a bad transfer.

Actually, the misclassification rate is a normalized complex-
ity of a basic program designed to correct the classification
errors: this program modifies only the points which are mis-
classified. When the value of R is close to 1, the correction
can be done by permuting all the classes, which would have
a lower complexity.

B. Toy examples
We test our method on two-dimensional toy examples built

artificially. We consider two parameterized problems:
• Class translations: the input points are generated by two

normal distributions. The drift consists of a translation of
the means of each of the distributions.

• Class deformation (figure 4): one of the class is continu-
ously deformed from a vertical line to a circle surround-
ing the second class. The deformation is parameterized
by a real number ✓ 2 [0, 1].

The class deformation problem provides a good way to
parameterize the difficulty of the transfer. When ✓ = 0, the
points in the deformable class are aligned on a vertical line at
the left of the points in the fix class. When ✓ increases, the
points of the deformable class surround progressively the fix
class. At ✓ = 1, they are aligned on a circle centered on fix
class.

Fig. 4. Toy problem with various difficulty levels. The distribution of class 0
(plotted as black +) doesn’t change. The distribution of class 1 (plotted as
colored crosses) is parameterized by a real number ✓. When ✓ = 0, the
points are aligned on a vertical line; when ✓ = 1, the points are distributed
on a circle surrounding class 0.

C. Results and discussion

The class translation problem has been tested on auto-
matically generated sets of 200 points in R2. In the source,
the first class is generated by a normal distribution centered
on (0, 0) and the second class by a normal distribution centered
on (2, 0). Both distributions have identity covariance matrix.
In the target, the same distribution is used for the first class, but
the second class is derived from a normal distribution centered
on (t, 0).

The results obtained for the transfer from source to target
highly depend on the parameter t 2 R (figure 5).

Fig. 5. Evolution of the classification error over the source (RS) and
target (RT) with the translation parameter t (x-axis).

The source error remains approximately constant for all
values of the parameter: the value of the error is due to the
noise. When t < 0, the situation consists basically in an
inversion of the order of the centers along the x-axis. Such an
inversion cannot be deduced by any method without further
instruction; our method relying on a simplicity principle, it
avoids the class inversion (which would be far too complex),
and thus leads to a high target error. When t is close to 0, the
two classes are not separable and the high target error rate is
due primarily to this non-separability. For values of t larger
than 2, the transfer is done as expected and the target error
rate is quite low. We can note that this value keeps decreasing:
the target problem becomes more and more separable.

For class deformation, the misclassification error has been
calculated for various transfer situations: the source data are

TABLE I
MISCLASSIFICATION RATE FOR TRANSFER (LEFT: IN SOURCE; RIGHT: IN TARGET) WITH SOURCE DATA GENERATED WITH A PARAMETER ✓S AND

TARGET DATA GENERATED WITH A PARAMETER ✓T .

✓T = 0 ✓T = 0.2 ✓T = 0.4 ✓T = 0.6 ✓T = 0.8 ✓T = 1

✓S = 0 0%, 0% 0%, 0% 0%, 11.2% 33.7%, 33.7% 0%, 42.7% 0%, 60.7%
✓S = 0.2 0%, 0% 0%, 0% 0%, 13.5% 33.7%, 34.8% 0%, 5.62% 0%, 52.8%
✓S = 0.4 10.1%, 20.2% 4.49%, 0% 16.9%, 14.6% 12.4%, 32.6% 11.2%, 3.4% 11.2%, 53.9%
✓S = 0.6 20.2%, 41.6% 23.6%, 52.8% 19.1%, 47.2% 20.2%, 19.1% 0%, 2.25% 13.5%, 20.2%
✓S = 0.8 15.7%, 6.74% 24.7%, 0% 10.1%, 12.4% 7.87%, 11.2% 23.6%, 21.3% 22.5%, 52.8%
✓S = 1 8.99%, 55.1% 27.0%, 0% 20.2%, 12.4% 33.7%, 33.7% 22.5%, 34.8% 19.1%, 13.5%

generated by our predefined process with parameter ✓S and the
target data are generated with parameter ✓T . After the learning
step, we calculate the misclassification rate on the source and
on the target. The obtained results are summed up in table I.

As in the class translation problem, the misclassification
rates are lower in the source: this is because misclassification
is penalized directly in the learning for source data. The results
show that the method has difficulties adapting to topologically
different situations: when ✓S is low and ✓T is high, many
errors occur by the method which essentially preserves the
position of the prototypes from source to target. The cost of
the structure adaptation for the model in difficult transfers is
too high.

VI. CONCLUSION

In this study, we have proposed a new method for Domain
Adaptation based on the introduction of a neural model. In-
stead of considering the data points directly, we used the neural
network as an intermediate encoding of the very structure
of the data. This intermediate model allows the use of the
Minimum Description Length Principle in a similar way as
already done for analogy reasoning in [7]. In the context of
this introductory article, we considered a very basic model and
basic description rules: the data points are described by their
relative positions towards the prototypes in the neural network.

We tested our method on two artificially generated toy
datasets, the difficulty of which is parameterized. The results
confirm that the method favors the most simple transfer over
all other possible transfers. Besides, when a transfer is feasible,
the obtained results over both source and target domains
are similar to classification results obtained with traditional
methods. However, the method is not always efficient when
the change of structure is too difficult.

The limitations of our method are a direct consequence of
its simplicity. In particular, two direct improvements have to be
made to make the data description subtler. First, the prototypes
in the model may be given in the form of a graph which has
to be learned; this graph would help inducing a fix structures
to the prototypes, which would lead to better results in more
difficult transfers. Then, the description of the data used for the
calculation of K(MS) and K(MT |MS) has to be improved
in order to include regularity terms over the data: for example,
if the prototypes are aligned, the description can be drastically
compressed.

A testing of the method on real data remains to be done.
However, such a study would make sense only if the transfer
can be interpreted and is feasible. A strict formalization of
such questions in Domain Adaptation is still non-existent: we
think that Kolmogorov complexity (for the analogical point of
view) and topological data analysis (for the preservation of
structures) could be useful tools to provide a strict theory of
learning under concept drift.

ACKNOWLEDGMENT

The authors would like to thank Jean-Louis Dessalles for
his insights on Kolmogorov Complexity and Minimum De-
scription Length Principle. They are also grateful to Cristina
Manfredotti and Jérémie Sublime for their wise comments on
the methodology.

REFERENCES

[1] B. Z. Zadrozny, “Learning and evaluating classifiers under sample
selection bias,” in In International Conference on Machine Learning
ICML04, pp. 903–910, 2004.

[2] M. Dudk, R. E. Schapire, and S. J. Phillips, “Correcting sample selection
bias in maximum entropy density estimation,” in In Advances in Neural
Information Processing Systems, 2005.

[3] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf,
“Correcting sample selection bias by unlabeled data,” in Advances
in Neural Information Processing Systems, vol. 19, The MIT Press,
Cambridge, MA, 2007. Pre-proceedings version.

[4] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset Shift in Machine Learning. The MIT Press, 2009.

[5] J. Blitzer, R. McDonald, and F. Pereira, “Domain adaptation with struc-
tural correspondence learning,” in Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Processing, EMNLP ’06,
(Stroudsburg, PA, USA), pp. 120–128, Association for Computational
Linguistics, 2006.

[6] S. Ben-david, J. Blitzer, K. Crammer, and O. Pereira, “Analysis of
representations for domain adaptation,” in In NIPS, MIT Press, 2007.

[7] A. Cornuéjols, “Analogie, principe déconomie et com-
plexitálgorithmique.,” in Actes des 11èmes Journées Françaises
de lApprentissage, 1996.

[8] T. R. Davies and S. J. Russell, “A logical approach to reasoning by
analogy,” in Proc. of the 10th IJCAI, (Milan, Italy), pp. 264–270, 1987.

[9] R. J. Solomonoff, “A Formal Theory of Inductive Inference: Parts 1 &
2,” Inform. Control, vol. 7, 1964.

[10] C. S. Wallace and D. M. Boulton, “An information measure for classi-
fication,” The Computer Journal, vol. 11, no. 2, pp. 185–194, 1968.

[11] M. Li and P. M. Vitanyi, An Introduction to Kolmogorov Complexity
and Its Applications. Springer Publishing Company, Incorporated, 3 ed.,
2008.

[12] D. Hofstadter, Methamagical Themas: Questing for the Essence of Mind
and Pattern. basic books ed., 1985.

[13] T. Kohonen, M. R. Schroeder, and T. S. Huang, eds., Self-Organizing
Maps. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 3rd ed.,
2001.

